(2020年编辑)最小二乘法拟合原理

合集下载

最小二乘拟合的概念-概述说明以及解释

最小二乘拟合的概念-概述说明以及解释

最小二乘拟合的概念-概述说明以及解释1.引言1.1 概述最小二乘拟合是一种常用的数据分析方法,通过最小化观测值与拟合值之间的残差平方和来求取最优拟合曲线或平面,从而描述数据的模式和趋势。

该方法被广泛应用于统计建模、机器学习、信号处理、金融分析等领域。

最小二乘法的核心思想是寻找一条曲线或平面,使得该曲线或平面与数据点的残差之和最小。

通过最小二乘法,我们可以得到最佳拟合曲线或平面,从而对数据进行更准确的描述和预测。

因此,最小二乘拟合在数据分析中具有重要的意义。

本文将详细介绍最小二乘拟合的定义、原理和应用,从而帮助读者更好地理解和运用这一重要的数据分析方法。

1.2 文章结构文章结构部分的内容如下:文章结构部分将介绍整篇文章的组织结构和主要内容安排,以便读者对文章的整体框架有一个清晰的认识。

在本文中,主要分为引言、正文和结论三个部分。

- 引言部分包括对最小二乘拟合的概念进行简要介绍,阐述本文撰写的目的和重要性。

- 正文部分将详细讨论最小二乘拟合的定义、原理和应用,以便读者全面了解这一重要的数据分析方法。

- 结论部分将对最小二乘拟合的重要性进行总结,探讨最小二乘法在数据分析中的价值,并展望最小二乘拟合在未来的发展趋势。

通过这样的结构安排,读者可以清晰地了解本文的主要内容和章节布局,有助于他们更好地理解和掌握最小二乘拟合的相关知识。

1.3 目的本文的主要目的是介绍最小二乘拟合这一重要的数学方法。

通过对最小二乘拟合的定义、原理和应用进行详细讨论,希望读者能够深入了解这一方法在数据分析和模型拟合中的重要性。

此外,本文还将探讨最小二乘法在实际问题中的应用,以及展望未来最小二乘拟合在数据分析领域的发展趋势。

通过阐述这些内容,旨在让读者更加深入地理解和应用最小二乘拟合方法,为其在数据分析和模型拟合中提供有效的工具和思路。

2.正文2.1 最小二乘拟合的定义最小二乘拟合是一种常用的数学方法,用于通过调整参数来拟合一个数学模型以最小化观测数据和模型之间的残差平方和。

最小二乘拟合 原理

最小二乘拟合 原理

最小二乘拟合原理
最小二乘拟合是一种常用的数学方法,用于找到一条曲线或者函数来最好地拟合一组具体的数据点。

它的原理是通过最小化数据点与拟合曲线之间的误差平方和,来确定曲线的参数。

首先,我们假设拟合曲线是通过一个函数表示的,例如一个多项式函数或者指数函数。

然后我们用该函数来预测每个数据点的值,并计算预测值与真实值之间的差距,即误差。

为了找到最佳拟合曲线,我们需要找到使得误差平方和最小的参数。

最小二乘拟合的关键思想在于将误差平方和作为一个目标函数,并使用数学优化方法来找到使得该目标函数最小化的参数。

通常情况下,最小二乘拟合会使用普通最小二乘法(Ordinary Least Squares,OLS)来求解参数。

OLS方法通过求解目标函数对参数的偏导数,并令其等于零,来得到参数的解析解。

这样就可以找到使得误差平方和最小的参数。

然而,在某些情况下,目标函数可能不具备解析解,或者解析解存在但不易计算。

这时候,可以使用数值优化方法来近似求解参数。

常用的数值优化方法包括梯度下降法、牛顿法等。

最小二乘拟合的一个重要应用是线性回归分析。

线性回归模型假设拟合曲线是一个线性函数,通过最小二乘拟合可以求解出最佳的线性参数。

线性回归分析在统计学和机器学习中经常被用于建立预测模型。

总而言之,最小二乘拟合是一种常用的数学方法,可以用于寻找最佳拟合曲线或函数。

通过最小化数据点与拟合曲线之间的误差平方和,我们可以求解出最佳拟合参数,从而得到一个最优的拟合结果。

最小二乘法的曲线拟合

最小二乘法的曲线拟合

最小二乘法的曲线拟合曲线拟合是在给定一组离散数据的情况下,通过一个函数来逼近这些数据的过程。

最小二乘法是一种常用的拟合方法,它通过最小化实际观测值与拟合值之间的误差平方和,来确定最佳的曲线拟合。

在进行最小二乘法的曲线拟合之前,我们首先需要明确拟合的目标函数形式。

根据实际问题的不同,可以选择线性拟合函数、多项式拟合函数或者其他非线性拟合函数。

然后,我们通过求解最小二乘问题的优化方程,来得到拟合函数的系数。

最小二乘法的核心思想是将拟合问题转化为一个优化问题。

我们需要定义一个损失函数,用来衡量观测值与拟合值之间的差异。

常见的损失函数有平方损失函数、绝对损失函数等。

在最小二乘法中,我们选择平方损失函数,因为它能够更好地反映误差的大小。

具体来说,我们假设待拟合的数据点为{(x1,y1),(x2,y2),...,(xn,yn)},拟合函数为f(x)。

则拟合问题可表示为以下优化方程:min Σ(yi-f(xi))^2通过求解优化方程,即求解拟合函数的系数,我们可以得到最佳的曲线拟合。

最小二乘法的优势在于它能够考虑所有观测值的误差,并且具有较好的稳定性和可靠性。

在实际应用中,最小二乘法的曲线拟合被广泛应用于各个领域。

例如,在物理学中,可以利用最小二乘法来分析实验数据,拟合出与实际曲线相符合的函数。

在经济学中,最小二乘法可以用来估计经济模型中的参数。

在工程领域,最小二乘法可以用于信号处理、图像处理等方面。

总而言之,最小二乘法是一种常用的曲线拟合方法,通过最小化观测值与拟合值之间的误差平方和,来确定最佳的拟合函数。

它具有简单、稳定、可靠的特点,在各个领域都有广泛的应用。

最小二乘法拟合圆原理

最小二乘法拟合圆原理

最小二乘法拟合圆原理
最小二乘法是一种常用的数值分析方法,用于拟合数据点,并找到最适合数据的模型。

在拟合圆的问题中,最小二乘法也可以用来求解最小二乘圆。

拟合圆的原理是通过已知的一组数据点,在平面上找到一个圆,使得这些数据点到圆的距离的平方和最小。

这个距离可以用欧几里得距离来计算。

最小二乘法拟合圆的步骤如下:
1. 计算数据点的坐标平均值,作为圆心的初值。

2. 迭代地求解圆心和半径,直到误差满足要求或达到最大迭代次数。

3. 计算每个数据点到圆的距离,求出平方和作为误差。

4. 利用误差的大小来判断拟合的好坏。

误差越小,拟合效果越好。

最小二乘法拟合圆的优点是可以处理带有噪声和异常点的数据,可以得到较为精确的结果。

但在计算时需要进行多次迭代,因此时间复杂度较高。

- 1 -。

最小二乘法原理

最小二乘法原理

最小二乘法原理
最小二乘法是一种用于拟合实验数据的统计算法,它通过最小化实际观测值与理论曲线之间的残差平方和来确定拟合曲线的最佳参数值。

该方法常应用于曲线拟合、回归分析和数据降维等领域。

最小二乘法的基本原理是基于线性回归模型:假设数据之间存在线性关系,并且实验误差服从正态分布。

为了找到最佳拟合曲线,首先假设拟合曲线的表达式,通常是一个线性方程。

然后利用实际观测值与拟合曲线之间的残差,通过最小化残差平方和来确定最佳的参数估计。

残差即为实际观测值与拟合曲线预测值之间的差异。

最小二乘法的优点在于它能够提供最优的参数估计,并且结果易于解释和理解。

通过将实际观测值与理论曲线进行比较,我们可以评估拟合的好坏程度,并对数据的线性关系进行量化分析。

此外,最小二乘法可以通过引入惩罚项来应对过拟合问题,增加模型的泛化能力。

最小二乘法在实际应用中具有广泛的应用,例如金融学中的资产定价模型、经济学中的需求曲线估计、物理学中的运动学拟合等。

尽管最小二乘法在某些情况下可能存在局限性,但它仍然是一种简单而强大的统计方法,能够提供有关数据关系的重要信息。

最小二乘拟合原理

最小二乘拟合原理

最小二乘拟合原理
最小二乘拟合(Least squares fitting)是一种常用的数据拟合方法,它通过将观测数据点与拟合函数的最小垂直距离的平方和最小化来确定最佳拟合曲线或平面。

最小二乘法的核心原理是寻找最小化误差的最优解,即使得拟合曲线与原始数据的离散程度最小。

最小二乘拟合是基于以下假设:
1. 假设数据之间的噪声是服从高斯分布的,也就是正态分布。

2. 假设数据点之间是独立的。

最小二乘法的目标是找到一个函数的参数,使得该函数与给定的一组数据点的误差最小。

这里的误差是指拟合函数与真实数据点之间的差异。

通过最小二乘法,我们可以找到最佳拟合函数的参数,使得拟合函数与观测数据的残差平方和最小化。

具体而言,最小二乘法可以应用于各种拟合问题,例如线性回归、多项式拟合和非线性拟合。

对于线性回归问题,最小二乘法可以通过解析解或数值优化方法(如梯度下降)来求解最佳拟合直线的参数。

需要注意的是,最小二乘法在某些情况下可能会受到极值点的影响,导致过拟合或欠拟合的问题。

因此,在使用最小二乘法进行数据拟合时,需要合理选择拟合函数的形式,并对拟合结果进行评估和验证。

最小二乘算法原理

最小二乘算法原理

最小二乘算法原理最小二乘算法是一种用来求解最优拟合直线或曲线的方法。

其原理是通过最小化实际观测值与拟合值之间的差异平方和,来找到最合适的模型参数。

假设我们有n个数据点,其中每个数据点由自变量x和因变量y组成。

最小二乘算法的目标是找到一条拟合直线(或曲线),使得所有数据点到该直线(或曲线)的距离之和最小。

首先,我们需要定义一个模型函数,表示拟合直线(或曲线)的形式。

例如,对于线性函数来说,模型函数可以表示为:y= a + bx,其中a和b是需要求解的模型参数。

然后,我们计算每个数据点与模型函数的差异,记为残差或误差。

对于线性函数来说,残差可以表示为:ε = y - (a + bx)。

接下来,我们计算残差的平方和(Sum of Squared Residuals,SSR),即将每个残差平方后求和。

SSR表示了实际观测值与拟合值之间的整体偏差。

最小二乘算法的关键步骤是,通过求解模型参数的偏导数并令其等于零,来找到使得SSR最小的模型参数。

对于线性函数来说,我们可以通过求解下面的正规方程组来得到最优参数的估计值:∂SSR/∂a = -2Σ(y - (a + bx)) = 0∂SSR/∂b = -2Σx(y - (a + bx)) = 0将上述方程化简后,我们就可以得到最优参数的估计值:a = (Σy - bΣx) / nb = (nΣxy - ΣxΣy) / (nΣx^2 - (Σx)^2)其中,Σ表示对所有数据点求和,n表示数据点的个数。

通过最小二乘算法,我们可以得到拟合直线(或曲线)的最优参数估计值,从而使得实际观测值与拟合值之间的差异最小化。

最小二乘算法被广泛应用于数据分析、回归分析、信号处理等领域。

最小二乘法基本原理

最小二乘法基本原理

最小二乘法基本原理最小二乘法是一种常见的数学拟合方法,它可以用来求解线性回归、非线性回归等问题。

在实际应用中,最小二乘法被广泛应用于数据拟合、参数估计等领域。

本文将介绍最小二乘法的基本原理,帮助读者更好地理解和应用这一方法。

首先,我们来看看最小二乘法的核心思想。

最小二乘法的目标是找到一条曲线或者一个函数,使得这条曲线或者函数与实际数据的残差平方和最小。

残差即实际观测值与拟合值之间的差距,残差平方和的最小化可以保证拟合效果更好。

在线性回归问题中,我们通常假设模型为y = β0 + β1x + ε,其中β0和β1为待估参数,ε为误差项。

我们的目标是找到最优的参数估计值β0和β1,使得模型的拟合效果最好。

最小二乘法通过最小化残差平方和来实现这一目标。

具体来说,对于给定的数据集{(x1, y1), (x2, y2), ..., (xn, yn)},我们可以通过最小二乘法求解出最优的参数估计值β0和β1。

首先,我们需要构建损失函数,通常选择残差平方和作为损失函数。

然后,通过对损失函数进行求导,可以得到最优参数的闭式解。

最终,我们就可以得到最优的参数估计值,从而得到最佳拟合曲线。

除了线性回归,最小二乘法还可以应用于非线性回归问题。

在非线性回归问题中,我们的模型可能是非线性的,例如y = β0 + β1x + β2x^2 + ε。

此时,我们可以借助最小二乘法来求解最优的参数估计值β0、β1和β2,从而得到最佳拟合曲线。

最小二乘法的优点在于它具有良好的数学性质和稳定的数值计算方法。

通过最小二乘法,我们可以得到最优的参数估计值,从而使得拟合效果更好。

此外,最小二乘法还可以通过统计检验来评估模型的拟合效果,从而帮助我们判断模型的可靠性。

总之,最小二乘法是一种常见且实用的数学拟合方法,它可以用来求解线性回归、非线性回归等问题。

通过最小二乘法,我们可以得到最优的参数估计值,从而使得拟合效果更好。

希望本文能够帮助读者更好地理解和应用最小二乘法,从而在实际问题中取得更好的效果。

最小二乘法拟合原理

最小二乘法拟合原理

最小二乘拟合在物理实验中经常要观测两个有函数关系的物理量。

根据两个量的许多组观测数据来确定它们的函数曲线,这就是实验数据处理中的曲线拟合问题。

这类问题通常有两种情况:一种是两个观测量x 与y 之间的函数形式已知,但一些参数未知,需要确定未知参数的最佳估计值;另一种是x 与y 之间的函数形式还不知道,需要找出它们之间的经验公式。

后一种情况常假设x 与y 之间的关系是一个待定的多项式,多项式系数就是待定的未知参数,从而可采用类似于前一种情况的处理方法。

一、最小二乘法原理在两个观测量中,往往总有一个量精度比另一个高得多,为简单起见把精度较高的观测量看作没有误差,并把这个观测量选作x ,而把所有的误差只认为是y 的误差。

设x 和y 的函数关系由理论公式y =f (x ;c 1,c 2,……c m ) (0-0-1)给出,其中c 1,c 2,……c m 是m 个要通过实验确定的参数。

对于每组观测数据(x i ,y i )i =1,2,……,N 。

都对应于xy 平面上一个点。

若不存在测量误差,则这些数据点都准确落在理论曲线上。

只要选取m 组测量值代入式(0-0-1),便得到方程组y i =f (x ;c 1,c 2,……c m ) (0-0-2)式中i =1,2,……,m.求m 个方程的联立解即得m 个参数的数值。

显然N<m 时,参数不能确定。

在N>m 的情况下,式(0-0-2)成为矛盾方程组,不能直接用解方程的方法求得m 个参数值,只能用曲线拟合的方法来处理。

设测量中不存在着系统误差,或者说已经修正,则y 的观测值y i 围绕着期望值 <f (x ;c 1,c 2,……c m )> 摆动,其分布为正态分布,则y i 的概率密度为()()[]⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧--=22212,......,,;exp 21i mi i i i c c c x f y y p σσπ,式中i σ是分布的标准误差。

(完整word版)最小二乘法的基本原理和多项式拟合-Read

(完整word版)最小二乘法的基本原理和多项式拟合-Read

最小二乘法的基本原理和多项式拟合 一最小二乘法的基本原理从整体上考虑近似函数)(x p 同所给数据点),(i i y x (i=0,1,…,m)误差i i i y x p r -=)((i=0,1,…,m)i i i y x p r -=)((i=0,1,…,m)绝对值的最大值im i r ≤≤0max ,即误差 向量T m r r r r ),,(10 =的∞—范数;二是误差绝对值的和∑=mi ir 0,即误差向量r 的1—范数;三是误差平方和∑=mi ir02的算术平方根,即误差向量r 的2—范数;前两种方法简单、自然,但不便于微分运算 ,后一种方法相当于考虑 2—范数的平方,因此在曲线拟合中常采用误差平方和∑=mi ir02来 度量误差i r (i=0,1,…,m)的整体大小。

数据拟合的具体作法是:对给定数据 ),(i i y x (i=0,1,…,m),在取定的函数类Φ中,求Φ∈)(x p ,使误差i i i y x p r -=)((i=0,1,…,m)的平方和最小,即∑=mi ir 02=[]∑==-mi i i y x p 02min)(从几何意义上讲,就是寻求与给定点),(i i y x (i=0,1,…,m)的距离平方和为最小的曲线)(x p y =(图6-1)。

函数)(x p 称为拟合 函数或最小二乘解,求拟合函数)(x p 的方法称为曲线拟合的最小二乘法。

Φ可有不同的选取方法.6—1二多项式拟合假设给定数据点),(i i y x (i=0,1,…,m),Φ为所有次数不超过)(m n n ≤的多项式构成的函数类,现求一Φ∈=∑=nk k k n x a x p 0)(,使得[]min )(00202=⎪⎭⎫⎝⎛-=-=∑∑∑===mi mi n k i k i k i i n y x a y x p I (1)当拟合函数为多项式时,称为多项式拟合,满足式(1)的)(x p n 称为最小二乘拟合多项式。

最小二乘法曲线拟合原理

最小二乘法曲线拟合原理

最小二乘法曲线拟合原理最小二乘法曲线拟合(LeastSquaresCurveFitting,简称LSCF)是采用数学统计技术进行多元函数拟合所用的一种技术。

它可以快速、准确地根据已经给定的实验数据拟合出一条实验曲线,从而给出诸如拟合函数的系数值等信息。

因此,最小二乘法曲线拟合在各种科学、工程实验中有着广泛的应用。

最小二乘法曲线拟合的原理很简单,它是基于“最小化误差”的概念,即拟合出来的曲线应尽可能接近给定的实验数据,使实验数据与拟合函数之间的差距最小。

这就要求我们求出实验数据与拟合函数之间的差距,这一差距被称为拟合误差,也称为“残差”。

最小二乘法曲线拟合的基本思想就是使残差的平方和(即拟合误差的平方和)取得最小值,从而实现拟合函数接近实验数据的目的。

最小二乘法曲线拟合的求解流程主要是:首先确定拟合函数的形式,然后利用已经给定的实验数据,建立最小二乘拟合问题,即求解各系数的拟合关系,然后利用几何极值法或矩阵方法求解给定拟合函数的拟合系数值,最后就可以得到拟合函数的数学公式及其系数值了。

最小二乘法曲线拟合由于给出的实验数据精度不同和系数组合不同,可以曲线拟合许多不同的函数形式,数学模型复杂度从一次函数到高阶复合函数都可以拟合。

例如,它可以拟合出多项式函数、指数函数、对数函数、三次样条函数、双曲线函数等。

由于最小二乘法曲线拟合能够实现快速、准确地根据实验数据拟合出实验曲线,因此它在科学、工程实验中有着广泛的应用。

例如可以用它来估计经济预期的变化趋势,也可以用于关键的工艺参数的优化设计,也可以用于机械性能的预测,还可以应用于心理研究中,帮助心理学家了解人类心理活动的变化规律。

最小二乘法曲线拟合的最大优点在于曲线拟合的精度较高,可以得到较为精确的拟合结果,模型的复杂度也很强,可以拟合许多不同的函数形式,但其缺点也是与优点相对应的,可能会使拟合结果产生畸变,拟合精度也会受到实验数据的精度的影响。

综上,最小二乘法曲线拟合是一种重要的数学统计技术,它能够根据已经给定的实验数据拟合出接近实验数据的函数,广泛应用于科学、工程实验,从而可以深入探究实验过程背后的规律,帮助人们更好地理解实验结果,是科学研究中不可缺少的一种技术。

最小二乘法在数据拟合中的应用

最小二乘法在数据拟合中的应用

最小二乘法在数据拟合中的应用最小二乘法是一种常用的数学方法,它在数据拟合中有着广泛的应用。

通过最小二乘法,可以对数据进行拟合,从而得到数据之间的关系,进而可以进行预测和分析。

本文将介绍最小二乘法在数据拟合中的应用,包括其基本原理、具体步骤和实际案例分析。

1. 基本原理最小二乘法是一种通过最小化误差的方法来拟合数据的数学技术。

它的基本原理是通过找到一条曲线或者直线,使得这条曲线或者直线与给定的数据点之间的误差平方和最小。

这里的误差是指数据点到拟合曲线或者直线的距离。

2. 具体步骤最小二乘法的具体步骤如下:(1)建立数学模型:首先要确定要拟合的数据的数学模型,可以是线性模型、多项式模型或者其他非线性模型。

(2)确定误差函数:然后要确定用来衡量拟合效果的误差函数,通常是残差平方和。

(3)最小化误差:接着要通过数学计算的方法,找到使误差函数最小化的参数,这些参数就是最佳拟合的结果。

(4)评估拟合效果:最后要对拟合结果进行评估,看拟合效果是否满足要求。

3. 实际案例分析下面通过一个实际案例来说明最小二乘法在数据拟合中的应用。

假设有一组数据点{(1, 2), (2, 3), (3, 4), (4, 5)},我们希望通过最小二乘法找到一条直线来拟合这些数据点。

首先我们建立线性模型y = ax + b,然后确定误差函数为残差平方和Σ(yi - (axi + b))^2,接着通过数学计算找到使误差函数最小化的参数a和b。

经过计算我们得到最佳拟合直线为y = 1x + 1,拟合效果如图所示。

可以看到,通过最小二乘法得到的拟合直线与原始数据点之间的误差较小,拟合效果较好。

综上所述,最小二乘法是一种在数据拟合中广泛应用的数学方法,通过最小化误差实现数据的拟合。

通过合理建模和数学计算,可以得到最佳拟合的结果,从而实现数据的预测和分析。

希望本文对读者了解最小二乘法在数据拟合中的应用有所帮助。

最小二乘法拟合圆的原理

最小二乘法拟合圆的原理

最小二乘法拟合圆的原理首先,我们需要知道拟合圆的一般方程。

一个圆的方程可以表示为:(x-a)^2+(y-b)^2=r^2其中(a, b)是圆心坐标,r是半径。

我们的目标就是找到合适的参数a、b和r,使得圆方程与给定的数据点(xi, yi)最接近。

拟合圆的过程可以分为以下几个步骤:1. 数据准备:获得一组二维平面上的数据点(xi, yi),这些数据点可能分布在一个圆形的形状附近。

2.初始参数估计:选择合适的初始参数估计值。

3.误差计算:计算每个数据点到拟合圆的距离。

4.最小化目标函数:选择一个目标函数,通过最小化这个函数来寻找最优的参数。

5.参数优化:使用数值优化算法,如梯度下降法或牛顿法,来找到最小化目标函数的参数。

6.结果验证:检验拟合效果,评估模型的性能。

让我们详细看一下上述步骤。

首先,选择合适的初始参数估计值。

在拟合圆的情况下,可以选择一种启发式方法,如计算数据点的中心坐标作为初始圆心估计,然后计算数据点到初始圆心估计的平均距离作为初始半径估计。

接下来,计算每个数据点到拟合圆的距离。

可以选择使用欧几里得距离,也可以使用其他距离度量方法。

距离计算公式如下:d = sqrt((x - a)^2 + (y - b)^2) - r然后,选择一个目标函数来最小化。

最小二乘法中常用的目标函数是最小化误差平方和,即使每个数据点到拟合圆的距离的平方之和最小化。

S = Σ((sqrt((xi - a)^2 + (yi - b)^2) - r)^2)最后,使用数值优化算法来寻找最优解。

常用的算法包括梯度下降法和牛顿法。

这些算法会迭代地更新参数值,以使目标函数逐步趋近于最小值。

完成上述步骤后,我们就可以得到拟合圆的参数估计值。

可以进一步验证拟合效果,如计算残差、拟合曲线等。

总结起来,最小二乘法拟合圆的原理包括确定初始参数估计值,计算误差,最小化目标函数,优化参数,并验证拟合效果。

这种方法能够找到一个与给定数据最接近的圆,可以用于很多实际应用中,如图像处理、计算机视觉和物体识别等。

最小二乘算法 原理

最小二乘算法 原理

最小二乘算法原理最小二乘算法是一种用于拟合数据的统计方法。

该方法通过最小化数据点与拟合曲线之间的距离,来确定拟合曲线的系数。

最小二乘方法可以应用于线性以及非线性拟合问题。

该方法广泛应用于工程、经济学、金融和科学领域中的数据分析问题。

本文将介绍最小二乘算法的原理,应用场景以及实现方式等相关内容。

一、最小二乘算法原理最小二乘算法的原理是,选择一个最优的函数模型来拟合实验数据。

该函数模型是一个线性方程,其中依变量与自变量之间存在线性关系。

在最小二乘算法中,我们假设误差服从正态分布,这意味着我们能够计算出被拟合的曲线与实际数据点之间的误差。

最小二乘算法的目标是使这些误差的平方和最小化。

该过程可以用如下的数学公式来表示:\sum_{i=1}^n(y_i - f(x_i))^2其中,y_i 为实际数据点的观测值,f(x_i) 是对应的理论值,n 为数据点的数量。

最小二乘算法的目标是找到使误差平方和最小的函数参数,该函数参数通过线性回归方法来确定。

线性回归是用于估计线性关系的统计方法。

二、应用场景最小二乘算法可以应用于多种实际问题中。

以下是最小二乘算法适用的场景:1. 线性回归最小二乘算法可以用于线性回归分析。

线性回归是分析两个或多个变量之间线性关系的方法。

最小二乘算法能够找到最佳的线性拟合曲线,该曲线使得数据点与直线之间的距离之和最小。

2. 曲线拟合最小二乘算法可以用于曲线拟合。

该方法可以找到最佳的曲线来拟合实验数据。

这些数据可以是任意形状的,包括二次曲线、三次曲线或任意的高次多项式。

3. 时间序列分析最小二乘算法可以用于时间序列分析。

时间序列分析是对时间序列数据进行建模和预测的方法。

最小二乘算法可以用于建立预测模型,并预测未来数据点的值。

4. 数字信号处理最小二乘算法可以用于数字信号处理。

该方法可以用于给定一组信号来提取其特征。

这些特征可以包括频率、相位和幅度等。

三、最小二乘算法步骤最小二乘算法的实现步骤如下所示:1. 确定函数形式首先,我们需要确定要拟合的函数形式。

曲线拟合的最小二乘法原理及实现

曲线拟合的最小二乘法原理及实现

曲线拟合的最小二乘法原理及实现
最小二乘法是一种用于拟合数据的常用方法,特别是在需要找到一条曲线或函数来最好地描述数据时。

它的基本思想是找到一条最适合数据的曲线,使得数据点与曲线之间的偏差最小。

具体来说,最小二乘法的原理是在给定一些数据点的情况下,通过最小化每个数据点到一条曲线或函数之间的垂直距离或水平距离来找到最适合这些数据的曲线或函数。

在实际应用中,可以使用最小二乘法来拟合各种类型的曲线,如线性、二次、三次、指数等。

下面是最小二乘法的基本步骤:
1.收集数据并确定要拟合的函数类型。

2.确定函数中的待定系数,例如线性函数中的截距和斜率,二次
函数中的二次项系数、一次项系数和截距等。

3.计算每个数据点到拟合曲线的垂直距离或水平距离。

4.通过最小化距离平方和来确定待定系数,例如线性函数中可以
使用公式(b-x)² + (c-y)² = 最小值,其中b和c是待定的截距和斜率。

5.求解方程组来确定待定系数,例如在线性函数中可以使用公式
b = ∑xiyi / ∑xi,
c = ∑xi² / ∑xi来计算截距和斜率。

6.使用确定的函数系数来绘制拟合曲线。

需要注意的是,最小二乘法可能不适用于所有类型的数据,并且可能需要使用其他曲线拟合方法来获得更好的结果。

在实际应用中,还需要考虑数据的准确性和可靠性,以及选择最适合数据类型的拟合方法。

最小二乘法曲线拟合原理

最小二乘法曲线拟合原理

最小二乘法曲线拟合原理最小二乘法曲线拟合原理是指用曲线来拟合已知数据点的一种优化算法,也叫“误差最小化法”,更多的称之为“最小二乘法”,简称LSM。

最小二乘法曲线拟合的应用范围很广,拟合分析复杂数据的应用越来越多。

最小二乘法曲线拟合的原理最小二乘曲线拟合的基本原理是构造一个最适合拟合给定数据点的函数,使拟合后函数拟合数据点和真实数据点之间的均方误差(SSE)最小。

均方误差是指观测值和拟合函数值之间的差的平方(SSE = SΣ(Yi - Xk)^2)。

均方误差最小,表明拟合函数就是最适合拟合数据的函数,而最小二乘法的基本思想就是求均方误差最小,即求解最优解的函数,这个函数就是最合适拟合给定数据点的曲线函数,即最小二乘法曲线拟合函数。

最小二乘法曲线拟合的应用最小二乘法曲线拟合最常见的应用是拟合曲线,以解决未知函数形式的问题。

拟合曲线可以使用曲线来估计一组数据,曲线拟合可以使得模型更准确地拟合数据,并且可以获得该曲线的未知参数。

如果数据不符合一个函数,可以使用自定义函数进行拟合,比如指数函数、sin函数、双曲线等。

最小二乘法也可以用于拟合回归模型,这是一种统计学中常用的方法,它可以用来推断大量随机变量的变化趋势,或者用来分析一个可能受其他变量影响的变量之间的关系。

最小二乘法也可以用于数值估计,比如最小二乘法用于数值拟合,用于数值拟合可以求出未知函数的参数,用于回归分析中,可以估计因变量受自变量影响的参数。

最小二乘法曲线拟合的缺点最小二乘法曲线拟合的最大缺点是其依赖性强:由于拟合的曲线函数有固定形式,因此无法拟合数据点的异常值,也无法拟合数据不具有规律性的情况;另外,最小二乘法曲线拟合也可能因过拟合导致拟合出的函数复杂度较高,从而影响精度。

总结最小二乘法曲线拟合原理指用曲线来拟合已知数据点的一种优化算法,它的基本原理是构造一个最适合拟合给定数据点的函数,使拟合后函数拟合数据点和真实数据点之间的均方误差最小。

曲线拟合的最小二乘法原理及实现

曲线拟合的最小二乘法原理及实现

曲线拟合的最小二乘法原理及实现任务名称简介在数据处理和统计分析中,曲线拟合是一种常见的技术,旨在通过数学函数找到最佳拟合曲线,以尽可能准确地描述给定数据集的变化趋势。

在曲线拟合的过程中,最小二乘法是一种常用的数学方法,用于选择最佳拟合曲线。

本文将详细介绍最小二乘法的原理和实现方法。

最小二乘法原理最小二乘法是一种通过最小化误差平方和来拟合数据的方法。

其基本原理是将数据集中的每个数据点与拟合曲线上对应点的差值进行平方,然后将所有差值的平方相加,得到误差平方和。

最小二乘法的目标是通过调整拟合曲线的参数,使得误差平方和达到最小值。

假设我们有一个包含n个数据点的数据集,每个数据点的横坐标为x,纵坐标为y。

我们希望找到一个拟合曲线,可以通过曲线上的点与数据点的差值来评估拟合效果。

拟合曲线的一般形式可以表示为:y = f(x, β)其中,β为拟合曲线的参数,f为拟合曲线的函数。

最小二乘法的基本思想是选择适当的参数β,使得误差平方和最小化。

误差平方和可以表示为:S(β) = Σ(y - f(x, β))^2其中,Σ表示求和操作,拟合曲线上的点的横坐标为x,纵坐标为f(x, β)。

为了找到误差平方和的最小值,我们需要对参数β进行求解。

最常用的方法是对参数β求导数,令导数为0,从而得到参数的估计值。

求解得到的参数估计值就是使得误差平方和最小化的参数。

最小二乘法实现步骤最小二乘法的实现可以分为以下几个步骤:1.确定拟合曲线的函数形式。

根据数据的特点和拟合的需求,选择合适的拟合曲线函数,例如线性函数、多项式函数等。

2.建立误差函数。

根据选择的拟合曲线函数,建立误差函数,即每个数据点与拟合曲线上对应点的差值的平方。

3.求解参数估计值。

对误差函数求导数,并令导数为0,求解得到参数的估计值。

4.进行拟合曲线的评估。

通过计算误差平方和等指标来评估拟合曲线的质量,可以使用残差平方和、R方值等指标。

5.优化拟合结果(可选)。

根据评估的结果,如有必要可以调整拟合曲线的参数或选择其他拟合曲线函数,以得到更好的拟合效果。

最小二乘法的基本原理和多项式拟合

最小二乘法的基本原理和多项式拟合

最小二乘法的基本原理和多项式拟合Document number:NOCG-YUNOO-BUYTT-UU986-1986UT最小二乘法的基本原理和多项式拟合一最小二乘法的基本原理从整体上考虑近似函数同所给数据点 (i=0,1,…,m)误差(i=0,1,…,m)的大小,常用的方法有以下三种:一是误差(i=0,1,…,m)绝对值的最大值,即误差向量的∞—范数;二是误差绝对值的和,即误差向量r的1—范数;三是误差平方和的算术平方根,即误差向量r的2—范数;前两种方法简单、自然,但不便于微分运算,后一种方法相当于考虑 2—范数的平方,因此在曲线拟合中常采用误差平方和来度量误差 (i=0,1,…,m)的整体大小。

数据拟合的具体作法是:对给定数据 (i=0,1,…,m),在取定的函数类中,求,使误差(i=0,1,…,m)的平方和最小,即=从几何意义上讲,就是寻求与给定点 (i=0,1,…,m)的距离平方和为最小的曲线(图6-1)。

函数称为拟合函数或最小二乘解,求拟合函数的方法称为曲线拟合的最小二乘法。

在曲线拟合中,函数类可有不同的选取方法.6—1二多项式拟合假设给定数据点 (i=0,1,…,m),为所有次数不超过的多项式构成的函数类,现求一,使得(1)当拟合函数为多项式时,称为多项式拟合,满足式(1)的称为最小二乘拟合多项式。

特别地,当n=1时,称为线性拟合或直线拟合。

显然为的多元函数,因此上述问题即为求的极值问题。

由多元函数求极值的必要条件,得(2)即(3)(3)是关于的线性方程组,用矩阵表示为(4)式(3)或式(4)称为正规方程组或法方程组。

可以证明,方程组(4)的系数矩阵是一个对称正定矩阵,故存在唯一解。

从式(4)中解出 (k=0,1,…,n),从而可得多项式(5)可以证明,式(5)中的满足式(1),即为所求的拟合多项式。

我们把称为最小二乘拟合多项式的平方误差,记作由式(2)可得(6)多项式拟合的一般方法可归纳为以下几步:(1) 由已知数据画出函数粗略的图形——散点图,确定拟合多项式的次数n;(2) 列表计算和;(3) 写出正规方程组,求出;(4) 写出拟合多项式。

(完整版)最小二乘法圆拟合

(完整版)最小二乘法圆拟合

最小二乘法圆拟合1.最小二乘法圆拟合原理 1.1理论最小二乘法(Least Square Method )是一种数学优化技术。

它通过最小化误差的平方和找到一组数据的最佳函数匹配。

利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。

1.2最小二乘圆拟合模型公式推导在二维平面坐标系中,圆方程一般可表示为:()22020)(r y y x x =-+- (1) 对于最小二乘法的圆拟合,其误差平方的优化目标函数为:[]212020)()(∑=--+-=ni i i r y y x x S式中:()i i y x ,n i ,...,2,1=为圆弧上特征点坐标;n 为参与拟合的特征点数。

在保持这优化目标函数特征的前提上,我们需要对其用一种稍微不同的改进方法来定义误差平方,且其避免了平方根,同时可得到一个最小化问题的直接解,定义如下:[]2122020)()(∑=--+-=ni i i r y y x x E (2)则(2)式可改写为:()2122002200222∑=-+-++-=ni i ii iry y y y x x x x E (3)令,02y B -=,02x A -=22020r y x C -+= 即(3)式可表示为:()222∑=++++=ni i i i i C By Ax y x E由最小二乘法原理,参数A ,B ,C 应使E 取得极小值。

根据极小值的求法,A ,B 和C 应满足()02022=++++=∂∂∑=i ni i i i i x C By Ax y x A E(4) ()02022=++++=∂∂∑=i n i i i i i y C By Ax y x B E(5) ()02022=++++=∂∂∑=n i i i i i C By Ax y x C E(6) 求解方程组,先消去参数C ,则 式()()∑=*-*ni i x n 064得()002202030000002=+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-∑∑∑∑∑∑∑∑∑∑==========ni i ni i i n i i i n i i n i n i i i n i i i n i n i i i n i i x y x y x n x n B y x y x n A x x x n (7)式()()∑=*-*ni i y n 065得()002202030002000=+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-∑∑∑∑∑∑∑∑∑∑==========ni ini i i n i i i n i i n i n i i i n i i n i n i i i n i i i yy x y x n y n B y y y n A y x y x n (8) 令⎪⎭⎫⎝⎛-=∑∑∑===n i n i ni i i i x x x n M 000211(9)⎪⎭⎫⎝⎛-==∑∑∑===n i ni i i n i i i y x y x n M M 0002112(10)⎪⎭⎫⎝⎛-=∑∑∑===n i ni i i n i i y y y n M 000222(11)()∑∑∑∑====+-+=ni ini iin i ii n i ixyx y x n x n H 002202031(12)()∑∑∑∑====+-+=n i ini iini i ini iy yx y x n y n H 02202032(13)将(7),(8)式写成矩阵形式⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡2122211211H H B A M M M M (14) 根据式(14)和式(6)可得:21122211221122M M M M M H M H A --=22112112211112M M M M M H M H B --=()nBy Ax y xC ni ii i i∑=+++-=022从而求得最佳拟合圆心坐标()00,y x ,半径r 的拟合值:20A x -=,20B y -=,C B A r 42122-+= 2.仿真数据分析首先设置仿真圆心(x0,y0),半径R0,在根据实际数据任意选取一段圆弧,产生N 组随机数据。

最小二乘法的原理

最小二乘法的原理

最小二乘法的原理
最小二乘法是一种常用的数学方法,用于拟合数据和估计参数。

它的原理很简单,但在实际应用中却有着广泛的用途。

首先,让我们来看看最小二乘法的基本原理。

最小二乘法的目标是找到一条直
线(或者曲线),使得这条直线与给定的数据点之间的误差平方和最小。

换句话说,就是要找到一条直线,使得所有数据点到这条直线的距离之和最小。

那么,如何找到这条直线呢?最小二乘法的关键就在于定义误差的度量方式。

通常情况下,我们使用数据点到直线的垂直距离的平方来作为误差的度量。

这样,我们就可以将问题转化为一个最优化问题,即找到使得误差平方和最小的直线参数。

在实际应用中,最小二乘法通常用于拟合数据和估计参数。

例如,在回归分析中,我们可以使用最小二乘法来拟合数据,并得到回归方程的参数估计。

在信号处理中,最小二乘法可以用来估计信号的频率和幅度。

在机器学习中,最小二乘法也被广泛应用于线性回归等模型的参数估计。

除了上述应用外,最小二乘法还有许多其他的应用场景。

例如,在地理信息系
统中,最小二乘法可以用来拟合地图数据,估计地图上各点的海拔高度。

在金融领域,最小二乘法可以用来估计资产收益率的参数。

在物理学中,最小二乘法可以用来拟合实验数据,估计物理模型的参数。

总之,最小二乘法是一种非常重要的数学方法,它不仅在理论研究中有着重要
的地位,而且在实际应用中也有着广泛的用途。

通过最小二乘法,我们可以拟合数据,估计参数,从而更好地理解数据背后的规律。

希望通过本文的介绍,读者对最小二乘法有了更深入的理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最小二乘拟合在物理实验中经常要观测两个有函数关系的物理量。

根据两个量的许多组观测数据来确定它们的函数曲线,这就是实验数据处理中的曲线拟合问题。

这类问题通常有两种情况:一种是两个观测量x 与y 之间的函数形式已知,但一些参数未知,需要确定未知参数的最佳估计值;另一种是x 与y 之间的函数形式还不知道,需要找出它们之间的经验公式。

后一种情况常假设x 与y 之间的关系是一个待定的多项式,多项式系数就是待定的未知参数,从而可采用类似于前一种情况的处理方法。

一、最小二乘法原理在两个观测量中,往往总有一个量精度比另一个高得多,为简单起见把精度较高的观测量看作没有误差,并把这个观测量选作x ,而把所有的误差只认为是y 的误差。

设x 和y 的函数关系由理论公式y =f (x ;c 1,c 2,……c m ) (0-0-1)给出,其中c 1,c 2,……c m 是m 个要通过实验确定的参数。

对于每组观测数据(x i ,y i )i =1,2,……,N 。

都对应于xy 平面上一个点。

若不存在测量误差,则这些数据点都准确落在理论曲线上。

只要选取m 组测量值代入式(0-0-1),便得到方程组y i =f (x ;c 1,c 2,……c m ) (0-0-2) 式中i =1,2,……,m.求m 个方程的联立解即得m 个参数的数值。

显然N<m 时,参数不能确定。

在N>m 的情况下,式(0-0-2)成为矛盾方程组,不能直接用解方程的方法求得m 个参数值,只能用曲线拟合的方法来处理。

设测量中不存在着系统误差,或者说已经修正,则y 的观测值y i 围绕着期望值 <f (x ;c 1,c 2,……c m )> 摆动,其分布为正态分布,则y i 的概率密度为()()[]⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧--=22212,......,,;exp 21i mi i i i c c c x f y y p σσπ,式中i σ是分布的标准误差。

为简便起见,下面用C 代表(c 1,c 2,……c m )。

考虑各次测量是相互独立的,故观测值(y 1,y 2,……c N )的似然函数()()[]⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧--=∑=N i i i N N C x f y L 12221;21ex p (21)σσσσπ.取似然函数L 最大来估计参数C ,应使()[]min ;1122=-∑=Ni i i i C x f y σ (0-0-3)取最小值:对于y 的分布不限于正态分布来说,式(0-0-3)称为最小二乘法准则。

若为正态分布的情况,则最大似然法与最小二乘法是一致的。

因权重因子2/1i i σω=,故式(0-0-3)表明,用最小二乘法来估计参数,要求各测量值y i 的偏差的加权平方和为最小。

根据式(0-0-3)的要求,应有()[]()m k C x f yc cc Ni i iik,...,2,10;1ˆ122==-∂∂==∑σ从而得到方程组()[]()()m k CC x f C x f y cc Ni ki i i,...,2,10;;1ˆ12==∂∂-==∑σ (0-0-4)解方程组(0-0-4),即得m 个参数的估计值m c c c ˆ,...,ˆ,ˆ21,从而得到拟合的曲线方程()m c c c x f ˆ,...,ˆ,ˆ;21。

然而,对拟合的结果还应给予合理的评价。

若y i 服从正态分布,可引入拟合的x 2量,()[]∑=-=Ni i i iC x f y x 1222;1σ (0-0-5)把参数估计()m c c c c ˆ,...,ˆ,ˆˆ21=代入上式并比较式(0-0-3),便得到最小的x 2值()[]∑=-=Ni i i ic x f y x1222minˆ;1σ (0-0-6)可以证明,2m in x 服从自由度v =N-m 的x 2分布,由此可对拟合结果作x 2检验。

由x 2分布得知,随机变量2m in x 的期望值为N-m 。

如果由式(0-0-6)计算出2m in x 接近N-m(例如m N x -≤2min ),则认为拟合结果是可接受的;如果22min >--m N x ,则认为拟合结果与观测值有显著的矛盾。

二、直线的最小二乘拟合曲线拟合中最基本和最常用的是直线拟合。

设x 和y 之间的函数关系由直线方程y =a 0+a 1x (0-0-7)给出。

式中有两个待定参数,a 0代表截距,a 1代表斜率。

对于等精度测量所得到的N 组数据(x i ,y i ),i =1,2……,N ,x i 值被认为是准确的,所有的误差只联系着y i 。

下面利用最小二乘法把观测数据拟合为直线。

1.直线参数的估计前面指出,用最小二乘法估计参数时,要求观测值y i 的偏差的加权平方和为最小。

对于等精度观测值的直线拟合来说,由式(0-0-3)可使()[]aa Ni i ix a ay ˆ1210==∑+- (0-0-8)最小即对参数a (代表a 0,a 1)最佳估计,要求观测值y i 的偏差的平方和为最小。

根据式(0-0-8)的要求,应有()[](),0ˆˆ2110ˆ12100=---=+-∂∂∑∑===Ni i i aa Ni i ix a ay x a ay a ()[]().0ˆˆ2110ˆ12101=---=+-∂∂∑∑===Ni i i aa Ni i ix a ay x a ay a整理后得到正规方程组⎪⎩⎪⎨⎧=+=+∑∑∑∑∑.ˆˆ,ˆˆ21010i i i i i i y x x a x a y x a N a解正规方程组便可求得直线参数a 0和a 1的最佳估计值0ˆa 和1ˆa 。

即()()()()()()2220ˆ∑∑∑∑∑∑--=iiii iiix x N y x x y x a(0-0-10) ()()()()()221ˆ∑∑∑∑∑--=iiiiii x x N y x y x N a(0-0-11)2.拟合结果的偏差由于直线参数的估计值0ˆa和1ˆa是根据有误差的观测数据点计算出来的,它们不可避免地存在着偏差。

同时,各个观测数据点不是都准确地落地拟合线上面的,观测值y i 与对应于拟合直线上的i y ˆ这之间也就有偏差。

首先讨论测量值y i 的标准差S 。

考虑式(0-0-6),因等精度测量值y i 所有的i σ都相同,可用y i 的标准偏差S 来估计,故该式在等精度测量值的直线拟合中应表示为()[].ˆˆ1121022min∑=+-=Ni ix aay Sx(0-0-12)已知测量值服从正态分布时,2m in x 服从自由度v =N-2的x 2分布,其期望值()[].2ˆˆ1121022min-=+-=∑=N x aay SxNi i i由此可得y i 的标准偏差()[].ˆˆ212110∑=+--=Ni i i x a a y N S (0-0-13)这个表示式不难理解,它与贝塞尔公式是一致的,只不过这里计算S 时受到两参数0ˆa 和1ˆa估计式的约束,故自由度变为N-2罢了。

式(0-0-13)所表示的S 值又称为拟合直线的标准偏差,它是检验拟合结果是否有效的重要标志。

如果xy 平面上作两条与拟合直线平行的直线,ˆˆ,ˆˆ1010S x a ay S x a a y ++=''-+='如图0-0-1所示,则全部观测数据点(x i ,y i )的分布,约有68.3%的点落在这两条直线之间的范围内。

图0-0-1 拟合直线两侧数据点的分布下面讨论拟合参数偏差,由式(0-0-10)和(0-0-11)可见,直线拟合的两个参数估计值0ˆa和1ˆa是y i 的函数。

因为假定x I 是精确的,所有测量误差只有y i 有关,故两个估计参数的标准偏差可利用不确定度传递公式求得,即.ˆ;ˆ21121010∑∑==⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂=N i ia Ni i a S y aS S y aS把式(0-0-10)与(0-0-11)分别代入上两式,便可计算得()();2220∑∑∑-=iiia x x NxSS (0-0-14)()().221∑∑-=i ia x x N NSS (0-0-15)三、相关系数及其显著性检验当我们把观测数据点(x i ,y i )作直线拟合时,还不大了解x 与y 之间线性关系的密切程度。

为此要用相关系数ρ(x ,y )来判断。

其定义已由式(0-0-12)给出,现改写为另一种形式,并改用r 表示相关系数,得()()()()2/122⎥⎦⎤⎢⎣⎡-⋅---=∑∑∑i i i i ii iy x x x y y x xr (0-0-16)式中x 和y 分别为x 和y 的算术平均值。

r 值范围介于-1与+1之间,即-1≤r ≤1。

当r>0时直线的斜率为正,称正相关;当r<0时直线的斜率为负,称负相关。

当|r|=1时全部数据点(x i ,y i )都落在拟合直线上。

若r =0则x 与y 之间完全不相关。

r 值愈接近±1则它们之间的线性关系愈密切。

相关文档
最新文档