1 第二章光学谐振腔2.1—2.2

合集下载

第二章 光学谐振腔基本理论

第二章   光学谐振腔基本理论

第二章光学谐振腔基本概念 (1)2.1光学谐振腔 (1)2.2非稳定谐振腔及特点 (1)2.3光学谐振腔的损耗 (2)2.4减小无源稳定腔损耗的途径 (2)反射镜面的种类对损耗的影响 (2)腔的结构不同,损耗不同 (2)第二章光学谐振腔基本概念2.1光学谐振腔光学谐振腔是激光器的基本组成部分之一,是用来加强输出激光的亮度,调节和选定激光的波长和方向的装置。

光线在两镜间来回不断反射的腔叫光学谐振腔。

由平面镜、凹面镜、凸面镜的任何两块镜的组合,构成各类型光学谐振腔。

光学谐振腔的分类方式很多。

按照工作物质的状态可分为有源腔和无源腔。

虽有工作物质,但未被激发从而无放大作用的谐振腔称之为无源谐振腔;而有源腔则是指经过激发有放大作用的谐振腔。

2.2非稳定谐振腔及特点非稳定谐振腔的反射镜可以由两个球面镜构成也可由一个球面镜和一个平面镜组合而成。

若R1和R2为两反射镜曲率半径,L为两镜间距离,对于非稳腔则g1,g2:满足g1*g2<O或g1*g2>l 非稳腔中光在谐振腔内经有限次往返后就会逸出腔外,也就是存在着固有的光能量可以横向逸出而损耗掉,所以腔的损耗很大。

在高功率激光器中,为了获得尽可能大的模体积和好的横模鉴别能力,以实现高功率单模运转,稳定腔不能满足这些要求,而非稳腔是最合适的。

与稳定腔相比,非稳腔有如下几个突出优点:1.大的可控模体积在非稳腔中,基模在反射镜上的振幅分布式均匀的,它不仅充满反射镜,而且不可避免地要向外扩展。

非稳腔的损耗与镜的大小无关,这一点是重要的,因此,只要把反射镜扩大到所需的尺寸,总能使模大致充满激光工作物质。

这样即使在腔长很短时也可得到足够大的模体积,故特别适用于高功率激光器的腔型。

2.可控的衍射耦合输出一般稳定球面腔是用部分透射镜作为输出耦合镜使用的,但对非稳腔来说,以反射镜面边缘射出去的部分可作为有用损耗,即从腔中提取有用衍射输出。

3.容易鉴别和控制横模对于非稳腔系统,在几何光学近似下,腔内只存在一组球面波型或球面一平面波型,故可在腔的一端获得单一球面波型或单一平面波型(即基模),从而可提高输出光束的定向性和亮度。

浅谈光学谐振腔

浅谈光学谐振腔

浅谈光学谐振腔摘要:光学谐振腔是激光器的基本组成部分之一,是用来加强输出激光的亮度, 调节和选定激光的波长和方向的装置,从真空紫外到远红外的绝大部分激光系统都使用了光学谐振腔。

本文从光的传播矩阵推导了谐振腔的稳定条件和光腔损耗,并解释了横模形成的原因。

最后介绍了自由电子激光器谐振腔、微腔和X 射线激光腔。

关键词:激光;谐振腔;自由电子激光腔;微腔1激光1.1激光简介激光器的发明是20世纪科学技术的一项重大成就。

激光科学技术的兴起使人类对光的认识和利用达到了一个崭新的水平。

激光具有方向性好、单色性好能量集中、相干性好等特点。

正因为激光器具备的这些突出特点,因而被很快运用于工业、农业、精密测量和探测、通讯与信息处理、医疗、军事等各方面,并在许多领域引起了革命性的突破[1]。

1.2激光器的分类(1)按工作物质分类:根据工作物质物态的不同可把所有的激光器分为以下几大类:①固体激光器(晶体和玻璃);②气体激光器;③液体激光器;④半导体激光器;⑤自由电子激光器。

(2)按激励方式分类:①光泵式激光器;②电激励式激光器;③化学激光器;④核泵浦激光器。

(3)按运转方式分类:由于激光器所采用的工作物质、激励方式以及应用目的的不同,其运转方式和工作状态亦相应有所不同,从而可区分为以下几种主要的类型。

①连续激光器;②单次脉冲激光器;③重复脉冲激光器;④可调激光器;⑤锁模激光器;⑥单模和稳频激光器;⑦可调谐激光器[2]。

(4)按输出波段范围分类:根据输出激光波长范围之不同,可将各类激光器区分为以下几种:①远红外激光器;②中红外激光器;③近红外激光器;④可见激光器;⑤近紫外激光器;⑥真空紫外激光器;⑦X射线激光器,目前软X 射线已研制成功,但仍处于探索阶段[1]。

1.3激光器的组成任何一种激光器,其基本结构都可以分为三部分:(1)工作物质,用来产生受激发射;(2)激励(泵浦)装置,用来激励工作物质以获得粒子数反转;(3)光学共振腔,用来维持受激发射的持续振荡,并限制产生振荡的光子的特征(行进方向、波长等)。

光学谐振腔理论

光学谐振腔理论
3
二、腔的模式
腔的模式:光学谐振腔内可能存在的电磁场的本征态 谐振腔所约束的一定空间内存在的电磁场,只能存在于一 系列分立的本征态 腔内电磁场的本征态 因此: 腔的具体结构 腔内可能存在的模式(电磁场本征态) 麦克斯韦方程组
腔的边界条件
4
模的基本特征主要包括: 1、每一个模的电磁场分布 E(x,y,z),腔的横截面内的场分布 (横模)和纵向场分布(纵模); 2、每一个模在腔内往返一次经受的相对功率损耗 ; 3、每一个模的激光束发散角 。 腔的参数唯一确定模的基本特征。
19

f2
薄透镜与球面反射镜等效
f1
r0 , 0
1
f2
2
f1
3 r1 , 1
f2
f1
f2
f1
L 往返周期 单位
R1 f1 2
R2 f2 2
r0 r1 11 0 1 L 11 0 1 L r0 A B r0 C D T 1 0 1 1 0 1 f2 0 0 1 f1 0

开腔 傍轴 传播模式的纵模特征 傍轴光线 :光传播方向与腔轴线夹角 非常小,此时可认为 sin tan
5
开腔 傍轴 传播模式的纵模频率间隔(F-P腔,平面波)
E0 E1 E2
E0-
:光波在腔内往返一次的相位 滞后 2kL :光波在腔内往返一次的电场变 化率(=12)
第二章 光学谐振腔理论
第一节 光腔理论的一般问题
一、光学谐振腔 最简单的光学谐振腔:激活物质+反射镜片 平行平面腔:法布里-珀罗干涉仪(F-P腔) 共轴球面腔:具有公共轴线的球面镜组成 i.开放式光学谐振腔(开腔) :在理论处理时,可以认为没有 侧面边界 (气体激光器)

第2章 光学谐振腔理论

第2章 光学谐振腔理论

/

I (z) I I1 I
0
0
e
z
e
2 l
吸 l
2.2.2、光子在腔内的平均寿命 • 光在腔内通过单位距离后光强衰减的百分数
dI Idz I1 I 0 I0 2L
/


L
/
• 在谐振腔内
dI Idt
dz c dt
/


c
L
/
c
L
/

⑵衍射损耗
a
2
L
取决于腔的菲涅耳数、腔的几何参数和横模阶次
⑶输出腔镜的透射损耗
取决于输出镜的透过率
⑷非激活吸收、散射等其他损耗
描述 单程损耗因子 • 定义:光在腔内单程渡越时光强的平均衰减百分数
2 I 0 I1 I0

I 0 I1 2I0
指数定义形式
I1 I 0e

0
I 1 I 0 r1 r2

/

1 2
ln
I
0
I1
r
1 2
ln r1 r2
当 r 1=1,T <<1(r2= r ≈1)
r
1 2 ln r 1 2 (1 r ) T 2
四、吸收损耗
介质对光的吸收作用
通过单位长度介质后光强衰减的百分数
dI
I I dI Idz
2
D D
2L 1 2m

L
2D
二、衍射损耗
平腔内的往返传播,等效孔阑传输线中的单向传播 当光波穿过第一个圆孔向第2个圆孔传播时,由于衍 射的作用一部分光将偏离原来的传播方向,射到第2 个圆孔之外,造成光能的损失 假设中央亮斑内的光强是均匀的 孔外面积与中央亮斑总面积的比

激光原理-第二章光学谐振腔理论(1)

激光原理-第二章光学谐振腔理论(1)

概述


本章中采用矩阵光学方法来讨论谐振腔的稳 定性,用衍射积分方程理论处理谐振腔的模式 问题。光学谐振腔中的光场分布以及输出到 腔外的光束都是高斯光束形式,其特性和谐振 腔密切相关,因此,也在本章中讨论。 本章的最后采用几何光学分析方法对非稳腔 进行简单讨论。
概述



本章中只研究无源谐振腔,又称非激活腔或被动腔, 即无激活介质存在的腔。 虽然处于运转状态的激光器的谐振腔都是存在增益 介质的有源腔(又称激活腔或主动腔),但理论和实践 表明,对于中、低增益的激光器,无源腔的模式理论 可以作为有源腔模式的良好近似。对于高增益激光 器,适当加以修正也是适用的。 这是由于激活介质的主要作用在于补偿腔内本征模 在振荡过程中能量的损耗,使之满足谐振条件,形成 和维持自激振荡。其对场的空间分布以及谐振频率 的影响是次要的,不会使腔的模式发生本质的改变。
常见损耗举例: 1)由镜反射不完全所引起的损耗 以r1和r2分别表示腔的两个镜面的反射率(即功率反射 系数),则初始强度为Io的光,在腔内经两个镜面反 射往返一周后,其强度I1应为 I1 I 0 r 1r 2 按δ的定义,对由镜面反射不完全所引入的损耗因子 2 r I I r r I e δ1,应有 1 0 1 2 0 因此 r 1 ln r 1r 2 2 当r1≈r2 ≈1时
概述
2.矩阵光学分析方法 矩阵光学使用矩阵代数的方法研究光学问题,将 几何光线和激光束在光腔内的往返传播行为 用一个变换矩阵来描写,从而推导出谐振腔的 稳定性条件。 此外,利用高斯光束的ABCD定律和模的自再现 条件能够推导出用矩阵元形式表示的光腔本 征方程的模参数公式,便于光腔的设计和计算。 这种方法的优点在于处理问题简明、规范,易于 用计算机Βιβλιοθήκη 第一节 光学谐振腔的基本知识

2 光学谐振腔理论

2 光学谐振腔理论

光线能在腔内往返无限多次而不会从侧面横向逸出。
• 反之,若φ值不是实数,由于有虚部,必然导致An、
Bn、Cn、Dn以及rn+1与θn+1的值都随n增大而增大。这
样一来,傍轴光线在腔内往返有限次后便可逸出腔外。
• 由上述分析可知,φ值为实数且不等于0或π时,
谐振腔为稳定腔。φ值有虚部时,谐振腔为非稳 腔。φ等于0或π时,谐振腔是临界腔。由φ的计 算公式(2.2.4)不难得出上述结论的数学描述:
I1 I 0r1r2e
因此:
2a
I 0e
2
(2.2.12)
(2.2.13)
1 当r11,r2 1时有: a 2 1 r1 1 r2
1 a ln r1r2 2
2. 腔内光子平均寿命 R
I (t ) I 0e
t R
N (t )hv
D sin n sinn 1
B sin n
n次往返后的光 线坐标有
1 arccos A D 2
(2.2.4)
rn1 An r1 Bn1
n1 Cn r1 Dn1
(2.2.2)
2 .2.2 光学谐振腔的 稳定性条件
• 如果光线在共轴球面谐振腔内能够往返任意次而
(2.2.1)
• 如果光线在球面谐振腔内往返n次,则它的光学变 换短阵就应该是往返矩阵T的n次方,按照矩阵理 论 • n次往返矩阵
An Tn Cn
Bn Dn
(2.2.3)
1 A sin n sinn 1 C sin n sin
1 I0 i r d t ln 2 I1

1 第二章光学谐振腔2.1—2.2

1 第二章光学谐振腔2.1—2.2

(2)衍射损耗:
腔镜边缘、插入光学元件的边缘、孔径及光阑的衍射 效应产生的损耗。
孔外照亮面积 ( L a) 2 a 2 d 总面积照亮面积 ( L a) 2
(第二章1)
物理与机电工程学院
《激光原理与技术》
(3)腔镜透射损耗
T r 2
(4)材料中非激活吸收、散射等其他损耗(腔内插入物引 起的损耗)
这是激光技术历史上最早提 出的平行平面腔(F-P腔)。 从理论上分析这些腔时,通 常认为侧面没有光学边界, 因此将这类谐振腔称为开放 式光学谐振腔,简称开腔
开腔
固体激光器的工作物质通 常具有比较高的折射率, 因此在侧壁上将发生大量 的全反射。如果腔的反射 镜紧贴激光棒的两端,则 在理论上分析这类腔时, 应作为介质腔来处理。半 导体激光器是一种真正的 介质波导腔。这类光学谐 振腔称为闭腔
(第二章1)
物理与机电工程学院
《激光原理与技术》
激光模用符号
TEMmnq
表示
TEM表示横向电磁场 transverse electric and magnetic field
q为纵模的序数(纵向驻波波节数),m,n 为横模 的序数(m,n分别表示沿腔镜面垂直坐标系的水 平和垂直坐标的光场节线数)。
《激光原理与技术》
2.1光学谐振腔的基本知识 (构成和分类、作用、腔模)
(第二章1)
2.1.1光学谐振腔的构成和分类
物理与机电工程学院
《激光原理与技术》
1 光学谐振腔的构成
光学谐振腔的构成
最简单的光学谐振腔: 在激活介质两端恰当地放置两个镀有高反射率的反射镜构成。
(第二章1)
物理与机电工程学院
2.光学谐振腔的种类

第二章 光学谐振腔信息光学 最新

第二章  光学谐振腔信息光学 最新
1、在光频区采用敞开式反射镜谐振器 (在微波区采用闭合腔) 一对平行平面(球面)反射镜
2、其他方向开放导致损耗,限制了模数 (包括扩散、衍射、镜面非完全反射、工 作物质吸收等) 纵模:只有沿轴方向传播的模才能维持 振荡, ...(折射率 1, m, n 0) 满足 q 2 l..........
2
2
V lxl ylz ...... 实空间体积
( 4 )模密度(K空间)
8l xl y l z 1 8V 3 3 模体积 (2 ) (2 )
(5)振荡模总数
km , kn , kq 0
1 N 模 2 (球体积) k空间的模密度 8
因子2:每一个模有两个相互垂直偏振方向
dI 其中 f I
t tc
I I 0e
fc t l
I 0e
l 其中tc 光子在腔内的寿命,也 称腔的时间常数 fc
若只考虑反射损耗R,则 f=1-R l
tc (1 R )c
例如: l=100cm,
R 0.98....... tc 100 0.02 31010 1.7 107
8 2 N总 PmV 3 V c
2 28 | 8 1020 8 6 10 10 10 9 Pm 3 10 1 P 10 3 10 | m 3 1030 33 1030
获得单模振荡
| 该腔激起的模巨大,多模
§2.2 开放式谐振腔的模间距及带宽
l tc (1 R)c
1 (1 R)c (1 R)c c 2t c 2l l
R越大,带宽 越窄。 三种情况: R≈0;R<1; R≈1。
(4)谐振腔的品质因素Q 0 l Q 2 0tc 2l 0 (1 R)c c c(1 R)

第二章光学谐振腔理论

第二章光学谐振腔理论

(2n1)((G0 )l / 2ikl )
02 2 12
n0
n0
e(G0 )l / 2ikl E0t1t2 1 r1r2e(G0 )l2ikl
2.1 光学谐振腔概论
FP腔输出光场:E
e(G0 )l / 2ikl E0t1t2 1 r1r2e(G0 )l 2ikl
1
r1r2e(G0
q
q
c 2L
q
c 2L
2 2L q 2 L q q
q
2
L'一定的谐振腔只对一定频率的光波才能提供正反馈,使之谐 振; F-P腔的谐振频率是分立的
2.1 光学谐振腔概论
腔光学长度为半波长的整数倍 L l q q (驻波条件)
2
2.1 光学谐振腔概论
L l q q
2
达到谐振时,腔的光学长度应为半波长的整数倍。满足此 条件的平面驻波场称为平行平面腔的本征模式
2.1 光学谐振腔概论
麦克斯韦方程的本征解的电场分量
Ex
(
x,
y,
z,
t
)
E0
sin
m
a
x
sin
n
b
y
cos
p
l
z
e
im
,n
,
p
t
E y ( x,
y,
z,
t)
E0
cos
m
a
x
sin
n
b
y
sin
p
l
z e im,n,pt
Ez
(
x,
y,
z,
t
)
E0
sin
m
a
x

第二章 谐振腔

第二章 谐振腔

物理与电子工程学院
《激光原理与技术》
共焦谐振腔 共焦谐振腔的性能介于平行平面腔与球面腔之间, 其特点如下: 1)镜面较易安装、调整; 2)较低的衍射损耗; 3)腔内没有过高的辐射聚焦现象; 4)模体积适度; 共焦谐振腔一般应用于连续工作的激光器
共焦谐振腔示意图
(第二章)
物理与电子工程学院
《激光原理与技术》
C 2L
谐振腔内q阶纵模的频率为基纵模频率的整数倍(q倍)
纵模的频率间隔: q q 1 q C 2L
(第二章)
物理与电子工程学院
《激光原理与技术》
腔的纵模在频率尺度上是等距离排列的
激光器谐振腔内可能存在的纵模示意图
(第二章)
物理与电子工程学院
《激光原理与技术》
形成激光振荡的条件:
1. 满足谐振条件
2. 满足阈值条件
C q q 2L
G
3. 落在工作物质原子荧光线宽范围内的频率成分
(第二章)
物理与电子工程学院
《激光原理与技术》
激光器中出现的纵模数
• 工作原子自发辐射 的荧光线宽越大, 可能出现的纵模数 越多。 • 激光器腔长越大, 相邻纵模的频率间 隔越小,同样的荧 光谱线线宽内可以 容纳的纵模数越多。
(第二章)
物理与电子工程学院
《激光原理与技术》
激光多横模振荡示意图
(第二章)
物理与电子工程学院
《激光原理与技术》
横模(自再现模)的形成
理想开腔:两块反射镜 的直径为2a,间距为L
u1 u3 … u2 u4 …
光束在两镜间往返传播时,会因镜边缘的衍射效 应产生损耗,但经过足够多次往返传播之后,会 在腔内形成一种稳定场,它的相对分布将不再受 衍射影响

激光原理 第二章光学谐振腔理论

激光原理 第二章光学谐振腔理论

光学谐振腔一方面具有光学正反馈作用,另一方面 也存在各种损耗。损耗的大小是评价谐振腔质量 的一个重要指标,决定了激光振荡的阈值和激光的 输出能量。本节将分析无源开腔的损耗,并讨论表 征无源腔质量的品质因数Q值及线宽。
一、损耗及其描述 (1)几何偏折损耗: 光线在腔内往返传播时,可能从腔的侧面 偏折出去,我们称这种损耗为几何偏折损 耗。其大小首先取决于腔的类型和几何尺 寸。
概述
3.波动光学分析方法 从波动光学的菲涅耳-基尔霍夫衍射积分理论出发,可以建立 一个描述光学谐振腔模式特性的本征积分方程。 利用该方程原则上可以求得任意光腔的模式,从而得到场的 振幅、相位分布,谐振频率以及衍射损耗等腔模特性。 虽然数学上已严格证明了本征积分方程解的存在性,但只有在 腔镜几何尺寸趋于无穷大的情况下,该积分方程的解析求解 才是可能的。 对于腔镜几何尺寸有限的情况,迄今只对对称共焦腔求出了 解析解。 多数情况下,需要使用近似方法求数值解。虽然衍射积分方 程理论使用了标量场近似,也不涉及电磁波的偏振特性,但与 其他理论相比,仍可认为是一种比较普遍和严格的理论。
第一节 光学谐振腔的基本知识
本节主要讨论光学谐振腔的构成、分类、作用,以及 腔模的概念
光学谐振腔的构成和分类
根据结构、性能和机理等方面的不同,谐振腔有不同 的分类方式。
按能否忽略侧面边界,可将其分为

开腔、 闭腔 气体波导腔
第一节 光学谐振腔的基本知识
开腔而言: 1. 根据腔内傍轴光线几何逸出损耗的高低,又可分为 稳定腔、非稳腔及临界腔; 2. 按照腔镜的形状和结构,可分为球面腔和非球面腔; 3. 就腔内是否插入透镜之类的光学元件,或者是否考 虑腔镜以外的反射表面,可分为简单腔和复合腔; 4. 根据腔中辐射场的特点,可分为驻波腔和行波腔; 5. 从反馈机理的不同,可分为端面反馈腔和分布反馈 腔; 6. 根据构成谐振腔反射镜的个数,可分为两镜腔和多 镜腔等。

(完整版)2光学谐振腔

(完整版)2光学谐振腔

光学谐振腔光学谐振腔是常用激光器的三个主要组成部分之一。

组成:在简单情况下,它是在激活物质两端适当地放置两个反射镜。

目的:就是通过了解谐振腔的特性,来正确设计和使用激光器的谐振腔,使激光器的输出光束特性达到应用的要求。

光学谐振腔的理论:近轴光线处理方法的几何光学理论、波动光学的衍射理论无源腔:又称为非激活腔或被动腔,即无激活介质存在的腔。

有源腔(激活腔或主动胺):当腔内充有工作介质并设有能源装置后。

一、构成、分类及作用1、谐振腔的构成和分类构成:最简单的光学谐振腔是在激光工作物质两端适当位置放置两个镀高反射膜的反射镜。

与微波腔相比光频腔的主要特点是:侧面敞开没有光学边界,以抑制振荡模式,并且它的轴向尺寸(腔长)远大于振荡波长:L》λ,一般也远大于横向尺寸即反射镜的线度。

因此,这类腔为开放式光学谐振腔,简称开腔。

开式谐振腔是最重要的结构形式----气体激光器、部分固体激光器谐振腔2、激光器中常见的谐振腔的形式1)平行平面镜腔。

由两块相距上、平行放置的平面反射镜构成2)双凹球面镜腔。

由两块相距为L,曲率半径分别为R1和R2的凹球面反射镜构成当R1=R2=L时,两凹面镜焦点在腔中心处重合,称为对称共焦球面镜腔;当R1+R2=L表示两凹面镜曲率中心在腔内重合,称为共心腔。

3)平面—凹面镜腔。

相距为L的一块平面反射镜和一块曲率半径为R的凹面反射镜构成。

当R=2L时,这种特殊的平凹腔称为半共焦腔4)特殊腔。

如由凸面反射镜构成的双凸腔、平凸腔、凹凸腔等,在某些特殊激光器中,需使用这类谐振腔5)其他形状的3、谐振腔的作用(1) 提供光学正反馈作用谐振腔为腔内光线提供反馈,使光多次通过腔工作物质,不断地被放大,形成往复持续的光频振荡;取决因素:组成腔的两个反射镜面的反射率,反射率越高,反馈能力越强;反射镜的几何形状以及它们之间的组合方式。

上述因素的变化会引起光学反馈作用大小的变化,即引起腔内光束能量损耗的变化。

(2) 对振荡光束的控制作用主要在方向和频率的限制,其功能为:①有效地控制腔内实际振荡的模式数目,使大量的光子集结在少数几个沿轴向、且满足往返一次位相变化为2π的整数倍的光子状态中,提高了光子简并度,从而获得单色性好、方向性好及相干性强的优异辐射光。

光学谐振腔

光学谐振腔

光学谐振腔摘要:光学谐振腔是激光器的基本组成部分之一,是用来加强输出激光的亮度, 调节和选定激光的波长和方向的装置,从真空紫外到远红外的绝大部分激光系统都使用了光学谐振腔。

本文介绍了激光谐振腔及其特性、激光模式的一些基本知识,从理论上对激光谐振腔作了系统性阐述。

关键词:激光;谐振腔特性;激光器;激光谐振腔1引言自1960年世界第一台红宝石固态激光器问世以来,作为一种新光源,激光器具有方向性、亮度高、单色性和相干性好的特点,称为激光的四性。

实际上,这四性本质上可归结为一性,即激光具有很高的光子简并度。

也就是说,激光可以在很大的相干体积内有很高的相干光强。

激光的这一特性正是由于受激辐射的本性和光腔的选模作用才得以实现的。

产生激光的三个必要条件:1.工作物质;2. 激励能源;3. 光学谐振腔。

光学谐振腔(经常简称为“谐振腔”)是激光器的重要组成部分,它的主要作用有两个方面:①提供轴向光波的光学正反馈;②控制振荡模式的特性。

激光器所采用的谐振腔,都属于“开放式谐振腔”。

在激光技术发展历史上最早提出的是所谓平行平面腔,它由两块平行平面反射镜组成。

这种装置在光学上称为法布里-珀罗干涉仪,简记为F-P腔。

随着激光技术的发展,以后又广泛采用由两块具有公共轴线的球面镜构成的谐振腔,称为共轴球面腔;其中一个反射镜为(或两个都为)平面的腔是这类腔的特例。

由两个以上的反射镜构成谐振腔的情况也是常见的,折叠腔和环形腔就是这类谐振腔。

只有具有一定的振荡频率和一定的空间分布的特定光束能够在腔内形成“自再现”振荡。

在激光技术的术语中,通常将光学谐振腔内可能存在的这种特定光束称为腔的模式。

不同的谐振腔具有不同的模式,因此选择不同的谐振腔就可以获得不同的输出光束形式。

谐振腔是激光系统的关键部件之一,从真空紫外到远红外的绝大部分激光系统都使用了光学谐振腔。

研究激光谐振腔的目的,就是通过了解谐振腔的特性,来正确设计和使用激光器的谐振腔,使激光器的输出光束特性达到应用的要求。

新激光ppt课件第二章 光学谐振腔理论

新激光ppt课件第二章 光学谐振腔理论

光线在腔内往返传播n次
式中
rn An C n n
Bn r1 Dn 1
二、共轴球面腔的稳定性条件
1.稳定腔条件
光线在腔内往
A n、B n、 C n、D n
对任意n有限
Φ 为实数
返多次不逸出
且φ ≠kπ
引人g参数则得稳定性条件
平平腔 N>>1
谐振条件: 以Δ Φ 表示均匀平面波在腔内往返
一周时的相位滞后,则
若腔内介质分段均匀 若腔内介质非均匀 谐振条件:
L
L
i
i i
L dL ( z )dz
0


L
2 L q q c q q 2 L
分立

腔的本征模式: 在平平腔中满足 q q c
一定类型的积分方程。 腔的具体结构 振荡模的特征
3.模的基本特征

电磁场分布(特别是在腔的横截面内的场分布); 谐振频率; 在腔内往返一次经受的相对功率损耗; 激光束的发散角
4.纵模和横模
腔内电磁场的空间分布
沿传播方向(腔轴方向)的分布
垂直于传播方向的横截面内的分布 (1)纵模

纵模 横模
(1)(2)两种损耗为选择损耗,因为不同模式的几何 损耗与衍射损耗各不相同。(3)(4)两种损耗称为非 选择损耗,在一般情况下它们对各个模式都一样。
2.平均单程损耗因子
I 0 I1 2I 0 1 I0 ln 2 I1
光在腔内单程渡越时光强的平均衰减百分数 指数单程损耗因子
β
3.总损耗


1.曲率半径R1>0,R2<0的腔能否成为稳定腔,如果能, 请求出其稳定性条件。

新激光第二章 光学谐振腔理论(2)

新激光第二章 光学谐振腔理论(2)

自由空间的光线变换矩阵:
r2
r1 L1 2 1
TL
1 0
L 1
θ2
r1 θ1
r2
z
L
球面反射镜的光线变换矩阵:
2
r2 r1
2
r1 R
1
凹R>0 凸R<0
TR
1 2
0 1
R
薄透镜的光线变换矩阵:
2
r2 r1
r1 f
1
(r1θ1) (r2θ2)
Tf
1 1
f
0 1
dI I1 I0
Idz I0 2L L dz cdt
ct
I(t)I0e L
I0etR
式中:
R
L c
就为腔的寿命,也叫腔的时间常数。
2. 物理意义:
3.腔内光子的平均寿命就等于腔的时间常数:
证明:
I(t)n(t)hv,I(t)I0etR
t
n(t) n0e R
平均寿命:
1 n0
t(dn)1
腔的具体结构
振荡模的特征
3.模的基本特征
电磁场分布(特别是在腔的横截面内的场分布);
谐振频率; 在腔内往返一次经受的相对功率损耗; 激光束的发散角
4.纵模和横模
腔内电磁场的空间分布
沿传播方向(腔轴方向)的分布
垂直于传播方向的横截面内的分布 (1)纵模 ➢ 谐振条件:
以ΔΦ表示均匀平面波在腔内往返 一周时的相位滞后,则
二、共轴球面腔的稳定性条件 1.稳定腔条件
光线在腔内往 返多次不逸出
An、Bn、Cn、Dn 对任意n有限
Φ为实数 且φ≠kπ
引人g参数则得稳定性条件
2.非稳腔条件

2光学谐振腔

2光学谐振腔

由两块相距上、平行放置的平面反射镜构成3)平面—凹面镜腔。

相距为4)特殊腔。

如由凸面反射镜构成的双凸腔、平凸腔、凹凸腔等,在某些特殊激光器中,3、谐振腔的作用提供光学正反馈作用)变成(x1,θ1),则两者间关系为而由光路可逆2当光线在腔内经过n次往返后,其参数变换矩阵可表示为三.谐振腔的稳定性1、稳定腔的概念1 物理意义镜面上任一点发出的近轴光线,往返无限次而不逸出2 数学意义Tn各元素当n →∞时,保持有界2、稳定性条件(证明略)(1) 稳定腔1 0<g1g2<12 g1=g2=0(2) 非稳定1 g1g2>12 g1g2<03 g1=0或g2=04 g1g2=13、稳区图4、g与R的符号关系以两块反射镜的曲率半径为直径做相应反射镜面的两个内切圆(对于凸面反射镜为外,则谐振腔稳定,缘故。

4. 横模的形成机理自再现模或横模:经过足够多次的往返传播之后,腔内形成这样一种稳态场,它的相对分布不再受衍射影响,它在腔内往返一次后能够“自再现”出发时的场分布。

这种稳态场经一次往返后唯一可能的变化,仅是镜面上各点的场振幅按同样的比例衰减,各点的相位发生同样大小的滞后。

●这种在腔反射镜面上经过一次往返传播后能“自再现”的稳定场分布称为在实际情况中,谐振腔的截面是受腔中的其它光阑所限制如气体激光器,放电管孔径就是谐振腔的限制孔。

为了形象地理解开腔中自再现模的形成过程,把平行平面谐振腔中光波来回反射的传播过程,等效于光波在光阑传输线中的传播。

这种光阑传输线如下图所示,它由一系列间距为L、直径为2a的同轴孔径构成,这些孔径开在平行放置无限大、完全吸收的屏上。

5、激光模式的测量方法1)横模的测量方法:不同横模的光强在横截面上有不同的分布。

●对连续可见波段的激光器,只须在光路中放置一个光屏,即可观察激光的横模光斑形状,可粗略地给以判别;●或者利用拍照的方法,小孔或刀口扫描方法也可直接扫描出激光束的强度分布从而确定激光横模的分布形状。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(第二章1)
物理与机电工程学院
《激光原理与技术》 2.2光学谐振腔的损耗,Q值及线宽
损耗的大小是评价谐振腔的一个重要指标,决定了激光振 荡的阈值和激光的输出能量。
2.2.1光腔的损耗及其描述
光腔的损耗
1. 2. 3. 4. 几何损耗 衍射损耗 输出腔镜的透射损耗 非激活吸收、散射等其他损耗
L
T
l
基模(横向单模):m=n=0, 其它的横模称为高阶横模
(第二章1)
物理与机电工程学院
(a) 方形反射镜的横模图像
《激光原理与技术》
(第二章1)
物理与机电工程学院
《激光原理与技术》
激光谐振腔内电场横模分布示意图
TEM00
(第二章1)
物理与机电工程学院
《激光原理与技术》
激光谐振腔内电场横模分布示意图
《激光原理与技术》
• 纵模:腔模沿腔轴线方向的稳定场分布
L
为了能在腔内形成稳定振荡,要求光波因干涉而得到加强
相长干涉条件:
2
L是腔的长度 ,介质折射率, L' 腔的光学长度 L
0
2 L q 2
'
整数q
2 L'
q

2L
q
c c 频率 q q ' q 2L 2L
光谱线宽和纵模频率间隔 的区别如图所示
荧光光谱线宽 v
纵模频 率间隔 vq
(第二章1)
物理与机电工程学院
《激光原理与技术》
( 1 )纵模系数q
2 L'
q
(纵模系数q表示在腔内往返一周的 长度内,包含几个波长 ) (2)纵模数 光谱线宽v 纵模频率间隔 v q
(纵模数表示在整个光 谱线宽内包含几个纵模 频率间隔) 前者用长度来衡量纵模 后者用频率来衡量纵模
由:
则有:
故:m = 632.8000 [nm] , m+1 = 632.7996 [nm]
(第二章1)
物理与机电工程学院
《激光原理与技术》
2.2.3无源腔的品质因数(quality factor)——Q值
品质因数Q的定义: Q 2v
腔内储藏的能量(W ) 单位时间损耗的能量 (dW / dt )
W We
0
2 vt / Q
Q 2v
R
L' Q 2v R 2v c
1. 提供轴向光波模的正反馈作用 : 2. 控制振荡模式的特性



有效地控制腔内实际振荡的模式数目,获得单色性好、 方向性强的相干光 可以直接控制激光束的横向分布特性、光斑大小、谐 振频率及光束发散角 可以控制腔内光束的损耗,在增益一定的情况下能控 制激光束的输出功率.
(第二章1)
物理与机电工程学院
气体波导腔
另一类光腔为气体波导激光谐 振腔,其典型结构是一段空心 介质波导管两端适当位置放置 反射镜。这样,在空心介质波 导管内,场服从波导中的传播 规律,而在波导管与腔镜之间 的空间中,场按与开腔中类似 的规律传播。
闭腔
(第二章1)
物理与机电工程学院
《激光原理与技术》
开腔中的稳定腔和非稳定腔
根据腔内旁轴光线几何逸出损耗的多少分类; 或看在腔内是否存在稳定振荡的高斯光束分类
这是激光技术历史上最早提 出的平行平面腔(F-P腔)。 从理论上分析这些腔时,通 常认为侧面没有光学边界, 因此将这类谐振腔称为开放 式光学谐振腔,简称开腔
开腔
固体激光器的工作物质通 常具有比较高的折射率, 因此在侧壁上将发生大量 的全反射。如果腔的反射 镜紧贴激光棒的两端,则 在理论上分析这类腔时, 应作为介质腔来处理。半 导体激光器是一种真正的 介质波导腔。这类光学谐 振腔称为闭腔
总之,腔平均单程损耗因子、光子寿命、与腔的品质因数三个 物理量之间是关联的。
(第二章1)
物理与机电工程学院 一、谐振腔的基本知识
《激光原理与技术》
谐振腔:
1.什么是谐振腔 2.谐振腔的分类(1、2) 3.谐振腔的作用(1、2)
腔模:
1.什么是腔模
2.腔模的分类:
q q 纵模:
q
c c q ' 2L 2 L
TEM11
(第二章1)
物理与机电工程学院
《激光原理与技术》
激光多横模振荡示意图
一个横模对应一个纵模
(第二章1)
物理与机电工程学院
《激光原理与技术》
激光模式的测量方法
• 横模的测量方法:在光路中放置一个光屏;拍照; 用小孔或刀口扫描方法获得激光束的强度分布, 确定激光横模的分布形状
• 纵模的测量方法:法卜里-珀洛F-P扫描干涉仪 测量,实验中利用球面扫描干涉仪
整数q
2L'
q

2L
q
纵向驻波波节数
图2.2光腔中的驻波
(第二章1)
物理与机电工程学院
《激光原理与技术》
二、横模 横模:垂直于腔轴的横截面内的稳定场分布
(第二章1)
物理与机电工程学院
《激光原理与技术》
横模(自再现模)的形成
理想开腔:两块反射镜 的直径为2a,间距为L u1 u3 … u2 u4 …
可见,腔的损耗越小,Q值越高,Q值高,表示腔 的储能性能好,光子在腔内的平均寿命长。
(第二章1)
物理与机电工程学院
《激光原理与技术》
2.2.4无源腔的单模线宽
c v vc ' 2 R 2L Q 1
L' t R c
L' Q 2v R 2v c
腔的损耗越小,光子平均寿命 R越长,腔的 Q值越高,单模线宽 c也将越窄

Ta 2
单程损耗
(第二章1)
物理与机电工程学院
《激光原理与技术》
(1)几何损耗: 光线在腔内往返传播时,可能从腔的侧面偏折出 去而引起损耗。
1 L 2m D
D:腔镜的横向尺寸
决定其大小的因素:腔的类型和几何尺寸; 横模的高低阶次光原理与技术》
(第二章1)
物理与机电工程学院
《激光原理与技术》
荧光光谱线宽 v
纵模频 率间隔 vq
光谱线宽和纵模频率间隔 的区别如图所示
(第二章1)
物理与机电工程学院
《激光原理与技术》
1.He-Ne
激光器谐振腔长50 cm,激射波长 632.8nm, 9 1 . 5 10 Hz 荧光光谱线宽为: 求:纵模频率间隔,谐振腔内的纵模序数及形成激光振 荡的纵模数; (He-Ne 激光器谐振腔内的折射率n取1(n=1)
(第二章1)
物理与机电工程学院



《激光原理与技术》
2.已知:He-Ne激光器谐振腔长50 cm,若模式m的波长 为 632.8 [nm];计算:纵模 m+1 的波长; 解:纵模的频率间隔为:
由:m = 0.6328000*10-6 [m] 可以得到:
(第二章1)
物理与机电工程学院



《激光原理与技术》
(2)衍射损耗:
腔镜边缘、插入光学元件的边缘、孔径及光阑的衍射 效应产生的损耗。
孔外照亮面积 ( L a) 2 a 2 d 总面积照亮面积 ( L a) 2
(第二章1)
物理与机电工程学院
《激光原理与技术》
(3)腔镜透射损耗
T r 2
(4)材料中非激活吸收、散射等其他损耗(腔内插入物引 起的损耗)
吸 l
(第二章1)
物理与机电工程学院 2.2.2光子的平均寿命 R
《激光原理与技术》
定义:腔内光强衰减为初始值的1/e所需要的时间
c
I I 0e
L'
t
I (t ) I / e
0
L' t R c
腔损耗 越小,则 R 越大,腔内光子平均寿命越长。
(第二章1)
2 L'
q

2 L
q
横模(自再现模)
判断谐振腔好坏参数:
1.损耗 (4); 2.平均寿命 R 3.品质因数Q; 4.单模线宽△Vc
(第二章1)
物理与机电工程学院



《激光原理与技术》
1. He-Ne 激光器谐振腔长50 cm,激发波长 9 1.5 10 Hz 632.8nm,荧光光谱线宽为: q 求:纵模频率间隔,谐振腔内的纵模序数q及形成 激光振荡的纵模数; 2. 已知:He-Ne激光器谐振腔长50 cm,若模式q的 波长为 632.8 [nm];计算:纵模 q+1 的波长;
光束在两镜间往返传播时,会因镜边缘的衍射效应产生损耗,但经 过足够多次往返传播之后,会在腔内形成一种稳定场,它的相对分 布将不再受衍射影响,即形成自在现模
(第二章1)
物理与机电工程学院
《激光原理与技术》
自再现模的形成
自再现模: 在开腔镜面上,经一次往返能再现 的稳态场分布称为为开腔的自再现模或横模。
(第二章1)
物理与机电工程学院
稳定腔
《激光原理与技术》
双凹球面镜腔:由两块相距为L,曲率半径分别为R1和R2的凹球面反射镜构成
R1+R2=L
R<L<2R
R1=R2=L
由两块相距为L、平行 放置的平面反射镜构成
由两个以上的反射 镜构成
(第二章1)
物理与机电工程学院
2.1.2
光学谐振腔的作用
《激光原理与技术》
《激光原理与技术》
1. 按能否忽略腔侧面边界分为: 闭腔、开腔(稳定腔、非稳定腔)、气体波导腔 2.按腔镜形状和结构分为: 球面腔与非球面腔 3.按腔内反射镜的多少分类: 两镜腔与多镜腔,简单腔与复合腔 4.腔中辐射场:驻波腔、行波腔
相关文档
最新文档