动态平衡问题常见解法
动态平衡问题(含解析)
动态平衡问题 类型一 动态平衡问题1.动态平衡是指物体的受力状态缓慢发生变化,但在变化过程中,每一个状态均可视为平衡状态.2.常用方法 (1)解析法对研究对象进行受力分析,画出受力示意图,根据物体的平衡条件列方程,得到因变量与自变量的函数表达式(通常为三角函数关系),最后根据自变量的变化确定因变量的变化. (2)图解法此法常用于求解三力平衡问题中,已知一个力是恒力、另一个力方向不变的情况.一般按照以下流程分析: 受力分析―――――――→化“动”为“静”画不同状态下的平衡图――――――→“静”中求“动”确定力的变化 (3)相似三角形法在三力平衡问题中,如果有一个力是恒力,另外两个力方向都变化,且题目给出了空间几何关系,多数情况下力的矢量三角形与空间几何三角形相似,可利用相似三角形对应边成比例求解(构建三角形时可能需要画辅助线).题型例析1 图解法例1 (多选)如图所示,在倾角为α的斜面上,放一质量为m 的小球,小球和斜面及挡板间均无摩擦,当挡板绕O 点逆时针缓慢地转向水平位置的过程中( )A.斜面对球的支持力逐渐增大B.斜面对球的支持力逐渐减小C.挡板对小球的弹力先减小后增大D.挡板对小球的弹力先增大后减小 题型例析2 解析法例2 (2020·广东中山市月考)如图,一小球放置在木板与竖直墙面之间.设墙面对球的压力大小为F N1,木板对球的压力大小为F N2.以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置.不计一切摩擦,在此过程中( )A.F N1先增大后减小,F N2始终减小B.F N1先增大后减小,F N2先减小后增大C.F N1始终减小,F N2始终减小D.F N1始终减小,F N2始终增大题型例析3相似三角形法例3(2020·山西大同市开学考试)如图所示,AC是上端带光滑轻质定滑轮的固定竖直杆,质量不计的轻杆BC一端通过铰链固定在C点,另一端B悬挂一重力为G的物体,且B端系有一根轻绳并绕过定滑轮,用力F拉绳,开始时∠BCA>90°,现使∠BCA缓慢变小,直到∠BCA=30°.此过程中,轻杆BC所受的力()A.逐渐减小B.逐渐增大C.大小不变D.先减小后增大变式训练1(单个物体的动态平衡问题)(多选)(2020·广东惠州一中质检)如图所示,在粗糙水平地面上放着一个截面为四分之一圆弧的柱状物体A,A的左端紧靠竖直墙,A与竖直墙之间放一光滑圆球B,已知A的圆半径为球B的半径的3倍,球B所受的重力为G,整个装置处于静止状态.设墙壁对B的支持力为F1,A对B的支持力为F2,若把A向右移动少许后,它们仍处于静止状态,则F1、F2的变化情况分别是()A.F1减小B.F1增大C.F2增大D.F2减小变式训练2(多个物体的动态平衡问题)(多选)(2019·全国卷Ⅰ·19)如图所示,一粗糙斜面固定在地面上,斜面顶端装有一光滑定滑轮.一细绳跨过滑轮,其一端悬挂物块N,另一端与斜面上的物块M相连,系统处于静止状态.现用水平向左的拉力缓慢拉动N,直至悬挂N的细绳与竖直方向成45°.已知M始终保持静止,则在此过程中()A.水平拉力的大小可能保持不变B.M所受细绳的拉力大小一定一直增加C.M所受斜面的摩擦力大小一定一直增加D.M所受斜面的摩擦力大小可能先减小后增加类型二平衡中的临界、极值问题1.临界问题当某物理量变化时,会引起其他几个物理量的变化,从而使物体所处的平衡状态“恰好出现”或“恰好不出现”,在问题的描述中常用“刚好”“恰能”“恰好”等.临界问题常见的种类:(1)由静止到运动,摩擦力达到最大静摩擦力.(2)绳子恰好绷紧,拉力F=0.(3)刚好离开接触面,支持力F N=0.2.极值问题平衡中的极值问题,一般指在力的变化过程中的最大值和最小值问题.3.解题方法(1)极限法:首先要正确地进行受力分析和变化过程分析,找出平衡的临界点和极值点;临界条件必须在变化中去寻找,不能停留在一个状态来研究临界问题,而要把某个物理量推向极端,即极大和极小.(2)数学分析法:通过对问题的分析,根据物体的平衡条件写出物理量之间的函数关系(或画出函数图象),用数学方法求极值(如求二次函数极值、公式极值、三角函数极值).(3)物理分析方法:根据物体的平衡条件,作出力的矢量图,通过对物理过程的分析,利用平行四边形定则进行动态分析,确定最大值与最小值.例4(2020·广东茂名市测试)如图所示,质量分别为3m和m的两个可视为质点的小球a、b,中间用一细线连接,并通过另一细线将小球a与天花板上的O点相连,为使小球a和小球b均处于静止状态,且Oa 细线向右偏离竖直方向的夹角恒为37°,需要对小球b朝某一方向施加一拉力F.若已知sin 37°=0.6,cos 37°=0.8.重力加速度为g,则当F的大小达到最小时,Oa细线对小球a的拉力大小为()A.2.4mgB.3mgC.3.2mgD.4mg例5如图所示,质量为m的物体放在一固定斜面上,当斜面倾角为30°时恰能沿斜面匀速下滑.对物体施加一大小为F、方向水平向右的恒力,物体可沿斜面匀速向上滑行.设最大静摩擦力等于滑动摩擦力,当斜面倾角增大并超过某一临界角θ0时,不论水平恒力F多大,都不能使物体沿斜面向上滑行,求:(1)物体与斜面间的动摩擦因数;(2)这一临界角θ0的大小.跟踪训练1.(2020·河南驻马店市第一学期期终)质量为m的物体用轻绳AB悬挂于天花板上,用水平力F拉着绳的中点O,使OA段绳偏离竖直方向一定角度,如图所示.设绳OA段拉力的大小为F T,若保持O点位置不变,则当力F的方向顺时针缓慢旋转至竖直方向的过程中()A.F先变大后变小,F T逐渐变小B.F先变大后变小,F T逐渐变大C.F先变小后变大,F T逐渐变小D.F先变小后变大,F T逐渐变大2.(多选)如图所示,质量均为m的小球A、B用劲度系数为k1的轻弹簧相连,B球用长为L的细绳悬挂于O 点,A球固定在O点正下方,当小球B平衡时,细绳所受的拉力为F T1,弹簧的弹力为F1;现把A、B间的弹簧换成原长相同但劲度系数为k2(k2>k1)的另一轻弹簧,在其他条件不变的情况下仍使系统平衡,此时细绳所受的拉力为F T2,弹簧的弹力为F2.则下列关于F T1与F T2、F1与F2大小的比较,正确的是()A.F T1>F T2B.F T1=F T2C.F1<F2D.F1=F23.(多选)(2016·全国卷Ⅰ·19)如图,一光滑的轻滑轮用细绳OO′悬挂于O点;另一细绳跨过滑轮,其一端悬挂物块a,另一端系一位于水平粗糙桌面上的物块b.外力F向右上方拉b,整个系统处于静止状态.若F方向不变,大小在一定范围内变化,物块b仍始终保持静止,则()A.绳OO′的张力也在一定范围内变化B.物块b所受到的支持力也在一定范围内变化C.连接a和b的绳的张力也在一定范围内变化D.物块b与桌面间的摩擦力也在一定范围内变化4.(2020·安徽黄山市高三期末)如图所示,在水平放置的木棒上的M、N两点,系着一根不可伸长的柔软轻绳,绳上套有一光滑小金属环.现将木棒绕其左端逆时针缓慢转动一个小角度,则关于轻绳对M、N两点的拉力F1、F2的变化情况,下列判断正确的是()A.F1和F2都变大B.F1变大,F2变小C.F1和F2都变小D.F1变小,F2变大5.(2020·广东高三模拟)如图所示,竖直墙上连有细绳AB,轻弹簧的一端与B相连,另一端固定在墙上的C 点.细绳BD与弹簧拴接在B点,现给BD一水平向左的拉力F,使弹簧处于伸长状态,且AB、CB与墙的夹角均为45°.若保持B点不动,将BD绳绕B点沿顺时针方向缓慢转动,则在转动过程中BD绳的拉力F的变化情况是()A.变小B.变大C.先变小后变大D.先变大后变小6.(2020·河南信阳市高三上学期期末)如图所示,足够长的光滑平板AP与BP用铰链连接,平板AP与水平面成53°角固定不动,平板BP可绕水平轴在竖直面内自由转动,质量为m的均匀圆柱体O放在两板间,sin 53°=0.8,cos 53°=0.6,重力加速度为g.在使BP板由水平位置缓慢转动到竖直位置的过程中,下列说法正确的是()A.平板AP受到的压力先减小后增大B.平板AP受到的压力先增大后减小C.平板BP受到的最小压力为0.6mg7.(2020·黑龙江哈尔滨市三中高三模拟)如图所示,斜面固定,平行于斜面处于压缩状态的轻弹簧一端连接物块A,另一端固定,最初A静止.在A上施加与斜面成30°角的恒力F,A仍静止,下列说法正确的是()A.A对斜面的压力一定变小B.A对斜面的压力可能不变C.A对斜面的摩擦力一定变大D.A对斜面的摩擦力可能变为零8.(多选)如图所示,倾角为α的粗糙斜劈放在粗糙水平面上,物体a放在斜劈的斜面上,轻质细线一端固定在物体a上,另一端绕过光滑的定滑轮1固定在c点,滑轮2下悬挂物体b,系统处于静止状态.若将固定点c向右移动少许,而物体a与斜劈始终静止,则()A.细线对物体a的拉力增大B.斜劈对地面的压力减小C.斜劈对物体a的摩擦力减小D.地面对斜劈的摩擦力增大9.(多选)(2019·河北唐山一中综合测试)如图所示,带有光滑竖直杆的三角形斜劈固定在水平地面上,放置于斜劈上的光滑小球与套在竖直杆上的小滑块用轻绳连接,开始时轻绳与斜劈平行.现给小滑块施加一竖直向上的拉力,使小滑块沿杆缓慢上升,整个过程中小球始终未脱离斜劈,则有()A.轻绳对小球的拉力逐渐增大B.小球对斜劈的压力先减小后增大C.竖直杆对小滑块的弹力先增大后减小D.对小滑块施加的竖直向上的拉力逐渐增大10.(多选)如图所示装置,两根细绳拴住一小球,保持两细绳间的夹角θ=120°不变,若把整个装置顺时针缓慢转过90°,则在转动过程中,CA绳的拉力F1、CB绳的拉力F2的大小变化情况是()A.F1先变小后变大B.F1先变大后变小C.F2一直变小D.F2最终变为零11.倾角为θ=37°的斜面与水平面保持静止,斜面上有一重为G的物体A,物体A与斜面间的动摩擦因数μ=0.5.现给A施加一水平力F,如图所示.设最大静摩擦力与滑动摩擦力相等(sin 37°=0.6,cos 37°=0.8),如果物体A能在斜面上静止,水平推力F与G的比值不可能是()A.3B.2C.1D.0.512.(2020·山西“六校”高三联考)跨过定滑轮的轻绳两端分别系着物体A和物体B,物体A放在倾角为θ的斜面上,与A相连的轻绳和斜面平行,如图所示.已知物体A的质量为m,物体A与斜面间的动摩擦因数为μ(μ<tan θ),滑轮的摩擦不计,要使物体A静止在斜面上,求物体B的质量的取值范围(最大静摩擦力等于滑动摩擦力).参考答案类型一动态平衡问题题型例析1图解法例1【答案】BC【解析】对小球受力分析知,小球受到重力mg、斜面的支持力F N1和挡板的弹力F N2,如图,当挡板绕O 点逆时针缓慢地转向水平位置的过程中,小球所受的合力为零,根据平衡条件得知,F N1和F N2的合力与重力mg大小相等、方向相反,作出小球在三个不同位置力的受力分析图,由图看出,斜面对小球的支持力F N1逐渐减小,挡板对小球的弹力F N2先减小后增大,当F N1和F N2垂直时,弹力F N2最小,故选项B、C正确,A、D错误.故选BC。
高中物理解决动态平衡问题的五种方法(带答案)
第03讲解决动态平衡问题的五种方法通过控制某些物理量,使物体的状态发生缓慢地变化,物体在这一变化过程中始终处于一系列的平衡状态中,这种平衡称为动态平衡。
解决此类问题的基本思路是化“动”为“静”,“静”中求“动”,具体有以下三种方法:(一)解析法对研究对象进行受力分析,先画出受力示意图,再根据物体的平衡条件列式求解,得到因变量与自变量的一般函数表达式,最后根据自变量的变化确定因变量的变化。
(二)结论法若合力不变,两等大分力夹角变大,则分力变大.若分力大小不变,两等大分力夹角变大,则合力变小.1、粗细均匀的电线架在A、B两根电线杆之间。
由于热胀冷缩,电线在夏、冬两季呈现如图所示的两种形状,若电线杆始终处于竖直状态,下列说法中正确的是( )A.冬季,电线对电线杆的拉力较大B.夏季,电线对电线杆的拉力较大C.夏季与冬季,电线对电线杆的拉力一样大D.夏季,电线杆对地面的压力较大2、如图所示,体操吊环运动有一个高难度的动作就是先双手撑住吊环(图甲),然后身体下移,双臂缓慢张开到图乙位置,则在此过程中,吊环的两根绳的拉力FT(两个拉力大小相等)及它们的合力F的大小变化情况为()A.FT 减小,F不变B.FT增大,F不变C.FT 增大,F减小D.FT增大,F增大3、如图所示,硬杆BC一端固定在墙上的B点,另一端装有滑轮C,重物D用绳拴住通过滑轮固定于墙上的A点。
若杆、滑轮及绳的质量和摩擦均不计,将绳的固定端从A点稍向下移,则在移动过程中( )A.绳的拉力、滑轮对绳的作用力都增大B.绳的拉力减小,滑轮对绳的作用力增大C.绳的拉力不变,滑轮对绳的作用力增大D.绳的拉力、滑轮对绳的作用力都不变(三)图解法此法常用于求解三力平衡且有一个力是恒力、另有一个力方向不变的问题。
一般按照以下流程解题。
1、如图所示,小球用细绳系住放在倾角为θ的光滑斜面上,当细绳由水平方向逐渐向上偏移时,细绳上的拉力将( )A.逐渐增大B.逐渐减小C.先增大后减小D.先减小后增大2、半圆柱体P放在粗糙的水平地面上,其右端有一固定放置的竖直挡板MN.在半圆柱体P和MN之间放有一个光滑均匀的小圆柱体Q,整个装置处于平衡状态,如图所示是这个装置的截面图.现使MN保持竖直并且缓慢地向右平移,在Q滑落到地面之前,发现P始终保持静止.则在此过程中,下列说法中正确的是()A.MN对Q的弹力逐渐减小B.P对Q的弹力逐渐增大C.地面对P的摩擦力逐渐增大D.Q所受的合力逐渐增大3、如图所示,挡板固定在斜面上,滑块m在斜面上,上表面呈弧形且左端最薄,球M搁在挡板与弧形滑块上,一切摩擦均不计,用平行于斜面的拉力F拉住弧形滑块,使球与滑块均静止。
(完整版)动态平衡问题常见解法
动态平衡问题苗贺铭动态平衡问题是高中物理平衡问题中的一个难点,学生不掌握问题的根本和规律,就不能解决该类问题,一些教学资料中对动态平衡问题归纳还不够全面。
因此,本文对动态平衡问题的常见解法梳理如下。
所谓的动态平衡,就是通过控制某一物理量,使物体的状态发生缓慢变化的平衡问题,物体在任意时刻都处于平衡状态,动态平衡问题中往往是三力平衡。
即三个力能围成一个闭合的矢量三角形。
一、图解法方法:对研究对象受力分析,将三个力的示意图首尾相连构成闭合三角形。
然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形的边长,各力的大小及变化就一目了然了。
例题1如图所示,一小球放置在木板与竖直墙面之间.设墙面对球的压力大小为F N1,球对木板的压力大小为F N2.以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置.不计摩擦,在此过切程中( )A.F N1始终减小B. F N2始终减小C. F N1先增大后减小D. F N2先减小后增大解析:以小球为研究对象,分析受力情况:重力G、墙面的支持力和木板的支持力,如图所示:由矢量三角形可知:始终减小,始终减小。
归纳:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。
二、解析法方法:物体处于动态平衡状态时,对研究对象的任一状态进行受力分析,建立平衡方程,得到自变量与应变量的函数关系,由自变量的关系确定应变量的关系。
例题2.1倾斜长木板一端固定在水平轴O上,另一端缓慢放低,放在长木板上的物块m 一直保持相对木板静止状态,如图所示.在这一过程中,物块m受到长木板支持力F N和摩擦力F f的大小变化情况是() A. F N变大,F f变大B. F N变小,F f变小C. F N变大,F f变小D. F N变小,F f变大解析:设木板倾角为θ根据平衡条件:F N=mgcosθF f=mgsinθ可见θ减小,则F N变大,F f变小;故选:C例题2.2 如图所示,轻绳OA 、OB 系于水平杆上的A 点和B 点,两绳与水平杆之间的夹角均为30°,重物通过细线系于O 点。
动态平衡问题的几种解法
动态平衡问题的几种解法物体在几个力的共同作用下处于平衡状态,如果其中的某一个力或某几个力发生缓慢的变化,其他的力也随之发生相应的变化,在变化过程中物体仍处于平衡状态,我们称这种平衡为动态平衡。
因为物体受到的力都在发生变化,是动态力,所以这类问题是力学中比较难的一类问题。
因为在整个过程中物体一直处于平衡状态,所以过程中的每一瞬间物体所受到的合力都是零,这是我们解这类题的根据.下面就举例介绍几种这类题的解题方法.一,三角函数法例1.(2014年全国卷1)如图,用橡皮筋将一小球悬挂在小车的架子上,系绕处于平衡状态。
现使小车从静止开始向左加速,加速度从零开始逐渐增大到某一值,然后保持此值,小球稳定地偏离竖直方向某一角度(橡皮筋在弹性限度内)。
与稳定在竖直位置时相比,小球的高度()A.一定升高B.一定降低C.保持不变D.升高或降低由橡皮筋的劲度系数决定解析:设L0为橡皮筋的原长,k为橡皮筋的劲度系数,小车静止时,对小球受力分析得:F1=mg,弹簧的伸长,即小球与悬挂点的距离为,当小车的加速度稳定在一定值时,对小球进行受力分析如图:得:,,解得:,弹簧的伸长:,则小球与悬挂点的竖直方向的距离为:,即小球在竖直方向上到悬挂点的距离减小,所以小球一定升高,故A正确,BCD错误.故选A.点评:这种方法适用于有两个力垂直的情形,这样才能构建直角三角形,从而根据直角三角形中的边角关系解题.二,图解法例2.如图所示,半圆形支架BAD上悬着两细绳OA和OB,结于圆心O,下悬重为G的物体,使OA绳固定不动,将OB绳的B端沿半圆支架从水平位置逐渐移至竖直的位置C的过程中,如图所示,OA绳受力大小变化情况是______,OB绳受力大小变化情况是______.解析:对O点受力分析,根据O点合力是零可知绳OA和绳OB上拉力的合力跟重力大小相等,方向相反,也就是说这个合力的大小不变方向竖直向上。
根据图像OA绳受力变小,OB绳受力先变小后变大.点评:这种方法适用于一个力大小方向都不变,另一个力方向不变,只有第三个力大小方向都变化的情况.三,相似三角形法例3.(2014年上海卷)如图,竖直绝缘墙上固定一带电小球A,将带电小球B用轻质绝缘丝线悬挂在A的正上方C处,图中AC=h。
高中物理解决动态平衡问题的五种方法(带答案)
第03讲 解决动态平衡问题的五种方法通过控制某些物理量,使物体的状态发生缓慢地变化,物体在这一变化过程中始终处于一系列的平衡状态中,这种平衡称为动态平衡。
解决此类问题的基本思路是化“动”为“静”,“静”中求“动”,具体有以下三种方法:(一)解析法 对研究对象进行受力分析,先画出受力示意图,再根据物体的平衡条件列式求解,得到因变量与自变量的一般函数表达式,最后根据自变量的变化确定因变量的变化。
(二)结论法 若合力不变,两等大分力夹角变大,则分力变大.若分力大小不变,两等大分力夹角变大,则合力变小.1、粗细均匀的电线架在A 、B 两根电线杆之间。
由于热胀冷缩,电线在夏、冬两季呈现如图所示的两种形状,若电线杆始终处于竖直状态,下列说法中正确的是( )A .冬季,电线对电线杆的拉力较大B .夏季,电线对电线杆的拉力较大C .夏季与冬季,电线对电线杆的拉力一样大D .夏季,电线杆对地面的压力较大2、如图所示,体操吊环运动有一个高难度的动作就是先双手撑住吊环(图甲),然后身体下移,双臂缓慢张开到图乙位置,则在此过程中,吊环的两根绳的拉力F T (两个拉力大小相等)及它们的合力F 的大小变化情况为( )A .F T 减小,F 不变B .F T 增大,F 不变C .F T 增大,F 减小D .F T 增大,F 增大3、如图所示,硬杆BC 一端固定在墙上的B 点,另一端装有滑轮C ,重物D用绳拴住通过滑轮固定于墙上的A 点。
若杆、滑轮及绳的质量和摩擦均不计,将绳的固定端从A 点稍向下移,则在移动过程中( ) A.绳的拉力、滑轮对绳的作用力都增大 B.绳的拉力减小,滑轮对绳的作用力增大C.绳的拉力不变,滑轮对绳的作用力增大D.绳的拉力、滑轮对绳的作用力都不变A CB(三)图解法此法常用于求解三力平衡且有一个力是恒力、另有一个力方向不变的问题。
一般按照以下流程解题。
1、如图所示,小球用细绳系住放在倾角为θ的光滑斜面上,当细绳由水平方向逐渐向上偏移时,细绳上的拉力将()A.逐渐增大B.逐渐减小C.先增大后减小D.先减小后增大2、半圆柱体P放在粗糙的水平地面上,其右端有一固定放置的竖直挡板MN.在半圆柱体P和MN之间放有一个光滑均匀的小圆柱体Q,整个装置处于平衡状态,如图所示是这个装置的截面图.现使MN保持竖直并且缓慢地向右平移,在Q滑落到地面之前,发现P始终保持静止.则在此过程中,下列说法中正确的是()A.MN对Q的弹力逐渐减小B.P对Q的弹力逐渐增大C.地面对P的摩擦力逐渐增大D.Q所受的合力逐渐增大3、如图所示,挡板固定在斜面上,滑块m在斜面上,上表面呈弧形且左端最薄,球M搁在挡板与弧形滑块上,一切摩擦均不计,用平行于斜面的拉力F拉住弧形滑块,使球与滑块均静止。
动态平衡问题常见解法
动态平衡问题苗贺铭动态平衡问题是高中物理平衡问题中的一个难点,学生不掌握问题的根本和规律,就不能解决该类问题,一些教学资料中对动态平衡问题归纳还不够全面。
因此,本文对动态平衡问题的常见解法梳理如下。
所谓的动态平衡,就是通过控制某一物理量,使物体的状态发生缓慢变化的平衡问题,物体在任意时刻都例题F N2..不由矢量三角形可知:始二、解析法方法:物体处于动态平衡状态时,对研究对象的任一状态进行受力分析,建立平衡方程,得到自变量与应变量的函数关系,由自变量的关系确定应变量的关系。
例题2.1倾斜长木板一端固定在水平轴O上,另一端缓慢放低,放在长木板上的物块m?一直保持相对木板静止状态,如图所示.在这一过程中,物块m受到长木板支持力F N和摩擦力F f的大小变化情况是()A.F N变大,F f变大B.F N变小,F f变小C.F N变大,F f变小D.F N变小,F f变大解析:设木板倾角为θ根据平衡条件:F N=mgcosθF f=mgsinθ可见θ减小,则F N变大,F f变小;例题°,重物通三、相似三角形方法:找到与力的矢量三角形相似的几何三角形,根据相似三角形的性质,建立比例关系,进行讨论。
例题3如图所示,光滑的半球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A点,另一端绕过定滑轮,后用力拉住,使小球静止.现缓慢地拉绳,在使小球沿球面由A到半球的顶点B的过程中,半球对小球的支持力N和绳对小球的拉力T的大小变化情况是(????)。
(A)N变大,T变小???(B)N变小,T变大???(B)N变小,T先变小后变大??(D)N不变,T变小解析:小球受力如图所示,此三力使小球受力平衡.力矢量三角形如图乙,设球面半径为R ,BC=h,AC=L,AO=R.则由三角形相似有:R G h =L F T =RF NG 、h 、R 均为定值,故F N 为定值,不变,F T ∝L ,由题知:L ↓,故F T ↓.故D 正确.归纳:相似三角形法适用于物体受到的三个力中,一个力的大小、方向均不变,其他两个力的方向均发生变化,且三个力中没有两个力保持垂直关系,但可以找到与力构成的矢量三角形相似的几何解析:以结点O 为研究对角,受到三个拉力,如图所示分别为F M 、F N 、F 合,将三力构成矢量三角形(如图所示的实线三角形),以O 为圆心,F M 为半径作圆,需满足力F 合大小、方向不变,角α减小,则动态矢量三角形如图中画出的一系列虚线表示的三角形。
动态平衡问题的几种解法---精品管理资料
动态平衡问题的几种解法在有关物体平衡的问题中,有一类涉及动态平衡。
这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。
解决这类问题的一般思路是:把“动”化为“静",“静”中求“动”。
下面就介绍几种动态平衡问题的解题方法。
方法一:图解法(三角形法则)原理:当物体受三力作用而处于平衡状态时,其合力为零,三个力的矢量依次恰好首尾相连,构成闭合三角形,当物体所受三个力中二个发生变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。
例题1:如图1所示,一个重力G的匀质球放在光滑斜面上,斜面倾角为,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。
今使板与斜面的夹角缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化?解析:取球为研究对象,球受重力G、斜面支持力F1、挡板支持力F2。
因为球始终处于平衡状态,故三个力的合力始终为零,三个力构成封闭的三角形。
挡板逆时针转动时,F2的方向也逆时针转动,F1的方向不变,作出如图2所示的动态矢量三角形。
由图可知,F2先减小后增大,F1随增大而始终减小。
点评:三角形法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可以是其它力),另一个力的大小变化,第三个力则大小、方向均发生变化的问题,对变化过程进行定性的分析。
方法二:解析法原理:物体处于动态平衡状态时,对研究对象的任一状态进行受力分析,根据具体情况引入参量,建立平衡方程,求出应变参量与自变参量的一般函数关系,然后根据自变量的变化确定应变量的变化。
例题2:如图3所示,小船用绳索拉向岸边,设船在水中运动时所受水的阻力不变,那么小船在匀速靠岸过程中,下面说法哪些是正确的()A。
绳子的拉力F不断增大 B。
绳子的拉力F不变C。
船所受的浮力不断减小 D。
船所受的浮力不断增大解析:小船共受四个力作用:重力G、浮力F浮、水的阻力f、绳子拉力F。
动态平衡问题常见解法
动态平衡问题苗贺铭动态平衡问题是高中物理平衡问题中的一个难点,学生不掌握问题的根本和规律,就不能解决该类问题,一些教学资料中对动态平衡问题归纳还不够全面。
因此,本文对动态平衡问题的常见解法梳理如下。
所谓的动态平衡,就是通过控制某一物理量,使物体的状态发生缓慢变化的平衡问题,物体在任意时刻都处于平衡状态,动态平衡问题中往往是三力平衡。
即三个力能围成一个闭合的矢量三角形。
一、图解法方法:对研究对象受力分析,将三个力的示意图首尾相连构成闭合三角形。
然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形的边长,各力的大小及变化就一目了然了。
例题1如图所示,一小球放置在木板与竖直墙面之间.设墙面对球的压力大小为F N1,球对木板的压力大小为F N2.以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置.不计摩擦,在此过切程中( )A.F N1始终减小B. F N2始终减小C. F N1先增大后减小D. F N2先减小后增大解析:以小球为研究对象,分析受力情况:重力G、墙面的支持力和木板的支持力,如图所示:由矢量三角形可知:始终减小,始终减小。
归纳:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。
二、解析法方法:物体处于动态平衡状态时,对研究对象的任一状态进行受力分析,建立平衡方程,得到自变量与应变量的函数关系,由自变量的关系确定应变量的关系。
例题2.1倾斜长木板一端固定在水平轴O上,另一端缓慢放低,放在长木板上的物块m 一直保持相对木板静止状态,如图所示.在这一过程中,物块m受到长木板支持力F N和摩擦力F f 的大小变化情况是( )A. F N 变大,F f 变大B. F N 变小,F f 变小C. F N 变大,F f 变小D. F N 变小,F f 变大解析: 设木板倾角为θ根据平衡条件:F N =mgcos θF f =mgsin θ可见θ减小,则F N 变大,F f 变小;故选:C例题2.2 如图所示,轻绳OA 、OB 系于水平杆上的A 点和B 点,两绳与水平杆之间的夹角均为30°,重物通过细线系于O 点。
2I 动态平衡问题的几种解法
动态平衡问题的几种解法在有关物体平衡的问题中,有一类涉及动态平衡。
这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。
解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。
下面就介绍几种动态平衡问题的解题方法。
方法一:图解法(三角形法则)原理:当物体受三力作用而处于平衡状态时,其合力为零,三个力的矢量依次恰好首尾相连,构成闭合三角形,当物体所受三个力中二个发生变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。
例题1:如图1所示,一个重力G的匀质球放在光滑斜面上,斜面倾角为,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。
今使板与斜面的夹角缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化?解析:取球为研究对象,球受重力G、斜面支持力F1、挡板支持力F2。
因为球始终处于平衡状态,故三个力的合力始终为零,三个力构成封闭的三角形。
挡板逆时针转动时,F2的方向也逆时针转动,F1的方向不变,作出如图2所示的动态矢量三角形。
由图可知,F2先减小后增大,F1随增大而始终减小。
点评:三角形法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可以是其它力),另一个力的大小变化,第三个力则大小、方向均发生变化的问题,对变化过程进行定性的分析。
方法二:解析法原理:物体处于动态平衡状态时,对研究对象的任一状态进行受力分析,根据具体情况引入参量,建立平衡方程,求出应变参量与自变参量的一般函数关系,然后根据自变量的变化确定应变量的变化。
例题2:如图3所示,小船用绳索拉向岸边,设船在水中运动时所受水的阻力不变,那么小船在匀速靠岸过程中,下面说法哪些是正确的()A. 绳子的拉力F不断增大B. 绳子的拉力F不变C. 船所受的浮力不断减小D. 船所受的浮力不断增大解析:小船共受四个力作用:重力G、浮力F浮、水的阻力f、绳子拉力F。
(完整)高中物理解决动态平衡问题的五种方法(带答案)
(完整)⾼中物理解决动态平衡问题的五种⽅法(带答案)第03讲解决动态平衡问题的五种⽅法通过控制某些物理量,使物体的状态发⽣缓慢地变化,物体在这⼀变化过程中始终处于⼀系列的平衡状态中,这种平衡称为动态平衡。
解决此类问题的基本思路是化“动”为“静”,“静”中求“动”,具体有以下三种⽅法:(⼀)解析法对研究对象进⾏受⼒分析,先画出受⼒⽰意图,再根据物体的平衡条件列式求解,得到因变量与⾃变量的⼀般函数表达式,最后根据⾃变量的变化确定因变量的变化。
(⼆)结论法若合⼒不变,两等⼤分⼒夹⾓变⼤,则分⼒变⼤.若分⼒⼤⼩不变,两等⼤分⼒夹⾓变⼤,则合⼒变⼩.1、粗细均匀的电线架在A 、B 两根电线杆之间。
由于热胀冷缩,电线在夏、冬两季呈现如图所⽰的两种形状,若电线杆始终处于竖直状态,下列说法中正确的是( )A .冬季,电线对电线杆的拉⼒较⼤B .夏季,电线对电线杆的拉⼒较⼤C .夏季与冬季,电线对电线杆的拉⼒⼀样⼤D .夏季,电线杆对地⾯的压⼒较⼤2、如图所⽰,体操吊环运动有⼀个⾼难度的动作就是先双⼿撑住吊环(图甲),然后⾝体下移,双臂缓慢张开到图⼄位置,则在此过程中,吊环的两根绳的拉⼒F T (两个拉⼒⼤⼩相等)及它们的合⼒F 的⼤⼩变化情况为()A .F T 减⼩,F 不变B .F T 增⼤,F 不变C .F T 增⼤,F 减⼩D .F T 增⼤,F 增⼤3、如图所⽰,硬杆BC ⼀端固定在墙上的B 点,另⼀端装有滑轮C ,重物D⽤绳拴住通过滑轮固定于墙上的A 点。
若杆、滑轮及绳的质量和摩擦均不计,将绳的固定端从A 点稍向下移,则在移动过程中( ) A.绳的拉⼒、滑轮对绳的作⽤⼒都增⼤ B.绳的拉⼒减⼩,滑轮对绳的作⽤⼒增⼤C.绳的拉⼒不变,滑轮对绳的作⽤⼒增⼤D.绳的拉⼒、滑轮对绳的作⽤⼒都不变A CB(三)图解法此法常⽤于求解三⼒平衡且有⼀个⼒是恒⼒、另有⼀个⼒⽅向不变的问题。
⼀般按照以下流程解题。
1、如图所⽰,⼩球⽤细绳系住放在倾⾓为θ的光滑斜⾯上,当细绳由⽔平⽅向逐渐向上偏移时,细绳上的拉⼒将()A.逐渐增⼤B.逐渐减⼩C.先增⼤后减⼩D.先减⼩后增⼤2、半圆柱体P放在粗糙的⽔平地⾯上,其右端有⼀固定放置的竖直挡板MN.在半圆柱体P和MN之间放有⼀个光滑均匀的⼩圆柱体Q,整个装置处于平衡状态,如图所⽰是这个装置的截⾯图.现使MN保持竖直并且缓慢地向右平移,在Q滑落到地⾯之前,发现P始终保持静⽌.则在此过程中,下列说法中正确的是()A.MN对Q的弹⼒逐渐减⼩B.P对Q的弹⼒逐渐增⼤C.地⾯对P的摩擦⼒逐渐增⼤D.Q所受的合⼒逐渐增⼤3、如图所⽰,挡板固定在斜⾯上,滑块m在斜⾯上,上表⾯呈弧形且左端最薄,球M搁在挡板与弧形滑块上,⼀切摩擦均不计,⽤平⾏于斜⾯的拉⼒F拉住弧形滑块,使球与滑块均静⽌。
动态平衡问题的几种解法
动态平衡问题的几种解法在有关物体平衡的问题中,有一类涉及动态平衡。
这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。
解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。
下面就介绍几种动态平衡问题的解题方法。
方法一:图解法(三角形法则)原理:当物体受三力作用而处于平衡状态时,其合力为零,三个力的矢量依次恰好首尾相连,构成闭合三角形,当物体所受三个力中二个发生变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。
例题1:如图1所示,一个重力G的匀质球放在光滑斜面上,斜面倾角为,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。
今使板与斜面的夹角缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化?解析:取球为研究对象,球受重力G、斜面支持力F1、挡板支持力F2。
因为球始终处于平衡状态,故三个力的合力始终为零,三个力构成封闭的三角形。
挡板逆时针转动时,F2的方向也逆时针转动,F1的方向不变,作出如图2所示的动态矢量三角形。
由图可知,F2先减小后增大,F1随增大而始终减小。
点评:三角形法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可以是其它力),另一个力的大小变化,第三个力则大小、方向均发生变化的问题,对变化过程进行定性的分析。
方法二:解析法原理:物体处于动态平衡状态时,对研究对象的任一状态进行受力分析,根据具体情况引入参量,建立平衡方程,求出应变参量与自变参量的一般函数关系,然后根据自变量的变化确定应变量的变化。
例题2:如图3所示,小船用绳索拉向岸边,设船在水中运动时所受水的阻力不变,那么小船在匀速靠岸过程中,下面说法哪些是正确的()A. 绳子的拉力F不断增大B. 绳子的拉力F不变C. 船所受的浮力不断减小D. 船所受的浮力不断增大解析:小船共受四个力作用:重力G、浮力F浮、水的阻力f、绳子拉力F。
动态平衡问题的几种解法
动态平衡问题的几种解法在有关物体平衡的问题中,有一类涉及动态平衡。
这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。
解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。
下面就介绍几种动态平衡问题的解题方法。
方法一:图解法(三角形法则)原理:当物体受三力作用而处于平衡状态时,其合力为零,三个力的矢量依次恰好首尾相连,构成闭合三角形,当物体所受三个力中二个发生变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。
例题1:如图1所示,一个重力G的匀质球放在光滑斜面上,斜面倾角为,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。
今使板与斜面的夹角缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化?解析:取球为研究对象,球受重力G、斜面支持力F1、挡板支持力F2。
因为球始终处于平衡状态,故三个力的合力始终为零,三个力构成封闭的三角形。
挡板逆时针转动时,F2的方向也逆时针转动,F1的方向不变,作出如图2所示的动态矢量三角形。
由图可知,F2先减小后增大,F1随增大而始终减小。
点评:三角形法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可以是其它力),另一个力的大小变化,第三个力则大小、方向均发生变化的问题,对变化过程进行定性的分析。
方法二:解析法原理:物体处于动态平衡状态时,对研究对象的任一状态进行受力分析,根据具体情况引入参量,建立平衡方程,求出应变参量与自变参量的一般函数关系,然后根据自变量的变化确定应变量的变化。
例题2:如图3所示,小船用绳索拉向岸边,设船在水中运动时所受水的阻力不变,那么小船在匀速靠岸过程中,下面说法哪些是正确的()A. 绳子的拉力F不断增大B. 绳子的拉力F不变C. 船所受的浮力不断减小D. 船所受的浮力不断增大解析:小船共受四个力作用:重力G、浮力F浮、水的阻力f、绳子拉力F。
高中物理解决动态平衡问题的五种方法(带答案)
第03讲解决动态平衡问题的五种方法通过控制某些物理量,使物体的状态发生缓慢地变化,物体在这一变化过程中始终处于一系列的平衡状态中,这种平衡称为动态平衡。
解决此类问题的基本思路是化“动”为“静”,“静”中求“动”,具体有以下三种方法:(一)解析法对研究对象进行受力分析,先画出受力示意图,再根据物体的平衡条件列式求解,得到因变量与自变量的一般函数表达式,最后根据自变量的变化确定因变量的变化。
(二)结论法若合力不变,两等大分力夹角变大,则分力变大.*若分力大小不变,两等大分力夹角变大,则合力变小.1、粗细均匀的电线架在A、B两根电线杆之间。
由于热胀冷缩,电线在夏、冬两季呈现如图所示的两种形状,若电线杆始终处于竖直状态,下列说法中正确的是( )A.冬季,电线对电线杆的拉力较大B.夏季,电线对电线杆的拉力较大C.夏季与冬季,电线对电线杆的拉力一样大D.夏季,电线杆对地面的压力较大:2、如图所示,体操吊环运动有一个高难度的动作就是先双手撑住吊环(图甲),然后身体下移,双臂缓慢张开到图乙位置,则在此过程中,吊环的两根绳的拉力F T(两个拉力大小相等)及它们的合力F 的大小变化情况为( )A .F T 减小,F 不变B .F T 增大,F 不变C .F T 增大,F 减小D .F T 增大,F 增大3、如图所示,硬杆BC 一端固定在墙上的B 点,另一端装有滑轮C ,重物D用绳拴住通过滑轮固定于墙上的A 点。
若杆、滑轮及绳的质量和摩擦均不计,将绳的固定端从A 点稍向下移,则在移动过程中( )A.'B.绳的拉力、滑轮对绳的作用力都增大 B.绳的拉力减小,滑轮对绳的作用力增大 C.绳的拉力不变,滑轮对绳的作用力增大 D.绳的拉力、滑轮对绳的作用力都不变A C B(三)图解法此法常用于求解三力平衡且有一个力是恒力、另有一个力方向不变的问题。
一般按照以下流程解题。
{1、如图所示,小球用细绳系住放在倾角为θ的光滑斜面上,当细绳由水平方向逐渐向上偏移时,细绳上的拉力将()A.逐渐增大B.逐渐减小C.先增大后减小D.先减小后增大2、半圆柱体P放在粗糙的水平地面上,其右端有一固定放置的竖直挡板MN.在半圆柱体P和MN之间放有一个光滑均匀的小圆柱体Q,整个装置处于平衡状态,如图所示是这个装置的截面图.现使MN保持竖直并且缓慢地向右平移,在Q滑落到地面之前,发现P始终保持静止.则在此过程中,下列说法中正确的是()A.MN对Q的弹力逐渐减小B.P对Q的弹力逐渐增大C.地面对P的摩擦力逐渐增大D.Q所受的合力逐渐增大】3、如图所示,挡板固定在斜面上,滑块m在斜面上,上表面呈弧形且左端最薄,球M搁在挡板与弧形滑块上,一切摩擦均不计,用平行于斜面的拉力F拉住弧形滑块,使球与滑块均静止。
(完整)高中物理解决动态平衡问题的五种方法(带答案)
D.夏季,电线杆对地面的压力较大
2、如图所示,体操吊环运动有一个高难度的动作就是先双手撑住吊环(图甲) 移,双臂缓慢张开到图乙位置,则在此过程中,吊环的两根绳的拉力FT(两个拉力大小相等)及它们的合力F的大小变化情况为( )A.FT减小,F不变B.FT增大,F不变
C.地面对P的摩擦力逐渐增大D.Q所受的合力逐渐增大
3、如图所示,挡板固定在斜面上,滑块m在斜面上,上表面呈弧形且左端最薄,球M搁
在挡板与弧形滑块上,一切摩擦均不计,用平行于斜面的拉力F拉住弧形滑块,使球与滑
块均静止。现将滑块平行于斜面向上拉过一较小的距离,球仍搁在挡板 与滑块上且处于静止状态,则与原来相比( )
C、N变小,T先变小后变大D、N不变,T变小
2、如图所示, 固定在竖直平面内的光滑圆环的最高点有一个光滑的小孔。 质量为m的小球套在圆环上。 一根细线的下端系着小球,上端穿过小孔用 手拉住。现拉动细线,使小球沿圆环缓慢上移,在移动过程中手对线的拉 力F和轨道对小球的弹力FN的大小变化情况是( ) A.F不变,FN增大B.F不变,FN减小C.F减小,FN不变
缓慢地推动小球,则在小球运动的过程中(该过程小球未脱离球面),木板对小球的推力F1,
A.F1增大,F2减小
C.F1增大,F2增大
B.F1减小,F2减小
D.F1减小,F2增大
12、如图所示,用一根细线系住重力为G、半径为R的球,其与倾角为α的光滑斜面接触,处于静止状态,球与斜面的接触面非常小,当细线悬点O固定不动,斜面缓慢水平向左移 动直至绳子与斜面平行的过程中,下述正确的是( ). A.细绳对球的拉力先减小后增大B.细绳对球的拉力先增大后减小C.细绳对球的拉力一直减小D.细绳对球的拉力最小值等于G
动态平衡的几种解法
动态平衡问题的几种解法刘金艳在有关物体平衡的问题中,有一类涉及动态平衡。
这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。
解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。
下面就介绍几种动态平衡问题的解题方法。
方法一:三角形法则。
原理:当物体受三力作用而处于平衡状态时,其合力为零,三个力的矢量依次恰好首尾相连,构成闭合三角形,当物体所受三个力中二个发生变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。
例1.如图1所示,一个重力G的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。
今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化?图1解析:取球为研究对象,球受重力G、斜面支持力F1、挡板支持力F2。
因为球始终处于平衡状态,故三个力的合力始终为零,三个力构成封闭的三角形。
挡板逆时针转动时,F2的方向也逆时针转动,F1的方向不变,作出如图2所示的动态矢量三角形。
由图可知,F2先减小后增大,F1随β增大而始终减小。
图2点评:三角形法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可以是其它力),另一个力的大小变化,第三个力则大小、方向均发生变化的问题,对变化过程进行定性的分析。
方法二:解析法。
原理:物体处于动态平衡状态时,对研究对象的任一状态进行受力分析,根据具体情况引入参量,建立平衡方程,求出应变参量与自变参量的一般函数关系,然后根据自变量的变化确定应变量的变化。
例2. 如图3所示,小船用绳索拉向岸边,设船在水中运动时所受水的阻力不变,那么小船在匀速靠岸过程中,下面说法哪些是正确的( )图3A. 绳子的拉力F 不断增大B. 绳子的拉力F 不变C. 船所受的浮力不断减小D. 船所受的浮力不断增大解析:小船共受四个力作用:重力G 、浮力F 浮、水的阻力f 、绳子拉力F 。
高考物理一轮复习:动态平衡的三种解法
动态平衡的三种解法什么是动态平衡?通过控制某些物理量,使物体的状态发生缓慢地变化,物体在这一变化过程中始终处于一系列的平衡状态中,这种平衡称为动态平衡。
解决此类问题的基本思路是化“动”为“静”,“静”中求“动”。
方法一解析法基本思路例 1:质量为 M 的半圆柱体 P 放在粗糙的水平地面上,其右端固定一个竖直挡板 AB,在 P 上放两个大小相同的光滑小球 C 和 D,质量均为 m,整个装置的纵截面如图所示。
开始时P、C 球心连线与水平面的夹角为θ,点 P、D 球心连线处于竖直方向,已知重力加速度为g。
则下列说法正确的是()mg mgA.P 和挡板对 C 的弹力分别为tanθ和sinθB.地面对 P 的摩擦力大小为零C.使挡板缓慢地向右平行移动,但 C 仍在 P 和挡板 AB 作用下悬于半空中,则地面对 P 的摩擦力将不断增大D.使挡板绕 B 点顺时针缓慢转动,P 始终保持静止,则 D 一定缓慢下滑方法二图解法什么是图解法?对研究对象在动态变化过程中的若干状态进行受力分析,在同一图中作出物体在若干状态下所受的力的平行四边形,由各边的长度变化及角度变化来确定力的大小及方向的变化,此即为图解法。
应用图解法的优点是什么?图解法的优点是能将各力的大小、方向等变化趋势形象、直观地反映出来,大大降低了解题三力平衡难度和计算强度。
思考:图解法可适用于物体受怎样的力时的动态分析?一个力是恒力、另有一个力是方向不变、第三个力大小和方向都发生变化。
例2:光滑斜面上固定着一根刚性圆弧形细杆,小球通过轻绳与细杆相连,此时轻绳处于水平方向,球心恰位于圆弧形细杆的圆心处,如图所示。
将悬点 A 缓慢沿杆向上移动,直到轻绳处于竖直方向,在这个过程中,轻绳的拉力()A.逐渐增大B.大小不变C.先减小后增大D.先增大后减小方法三相似三角形法在哪些情况下可应用相似三角形法判断力的变化?在三力平衡问题中,如果有一个力是恒力,另外两个力方向都变化,且题目给出了空间几何关系,多数情况下力的矢量三角形与空间几何三角形相似,可利用相似三角形对应边成比例进行计算。
浅谈动态平衡问题的常用分析方法
浅谈动态平衡问题的常用分析方法物体的平衡问题中,存在着大量的动态物体平衡问题。
所谓动态的物体平衡问题,是指通过控制某些物理量,使物体所处的状态发生缓慢的变化,而物体在变化过程中的任一状态都可以看作是平衡状态。
解决动态平衡问题的基本思想是:先选择过程中的某一状态作为参考专题,按照静态平衡问题进行分析,然后再考虑整个过程中哪些量是不变的,哪些量是变化的,结合平衡条件,根据不变的量和确定的变化量来确定未知的变化量,分析动态平衡问题常用的方法有:力的合成、力的分解、正交分解法、极限法、图象法等。
【例题】如图所示,挡板AB和竖直墙壁之间夹有一光滑小球,球的质量为m,则挡板与墙壁之间夹角θ缓慢增加至θ=90°时,AB板及墙壁对球的压力如何变化?解法一、利用力的合成由于挡板缓慢放下,故小球总处于平衡态,其受力如图1所示,由平衡条件知,F N1与F N2的合力F合等于G,将F N1与F N2合成,由图知:F N1=mgcotθ,F N2=mg/sinθ,当θ增大时,cotθ减少,sinθ增大,故F N1减小,F N2也减小,当θ=90°时,F N1=0,F N2=mg。
解法二、利用力的分解F图1 F N22图2由于挡板缓慢放下,小球处于平衡状态,其所受外力的合力为零,将图2中的G沿F N1和F N2的反方向分解为G1和G2,且G1=mgcotθ,G2=mg/sinθ。
根据平衡条件知,物体在这两个方向的合力均为零,所以F N1=G1=mgcotθ,F N2=G2=mg/sinθ,所以当θ逐渐增大时,F N1减小,最后等于零,F N2也逐渐减小,最后等于mg。
解法三、利用正交分解法由以上分析可知,小球处于平衡状态,其合力为零,其受力如图3所示,沿F N1及G 方向建立直角坐标,分解F N2为F N2x和F N2y,得到F N2x= F N2cosθ,F N2y= F N2sinθ,根据平衡条件有F N2y=F N2sinθ=mg,F N2x= F N2cosθ=F N1,解得F N1=mgcotθ,F N2=mg/sinθ,当θ增大时,F N1减小,最后等于零,F N2也减小,最后等于mg。
动态平衡问题的求解方法.
绕过定滑轮。今缓慢拉绳使小球从A点滑到半
球顶点,则此过程中,小球对半球的压力FN及
细绳的拉力FT大小变化情况(
)
A.FN变大,FT变大 B.FN变小,FT变大
C.FN不变,FT变小 D.FN变大,FT变小
解析:小球每一时刻都处于平衡状态,作出
小球的受力分析示意图,根据平衡条件,由 矢量三角形和几何三角形相似,可得
乙 cos
(2) T G
cos
时针转过θ、2θ角时,Fb的方向也逆时针转动,做出动态 图如图所示,Fb先减小后增大,由对称性看出,F1=F3>F2, 而Fa一直减小。故选项A、D正确。
Fa
θ F3
F2
θθ
G Fb
F1
例2.如图所示,固定在水平面上的光滑半球,
球心O的正上方固定一个小定滑轮,细绳一端
拴一小球,小球置于半球面上的A点,另一端
FN FTh
FN FT G
R O
R l Rh
G
所以
FN
GR Rh
FT
Gl Rh
可知选项C正确。
平衡物体的临界状态与极值问题
1、临界问题:当某物理量变化时,会引起其他几 个物理量的变化,从而使物体所处的平衡状态“恰好出现” 或“恰好不出现”,在问题的描述中常用“刚好”、“刚 能”、“恰好”等语言叙述。解决这类问题的基本方法是假 设推理法,即先假设某种情况成立,然后再根据平衡条件及 有关知识进行论证、求解。
y
F1
F
要使两绳都能绷直,则有:
θθ x
F1 0, F2 0
CF2 A
由以上各式可解得F的取值范围为:
mg
20 3N F 40 3N
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动态平衡问题
苗贺铭
动态平衡问题是高中物理平衡问题中的一个难点,学生不掌握问题的根本和规律,就不能解决该类问题,一些教学资料中对动态平衡问题归纳还不够全面。
因此,本文对动态平衡问题的常见解法梳理如下。
所谓的动态平衡,就是通过控制某一物理量,使物体的状态发生缓慢变化的平衡问题,物体在任意时刻都处于平衡状态,动态平衡问题中往往是三力平衡。
即三个力能围成一个闭合的矢量三角形。
一、图解法
方法:对研究对象受力分析,将三个力的示意图首尾相连构成闭合三角形。
然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形的边长,各力的大小及变化就一目了然了。
例题1如图所示,一小球放置在木板与竖直墙面之间.设墙面对球的压力大小为F N1,球对木板的压力大小为F N2.以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置.不计摩擦,在此过切程中( )
A.F N1始终减小
B. F N2始终减小
C. F N1先增大后减小
D. F N2先减小后增大
解析:以小球为研究对象,分析受力情况:重力G、
墙面的支持力和木板的支持力,如图所示:由矢量三
角形可知:始终减小,始终减小。
归纳:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。
二、解析法
方法:物体处于动态平衡状态时,对研究对象的任一状态进行受力分析,建立平衡方程,得到自变量与应变量的函数关系,由自变量的关系确定应变量的关系。
例题2.1倾斜长木板一端固定在水平轴O上,另一端缓慢放低,放在长木板上的物块m 一直保持相对木板静止状态,如图所示.在这一过程中,物块m受到长木板支持力F N和摩擦力F f的大小变化情况是() A. F N变大,F f变大
B. F N变小,F f变小
C. F N变大,F f变小
D. F N变小,F f变大
解析:设木板倾角为θ
根据平衡条件:F N=mgcosθ
F f=mgsinθ
可见θ减小,则F N变大,F f变小;
故选:C
例题2.2 如图所示,轻绳OA 、OB 系于水平杆上的A 点和B 点,两绳与水平杆之间的夹角均为30°,重物通过细线系于O 点。
将杆在竖直平面内沿顺时针方向缓慢转动30°此过程中( )
A. OA 绳上拉力变大,OB 绳上拉力变大
B. OA 绳上拉力变大,OB 绳上拉力变小
C. OA 绳上拉力变小,OB 绳上拉力变大
D. OA 绳上拉力变小,OB 绳上拉力变小
解析:转动前,T A =T B ,2T A sin30°=mg ,则T A =mg=T B ;
转动后,OA 与水平方向的夹角变为60°,OB 变为水平。
T A ’sin60°=mg ,T A ’cos60°= T B ’
解得:T A ’=332mg ,T B ’=2
1T A ’=33mg ,故B 正确。
归纳:解析法适用于一个力大小、方向都不变,另两个力在变化的过程中始终垂直的问题,或一个力大小、方向不变,另两个力大小相等的问题
三、相似三角形
方法:找到与力的矢量三角形相似的几何三角形,根据相似三角形的性质,建立比例关系,进行讨论。
例题3 如图所示,光滑的半球形物体固定在水平地面上,球心正
上方有一光滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A 点,
另一端绕过定滑轮,后用力拉住,使小球静止.现缓慢地拉绳,在使
小球沿球面由A 到半球的顶点B 的过程中,半球对小球的支持力N 和
绳对小球的拉力T 的大小变化情况是( )。
(A) N 变大,T 变小 (B)N 变小,T 变大
(B) N 变小,T 先变小后变大 (D)N 不变,T 变小
解析:小球受力如图所示,此三力使小球受力平衡.力矢
量三角形如图乙,设球面半径为R ,BC=h,AC=L,AO=R.则
由三角形相似有:R G h =L F T =R
F N
G 、h 、R 均为定值,故F N 为定值,不变,F T ∝L ,由题知:
L ↓,故F T ↓.故D 正确.
归纳:相似三角形法适用于物体受到的三个力中,
一个力的大小、方向均不变,其他两个力的方向均发生
变化,且三个力中没有两个力保持垂直关系,但可以找到与力构成的矢量三角形相似的几何三角形的问题。
四、辅助圆法
方法:先正确分析物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,第一种情况以不变的力为弦作个圆,在辅助的圆中可容易画出两力夹角不变的力的矢量三角形,从而轻易判断各力的变化情况。
第二种情况以大小不变,方向变化的力为半径作一个辅助圆,在辅助的圆中可容易画出一个力大小不变、方向改变的力的矢量三角形,从而轻易判断各力的变化情况。
例题4.1 如图所示,物体G 用两根绳子悬挂,开始时绳OA 水平,现将两绳同时沿顺时针方向转过90°,且保持两绳之间的夹角α不变(α>90°),物体保
持静止状态。
在旋转过程中,设绳OA 的拉力为T1,绳OB 的拉力为T2,
则:( )
A 、T1先减小后增大
B 、T1先增大后减小
C 、T2逐渐减小
D 、T2最终变为零
解析:取绳子结点O 为研究对角,受到三根绳的拉力,如图所示分别为F 1、F 2、F 3,将三力构成矢量三角形(如图所示的实线三角形CDE),需满足力F 3大小、方向不变,角∠ CDE 不变(因为角α不变),由于角∠DCE 为直角,则三力的几何关
系可以从以DE 边为直径的圆中找,则动态矢量三角形如图中画
出的一系列虚线表示的三角形。
由此可知,F 1先增大后减小,
F 2随始终减小,且转过90°时,当好为零。
正确答案选项为B 、
C 、
D 。
例题4.2如图所示,在做“验证力的平行四边形定则”的实验时,用M 、N 两个测力计(图中未画出)通过细线拉橡皮条的端点,使其到达O 点,此时α+β=90°,然后保持M 的示数不变,而使α角减小,为保持端点位置不变,可采用的办法是( )
A . 减小N 的示数同时减小β角
B . 减小N 的示数同时增大β
角
C . 增大N 的示数同时增大β角
D . 增大N 的示数同时减小β
角
解析:以结点O 为研究对角,受到三个拉力,如图所示分别为F M 、F N 、F 合,将三力构成矢量三角形(如图所示的实线三角形),以O 为圆心,F M 为半径作圆,需满足力F 合大小、方向不变,角α减小,则动态矢量三角形如图中画出的一系列虚线表示的三角形。
由此可知F N 的示数减小同时β角减小。
故选A 。
归纳:作辅助圆法适用的问题类型可分为两种情况:①物体
所受的三个力中,开始时两个力的夹角为90°,且其中一个力大小、方向不变,另两个力大小、方向都在改变,但动态平衡时两个力的夹角不变。
②物体所受的三个力中,开始时两个力的夹角为90°,且其中一个力大小、方向不变,动态平衡时一个力大小不变、方向改变,另一个力大小、方向都改变。
五、拉密定理法
方法:如图所示,在同一平面内,当三个共点力的合力为零
时,其中任一个力与其它两个力夹角正弦的比值相等,即α
sin 1F =βsin 2F =γ
sin 3F 。
其实质就是正弦定理的变型。
例题5 如图,柔软轻绳ON 的一端O 固定,其中间某点M 拴一重物,
用手拉住绳的另一端N .初始时,OM 竖直且MN 被拉直,OM 与MN 之间的
夹角α(α>90°).现将重物向右上方缓慢拉起,并保持夹角α不变,
在OM 由竖直被拉到水平的过程中( )
O
F 合
F N F M γ F 3 F 2 F 1
β α
A MN 上的张力逐渐增大
B MN 上的张力先增大后减小
C OM 上的张力逐渐增大
D OM 上的张力先增大后减小
解析:缓慢拉起到某位置时受力分析如图所示,根据拉密定理αsin mg =βsin MO
F =γsin MN
F ,缓慢拉起过程中,β变大,sin β先变大后变小,F MO 先变大后变小;γ变小,sin γ变大,F MN 逐渐变大。
故选AD 。
归纳:在物体受到三个力的动态平衡问题中,应用拉密定理可解决一个力的大小、方向不变,另两个力大小、方向都改变,但夹角不变的问题。
mg F MO
F MN β γ。