进给伺服系统PPT课件
《进给伺服系统》课件
简介
了解进给伺服系统的概念、应用领域,以及其在工业领域中的重要性。快速 掌握进给伺服系统的基本定义和特点。
构成
伺服电机
了解伺服电机在进给伺服系统中的作用以及 不同类型的伺服电机。
编码器
介绍编码器的作用和重要性,探讨不同编码 器类型和应用。
电力放大器
深入了解电力放大器的原理和功能,它在进 给伺服系统中扮演的角色。
《进给伺服系统》PPT课件
# 进给伺服系统PPT课件大纲 ## 简介 - 什么是进给伺服系统? - 进给伺服系统的应用领域 - 进给伺服系统的特点和重要性 ## 进给伺服系统的构成 - 伺服电机 - 电力放大器 - 编码器 - 控制器 ## 进给伺服系统的工作原理 - 指令输入和控制信号生成 - 反馈信号获取与处理 - 控制信号输出和执行 ## 进给伺服系统的性能参数 - 定位精度调Fra bibliotek和优化1
伺服参数设置
详细讨论伺服参数设置的重要性,以
模拟调试和实际调试
2
及如何根据需求进行调整。
介绍模拟调试和实际调试的流程,以
及优化过程中可能遇到的挑战。
3
优化方法和注意事项
提供一些优化方法和注意事项,帮助 读者更好地调试和优化进给伺服系统。
进一步发展
数字化技术
探讨数字化技术对进给伺服系统的发展和应用的影响。
性能参数
定位精度
介绍进给伺服系统 的定位精度参数及 其对系统性能的影 响。
重复定位精度
探讨系统的重复定 位精度参数,以及 如何优化系统以实 现更高的精度。
响应速度
详细说明进给伺服 系统的响应速度参 数,以及如何提高 系统的响应速度。
负载惯性比
介绍负载惯性比在 进给伺服系统中的 重要性,以及如何 平衡负载和惯性。
第六章进给伺服系统
二、步进电机的主要性能指标 1. 步距角和步距误差 每输入一个脉冲电信号,步进电机转子转过的角度成为步距 角。 步距角和步进电机的相数、通电方式及电机转子齿数的 360 关系如下: = KmZ (6-1) 式中 —步进电机的步距角; m—电机相数; Z—转子齿数; K—系数,相邻两次通电相数相同,K=1; 相邻两次通电相数不同,K=2。 同 一 相 数 的 步 进 电 机 可 有 两 种 步 距 角 , 通 常 为 1.2/0.6 、 1.5/0.75 、 1.8/0.9 、 3/1.5 度等。步距误差是指步进电机运行 时,转子每一步实际转过的角度与理论步距角之差值。步 距误差直接影响执行部件的定位精度及步进电机的动态特 性。大小由制造精度、齿槽的分布及定子和转子间气隙不 均匀等因素造成。
步进电机是将电脉冲信号变换成角位移或线位移 的一种机电式数模转换器。在结构上分为定子和 转子两部分,现以图6-5所示的反应式三相步进电 机为例加以说明。定子上有六个磁极,每个磁极 上绕有励磁绕组,每相对的两个磁极组成一相, 分成A、B、C三相。转子无绕组,它是由带齿的铁 心做成的。步进电机是按电磁吸引的原理进行工 作的。当定子绕组按顺序轮流通电时,A、B、C三 对磁极就依次产生磁场,并每次对转子的某一对 齿产生电磁引力,将其吸引过来,而使转子一步 步转动。每当转子某一对齿的中心线与定子磁极 中心线对齐时,磁阻最小,转矩为零。如果控制 线路不停地按一定方向切换定子绕组各相电流, 转子便按一定方向不停地转动。步进电机每次转 过的角度称为步距角。
进给伺服系统的作用:接受数控装置发出 的进给速度和位移指令信号,由伺服驱动装置 作一定的转换和放大后,经伺服电机(直流、 交流伺服电机、功率步进电机等)和机械传动 机构,驱动机床的工作台等执行部件实现工作 进给或快速运动。 数控机床的进给伺服系统与一般机床的进给系 统有着本质的区别:能根据指令信号精确地控 制执行部件的运动速度与位置,以及几个执行 部件按一定规律运动所合成的运动轨迹。如果 把数控装置比作数控机床的“大脑”,是发布 “命令”的指挥机构,那么伺服系统就是数控 机床的“四肢”,是执行“命令”的机构,它 是一个不折不扣的跟随者。
伺服进给
• 第五章 进给伺服系统
• • • •
• • •
§5-1 概述 §5-2 对进给伺服系统结构的要求 §5-3 传动齿轮副 §5-4 丝杠螺母副
一、滚珠丝杠螺母副 (一) 工作原理和特点 (二) 结构和类型
• §5-5 导轨 • §5-6 回转工作台
• • • • • • • • • •
(二) 结构和类型 1. 滚珠的循环方式 常用的滚珠循环方式可分为两大类: 滚珠在循环过程中,有时与丝杠脱离接触叫 外循环; 始终与丝杠保持接触叫内循环。 滚珠在同一螺母上只有一个回路管道的叫单 列循环。 有两个回路管道的叫双列循环。 多于两个回路管道的叫多列循环。 循环中的滚珠叫工作滚珠。 工作滚珠所走过的滚道圈数叫工作圈数。
• 第五章 进给伺服系统
• §5-1 概述 • §5-2 对进给伺服系统结构的要求 • §5-3 传动齿轮副
• • 一、消除传动齿轮间隙的措施 二、齿轮齿条副
• §5-4 丝杠螺母副 • §5-5 导轨 • §5-6 回转工作台
• 二、齿轮齿条副
• 常用于行程较长的,高速直线传动。 • 当传动负载小时,也可采用双片薄齿轮调整 法,分别与齿条齿槽的左、右两侧贴紧,从 而消除齿侧间隙。
• 第五章 进给伺服系统
• §5-1 概述 • §5-2 对进给伺服系统结构的要求 • §5-3 传动齿轮副
• 一、消除传动齿轮间隙的措施
• §5-4 丝杠螺母副 • §5-5 导轨 • §5-6 回转工作台
• 联轴器传动 • 在进给传动链中,轴与轴的联接必须采用刚 性联轴器,而且大部分采用套筒式结构。
• 1) 单圆弧型面 • 接触角α随轴向载荷的大小而变化。 • 当α角发生变化时,使传动效率、承载能力和 轴向刚度均不稳定。 • 为了消除间隙和施加预紧力,必须采用双螺 母结构。 • 为了保证预紧后的 α 角维 持在45°左右,还必须严 格控制径向间隙。 r0 • 脏物容易沉积于槽底,使 传动效率降低,磨损加快。 α • 便于制造。
《进给伺服系统》PPT课件
系
统
11
第一节 概述
2020/11/9
.
2、组成:
进给伺服系统主要由以下几个部分组成:位置
控制单元;速度控制单元;驱动元件(步进电动
第 六 章
机、直流伺服电动机和交流伺服电动机);检测 与反馈单元(感应同步器、旋转变压器、光栅、
脉冲编码器等);机械执行部件。
进
给
伺
服
系
统
12
第一节 概述
2020/11/9
服
严。
系
统
20
第一节 概述
2020/11/9
.
三、伺服系统的分类
按控制原理和有无检测反馈装置:开环和 闭环伺服系统;
第 六 章
按其用途和功能:进给驱动系统和主轴驱 动系统;
进 给 伺
按其驱动执行元件的动作原理:电液伺服 驱动系统、电气伺服驱动系统(直流伺服 驱动系统、交流伺服驱动系统及直线电机
服
伺服系统)
.
E/R- Modul NCU
Peripherie SIMATIC S7-300
Umrichter SIMODRIVE 611 digital mit CNC SINUMERIK 840D
Leistungsteil
DrehstromHauptspindelmotor
DrehstromServomotoren
伺 200ms,且不能有超调,否则
服 对机械部件不利,有害于加工
系 统
质量。
2020/11/9
t
19
第一节 概述
2020/11/9
.பைடு நூலகம்
⒌ 能可逆运行和频繁灵活启停。
⒍ 系统的可靠性高,维护使用方便,成本低。
伺服系统概述 PPT课件
12 伺服系统概述
伺服系统的特点和功用
• 伺服系统与一般机床的进给系统有本质上差别,它能根据 指令信号精确地控制执行部件的运动速度与位置 • 伺服系统是数控装置和机床的联系环节,是数控系统的重 要组成
12 伺服系统概述
二、伺服系统基本类型
按控制原理分 有开环、闭环和半闭环三种形式 按被控制量性质分 有位移、速度、力和力矩等伺 服系统形式 按驱动方式分 有电气、液压和气压等伺服驱动形式 按执行元件分 有步进电机伺服、直流电机伺服和交 流电机伺服形式
12 伺服系统概述
气压系统与液压系统的比较
1.
2.
3. 4.
5.
空气可以从大气中取之不竭且不易堵塞;将用过的气体排入大 气,无需回气管路处理方便;泄漏不会严重的影响工作,不污 染环境。 空气粘性很小,在管路中的沿程压力损失为液压系统的干分之 一,易于远距离控制。 工作压力低.可降低对气动元件的材料和制造精度要求。 对开环控制系统,它相对液压传动具有动作迅速、响应快的优 点。 维护简便,使用安全,没有防火、防爆问题;适用于石油、化 工、农药及矿山机械的特殊要求。对于无油的气动控制系统则 特别适用于无线电元器件生产过程,也适用于食品和医药的生 产过程。
优点
操作简便;编程容易; 能实现定位伺服控制; 响应快、易与计算机 (CPU)连接;体积小、 动力大、无污染。
缺点
瞬时输出功率大;过载 差;一旦卡死,会引起 烧毁事故;受外界噪音 影响大。 功率小、体积大、难于 小型化;动作不平稳、 远距离传输困难;噪音 大;难于伺服。 设备难于小型化;液压 源和液压油要求严格; 易产生泄露而污染环境。
12 伺服系统概述
三、伺服系统基本要求
精度高: 稳定性好:
伺服系统培训课件
出;使能信号与否接通;冷却润滑条件与 否满足;电磁制动与否释放;驱动单元故 障;伺服电动机故障 位置误差—系统设置旳允差过小;伺服增益 设置不妥;位置检测装置有污染;进给传 动链累积误差过大;主轴箱垂直运动时平 衡装置不稳
第二节 进给伺服系统
• 漂移—当指令值为零时,坐标轴仍移动从 而导致位置误差。通过漂移赔偿和驱动单 元上旳零速调整来消除
第二节 进给伺服系统
一、常见进给驱动系统 1.直流进给驱动系统 FANUC企业直流进给驱动系统
小惯量L、中惯量M系列直流伺服电动机 采用PWM速度控制单元 大惯量H系列直流伺服电动机,采用晶闸 管速度控制单元 均有过速、过流、过载等多种保护功能
第二节 进给伺服系统
一、常见进给驱动系统 1.直流进给驱动系统 SIEMENS企业直流进给驱动系统
• 回参照点故障—有找不到和找不准参照点 两种故障,前者重要是回参照点减速开关 产生旳信号或零标志脉冲信号失效所致, 可用示波器检测信号;后者是参照点开关 挡快位置设置不妥引起,只要重新调整即 可
第三节 位置检测装置
• 位置环是外环,其指令脉冲来自NC经插补 运算(包括对伺服系统位置和速度旳规定)
一、位置检测装置旳维护 4.旋转变压器 输出电压与转子旳角位移有固定旳函数关
• 位置环是伺服系统中重要旳一环,检测元 件旳精度直接影响机床旳位置精度(闭环 常用光栅,半闭环常用编码器)
• 故障形式是在CRT上显示报警号和信息 • 轮廓误差、静态误差监视报警和测量装
置监控报警
第三节 位置检测装置
第三节 位置检测装置
一、位置检测装置旳维护 1.光栅 透射光栅与反射光栅 光栅输出信号:二个相位和一种零标志 维护注意点
进给伺服系统
稳定性 精度高 快速响应性 调速范围 低速大转矩输出
进给伺服系统的性能主要取决于组成系统的机电两 部分的匹配,即机电参数配合的协调性。 部分的匹配,即机电参数配合的协调性。
Shannxi University of Technology
三、进给伺服系统的控制方式
1开环控制 开环控制
Shannxi University of Technology
光源
15
Shannxi University of Technology
光电脉冲编码器的应用 光电脉冲编码器在数控机床上, 光电脉冲编码器在数控机床上,用在数字比较 伺服系统中,作为位置检测装置。 伺服系统中 , 作为位置检测装置 。 光电脉冲编 码器将位置检测信号反馈给CNC装置有几种方 码器将位置检测信号反馈给 装置有几种方 式: 一是适应带加减计数要求的可逆计数器, 一是适应带加减计数要求的可逆计数器,形成 加计数脉冲和减计数脉冲。 加计数脉冲和减计数脉冲。 二是适应有计数控制端和方向控制端的计数器, 二是适应有计数控制端和方向控制端的计数器, 形成正走、反走计数脉冲和方向控制电平。 形成正走、反走计数脉冲和方向控制电平。
7
6
Shannxi University of Technology
2.光电脉冲编码器的工作原理 A、B信号为具有 ° 信号为具有90° 、 信号为具有 两个光电元件 错开90° 错开 A相比 相导前90°。若A相导 相比B相导前 相位差的正弦波, °相位 ° 相导 光敏元件 相比 相导前 相位差的正弦波,这 透镜 透光狭缝 码盘基片 光欄板 组信号经放大器放大 角安装。 相时为正方向旋转, 角安装。当圆 前B相时为正方向旋转,则B 相时为正方向旋转 与整形, 盘旋转一个节 与整形,得下图所示 相导前A相时就是负方向旋转 相时就是负方向旋转。 相导前 相时就是负方向旋转。 的输出方波 距时, 距时 利用A相与 相与B相的相应关系可 利用 相与 相的相应关系可 ,在光源 照射下, 照射下,就在 以判别编码器的旋转方向 z b a 节距τ 光电元件上得 m+τ/4 信号处理装置 到一个光电波 形输出 Z Z B B A A
第4章 进给伺服系统
4.1 概述
• 4.1.1 基本定义 • 4.1.2 伺服系统的基本要求 • 4.1.3 分类
2020/1/14
4.1.1 基本定义
• 伺服系统
– 根据数控装置给出的指令控制工作台的速度 、位移或主轴转速的控制系统。
• 分类:
– 进给伺服系统 – 主轴伺服系统
2020/1/14
4.2 步进电机及其调速
• 步进电机的结构与工作原理 • 步进电机的特征参数 • 步进电机开环进给的传动计算及电机选
用 • 步进电机的驱动
2020/1/14
步进电机的结构与工作原理
• 步进电机控制原理:
– 电脉冲信号→角位移 – 脉冲数→位移 – 脉冲频率→转速
• 缺点:
– 容易失步(大负载和高速情况下)
• 位移精度取决:
– 步进电机的角位移精度 – 齿轮丝杠等传动元件的导程或节矩精度 – 系统的摩擦阻尼特性
• 性能
– 定位精度:±0.02mm,±0.01mm – 速度:脉冲当量为0.01mm时,不超过5m/min
• 特点:
– 结构简单,用于精度要求不高的机床
2020/1/14
闭环和半闭环进给伺服系统
转矩——频率特性
• 负载转矩越大,工作频 率越低,符合加工实际 需求
• 在步进电机运行时,对 应于某一频率,只有当 负载转矩小于它在该频 率时的最大动态转矩, 电机才能正常运转
• 应根据负载要求参照高 频输出转矩来选用步进 电机的规格
2020/1/14
步进电机开环进给的传动计算及电机选用 • 传动计算
– 硬件、软件
• 功率放大器
– 功率放大,脉冲电流 1~10A,每一相绕组 都有一套
第三节 伺服进给系统
第三节伺服进给系统数控机床的进给系统又称“伺服进给系统”。
所谓“伺服”,即,可以严格按照控制信号完成相应的动作。
在数控机床的结构中,简化最多的就是进给系统。
所有数控机床的(做直线运动的)伺服进给系统,基本形式都是一样的。
一、传统机床进给系统的特点1.进给运动速度低、消耗功率少进给运动的速度一般较低,因而常采用大降速比的传动机构,如丝杠螺母、蜗杆蜗轮等。
这些机构的传动效率虽低,但因进给功率小,相对功率损失很小。
2.进给运动数目多不同的机床对进给运动的种类和数量要求也不同。
例如:立式钻床只要求一个进给运动;卧式车床为两个(纵、横向);而卧式铣镗床则有五个进给运动。
进给运动越多,相应的各种机构(如变速与换向、运动转换以及操纵等机构)也就越多,结构就更为复杂。
3.恒转矩传动进给运动的载荷特点与主运动不同。
当进给量较大时,常采用较小的背吃刀量;当进给量较小时,则选用较大的背吃刀量。
所以,在采用各种不同进给量的情况下,其切削分力大致相同,即都有可能达到最大进给力。
因此,进给传动系统最后输出轴的最大转矩可近似地认为相等。
这就是进给传动恒转矩工作的特点。
4.进给传动系统的传动精度进给传动链从首端到末端,有很多齿轮等进行传递,每个传动件的误差都将乘以其后的传动比并最终影响末端件输出,输出端的总误差是中间各传动件误差的累积(均方根)。
因为进给传动链总趋势是降速,所以远离末端件的传动件误差影响较小,而越靠近末端件的传动件误差,对总的传动精度的影响越大。
因此把越靠近末端件的传动比取得越小(相当于“前慢后快”原则),对减小其前面各传动件的误差影响越大。
这就是“传动比递降原则”。
应该注意:传统机床仅在“内联系传动链”中需要考虑传动精度。
二、提高传动精度的措施:①缩短传动链减少传动件数目,以减少误差的来源。
(即累积误差减少)②合理分配各传动副的传动比尽可能采用传动比递降原则;尽量采用大降速比的末端传动副,如:输出为回转运动用蜗杆蜗轮副,输出为直线运动用丝杠螺母副。
数控机床进给伺服系统的工作原理(共5张PPT)
进给伺服系统的工作原理
进给伺进服系给统伺的工服作系原理统是数控装置和机床主机的联系环节,接收CNC装置插补器发出的进给
数控装置插补信号输送到位置控制模块的位置比较电路,与位置检测反馈电路来的反馈信号相比较后,位置比较电路输出位置移动信号
机床完成进给运动。。 带动传动机构,最后转化为机床的直线或转动位移。
它接受来自数控装置的进给指令信号,经变换、调节和放大后驱动执行件,转化为直线或旋转运动。 进给伺服系统的工作原理 伺服系统 是指以机械位置或角度作为控制对象的自动控制系统。 伺服系统 是指以机械位置或角度作为控制对象的自动控制系统。
进 进给伺服系统的工作原理
它接受来自数控装置的进给指令信号,经变换、调节和放大后驱动执行件,转化为直线或旋转运动。 数控装置插补信号输送到位置控制模块的位置比较电路,与位置检测反馈电路来的反馈信号相比较后,位置比较电路输出位置移动信号
给 ,经位置控制和速度控制单元输出到速度环,直到机床完成进给运动。 比较控制环节 驱动控制单元 执行元件 进给伺服系统(Feed Servo System)——以移动部件的位置和速度作为控制量的自动控制系统,又称位置随动系统、驱动系统、伺服机 指 构或伺服单元。 令 机 进给伺服系统的工作原理 床 数控机床常见故障诊断与排除
,经位脉置控冲制或和速进度给控制位单移元量输出信到息速度,环经,直过到变机换床完和成放进给大运由动伺。 服电机带动传动机构,最后转化为机床的
伺服系统 是指以机械位置或角度作为控制对象的自动控制系统。
进给伺直服系线统或是数转控动装置位和移机。床主机的联系环节,接收CNC装置插补器发出的进给脉冲或进给位移量信息,经过变换和放大由伺服电机
数控技术6-进给伺服系统
重要性及应用领域
01
数控技术6-进给伺服系统是数控 机床的核心组成部分,对于提高 加工精度、稳定性和加工效率具 有重要意义。
02
该系统广泛应用于机械制造、航 空航天、汽车、模具等领域,是 现代制造业中不可或缺的重要技 术之一。
数控技术6-进给伺服系统
目录
• 引言 • 进给伺服系统概述 • 数控技术中的进给伺服系统 • 进给伺服系统的性能指标 • 进给伺服系统的控制策略 • 进给伺服系统的应用与发展趋势
01 引言
主题简介
数控技术6-进给伺服系统是一种用于 控制机床运动和加工过程的系统,通 过精确控制机床的进给运动,实现高 精度、高效率的加工。
05 进给伺服系统的控制策略
开环控制
总结词
简单、可靠、成本低
详细描述
开环控制策略不包含位置反馈环节,控制器根据输入的位移指令和系统参数计 算出控制量,直接驱动执行机构。开环控制简单可靠,成本较低,但精度和稳 定性受限于系统参数的准确性。
闭环控制
总结词
高精度、高稳定性
详细描述
闭环控制策略包含位置反馈环节,通过实时检测执行机构的实际位置或位移,与指令位置进行比较,形成误差信 号,控制器根据误差信号调整控制量,以减小误差。闭环控制具有高精度和高稳定性,适用于对位置精度要求高 的场合。
进给伺服系统的应用案例
数控机床
进给伺服系统广泛应用于数控机床,实现高 精度、高效率的加工。
机器人
伺服系统用于机器人的关节驱动,实现精确 的位置控制和速度控制。
自动化生产线
伺服系统用于自动化生产线的传送、定位和 装配,提高生产效率。
进给伺服系统概述
大倍数。 调速单元输出的量是速度量,这一速度量经过积分环节 1/s 后成为角 位移量。
2-1、进给伺服系统的数学模型
对控制系统的数学描述, 实际上就是首先建立系统中各环节的传 递函数,然后求出整个系统的传递函数。有速度内环的闭环系统如 图 8-4 所示:
位置检测环节是指位置传感器(光电编码器,旋转变压器等)和后置 处理电路。作用是把位置信号转换为电信号。这个环节也可以看做是 一个比例环节,比例系数是 K f 。 将各环节的传递函数置换 8-4 的框图, 就得到了动态结构图, 如图 8-5 所示:
1.静态性能分析
控制系统中,最重要的是稳定性问题。如果一台数控机床的伺服 控制系统是不稳加工的。因此,任何控制系统首先必须是稳定的。 2、稳态性能指标 位置伺服系统的稳态性能指标主要是定位精度,指的是系 统过度过程终了时实际状态与期望状态之间的偏差程度。 一般数控机 床的定位精度应不低于 0.01mm,而高性能数控机床定位精度将达到 0.001mm 以上。 影响伺服系统稳态精度的原因主要有两类, 一类是位置测量装置
数控机床进给伺服驱动系统.ppt
• 脉冲、数汾字比较伺服系统
• 经相位比较伺服系统
• 碎 幅值比较伺服系统
•增 全数字伺服系统
第二节 步进伺服驱动厂控制
•
在数机控机床中使用的伺服电脆动机有
步进电动机、直黍流伺服电动机、交流伺遁
电动机和直线电动机等卧。步进伺服驱动系
统的甥执行元件是步进电机。
步进电蔼动机一般用于开环伺服殊系统中, 没有位置反馈训环节,位置控制精度由舰步进电 动机和进给链来决定。
嚏
曲线2—实际的借移
正补偿脉冲 B 动(有螺距的误差)
误差
锰
曲线3—补偿前的误
沛差曲线
艘
O
补偿脉冲
曲线4—补偿后的误
图5-16 螺距误差补偿原理
差曲线
曲线 1 - 理想的移动(没有螺距的误差)曲线 2 - 实际的移动(有螺距的误差)
第三节 闭环伺服控制先原理与系统
闭环控制的特点:坏工作可靠,抗干扰性强砍,精度高,但增加 了位翁置检测、反馈、比较等盼环节,结构复杂,调试嗜困难。
– 实现方法:
• 安俩置两个补偿杆 • 按照螺範距误差在补偿杆上设置疡挡块 • 工作台移动时行力程开关与挡块接触
时进行补偿。
第二节 步进伺服驱动明控制
机床运动
1 2
0.01 mm l
O
误差
3
O
脉冲数
1
2
0
脉冲数
-1
-2
微动开关 A
补偿杆 A
补偿杆 B
B
曲线1—理想的移动
(叼没有螺距误差)
负补偿脉冲 A
第五章 数控机床的进俺给伺服系统
第一节 概述讹
一、定义:
伴 进给伺服系统(吏Feed Servo硅 System)——毙以移
进给伺服系统
转子
图7-6 三相反应式步进电机结构
淮海工学院
图7-7 步进电机工作原理
淮海工学院
7.2 步进电机及其驱动装置
二、步进电机的主要性能指标
1. 步距角和步距误差
2. 静态转矩与矩角特性 3.起动矩频特性 4. 空载起动频率fq(步/s) 5. 运行矩频特性 6. 矩频特性与动态转矩
淮海工学院
7.3
交流伺服系统
交流伺服电动机与步进电动机的性能比较 1、交流伺服电动机不会失步;
2、具有稳定的转矩特性,可达更高的生产
速度。
1.
2.
工作台位移量的控制
工作台进给速度的控制
3. 工作台运动方向的控制
淮海工学院
7.3
交流伺服系统
一、数控机床用交流电机
交流伺服系统按电机种类: 同步型 异步型(感应电机) 数控机床进给伺服系统中多采用永磁式同步 电机。
淮海工学院
7.3
交流伺服系统
二、交流电机的速度控制
交流电机的调速 交流异步电机的转速表达式为:淮海工学院Fra bibliotek7.1
概述
图7-1开环伺服系统
淮海工学院
7.1
概述
(二)闭环伺服系统
☆闭环伺服系统的位置检测装置安装在机床的工
作台上;
☆检测装置构成闭环位置控制。
☆闭环方式被大量用在精度要求较高的大型数
控机床上。
淮海工学院
7.1
概述
图7-2闭环伺服系统
淮海工学院
7.1
概述
(三)半闭环伺服系统
☆ 位置检测元件安装在电动机轴上或丝杠上,用
淮海工学院
7.1
概述
1. 位移精度高
数控机床进给伺服系统的基本结构(共7张PPT)
。
速度控制模块
一进给伺服系统的结构
步进伺服系统原理图
伺服电机、速度检测装置、速度反馈比较环节、速度控制模块 数控机床常见故障诊断与排除 位置指令、位置检测装置、位置反馈比较环节、位置控制模块、速度控制环、机械传动装置 位置指令、位置检测装置、位置反馈比较环节、位置控制模块、速度控制环、机械传动装置 伺服电机、速度检测装置、速度反馈比较环节、速度控制模块 伺服系统的结构通常由位置控制环和速度控制环组成。 伺服电机、速度检测装置、速度反馈比较环节、速度控制模块 数控机床进给伺服系统的基本结构 驱动控制单元和驱动元件组成伺服驱动系统,机械传动部件和执行部件组成机械传动系统,检测元件和反馈电路组成检测装置(或称作检测系统) 。 驱动控制单元和驱动元件组成伺服驱动系统,机械传动部件和执行部件组成机械传动系统,检测元件和反馈电路组成检测装置(或称作检测系统) 。 伺服系统的结构通常由位置控制环和速度控制环组成。 位置指令、位置检测装置、位置反馈比较环节、位置控制模块、速度控制环、机械传动装置 驱动控制单元和驱动元件组成伺服驱动系统,机械传动部件和执行部件组成机械传动系统,检测元件和反馈电路组成检测装置(或称作检测系统) 。
数控机床常见故障诊断与排除 数控机床进给伺服系统的基本结构
一进给伺服系统的结构
数控机床的伺服系统一般由驱动元件、机械传动部件、执行部件和检测反馈环 节等组成。驱动控制单元和驱动元件组成伺服驱动系统,机械传动部件和执行部
件组成机械传动系统,检测元件和反馈电路组成检测装置(或称作检测系
统)。)。
一进给伺服系统的结构
制环 数控机床的伺服系统一般由驱动元件、机械传动部件、执行部件和检测反馈环节等组成。
伺服电机、速度检测装置、速度反馈比较环节、速度控制模块
第7章 数控机床的进给伺服系统PPT课件
式中 J1、J2——齿轮的转动惯量(N·m·s2);J3——丝杠的转动惯量 d ——冲当量(mm/脉冲)。
然后进行负载启动频率fqF 的估算; 式中 fq——空载启动频率(Hz),T——由矩频特性决定的力矩(Nm)
J——电机转子转动惯量(N·m·s2)。 依照机床要求的启动频率fqF ,可选择fq
第七章 数控机床的进给伺服系统
7-1 概述 7-2 步进电动机及其驱动系统 7-3 直流伺服电动机及其速度控制 7-4 交流伺服电动机及其速度控制 7-5 主轴驱动 7-6 位置控制
§ 7-1 概述
立式铣床
加工中心 刀库刀具定位电机 机械手旋转定位电机
带制动器伺服电机 主轴电机
伺服电机
伺服驱动系统(Servo System)
称做空载运行频率fmax。它也是步进电动机的重要性能指标,对于提高 生产率和系统的快速性具有重要意义。
fmax 应能满足机床工作台最高运行速度。
6. 运行矩频特性 运行矩频特性T=f(F)是描述步进电动
机连续稳定运行时,输出转矩T与连续运行 T 频率之间的关系。它是衡量步进电动机运转 时承载能力的动态性能指标。
f
三、步进电动机驱动电源 1. 作用 发出一定功率的电脉冲信号,使定子励磁绕组顺序通电。 2. 基本要求 (1)电源的基本参数与电动机相适应; (2)满足步进电动机起动频率和运行频率的要求; (3)抗干扰能力强,工作可靠; (4)成本低,效率高,安装维修方便。
1.步距角 步进电动机每步的转角称为步距角,计算公式:
θ= 360 (°) Z mK
式中 m—步进电动机相数 Z—转子齿数 K—控制方式系数, K=拍数p/相数m
5-1进给伺服系统详解
动态特性讨论(指电机空载时的特性): A)过渡过程曲线:
当 ≥ 1 时,即 Tm ≥4Te 电机转速的过渡过程无振荡。
当0< <1时,即 Tm < 4Te 有振荡现象,将降低加工质量, 应避免。
B)过渡过程时间 : 在空载及阶跃电压输入时,其动态特性方程的解为
(t ) 0 (1 e
2.输出精度要高: 精度——指输出量能复现输入量的精确程度。 位置精度: (1)定位精度和重复定位精度:为静态精度,反 映机床加工的尺寸精度。 (2)跟随精度:为动态精度,反映机床加工的轮 廓精度。
3.动态响应要快且无超调: 快速性——指消除系统的输出量与给定的输入量之间 偏差的快慢程度。 即电机转速从零升至最大稳态速度的时间 要短(0.2~0.1s),且过渡过程无振荡 现象(否则会影响表面粗糙度)。
0 360 0 m zk
m-定子绕组相数 式中: z-转子齿数 k-通电方式系数 4.工作特性 : 1)转子的角位移与输入的换相脉冲个数成正比。 2)转子的角速度与输入的换相脉冲频率成正比。 3)转子的旋转方向由通电顺序决定。 4)若通电绕组不变,电机便停在某一个位置上不动, 具有自锁功能。 **步进电机结构简单,调速方便,但效率低,拖动负 载能力有限,且调速范围不宽。
3)为了提高步进电机的控制精度,定子磁极和转子凸极都采 用多齿结构(参见上图),且定、转子的齿距相同。
另外,定子上的极齿与转子上的齿要错开一定角度,即当定 子上一相极齿与转子齿对齐时,其它相极齿与转子齿要错开。 错齿是步进电机实现旋转的必要条件。
3.步矩角——步进电机定子绕组每输入一个换相脉冲信号, (即换相一次)转子转过的角度。
当t=Tm 时,
t TM
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
服
严。
系
统
21Biblioteka 数 第一节 概述控 技
术 三、伺服系统的分类
2020/7/31
按控制原理和有无检测反馈装置:开环和 闭环伺服系统;
第 六 章
按其用途和功能:进给驱动系统和主轴驱 动系统;
进 给 伺
六 第三节 进给伺服驱动系统
章
第四节 典型进给伺服系统(位置控制)
进
给 伺
第五节 伺服系统性能分析
服 系
第六节 伺服系统的特性对加工精度的影响
统
3
数 控
第六章
进给伺服系统
技
术
内容提要
2020/7/31
第
六
本章将详细讨论进给伺服系统的软件硬
章
进 件结构;进给伺服系统基本功能的原理及实
给 伺
现方法。
服
系
统
4
2020/7/31
数 控
第六章
进给伺服系统
技
术
进给伺服系统是数控系统主要的子系统。
如果说CNC装置是数控系统的“大脑”,是发
第
六
布“命令”的“指挥所”,那么进给伺服系统
章
则是数控系统的“四肢”,是一种“执行机
进
给
构”。它忠实地执行由CNC装置发来的运动命
伺
服
令,精确控制执行部件的运动方向,进给速度
第 六 章
它接收数控单元的位移/速度控制指令,驱动工作台/主 轴按照的要求进行运动。 CNC装置是数控机床的“大
脑” , “指挥机构”,进给伺服系统是数控机床的
进
“四肢” , “执行机构”。
给 伺
伺服系统直接影响移动速度、跟踪精度、定位精
服
度等一系列重要指标,是数控机床的关键技术。
系
统
12
数 第一节 概述
伺 200ms,且不能有超调,否则
服 对机械部件不利,有害于加工
系 统
质量。
F
tp
2020/7/31
t
20
数 第一节 概述
控
技
术
⒌ 能可逆运行和频繁灵活启停。
2020/7/31
⒍ 系统的可靠性高,维护使用方便,成本低。
第
六 章
综上所述:
进 对伺服系统的要求包括静态和动态特性两方面;
给 伺
对高精度的数控机床,对其动态性能的要求更
速度控制单元
进CNC
第 给插补 指令
六指 章令
进 给 伺 服 系 统
+ 位置控制调节
比较-控制环器节
+ 速度控制
驱动- 控制调单节与元驱动
实际
实际 位置
反馈速反度馈检测单元
反馈
检测与反馈单元
2020/7/31
执行元机件械执行部件
机
电机
床
14
数 第一节 概述
控 技
术 3.作用:
2020/7/31
接受CNC装置发出的位移/速度指令信号,
差和重复定位误差要小。(尺寸精度)
章
动态:跟随精度,这是动态性能指标,用跟随误
进 给
差表示。 (轮廓精度)
伺 服
灵敏度要高,有足够高的分辩率。
系
统
18
数 第一节 概述
控
技 术
⒊ 负载特性要硬
在系统负载范围内,
当负载变化时,输出速
F
第
度应基本不变。即△F尽
六
可能小;
章
当负载突变时,要求速
进 给
度的恢复时间短且无振 荡。即△t尽可能短;
系
统
与位移量。
5
数 控 技 术
立式铣床
2020/7/31 6
数 控加工中心
技 术
刀库刀具定位电机
机械手旋转定位电机
2020/7/31
带制动器伺服电机 主轴电机
伺服电机
7
数控机床的伺服驱动
Bedientafelfront
mit PCU 20/50/70
E/R- Modul NCU
Peripherie SIMATIC S7-300
第
六 3.响应速度快(系统跟踪精度)
章
4.电机调速范围宽(最高转速和最低转速比)
进 给
5.低速大转矩
伺 服
6.可靠性高(对环境的适应性)
系
统
16
2020/7/31
数 第一节 概述
控
技 术
二、NC机床对数控进给伺服系统的要求
1. 调速范围要宽且要有良好的稳定性(在调速
第
范围内)
六 章
调速范围: R NF maF xmin
技
术
控制信号
CNC系统
驱动电路
反馈信号
检测装置
光栅尺
伺服驱动系统
10
2020/7/31
数 控 技 术
第一节
第
六 章
概述
进 给 伺 服 系 统
11
2020/7/31
数 第一节 概述
控
技 术
一. 进给伺服系统的定义及组 成
二. 1进、给定伺义服系:统(Feed Servo System)——以移动
部件的位置/角度和速度作为控制量的自动控制系统。
第 六
由伺服驱动装置作一定的转换和放大后,经伺
章
服电机(直流、交流伺服电机、步进电机等)
进
和机械传动机构,驱动机床的工作台等执行部
给 件实现工作进给或快速运动。
伺
服
系
统
15
2020/7/31
数 第一节 概述
控
技 术
二、NC机床对数控进给伺服系统的要求
1.高精度(输出量能复现输入量的精确程度)
2.稳定性好(抗干扰能力)
Umrichter SIMODRIVE 611 digital mit CNC SINUMERIK 840D
Leistungsteil
DrehstromHauptspindelmotor
DrehstromServomotoren
2020/7/31
数 控 技 术
9
2020/7/31
数 控
伺服驱动系统(Servo System)
控 技
术 2、组成:
2020/7/31
进给伺服系统主要由以下几个部分组成:位置
控制单元;速度控制单元;驱动元件(步进电动
第 六 章
机、直流伺服电动机和交流伺服电动机);检测 与反馈单元(感应同步器、旋转变压器、光栅、
脉冲编码器等);机械执行部件。
进
给
伺
服
系
统
13
数 第一节 概述
控 技 术
位置控制单元
一般要求:
进
给
R N 10 且 0 . 1 m m 0 F m m 0 1 i m in n m m i
伺
服
稳定性:指输出速度的波动要少,尤其是在低
系
速时的平稳性显得特别重要。
统
17
数 第一节 概述
控 技
术 ⒉ 输出位置精度要高
2020/7/31
静态:定位精度和重复定位精度要高,即定位误
第 六
伺
应有足够的过载能力。
服 系 统
这是要求伺服系统有良好的静 态与动态刚度。
2020/7/31
△t △F
t
19
数 第一节 概述
控
技 术
⒋ 响应速度快且无超调
这是对伺服系统动态性能
的要求,即在无超调的前提下,
第 执行部件的运动速度的建立时
六 章
间 tp 应尽可能短。
通常要求从 0→Fmax
进 给
(Fmax→0),其时间应小于
2020/7/31
数 控 技 术
第
进给伺服系统
六
章
进 给 伺 服 系 统
1
标题添加
点击此处输入相 关文本内容
标题添加
点击此处输入相 关文本内容
总体概述
点击此处输入 相关文本内容
点击此处输入 相关文本内容
数 控
第六章
进给伺服系统
技
术
第一节 概述
2020/7/31
第二节 进给伺服系统的位置检测装置
第