高中数学二分法
第16节 二分法
解:设函数 f(x)=x3﹣2x﹣1, ∵f(1)=﹣2<0,f(2)=3>0,f(1.5)=﹣ <0, ∴下一个有根区间是(1.5,2), 故选:C.
练习:用二分法求函数 f(x)在区间(1,2)内的零点近似值的过程中,经计算 得到 f(1)<0,f(1.5)>0,f(2)>0,则下一次应计算 x0=( )时,f (x0)的值. A.1.75 B.1.625 C.1.375 D.1.25
A.
B.
C.
D.
典例分析:
例 2:设 f(x)=3x+3x﹣8,用二分法求方程 3x+3x﹣8=0 在 x∈(1,2)内近似 解的过程中得 f(1)<0,f(1.5)>0,f(1.25)<0,f(2)>0 则方程的根应 落在区间( ) A.(1,1.25) B.(1.25,1.5) C.(1.5,2) D.不能确定
解析:选 D 由图可知,图象与 x 轴有 4 个公共点,3 个穿过 x 轴,共有 4 个零点,其 中有 3 个变号零点.
A.0 C.4
B.1 D.3
2.下列函数中能用二分法解求:零能点用的二分是法(求函数零)点的函数,在零点的左右两侧的函数值符号相反,
由图象可得,只有 C 能满足此条件. 故选:C.
在区间(0,0.5)上连续,可得其中一个零点 x0∈(0.0.5),使得 f(x0)=0, 根据二分法的思想可知在第二次计算时应计算 f(0.25), 所以答案为:(0,0.5),f(0.25). 故选 A.
二分法的定义与应用-高中数学知识点讲解
二分法的定义与应用4.二分法的定义与应用【二分法的定义】二分法即一分为二的方法.设函数f(x)在[a,b]上连续,且满足f(a)•f(b)<0,我们假设f(a)<0,f (b)>0,那么当x1 =푎+푏时,若f(x1)=0,这说x1 为零点;若不为 0,假设大于 0,那么继续在[x1,b]区间2取中点验证它的函数值为 0,一直重复下去,直到找到满足要求的点为止.这就是二分法的基本概念.【二分法的应用】我们以具体的例子来说说二分法应用的一个基本条件:例题:下列函数图象均与x 轴有交点,其中能用二分法求函数零点的是解:能用二分法求函数零点的函数,在零点的左右两侧的函数值符号相反,有图象可得,只有③能满足此条件,故答案为③.在这个例题当中,所要求的能力其实就是对概念的理解,这也是二分法它惯用的考查形式,通过这个例题,希望同学们能清楚二分法的概念和常考题型.【二分法求方程的近似解】二分法在高中主要属于了解性的内容,拿二分法求近似解思路也比较固定,这里我们主要以例题来做讲解.例:用二分法求方程푙푛푥=1在[1,2]上的近似解,取中点c=1.5,则下一个有根区间是[1.5,2].푥解:令函数f(x)=lnx ―1,由于f(1.5)=ln(1.5)―푥11.5=11(ln1.52﹣2)<(lne2﹣2)=0,即f(1.5)33<0,而f(2)=ln2 ―12=ln2﹣ln 푒=ln2푒=1412ln푒>2ln1=0,即f(2)>0,1/ 2故函数f(x)在[1.5 2]上存在零点,故方程푙푛푥=1在[1.5,2]上有根,푥故答案为[1.5,2].通过这个例题,我们可以发现二分法的步奏,第一先确定f(a)•f(b)<0 的a,b 点;第二,寻找区间(a,b)的中点,并判断它的函数值是否为 0;第三,若不为 0,转第一步.2/ 2。
用二分法求方程的近似解(高中数学)
[解] 因为 f(-1)>0,f(-2)<0,且函数 f(x)=x3-3x2-9x+1 的图象 是连续的曲线,根据函数零点的存在性定理可知,它在区间[-2,-1]内 有零点,用二分法逐步计算,列表如下:
22
端点(中点)
________.
11
合作探究 提素养
12
二分法的概念 【例 1】 已知函数 f(x)的图象如图所示,其中零点的个数与可以用 二分法求解的个数分别为( )
A.4,4
B.3,4
C.5,4
D.4,3
D [图象与 x 轴有 4 个交点,所以零点的个数为 4;左右函数值异号
的零点有 3 个,所以用二分法求解的个数为 3,故选 D.]
内的唯一零点时,精确度为 0.001, 长度|b-a|小于精确度ε时,便可结束
则结束计算的条件是( )
计算.]
A.|a-b|<0.1
B.|a-b|<0.001
C.|a-b|>0.001
D.|a-b|=0.001
3.已知函数 y =f(x)的图象如图所 示,则不能利用二分 法求解的零点是 ________.
由于|1.75-1.687 5|=0.062 5<0.1,所以函数的正数
零点的近似值可取为1.687 5.
26
利用二分法求方程近似解的过程图示
27
1.二分法就是通过不断地将所选区间一分为二,使区间的两个端点 逐步逼近零点,直至找到零点附近足够小的区间,根据所要求的精确度, 用此区间的某个数值近似地表示真正的零点.
2.并非所有函数都可以用二分法求其零点,只有满足: (1)在区间[a,b]上连续不断; (2)f(a)·f(b)<0, 上述两条的函数方可采用二分法求得零点的近似值.
高中数学:2.4.2求函数零点近似解的一种计算方法——二分法
2.4.2求函数零点近似解的一种计算方法——二分法1.了解变号零点与不变号零点的概念.2.理解函数零点的性质.3.会用二分法求近似值.1.函数零点的性质如果函数y=f(x) 在区间[a,b]上的图象是不间断的曲线,并且在它的两个端点处的函数值异号,即f(a)·f(b)<0,那么这个函数在这个区间上至少有一个零点,即存在一点x0∈(a,b),使f(x0)=0,若函数图象通过零点时穿过x轴,这样的零点称为变号零点,如果没有穿过x轴,则称为不变号零点.2.二分法对于在区间[a,b]上连续不断,且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法.3.用二分法求函数 f (x ) 零点近似值的步骤 给定精确度(1)确定区间[a ,b ],验证f (a )·f (b )<0; (2)求区间(a ,b )的中点 x 1;(3)计算 f (x 1);①若f (x 1)=0,则 x 1 就是函数的零点;②若f (a )·f (x 1)<0,则令 b =x 1 (此时零点 x 0∈(a ,x 1));③若f (x 1)·f (b )<0,则令a =x 1(此时零点 x 0∈(x 1,b )).(4)判断是否达到精确度,即若|a -b |<,则得到零点近似值 a (或 b );否则重复 (2)~(4).1.函数f (x )=x 3-2x 2+3x -6在区间[-2,4]上的零点必属于区间( ) A .[-2,1] B .⎣⎡⎦⎤52,4 C .⎣⎡⎦⎤1,74 D .⎣⎡⎦⎤74,52解析:选D .由于f (-2)<0, f (4)>0,f (-2+42)=f (1)<0,f (1+42)=f (52)>0, f (1+522)=f (74)<0, 所以零点在区间⎣⎡⎦⎤74,52内.2.用二分法研究函数f (x )=x 2+3x -1的零点时,第一次经计算f (0)<0,f (0.5)>0,可得其中一个零点x 0∈________,第二次计算________.以上横线应填的内容分别是( )A .(0,0.5) f (0.25)B .(0,1) f (0.25)C .(0.5,1) f (0.75)D .(0,0.5) f (0.125)解析:选A .因为f (0)<0,f (0.5)>0, 所以函数f (x )的一个零点x 0∈(0,0.5), 第二次计算f ⎝⎛⎭⎫0+0.52=f (0.25).3.函数的零点都能用“二分法”求吗?解:不一定.例如:函数y =x 2的零点为x =0,但不能用二分法求解.判断函数在某个区间内是否有零点(1)指出方程 x 5-x -1=0 的根所在的大致区间;(2)求证:方程x3-3x+1=0 的根一个在区间(-2,-1)内,一个在区间(0,1)内,另一个在区间(1,2)内.【解】(1)方程x5-x-1=0,即x5=x+1,令F(x)=x5-x-1,y=f(x)=x5,y=g(x)=x+1.在同一平面直角坐标系中,函数f(x)与g(x)的图象如图,显然它们只有1 个交点.两函数图象交点的横坐标就是方程的解.又F(1)=-1<0,F(2)=29>0,所以方程x5-x-1=0 的根在区间(1,2)内.(2)证明:令F(x)=x3-3x+1,它的图象一定是不间断的,又F(-2)=-8+6+1=-1<0,F(-1)=-1+3+1=3>0,所以方程x3-3x+1=0 的一根在区间(-2,-1)内.同理可以验证F(0)·F(1)=1×(-1)=-1<0,F(1)·F(2)=(-1)×3=-3<0,所以方程的另两根分别在区间(0,1)和(1,2)内.本题考查的是如何判断方程的根所在的大致区间问题,它是用二分法求方程近似解的前提.对于连续的函数可以多次验证某些点处的函数值的符号是否异号;若异号,则方程的解在以这两数为端点的区间内,这种方法需多次尝试,比较麻烦.另外在这个区间内也不一定只有一个解.已知f(x) 为偶函数,且当x≥0 时,f(x)=(x-1)2-1,求函数f(x)的零点,并判断哪些零点是变号零点,哪些零点是不变号零点.解:因为x≥0 时,f(x)=(x-1)2-1,而当x<0 时,-x>0,所以f(-x)=(-x-1)2-1,而f(x) 为偶函数,则f(-x)=f(x),所以 f (x ) =⎩⎪⎨⎪⎧(x -1)2-1(x ≥0),(x +1)2-1(x <0).解方程 (x -1)2-1=0, 得 x 1=0,x 2=2. 解方程 (x +1)2-1=0, 得 x 1=0,x 2=-2,故函数 f (x ) 共有 3 个零点为 -2,0,2,如图所示,可知函数 f (x )的变号零点为 -2,2,不变号零点为 0.用二分法求方程近似解用二分法求函数f(x)=x3-x-2的一个正实数零点(精确到0.1).【解】由f(1)=-2<0,f(2)=4>0,可以确定区间[1,2]作为计算的初始区间,用二分法逐步计算,具体如表.1.5,所以1.5可作为所求函数的一个正实数零点的近似值.用二分法求函数零点的近似值,首先要选好计算的初始区间,这个区间既要符合条件,又要使其长度尽量小,其次要依据条件给定的精确度及时检验计算所得到的区间是否满足这一精确度,以决定是停止计算还是继续计算.借助计算器,用二分法求方程(x+1)(x -2)(x-3)=1在区间(-1,0)内的近似解(精确到0.1).解:令f(x)=(x+1)(x-2)(x-3)-1,由于f(-1)=-1<0,f(0)=5>0,可取区间[-1,0]作为计算的初始区间.用二分法逐次计算,列表如下:5-0.9即为区间(-1,0)内的近似解.1.函数零点判定定理的应用判断一个函数是否有零点,首先看函数f(x) 在区间[a,b]上的图象是否连续,并且是否存在f(a)·f(b)<0,若存在,那么函数y=f(x) 在区间(a,b)内必有零点.对于函数f(x),若满足f(a)·f(b)<0,则f(x) 在区间[a,b]内不一定有零点,反之,f(x) 在区间[a,b]内有零点也不一定有f(a)·f(b)<0,如图所示.即此方法只适合变号零点的判断,不适合不变号零点.2.二分法的使用条件和范围(1)二分法的理论依据:如果函数y=f(x)是连续的,且f(a)与f(b)的符号相反(a<b),那么方程f(x)=0至少存在一个根在(a,b)之间.(2)用二分法求函数零点近似值的方法仅对函数的变号零点适合,对函数的不变号零点不适合.(3)每一次二分有根区间(a,b)为两个小区间,区间的长度都是原来区间长度的一半.用零点存在性定理判断函数的零点时,两个条件是缺一不可的.因此,在判断已知函数在区间上的零点是否存在时,应首先确定图象是不间断的.1.下列函数中能用二分法求零点的是()解析:选C.由二分法的定义知.2.设f(x)在区间[a,b]上是单调函数,且f(a)·f(b)<0,则方程f(x)=0在闭区间[a,b]内() A.至少有一实根B.至多有一实根C.没有实根D.必有唯一实根答案:D3.下面关于二分法的叙述,正确的是________.①用二分法可求所有函数零点的近似值;②用二分法求方程的近似解时,可以精确到小数点后的任一位;③二分法无规律可循,无法在计算机上完成;④只有在求函数零点时才用二分法. 答案:②4.设函数y =f (x )在区间[a ,b ]上的图象是连续不间断曲线,且f (a )·f (b )<0,取x 0=a +b2,若f (a )·f (x 0)<0,则利用二分法求方程根时取有根区间为________.解析:利用二分法求方程根时,根据求方程的近似解的一般步骤,由于f (a )·f (x 0)<0, 则[a ,x 0]为新的区间. 答案:[a ,x 0][A 基础达标]1.函数f (x )=x 3-3x -3有零点的区间是( ) A .(-1,0) B .(0,1) C .(1,2)D .(2,3)解析:选D .因为f (2)·f (3)=(8-6-3)·(27-9-3)=-15<0, 所以f (x )有零点的区间是(2,3).2.如图是函数f (x )的图象,它与x 轴有4个不同的公共点,给出下列四个区间中,存在不能用二分法求出的零点,则该零点所在的区间是( )A .[-2.1,-1]B .[1.9,2.3]C .[4.1,5]D .[5,6.1]解析:选B .由不变号零点的特征易判断该零点在[1.9,2.3]内. 3.方程2x 3-4x 2+7x -9=0在区间[-2,4]上的根必定属于区间( ) A .(-2,1) B .(52,4)C .(π4,1)D .(1,74)解析:选D .设f (x )=2x 3-4x 2+7x -9, 由f (1)·f (74)<0知选D .4.已知函数f (x )与g (x )满足的关系为f (x )-g (x )=-x -3,根据所给数表,判断f (x )的一个零点所在的区间为( )A .(-1,0) C .(1,2)D .(2,3)解析:选C .由列表可知f (1)=g (1)-1-3=2.72-4=-1.28,f (2)=g (2)-2-3=7.39-5=2.39,所以f (1)·f (2)<0.所以f (x )的一个零点所在的区间为(1,2).5.若函数f (x )=x 3+x 2-2x -2的一个正整零点附近的函数值用二分法计算,其参考数据如下:A .1.2B .1.3C .1.4D .1.5解析:选C .由零点的定义知,方程的根所在区间为[1.406 25,1.437 5],故精确到0.1的近似根为1.4.6.函数f (x )=x 2+ax +b 有零点,但不能用二分法求出,则a ,b 的关系是________. 解析:因为函数f (x )=x 2+ax +b 有零点,但不能用二分法,所以函数f (x )=x 2+ax +b 的图象与x 轴相切,所以Δ=a 2-4b =0,所以a 2=4b . 答案:a 2=4b7.方程x 3=2x 精确到0.1的一个近似解是________. 解析:令f (x )=x 3-2x ,f (1)=-1<0,f (2)=4>0,所以在区间[1,2]上求函数f (x )的零点,即为方程x 3=2x 的一个根,依照二分法求解得x =1.4.答案:1.48.某方程有一无理根在区间D =(1,3)内,若用二分法求此根的近似值,则将D 至少等分________次后,所得近似值的精确度为0.1.解析:由3-12n ≤0.1,得2n ≥20,n >4,故至少等分5次. 答案:59.分别求出下列函数的零点,并指出是变号零点还是不变号零点. (1)f (x )=3x -6; (2)f (x )=x 2-x -12; (3)f (x )=x 2-2x +1; (4)f (x )=(x -2)2(x +1)x . 解:(1)零点是2,是变号零点. (2)零点是-3和4,都是变号零点. (3)零点是1,是不变号零点.(4)零点是-1,0和2,其中变号零点是0和-1,不变号零点是2. 10.已知函数f (x )=13x 3-x 2+1(1)证明方程f (x )=0在区间(0,2)内有实数解;(2)使用二分法,取区间的中点三次,指出方程f (x )=0(x ∈[0,2])的实数解x 0在哪个较小的区间内.解:(1)证明:因为f (0)=1>0,f (2)=-13<0,所以f (0)·f (2)<0,由函数的零点存在性定理可得方程 f (x )=0在区间(0,2)内有实数解. (2)取x 1=12(0+2)=1,得f (1)=13>0,由此可得f (1)·f (2)<0,下一个有解区间为(1,2). 再取x 2=12(1+2)=32,得f ⎝⎛⎭⎫32=-18<0, 所以f (1)·f ⎝⎛⎭⎫32<0,下一个有解区间为⎝⎛⎭⎫1,32. 再取x 3=12⎝⎛⎭⎫1+32=54,得f ⎝⎛⎭⎫54=17192>0, 所以f ⎝⎛⎭⎫54·f ⎝⎛⎭⎫32<0,下一个有解区间为⎝⎛⎭⎫54,32. 综上所述,得所求的实数解x 0在区间⎝⎛⎭⎫54,32内.[B 能力提升]11.若函数f (x )的图象在R 上连续不断,且满足f (0)<0,f (1)>0,f (2)>0,则下列说法正确的是()A.f(x)在区间(0,1)上一定有零点,在区间(1,2)上一定没有零点B.f(x)在区间(0,1)上一定没有零点,在区间(1,2)上一定有零点C.f(x)在区间(0,1)上一定有零点,在区间(1,2)上可能有零点D.f(x)在区间(0,1)上可能有零点,在区间(1,2)上一定有零点解析:选C.根据零点存在性定理,由于f(0)·f(1)<0,f(1)·f(2)>0,所以f(x)在区间(0,1)上一定有零点,在区间(1,2)上无法确定,可能有,也可能没有,如图所示:12.已知定义在R上的函数f(x)的图象是连续不断的,且有如下部分对应值表:则f(x解析:由于f(2)>0,f(3)<0,f(4)>0,f(5)<0,所以f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,故f(x)的零点个数至少有3个.答案:313.在一个风雨交加的夜里,从某水库闸房到防洪指挥部的电话线路发生了故障.这是一条10 km长的线路,如果沿着线路一小段一小段查找,困难很多.每查一个点要爬一次电线杆子,10 km长,大约有200多根电线杆子.则:(1)维修线路的工人师傅怎样工作最合理?(2)算一算要把故障可能发生的范围缩小到50 m~100 m 左右,即一两根电线杆附近,要查多少次?解:(1)如图,他首先从中点C查.用随身带的话机向两端测试时,发现AC段正常,断定故障在BC段,再到BC段中点D查,这次发现BD段正常,可见故障在CD段,再到CD中点E来查.(2)每查一次,可以把待查的线路长度缩减一半,因此只要7 次就够了.14.(选做题)求方程3x2-4x-1=0的根的近似值.解:令f(x)=3x2-4x-1,列出x,f(x)的一些对应值如下表:00若x0∈[-1,0],取区间[-1,0]的中点x1=-0.5,则f(-0.5)=1.75,因为f(-0.5)·f(0)<0,所以x0∈[-0.5,0].再取区间[-0.5,0]的中点x2=-0.25,则f(-0.25)=0.187 5,因为f(-0.25)·f(0)<0,所以x0∈[-0.25,0].同理,可得x0∈[-0.25,-0.125],x0∈[-0.25,-0.187 5],x0∈[-0.218 75,-0.187 5],区间[-0.218 75,-0.187 5]的左、右端点精确到0.1所取的近似值都是-0.2.所以把x0=-0.2作为方程3x2-4x-1=0的一个根的近似值.同理,若x0∈[1,2]时,方程的根的近似值为1.5.2±7综上,方程3x2-4x-1=0的根的精确值为x1,2=3,近似值为-0.2或1.5.。
高中数学二分法例题
高中数学二分法例题一、例题11. 题目- 用二分法求函数f(x)=x^3-x - 1在区间[1,2]内的零点(精确到0.1)。
2. 解析- 首先计算f(1)=1^3-1 - 1=-1,f(2)=2^3-2 - 1 = 5。
- 因为f(1)f(2)<0,所以函数f(x)在区间[1,2]内有零点。
- 取区间[1,2]的中点x_{1}=(1 + 2)/(2)=1.5。
- 计算f(1.5)=1.5^3-1.5 - 1 = 0.875。
- 因为f(1)f(1.5)<0,所以零点在区间[1,1.5]内。
- 再取区间[1,1.5]的中点x_{2}=(1+1.5)/(2)=1.25。
- 计算f(1.25)=1.25^3-1.25 - 1=-0.296875。
- 因为f(1.25)f(1.5)<0,所以零点在区间[1.25,1.5]内。
- 再取区间[1.25,1.5]的中点x_{3}=(1.25 + 1.5)/(2)=1.375。
- 计算f(1.375)=1.375^3-1.375 - 1 = 0.224609。
- 因为f(1.25)f(1.375)<0,所以零点在区间[1.25,1.375]内。
- 再取区间[1.25,1.375]的中点x_{4}=(1.25+1.375)/(2)=1.3125。
- 计算f(1.3125)=1.3125^3-1.3125 - 1=-0.051514。
- 因为f(1.3125)f(1.375)<0,所以零点在区间[1.3125,1.375]内。
- 此时区间[1.3125,1.375]的长度为1.375 - 1.3125 = 0.0625<0.1。
- 所以函数f(x)在区间[1,2]内的零点近似值为1.3。
二、例题21. 题目- 已知函数y = f(x)在区间[a,b]上的图象是连续不断的一条曲线,且f(a)f(b)<0,当用二分法求函数y = f(x)的零点时,第一次所取的区间是[a,b],若f((a + b)/(2))=0,则函数y = f(x)的零点是()- A.a B.b C.(a + b)/(2) D.以上都不对2. 解析- 二分法的基本思想是将区间不断地一分为二,根据函数值的正负来确定零点所在的子区间。
【高中数学必修一】3.1.2二分法求方程的近似解
知识探究(一):二分法的概念
小结:
(1)用天平称 3 次就可以找出这个稍重的球.
(2)要找出稍重的球, 尽量将稍重的球所在的范围 尽量的缩小, 我们通过不断地 “平分球” 、 “锁定” 、 “淘汰”的方法逐步缩小稍重的球所在的范围, 直到满意为止.
(3)这种“平分球”的方法,就是“二分法”的体现.
新知展现
1.二分法的定义
新知展现
1.二分法的定义
对于区间[a,b]上连续不断且 f (a)· f (b)<0 的函数 y = f (x),通过不断地把函数 f (x)的 零点所在的区间一分为二,使区间的两个端 点逐步逼近零点,进而得到零点近似值的方 法叫做二分法.
新知展现
1.二分法的定义
对于区间[a,b]上连续不断且 f (a)· f (b)<0 的函数 y = f (x),通过不断地把函数 f (x)的 零点所在的区间一分为二,使区间的两个端 点逐步逼近零点,进而得到零点近似值的方 法叫做二分法.
通过“取区间中点”的方法逐步缩小零点所 在的范围(区间).
知识探究(一):二分法的概念
思考3:通过阅读教材,你知道是用什么办 法将零点所在范围(区间)缩小的?
通过“取区间中点”的方法逐步缩小零点所 在的范围(区间).
ab 一般地,我们把 x 称 2
为区间(a,b)的中点.
知识探究(一):二分法的概念
另 种 情 况 为
一样重
知识探究(一):二分法的概念
一分为二(3)
另 种 情 况 为
一样重
被选出的球为最重的球.
知识探究(一):二分法的概念
小结:
(1)用天平称 3 次就可以找出这个稍重的球.
知识探究(一):二分法的概念
高中数学二分法
高中数学二分法二分法:1、定义:二分法,是一种从曲线上求解函数极值、积分和解方程等不确定解的有效方法,它是利用一个给定的区间,先假设其取值范围,然后把这个区间分成两部分,根据函数的性质得到函数的最大值和最小值,最终把有限的区间越缩越小,趋近于极限,把某种特征的问题求解出来。
2、特点:二分法具备简单、有效率和可取得近似精确结果的特点,其完成求解的有效步骤是:先将需求解的范围把重点放在中间部分,然后判断函数在两个部分哪个更接近局部最优解,根据这种判断,把不满足要求的部分清除,继续通过重复偏心格把结果的范围缩小,最终当剩余段小于给定的一个误差范围时,得到比较接近真实解的一个近似解。
3、应用场景:二分法在高中数学中有广泛的应用,主要用于求定积分和平面几何中曲线,椭圆等函数最大值、最小值等问题的求解,在十字交叉法中,利用十字构图,根据不等式的约束条件,将最优解的区域以二分的方式划分,把区域的最优解计算出来,而在统计学中,也可以用来找出自变量和因变量的最佳拟合函数,这可通过对拟合函数的在自变量取值的山谷值的搜索,帮助研究者快速找到正确的回归模型。
4、具体实现:二分法是一种迭代算法,算法的迭代重点是:给定一个准确的区间,计算区间的中点,根据函数的增减性质来选取最优解,把不满足要求的部分清除掉,通过迭代的方式,重复这个过程,直到得到的某种特征的结果满足要求。
5、优点:二分法比较简单、有效率,而且可取得近似精确结果,也很容易理解,还可以获得较高的精度,并且在实际有效应用中具有良好的鲁棒性及快速类容错能力,适用于大规模数值计算,提高计算效率。
6、缺点:二分法所限制的误差范围可能过大,得到的结果往往不够精确,而且可能出现陷入局部最优的情况,从而影响最终的结果,易受到初值的影响,同时由于迭代容易受到干扰,有可能出现闭塞的情况。
综上所述,二分法是一种有效的有限迭代的方法,是高中数学中必不可少的重要的求解手段,它可以用来求解函数在某一区间最大值、最小值等问题,可以获得近似精确的结果,但同时也有一些缺点需要注意,所以才能在快速有效精确的基础上找到最佳解。
高中数学如何求解二分法和牛顿迭代法方程
高中数学如何求解二分法和牛顿迭代法方程在高中数学中,求解方程是一个重要的内容,而二分法和牛顿迭代法是两种常用的求解方程的方法。
本文将介绍这两种方法的原理、应用以及解题技巧,并通过具体的例题来说明其考点和解题思路。
一、二分法的原理和应用二分法是一种通过不断缩小搜索范围来逼近方程根的方法。
其基本原理是将待求解的区间不断二分,判断根是否在左半区间还是右半区间,并将搜索范围缩小至根的附近。
具体步骤如下:1. 确定初始区间[a, b],使得f(a)与f(b)异号;2. 计算区间中点c=(a+b)/2;3. 判断f(c)与0的关系,若f(c)=0,则c为方程的根;若f(c)与f(a)异号,则根在区间[a, c]内,否则根在区间[c, b]内;4. 重复步骤2和步骤3,直到满足精度要求或找到根。
二分法的应用非常广泛,例如在求解函数的零点、解方程、求解最优化问题等方面都有应用。
下面通过一个具体的例题来说明二分法的应用和解题技巧。
例题1:求方程x^3-2x-5=0的根。
解题思路:1. 首先我们需要确定初始区间[a, b],使得f(a)与f(b)异号。
根据题目中的方程,可以取a=1,b=2,计算f(1)=-6和f(2)=1,满足条件;2. 计算区间中点c=(a+b)/2=1.5;3. 计算f(c)=f(1.5)=-1.375,与0的关系异号,说明根在区间[1, 1.5]内;4. 重复步骤2和步骤3,不断缩小搜索范围,直到满足精度要求或找到根。
通过不断迭代,我们可以得到方程的根为x=1.709。
这个例题展示了二分法的基本思路和解题技巧,通过不断缩小搜索范围,我们可以逼近方程的根。
二、牛顿迭代法的原理和应用牛顿迭代法是一种通过不断迭代逼近方程根的方法,其基本原理是利用函数的切线来逼近根的位置。
具体步骤如下:1. 确定初始点x0;2. 计算函数f(x)在x0处的导数f'(x0);3. 计算切线的方程y=f(x0)+f'(x0)(x-x0);4. 求切线与x轴的交点x1,即x1=x0-f(x0)/f'(x0);5. 重复步骤2到步骤4,直到满足精度要求或找到根。
高中数学 例说“二分法”思想的应用学法指导
例说“二分法”思想的应用“二分法”是高中数学必修内容之一,是现代信息技术与函数、方程知识的有机整合,是求方程近似解的常用方法。
利用“二分法”可以帮助我们轻松、快捷解决一些相关的问题。
一、利用“二分法”思想巧证不等式例1. 已知三个正数a 、b 、c ,满足b a c 2+>,求证ab c c a ab c c 22-+<<--。
解析:从所要证的目标的结构上看,可把ab c c 2--、ab c c 2-+看作一元二次方程0ab cx 2x 2=+-的两个根,同时构造一个区间)ab c c ,ab c c (22-+--。
设ab cx 2x )x (f 2+-=利用“二分法”思想,要证目标,只需证a 在区间)ab c c ,ab c c (22-+--内即可。
如图1所示,由于二次函数的图象开口方向向上,只需证0)a (f <因0)b c 2a (a ab ca 2a )a (f 2<+-=+-=所以a 在区间内,即ab c c a ab c c 22-+<<--图1二、利用“二分法”思想巧证一元二次方程根的分布例2. 已知函数c bx 2ax 3)x (f 2++=,0c b a =++,0)1(f ,0)0(f >>,求证:(1)0a >且1ba 2-<<-; (2)方程0)x (f =在(0,1)内有两个实根证明:(1)利用0)1(f ,0)0(f >>及0c b a =++,容易证明(略)。
(2)一般地,要证方程0)x (f =在(0,1)内有两个实根,只需证明:①△0≥②对称轴落在区间(0,1)内③区间(0,1)端点f(0),f(1)的符号。
而采用“二分法”,其解法简洁明快,只需证明:①区间(0,1)两个端点f(0),f(1)的符号都为正(题目已知条件已给定)②在区间(0,1)内寻找一个二分点,使这个二分点所对应的函数值小于0,它保证抛物线与x 轴有两个不同的交点(因a>0抛物线开口方向向上)。
高中数学 3.1.2《用二分法求方程的近似解》课件 新人教A版必修1
(1.375,1.5) 1.438
(1.375,1.43
|a-b| 1 0.5
0.25 0.125
第十六页,共24页。
由上表计算可知区间(1.375,1.438)长度小于0.1,故可在 (1.438,1.5)内取1.406 5作为函数f(x)正数的零点的近似值.
第十七页,共24页。
1.准确理解“二分法”的含义 顾名思义,二分就是平均分成两部分.二分法就是通过不 断地将所选区间一分为二,逐步逼近零点的方法,找到零点附 近足够小的区间,根据所要求的精确度,用此区间的某个数值 近似地表示真正的零点.
图象可以作出,由图象确定根的大致区间,再用二分法求解.
第九页,共24页。
【解析】 作出y=lg x,y=3-x的图象可以发现,方程lgx=3-x有 唯一解,记为x0,并且解在区间(2,3)内.
设f(x)=lgx+x-3,用计算器计算,得
f(2)<0,f(3)>0,
∴x0∈(2,3); f(2.5)<0,f(3)>0⇒x0∈(2.5,3); f(2.5)<0,f(2.75)>0⇒x0∈(2.5,2.75); f(2.5)<0,f(2.625)>0⇒x0∈(2.5,2.625); f(2.562)<0,f(2.625)>0⇒x0∈(2.562,2.625). ∵|2.625-2.562|=0.063<0.1 ∴方程的近似解可取为2.625(不唯一).
第四页,共24页。
下列函数图象与x轴均有交点,其中不能用二分法求图中函数零点的 是( )
【思路点拨】 由题目可获取以下主要信息: ①题中给出了函数的图象;
②二分法的概念. 解答本题可结合二分法的概念,判断是否具备使用二分法的条件.
高中数学高一必修第三章《用二分法求方程的近似值》教育教学课件
跟踪训练2 求方程2x3+3x-3=0的一个近似解,精确度为0.01.
解 考察函数f(x)=2x3+3x-3,从一个两端函数值反号的区间开始, 运用二分法逐渐缩小方程实数解所在区间. 经试算,f(0)=-3<0,f(1)=2>0, 所以方程2x3+3x-3=0在[0,1]内有解. 如此下去,得到方程2x3+3x-3=0有解区间的表.
再取区间(1,1.5)的中点x2=1.25,用运算器算得f(1.25)≈-0.87. 由于f(1.25)·f(1.5)<0,所以x0∈(1.25,1.5). 同理可得,x0∈(1.375,1.5),x0∈(1.375,1.437 5). 由于|1.375-1.437 5|=0.062 5<0.1,
则重复(2)~(4).
知识点三 精确度与运算次数
摸索1 “精确到0.1”与“精确度为0.1”一样吗? 答案 不一样.比如得数是1.25或1.34,精确到0.1都是通过四舍五入后 保存一位小数得1.3.而“精确度为0.1”指零点近似值所在区间(a,b)满 足|a-b|<0.1,比如零点近似值所在区间(1.25,1.34).若精确度为0.1,则 近似值可以是1.25,也能够是1.34.
所以,原方程的近似解可取为1.437 5.
反思与感悟
用二分法求函数零点的近似值关键有两点:一是初始区间的选取, 符合条件(包括零点),又要使其长度尽量小;二是进行精确度的判定, 以决定是停止运算还是连续运算.
3 • 题型探究
跟踪训练1 用二分法求函数f(x)=x3-x-1在区间[1,1.5]内的一个零 点.(精确度0.01)
中点函数近似值
(1,1.5)
1.25
-0.30
(1.25,1.5)
1.375
高中数学二分法教案
高中数学二分法教案
教学目标:
1. 了解二分法的基本概念和原理;
2. 掌握二分法在解决数值问题中的应用;
3. 能够灵活运用二分法解决实际问题。
教学准备:
1. 教师准备PPT或黑板,用于展示二分法的原理和应用;
2. 学生准备笔记本和铅笔,用于记录重点知识;
3. 安排实例练习,帮助学生掌握二分法的具体应用。
教学过程:
一、导入(5分钟)
教师简单介绍二分法的概念和应用,引导学生思考如何用二分法解决数值问题。
二、二分法原理讲解(15分钟)
1. 教师介绍二分法的基本原理,即将问题的解空间不断二分,缩小解的范围;
2. 示范一些简单的例题,让学生理解二分法的思路和步骤。
三、实例练习(20分钟)
1. 教师给学生提供一些实例题,让学生在课堂上尝试用二分法解决;
2. 学生可以在小组内合作讨论,共同解决问题。
四、讲解应用领域(10分钟)
1. 教师介绍二分法在实际生活中的应用领域,如在计算机算法中的应用等;
2. 引导学生思考如何将二分法应用到更广泛的领域中。
五、总结与提高(5分钟)
教师总结本节课的重点知识,强调学生需要多加练习,巩固所学知识;
鼓励学生在课后积极思考并尝试解决更复杂的问题。
教学反思:
本节课通过讲解二分法的原理和应用,让学生掌握了一种解决数值问题的方法。
在今后的数学学习中,学生可以灵活运用二分法,提高解题效率。
同时,教师需要引导学生在解题过程中保持耐心和灵活的思维方式。
高一数学2分法的知识点
高一数学2分法的知识点2分法是高中数学中的一个重要知识点,它在数学分析和数值计算中起到了至关重要的作用。
本文将详细介绍2分法的概念、原理和应用,以帮助读者更好地理解和运用这一数学方法。
一、概念2分法,又称二分法或折半法,是一种常用的数值逼近方法。
它的基本思想是将计算区间二等分,通过逐步缩小区间范围来逼近函数的根或极值。
二、原理2分法的原理基于介值定理和收敛定理。
当函数在某一区间上连续且函数值在区间两端的符号不同,根据介值定理,可以推断该区间内存在根。
通过将区间一分为二,根据符号变化确定目标区间,不断缩小区间范围,就能逐步逼近函数的根或极值点。
三、步骤使用2分法求解函数根的一般步骤如下:1. 选择一个初始的区间[a, b],确保函数在该区间上连续且函数值在区间两端的符号不同。
2. 计算区间的中点c,即c = (a + b) / 2。
3. 计算函数在中点处的函数值f(c)。
4. 如果f(c)为0,则c为函数的根,算法结束。
5. 如果f(c)不为0,根据中点的函数值与区间两端的函数值的符号关系,确定目标区间。
6. 将目标区间重新定义为[a, c]或[c, b],重复步骤2至步骤5,直到满足收敛条件。
7. 根据需要,可以设置最大迭代次数或精度条件,以控制算法的收敛速度和结果精度。
四、应用案例2分法在实际问题中有广泛的应用,比如求方程的根、函数的零点、函数的极值点等。
以下是一个应用于求方程根的例子:假设要求方程f(x) = x^3 - 2x - 5 = 0在区间[1, 2]内的根,可以使用2分法进行逼近计算:1. 初始区间为[1, 2],可以验证f(1) = -6,f(2) = 1,符号不同,满足条件。
2. 计算区间中点c = (1 + 2) / 2 = 1.5。
3. 计算f(1.5),得到f(1.5) = -2.375。
4. 由于f(1.5)与f(1)的符号相同,目标区间为[1.5, 2]。
5. 将区间重新定义为[1.5, 2],重复步骤2至步骤5。
高中数学-二分法求函数零点
二分法的概念对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.由函数的零点与相应方程根的关系,可用二分法来求方程的近似解.给定精确度,用二分法求函数零点近似值的步骤如下:(1)确定区间,,验证·<0,给定精确度;(2)求区间,的中点;(3)计算:1若=,则就是函数的零点;2若·<0,则令=(此时零点);3若·<0,则令=(此时零点);(4)判断是否达到精确度;即若<,则得到零点近似值(或);否则重复步骤2-4.结论: 由函数的零点与相应方程根的关系,我们可用二分法来求方程的近似解.思考:为什么由<,便可判断零点的近似值为(或)?一、能用二分法求零点的条件例1下列函数中能用二分法求零点的是()判定一个函数能否用二分法求其零点的依据是:其图象在零点附近是连续不断的,且该零点为变号零点.因此,用二分法求函数的零点近似值的方法仅对函数的变号零点适用,对函数的不变号零点不适用.变式迁移1下列函数图象与x轴均有交点,但不宜用二分法求交点横坐标的是()二、求函数的零点例2判断函数y=x3-x-1在区间[1,1.5]内有无零点,如果有,求出一个近似零点(精确度0.1).分析由题目可获取以下主要信息:①判断函数在区间[1,1.5]内有无零点,可用根的存在性定理判断;②精确度0.1.解答本题在判断出在[1,1.5]内有零点后可用二分法求解.解因为f(1)=-1<0,f(1.5)=0.875>0,且函数y=x3-x-1的图象是连续的曲线,所以它在区间[1,1.5]内有零点,用二分法逐次计算,列表如下:区间中点值中点函数近似值(1,1.5) 1.25-0.3(1.25,1.5) 1.3750.22(1.25,1.375) 1.312 5-0.05(1.312 5,1.375) 1.343 750.08由于|1.375-1.312 5|=0.062 5<0.1,所以函数的一个近似零点为1.312 5.点评由于用二分法求函数零点的近似值步骤比较繁琐,因此用列表法往往能比较清晰地表达.事实上,还可用二分法继续算下去,进而得到这个零点精确度更高的近似值.变式迁移2求函数f(x)=x3+2x2-3x-6的一个正数零点(精确度0.1).解由于f(1)=-6<0,f(2)=4>0,可取区间(1,2)作为计算的初始区间,用二分法逐次计算,列表如下:区间中点中点函数值(1,2) 1.5-2.625(1.5,2) 1.750.234 4(1.5,1.75) 1.625-1.302 7(1.625,1.75) 1.687 5-0.561 8(1.687 5,1.75) 1.718 75-0.170 7由于|1.75-1.687 5|=0.062 5<0.1,所以可将1.687 5作为函数零点的近似值.三、二分法的综合运用例3证明方程6-3x=2x在区间[1,2]内有唯一一个实数解,并求出这个实数解(精确度0.1).分析由题目可获取以下主要信息:①证明方程在[1,2]内有唯一实数解;②求出方程的解.解答本题可借助函数f(x)=2x+3x-6的单调性及根的存在性定理证明,进而用二分法求出这个解.证明设函数f(x)=2x+3x-6,∵f(1)=-1<0,f(2)=4>0,又∵f(x)是增函数,所以函数f(x)=2x+3x-6在区间[1,2]内有唯一的零点,则方程6-3x=2x在区间[1,2]内有唯一一个实数解.设该解为x0,则x0∈[1,2],取x1=1.5,f(1.5)=1.33>0,f(1)·f(1.5)<0,∴x0∈(1,1.5),取x2=1.25,f(1.25)=0.128>0,f(1)·f(1.25)<0,∴x0∈(1,1.25),取x3=1.125,f(1.125)=-0.445<0,f(1.125)·f(1.25)<0,∴x0∈(1.125,1.25),取x4=1.187 5,f(1.187 5)=-0.16<0,f(1.187 5)·f(1.25)<0,∴x0∈(1.187 5,1.25).∵|1.25-1.187 5|=0.062 5<0.1,∴1.187 5可以作为这个方程的实数解.点评用二分法解决实际问题时,应考虑两个方面,一是转化成函数的零点问题,二是逐步缩小考察范围,逼近问题的解.变式迁移3求32的近似解(精确度为0.01并将结果精确到0.01).解设x=32,则x3-2=0.令f(x)=x3-2,则函数f(x)的零点的近似值就是32的近似值,以下用二分法求其零点的近似值.由于f(1)=-1<0,f(2)=6>0,故可以取区间[1,2]为计算的初始区间.用二分法逐步计算,列表如下:区间中点中点函数值[1,2] 1.5 1.375[1,1.5] 1.25-0.046 9[1.25,1.5] 1.3750.599 6[1.25,1.375] 1.312 50.261 0[1.25,1.312 5] 1.281 250.103 3[1.25,1.281 25] 1.265 6250.027 3[1.25,1.265 625] 1.257 812 5-0.01[1.257 812 5,1.265 625] 1.261 718 750.008 6 由于|1.265 625-1.257 812 5|=0.007 81<0.01,所以函数f(x)零点的近似值是1.26,即32的近似值是1.26.四、总结1.能使用二分法求方程近似解的方法仅对函数的变号零点适用,对函数的不变号零点不适用.2.二分法实质是一种逼近思想的应用.区间长度为1时,使用“二分法”n次后,精确度为1 2n.3.求函数零点的近似值时,所要求的精确度不同,得到的结果也不相同.精确度为ε,是指在计算过程中得到某个区间(a,b)后,若其长度小于ε,即认为已达到所要求的精确度,可停止计算,否则应继续计算,直到|a-b|<ε为止.练习1.下列函数中不能用二分法求零点的是()A.f(x)=2x+3 B.f(x)=ln x+2x-6C.f(x)=x2-2x+1 D.f(x)=2x-12.设f(x)=3x+3x-8,用二分法求方程3x+3x-8=0在x∈(1,2)内近似解的过程中得f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间()A.(1,1.25) B.(1.25,1.5)C.(1.5,2) D.不能确定3.函数f(x)=x2-5的正零点的近似值(精确到0.1)是()A.2.0 B.2.1 C.2.2 D.2.34.方程2x-1+x=5的解所在的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)5.用二分法研究函数f(x)=x3+3x-1的零点时,第一次经计算f(0)<0,f(0.5)>0,可得其中一个零点x0∈________,第二次应计算________.以上横线上应填的内容为()A.(0,0.5),f(0.25) B.(0,1),f(0.25)C.(0.5,1),f(0.25) D.(0,0.5),f(0.125)6.在用二分法求方程f(x)=0在[0,1]上的近似解时,经计算,f(0.625)<0,f(0.75)>0,f(0.687 5)<0,即可得出方程的一个近似解为____________(精确度为0.1).7.用二分法求方程x2-5=0在区间(2,3)的近似解经过________次二分后精确度能达到0.01.8.用二分法求函数的零点,函数的零点总位于区间[a n,b n] (n∈N)上,当|a n-b n|<m时,函数的零点近似值x0=a n+b n2与真实零点a的误差最大不超过______.答案m2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若f(a).f(x1)<0,则此时零点x0∈(a, x1) 若f(x1).f(b)<0,则此时零点x0∈( x1,,b)
4、判断是否达到精确度ε ,即若|a-b|< 则得到零点近似值a(或b),否则重复2~4
ε
二分法步骤速记口诀
定区间,找中点, 中值计算两边看. 同号去,异号算, 零点落在异号间. 周而复始怎么办? 精确度上来判断.
根所在区间
中点值
中点函数值 符号
f(-0.5)<0 f(-0.75)>0 f(-0.625)<0 f(-0.6875)<0 f(-0.71875)>0
(-1,0) (-1,-0.5) (-0.75, -0.5) (-0.75, -0.625) (-0.75, -0.6875) (-0.71875,-0.6875)
同理可得, x0∈(1.375,1.5),x0∈ (1.375,1.4375),由于 |1.375-1.4375|=0.0625〈 0.1 所以,原方程的近的步骤如下:
1、 确定区间[a,b],验证f(a).f(b)<0,给定精确度ε ; 2、求区间(a,b)的中点x1, 3、计算f(x1)
-0.5 -0.75 -0.625 -0.6875 -0.71875
引入:
CCTV2“幸运52”片段 : 主持人李咏说道:猜一猜这架家用型数 码相机的价格.观众甲:2000!李咏:高了! 观众乙:1000! 李咏:低了! 观众丙:1500! 李咏:还是低了!· · · · · · · · 问题1:你知道这件商品的价格在什么范 围内吗? 答案:1500至2000之间 问题2:若接下来让你猜的话,你会猜多少 价格比较合理呢?
三、例题
利用计算器,求方程
x
的近似解(精确到0.1)
解:(法一) 画出 f ( x) 2 x 4 的图象,观察图象得, x f ( x ) 2 x 4 有惟一解,记为x1 ,且这个解在 方程 区间(1 , 2)内。
8 6 4 2 0 -3 -2 -1 -2 0 -4 -6 -8 1
四、归纳总结
2、不断二分解所在的区间
ab ab (1)若f( 2 )>0,由f(a)<0,则x∈(a, 2 ) ab ab (2) 若f( 2 )<0,由f(b)>0,则x∈( 2 ,b) ab ab (3)若f( 2 )=0,则x= 2
若x∈(a,b),不妨设f(a)<0,f(b)>0
分析:设
f ( x) x 2 2x 1
先画出函数图象的简图,
y
y=x2-2x-1
如何进一步有效缩小根所在的区间?
第一步:得到初始区间(2,3) 第二步:取2与3的平均数2.5 第三步:再取2与2.5的平均数2.25 如此继续取下去: 若要求结果精确到0.1,则何时停 止操作?
-1 0 1 2 3
x
2.25 2
2.5
2
2.5
3
二、方法探究 +
2 2 + 2.5 + 3 3 f(2)<0,f(3)>0
2<x1<3
f(2)<0,f(2.5)>0 2<x1<2.5 f(2.25)<0,f(2.5)>0 2.25<x1<2.5 f(2.375)<0,f(2.5)>0 2.375<x1<2.5
x f(x) 0 1 2 3 4 5 -6 -2 3 10 21 40 6 75 7 142 8 273
因为f(1)· f(2)<0所以 f(x)= 2x+3x-7
在 (1,2)内有零点x0,取(1,2)的中点 x1=1.5, f(1.5)= 0.33,因为 f(1)· f(1.5)<0所以x0 ∈(1,1.5) 取(1,1.5)的中点x2=1.25 ,f(1.25)= -0.87, 因为f(1.25)· f(1.5)<0,所以x0∈(1.25,1.5)
2 3 4
三、例题
区间端点函数值 符号
解:设f ( x) 2x x 4
中点值 中点函数值 符号
根所在区间
f(1)<0,f(2)>0 f(1)<0, f(1.5)>0 f(1.25)<0 , f(1.5)>0
(1 , 2) (1 , 1.5) (1.25 , 1.5)
1.5 1.25 1.375
四、经典练习:
5.设f(x)=3x+3x-8用二分法求方程3x+3x-8 =0在区间 [1,2]内近似解的过程中得到(1)<0,f(1.5)>0,f(1.25)<0 则方程的根落在区间( C ) A.(1,1.25) B.(1.25,1.5) C.(1.5,2) D.不能 确定 6、某函数有零点在区间(a,b)之内,且|b-a|=2若用 二分法求此根的近似值,要求精确度为0. 1,则至 多将要等分的次数为( A ) A. 5 B. 6 C. 7 D. 8
f(1.5)>0 f(1.25)<0 f(1.375)<0
f(1.375)<0 , f(1.5)>0
(1.375, 1.5)
1.4375
f(1.4375)>0
f(1.375)<0 , f(1.4375)>0 (1.375,1.4375)
因为| 1.375-1.4375 | 1.4
0.1,所以原方程的近似解为x1≈
思考:对下列图象中的函数,能否用二 分法求函数零点的近似值?为什么?
y
不行,因为不满足 f(a)*f(b)<0
y
o x
o
x
四、经典练习:
1、函数y=2x-3的零点所在的区间是 (C ) A.(-1,0) B. (0,1) C.(1,2) D.(2,3) 2、函数y=log2(x-a)的零点是5,则a=( D ) A.0 B.1 C.2. D.3
3
A.(1,0)
x
B.(1,2)
-1 -1 0 -1
C .(0,1)
1 -1
D.(2,3)
2 5 3 23
f ( x)
知识探究(一):二分法的概念
引例:从某水库闸房到防洪指挥部的 某一处电话线路发生了故障。这是一 条10km长的线路,如何迅速查出故障 所在?
如图,设闸门和指挥部的所在处为点A,B, 1.首先从中点C查 2.用随身带的话机向两端测试时,发现AC段正常,断定 故障在BC段 3.再到BC段中点D 4.这次发现BD段正常,可见故障在CD段 5.再到CD中点E来看 6.这样每查一次,就可以把待查的线路长度缩减一半
A
C
E
D
B
二、方法探究
(1)不解方程,如何求方程 x 2 2 x 1 0 的一个
正的近似解.(精确到0.1)
解:设f ( x) x 2 2 x 1
10 8 6 4 y=x^2-2x-1 2 0 -3 -2 -1 -2 -4 0 1 2
3
4
5
例1.不解方程,求方程X2-2X-1=0的一个正近似解
0 b x
a
思想方法:
y
a 0 b x
前提
对于在①区间[a,b]上连续不断且 精髓 f(a) · f(b)<0的函数 y=f(x ) ,通过②不 断地把函数f(x)的零点所在的区间一分 为二,使区间的两个端点逼近零点,进 而得到零点近似值。
思想方法:
y
a 0 b x
前提
对于在①区间[a,b]上连续不断且 f(a) · f(b)<0的函数 y=精髓 f(x) ,通过②不 断地把函数f(x)的零点所在的区间一分 为二,使区间的两个端点逼近零点,进 而③得到零点近似值。
结果
※二分法定义
对于在区间[a,b]上连续不断且f(a) f(b)<0 的函数y=f(x),通过不断地把函数f(x)的零点 所在的区间一分为二,使区间的两个端点 逐步逼近零点,进而得到零点近似值的方法 叫做二分法。
例2 借助计算器或计算机用二分法求方 程2x+3x=7的近似解(精确度0.1) 解:原方程即2x+3x=7,令f(x)= 2x+3x-7, 用计算器作出函数f(x)= 2x+3x-7的对应值表 和图象如下:
1. 分析:判断区间 a, b 是否为 f ( x ) 零点所在的区间, 只要判断 f ( a )
f (b) 0 是否成立。
四、经典练习:
4、若函数f(x)唯一的一个零点同时在区间(0,16)、 (0,8)、(0,4)、(0,2)内,那么下列命题中正确 的是( C ). (A)函数f(x)在区间(0,1)内有零点 (B)函数f(x)在区间(0,1)或(1,2)内有零点 (C)函数f(x)在区间[2,16内无零点 (D)函数f(x)在区间(1,16)内无零点
对(1)、(2)两种情形再继续二分法所在的区间。 3、根据精确度得出近似解
当x∈(m,n),且m,n满足精确度时,则x ≈ p,即求得 了近似解。
思想方法:
y
a 0 b x
对于在区间[a,b]上连续不断且f(a) · f(b)<0 的函数 y=f(x) , 通过不断地把函数f(x)的零 点所在的区间一分为二, 使区间的两个端点 进而得到零点近似值。 逼近零点,
f(2.375)<0,f(2.4375)>0 2.375<x1<2.4375
2
2 2
2.25 2.5 - +
2.375 2.5 - + 2.375 2.4375
3
3 3
∵ | 2.375-2.4375 | 0.1 ∴此方程的近似解为 x 1 2 . 4 若要求结果精确到0.01,则何时停止操作?