RF测试原理小结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RF 测试原理小结
本文旨在阐述RF 测试项目的有关原理性知识,基本不涉及具体的测试方法,测试方法请参照相关文档。
首先学习射频离不开天线,要对天线知识有所了解。
天线(antenna )是RF 系统中最关键的零件,发送的时候它负责将线路中的电信号转化为电波发射出去,接收的时候它负责将电波转化为电信号。根据洛伦兹定理,变化的电场会产生磁场,因施加在天线上的电流不同,就会产生电波;当无线电波遇到天线时,电子就会流入天线导体而产生电流。
天线分为全向型和定向型两种。全向型天线收发所有方向的信号,定向性天线只收发天线所指向方向上的信号,可以将能量传送到更远的距离,信号也比较清楚,实际上根本没有真正意义上的全向天线。
天线的长度取决于频率:频率越高,天线越短。根据经验,一般的简易型天线为其波长的一般。波长和频率的计算公式是:8(310/)c
c m s f
λ=
=⨯其中,例如使用830KHz 的调幅广播电台,其电波的波长约为360米,因此必须使用约180米的大型天线。当然天线工程师可以运用一些技巧,进一步缩短天线,甚至可以做到随身携带的程度。
一般在天线的前端还会有个功率放大器PA(power amplifier),其实将功率提升到做大功率后发送。
然后具体了解RF 测试中各个参数的含义及其影响因素。 一、调制带宽:
调制子载波占用的频带宽度,有20MHz (11b/g )和40MHz (11n )的,我们从频谱模板的波形中也可以看出来。
二、EVM :Error Vector Magnitude ,误差矢量幅度: 其是调制后的射频信号与理想原始信号的矢量差,反映了调制的精度,是衡量信号质量的重要参数。原理上是接收到的码片信号,经过解调、解扰、解扩之后,再重复一遍发射端点的过程,即调制、加扰、扩频,然后再拿这个码矢量信号与接收到的矢量信号做矢量差,将其做统计平均,即为EVM 值。EVM 越大,说明信号受到的干扰越大,接收到的信号质量越差;反之,干扰小,接收到的信号质量就好。
EVM 有幅度偏差、频率偏差、相位偏差之分。功率放大器的非线性失真影响幅度偏差,I/Q 信号同步影响相位偏差,本振的噪声和电源噪声影响频率偏差,
影响EVM 因素主要有功率放大器的非线性失真、噪声、以及供电环境。
EVM 标准有IEEE 标准和一些国家电信的标准,下面列出IEEE 的标准供参考。
三、调制速率:
调制传送基带信号所用的码流率,它反映在被调子载波变化的快慢上,有6Mbps、12 Mbps、18 Mbps、24 Mbps、36 Mbps……
四、发射功率:
有天线口发射功率(PA输出功率减去线损,尽量减少线损)和空口发射功率(用等效全向发射功率EIRP描述,天线口发射功率+天线增益)之分,用功率谱密度描述,取RMS值衡量。
五、频率偏移:Frequency Error
指发射信道中心频率的偏差,其反映了中心频率的精度,一般取决于本振的精度,可以通过调整本振的匹配电容来纠正偏差。其中11b:要求频率偏移在±25ppm以内;11a/g:要求频率偏移在±20ppm以内。
六、接收灵敏度:
指接收机能解调的最小信号电平,就是信号的最小功率值,换句话说就是在保证所要求的误比特率的情况下,接收机所需要的最小输入功率。一般我们用误码率来衡量接收灵敏度,而不能用直接进入接收通道的信号来衡量,因为在满足一定的信噪比SNR的情况下,非常小的信号都可以解调,而当伴随信号的噪声和接收通道的噪声增加时,此时信噪比就会下降,误码率迅速增加。
一般情况下要求误码率在百分之十左右,测试的时候要求发1000个包,11b时接收到920以上,11g/n接收900个包以上时的最小信号功率,就是要测量的接收灵敏度。
从下面接收灵敏度IEEE标准中可以看出,当数据率越高,接收器所接收到的信号就越容易被损毁,接收灵敏度要求的功率电平就越大。
11b
11g
七、最大接收电平
是接收机能解调的最大信号电平,由于接收机前端有低噪放LNA,其工作点电平受限,过大的信号会导致其饱和,形成信号阻塞。
八、频谱模板Spectrum Mask
其描述了发射信号的频谱分布,反映了信号能量的集中范围,如果带外的能量多的话,会影响到相邻信道的通信,一般用包含被调制信道的调制带宽及其信道外的电平分布来衡量。功率放大器PA的非线性失真和匹配都会影响到频谱模板,可能会超出其范围。如果能够很好的控制相位噪声,比如预失真处理能够很好的降低带外噪声,同时提高EVM都会保证频谱模板的要求。
九、功率平坦度Spectral Flatness
反映信号子载波的功率变化,它测量每个子载波的平均功率对所有子载波的平均功率的偏移。11b没有平坦度,是因为其采用的调制方式时单载波调制,11g/n采用的是OFDM调制方式。
十、星座图
星座图反映了各个速率时采用的调制方式、编码率、EVM等信息。
测试的过程中,我们可以看到不同速率下的星座图,接收信号的范围集中说明信号的质量就比较好,越是发散,说明信号的质量越差。
各种调制方式的星座图如下:
各种调制方式分别承载的数据位数为:BPSK:1bit/symbol;QPSK:2bits/symbol;16QAM:4bits/symbol;64QAM:6bits/symbol。
模拟调制方式有三种:调幅、调频、调相,就是载波随着调制信号的幅度、频率或相位的变化而变化,这样载波就承载了调制信号的信息,此时的信号成为已调信号,传入发信机发送出去。与之相对应的数字调制方式也有三种:振幅键控ASK、频移键控FSK、相移键控PSK。
802.11中常用的调制方式是差分相位调制DPSK,而不是绝对相位调制PSK,因为PSK 对通信收发双方的同步性能要求很高,一旦同步被波坏,就难以恢复原有信号,导致相位颠倒,称为“倒π现象”,而DPSK是利用相邻载波的相位差就可以避免此问题的发生。
BPSK用前后载波的相位差为0时表示符号0,相差为半个周期π时表示符号1;因BPSK 只能编码一个位,可以采用一种差分正交相移键控DQPSK编码两个位,即是采用一个基波与三个偏移波,每个波偏移1/4个周期,如用相移π/2表示符号01,相移0表示符号00,相移π表示符号11,相移3π/2表示符号10,当然也可以用上面QPSK图中的四个正交的相位π/4,3π/4,5π/4,7π/4来表示。
802.11还采用正交调幅QAM技术来传送数目,能够承载更多的比特数,以此来提高调制的速率。QAM是在单一载波上编码数据,该载波有同相信号I和落后其1/4周期的正交信号组成,当两种信号被限定在一组特定的电平时,就形成了所谓的星座图constellation。星座图描绘了同乡和正交型号的可能值,星座图中的每个点代表一种符号symbol,每个符号代表特定的位置,如上面图中所示。需要注意的是,QAM前面的数值表示总共的符号个数,其实每个符号的2的乘幂数,可以算出每个符号代表的比特数,比图64-QAM就是每个符号代表6bits信息,256-QAM就是每个符号代表8bits信息。
要提高数据的速率,只要使用点数更多的星座图即可,不过数据率提高,就要求接收信号的质量要足够好,否则就难以区分星座图中的相邻点。如果距离太近,每个信号可以接收的误差范围就会缩小。
下面详细了解下802.11各个标准的编码和调制细节。
802.11b直接序列扩频PHY采用每秒1100万的碎片率,其将碎片流划分为一系列的11位的贝克码Barker word,每秒传送100万个Barker word。每个word根据所使用的1.0Mbps 还是2Mbps的数据率,分别编码1或2个比特。
为了达到更高的传输速率,就要求每个word编码更多的字节,802.11采用了一种叫做补码键控CCK(Complementary code keying)的方式,就是将碎片流划分为一系列的由8个位构成的码符号,因此每秒要传送137.5万个码符号。CCK采用复杂的数学转换函数,可以使用若干这8bit序列在每个码字中编码4或8个位是吞吐量达到5.5Mbps和11Mbps。
注意一点的是:CCK方式所采用的扩频码是由数据本身经过函数推演得出来的,而之前扩频是采用类似Barker word之类的静态且具有重复性的码字。