高二数学上学期第二次月考试题 理7

合集下载

奎屯市第二高级中学2018-2019学年高二上学期第二次月考试卷数学

奎屯市第二高级中学2018-2019学年高二上学期第二次月考试卷数学

奎屯市第二高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A .B .C .D .2. 已知集合{2,1,1,2,4}A =--,2{|log ||1,}B y y x x A ==-∈,则A B =( )A .{2,1,1}--B .{1,1,2}-C .{1,1}-D .{2,1}--【命题意图】本题考查集合的交集运算,意在考查计算能力.3. 设数集M={x|m ≤x ≤m+},N={x|n ﹣≤x ≤n},P={x|0≤x ≤1},且M ,N 都是集合P 的子集,如果把b ﹣a 叫做集合{x|a ≤x ≤b}的“长度”,那么集合M ∩N 的“长度”的最小值是( )A .B .C .D .4. 如图表示的是四个幂函数在同一坐标系中第一象限内的图象,则幂函数y=x 的图象是( )A .①B .②C .③D .④5. 已知||=3,||=1,与的夹角为,那么|﹣4|等于( )A .2B .C .D .136. 如图所示,阴影部分表示的集合是( )A .(∁UB )∩A B .(∁U A )∩BC .∁U (A ∩B )D .∁U (A ∪B )7.是z的共轭复数,若z+=2,(z﹣)i=2(i为虚数单位),则z=()A.1+i B.﹣1﹣i C.﹣1+i D.1﹣i8.已知命题p:2≤2,命题q:∃x0∈R,使得x02+2x0+2=0,则下列命题是真命题的是()A.¬p B.¬p∨q C.p∧q D.p∨q9.常用以下方法求函数y=[f(x)]g(x)的导数:先两边同取以e为底的对数(e≈2.71828…,为自然对数的底数)得lny=g(x)lnf(x),再两边同时求导,得•y′=g′(x)lnf(x)+g(x)•[lnf(x)]′,即y′=[f(x)]g(x){g′(x)lnf(x)+g(x)•[lnf(x)]′}.运用此方法可以求函数h(x)=x x(x>0)的导函数.据此可以判断下列各函数值中最小的是()A.h()B.h()C.h()D.h()10.已知平面α、β和直线m,给出条件:①m∥α;②m⊥α;③m⊂α;④α⊥β;⑤α∥β.为使m∥β,应选择下面四个选项中的()A.①④B.①⑤C.②⑤D.③⑤11.一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积是()A.8πcm2B.12πcm2C.16πcm2D.20πcm212.已知M={(x,y)|y=2x},N={(x,y)|y=a},若M∩N=∅,则实数a的取值范围为()A.(﹣∞,1)B.(﹣∞,1] C.(﹣∞,0)D.(﹣∞,0]二、填空题13.当a>0,a≠1时,函数f(x)=log a(x﹣1)+1的图象恒过定点A,若点A在直线mx﹣y+n=0上,则4m+2n 的最小值是.14.将全体正整数排成一个三角形数阵:按照以上排列的规律,第n行(n≥3)从左向右的第3个数为.15.设不等式组表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是.16.过抛物线y2=4x的焦点作一条直线交抛物线于A,B两点,若线段AB的中点M的横坐标为2,则|AB|等于.17.设抛物线C:y2=3px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为.18.已知命题p:∃x∈R,x2+2x+a≤0,若命题p是假命题,则实数a的取值范围是.(用区间表示)三、解答题19.已知函数f(x)=2x﹣,且f(2)=.(1)求实数a的值;(2)判断该函数的奇偶性;(3)判断函数f(x)在(1,+∞)上的单调性,并证明.20.已知数列{a n}满足a1=a,a n+1=(n∈N*).(1)求a2,a3,a4;(2)猜测数列{a n}的通项公式,并用数学归纳法证明.21.如图,过抛物线C:x2=2py(p>0)的焦点F的直线交C于M(x1,y1),N(x2,y2)两点,且x1x2=﹣4.(Ⅰ)p的值;(Ⅱ)R,Q是C上的两动点,R,Q的纵坐标之和为1,RQ的垂直平分线交y轴于点T,求△MNT的面积的最小值.22.椭圆C:=1,(a>b>0)的离心率,点(2,)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM 的斜率与l的斜率的乘积为定值.23.在平面直角坐标系xOy中.己知直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=4.(1)写出直线l的普通方程与曲线C的直角坐标系方程;(2)直线l与曲线C相交于A、B两点,求∠AOB的值.24.某单位组织职工开展构建绿色家园活动,在今年3月份参加义务植树活动的职工中,随机抽取M名职工为样本,得到这些职工植树的株数,根据此数据作出了频数与频率统计表和频率分布直方图如图:(1)求出表中M,p及图中a的值;(2)单位决定对参加植树的职工进行表彰,对植树株数在[25,30)区间的职工发放价值800元的奖品,对植树株数在[20,25)区间的职工发放价值600元的奖品,对植树株数在[15,20)区间的职工发放价值400元的奖品,对植树株数在[10,15)区间的职工发放价值200元的奖品,在所取样本中,任意取出2人,并设X为X E X合计奎屯市第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案) 一、选择题1. 【答案】D【解析】解:双曲线(a >0,b >0)的渐近线方程为y=±x联立方程组,解得A (,),B (,﹣),设直线x=与x 轴交于点D ∵F 为双曲线的右焦点,∴F (C ,0)∵△ABF 为钝角三角形,且AF=BF ,∴∠AFB >90°,∴∠AFD >45°,即DF <DA∴c ﹣<,b <a ,c 2﹣a 2<a 2∴c 2<2a 2,e 2<2,e <又∵e >1∴离心率的取值范围是1<e <故选D【点评】本题主要考查双曲线的离心率的范围的求法,关键是找到含a ,c 的齐次式,再解不等式.2. 【答案】C【解析】当{2,1,1,2,4}x ∈--时,2log ||1{1,1,0}y x =-∈-,所以A B ={1,1}-,故选C .3. 【答案】C【解析】解:∵集M={x|m ≤x ≤m+},N={x|n ﹣≤x ≤n}, P={x|0≤x ≤1},且M ,N 都是集合P 的子集,∴根据题意,M 的长度为,N 的长度为, 当集合M ∩N 的长度的最小值时, M 与N 应分别在区间[0,1]的左右两端,故M ∩N 的长度的最小值是=.故选:C .4. 【答案】D【解析】解:幂函数y=x为增函数,且增加的速度比价缓慢,只有④符合.故选:D.【点评】本题考查了幂函数的图象与性质,属于基础题.5.【答案】C【解析】解:||=3,||=1,与的夹角为,可得=||||cos<,>=3×1×=,即有|﹣4|===.故选:C.【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题.6.【答案】A【解析】解:由图象可知,阴影部分的元素由属于集合A,但不属于集合B的元素构成,∴对应的集合表示为A∩∁U B.故选:A.7.【答案】D【解析】解:由于,(z﹣)i=2,可得z﹣=﹣2i ①又z+=2 ②由①②解得z=1﹣i故选D.8.【答案】D【解析】解:命题p:2≤2是真命题,方程x2+2x+2=0无实根,故命题q:∃x0∈R,使得x02+2x0+2=0是假命题,故命题¬p,¬p∨q,p∧q是假命题,命题p∨q是真命题,故选:D9.【答案】B【解析】解:(h(x))′=x x[x′lnx+x(lnx)′]=x x(lnx+1),令h(x)′>0,解得:x>,令h(x)′<0,解得:0<x<,∴h(x)在(0,)递减,在(,+∞)递增,∴h()最小,故选:B.【点评】本题考查函数的导数的应用,极值的求法,基本知识的考查.10.【答案】D【解析】解:当m⊂α,α∥β时,根据线面平行的定义,m与β没有公共点,有m∥β,其他条件无法推出m ∥β,故选D【点评】本题考查直线与平面平行的判定,一般有两种思路:判定定理和定义,要注意根据条件选择使用.11.【答案】B【解析】解:正方体的顶点都在球面上,则球为正方体的外接球,则2=2R,R=,S=4πR2=12π故选B12.【答案】D【解析】解:如图,M={(x,y)|y=2x},N={(x,y)|y=a},若M∩N=∅,则a≤0.∴实数a的取值范围为(﹣∞,0].故选:D.【点评】本题考查交集及其运算,考查了数形结合的解题思想方法,是基础题.二、填空题13.【答案】2.【解析】解:整理函数解析式得f(x)﹣1=log a(x﹣1),故可知函数f(x)的图象恒过(2,1)即A(2,1),故2m+n=1.∴4m+2n≥2=2=2.当且仅当4m=2n,即2m=n,即n=,m=时取等号.∴4m+2n的最小值为2.故答案为:214.【答案】3+.【解析】解:本小题考查归纳推理和等差数列求和公式.前n﹣1行共有正整数1+2+…+(n﹣1)个,即个,因此第n行第3个数是全体正整数中第3+个,即为3+.故答案为:3+.15.【答案】.【解析】解:到坐标原点的距离大于2的点,位于以原点O为圆心、半径为2的圆外区域D:表示正方形OABC,(如图)其中O为坐标原点,A(2,0),B(2,2),C(0,2).因此在区域D内随机取一个点P,则P点到坐标原点的距离大于2时,点P位于图中正方形OABC内,且在扇形OAC的外部,如图中的阴影部分∵S正方形OABC=22=4,S阴影=S正方形OABC﹣S扇形OAC=4﹣π•22=4﹣π∴所求概率为P==故答案为:【点评】本题给出不等式组表示的平面区域,求在区域内投点使该到原点距离大于2的概率,着重考查了二元一次不等式组表示的平面区域和几何概型等知识点,属于基础题.16.【答案】6.【解析】解:由抛物线y2=4x可得p=2.设A(x1,y1),B(x2,y2).∵线段AB的中点M的横坐标为2,∴x1+x2=2×2=4.∵直线AB过焦点F,∴|AB|=x1+x2+p=4+2=6.故答案为:6.【点评】本题考查了抛物线的过焦点的弦长公式、中点坐标公式,属于基础题.17.【答案】y2=4x或y2=16x.【解析】解:因为抛物线C方程为y2=3px(p>0)所以焦点F坐标为(,0),可得|OF|=因为以MF为直径的圆过点(0,2),所以设A(0,2),可得AF⊥AMRt△AOF中,|AF|=,所以sin∠OAF==因为根据抛物线的定义,得直线AO切以MF为直径的圆于A点,所以∠OAF=∠AMF,可得Rt△AMF中,sin∠AMF==,因为|MF|=5,|AF|=,所以=,整理得4+=,解之可得p=或p=因此,抛物线C的方程为y2=4x或y2=16x.故答案为:y2=4x或y2=16x.【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题.18.【答案】(1,+∞)【解析】解:∵命题p:∃x∈R,x2+2x+a≤0,当命题p是假命题时,命题¬p:∀x∈R,x2+2x+a>0是真命题;即△=4﹣4a<0,∴a>1;∴实数a的取值范围是(1,+∞).故答案为:(1,+∞).【点评】本题考查了命题与命题的否定的真假性相反问题,也考查了二次不等式恒成立的问题,是基础题目.三、解答题19.【答案】【解析】解:(1)∵f(x)=2x﹣,且f(2)=,∴4﹣=,∴a=﹣1;(2分)(2)由(1)得函数,定义域为{x|x≠0}关于原点对称…(3分)∵=,∴函数为奇函数.…(6分)(3)函数f(x)在(1,+∞)上是增函数,…(7分)任取x1,x2∈(1,+∞),不妨设x1<x2,则=…(10分)∵x1,x2∈(1,+∞)且x1<x2∴x2﹣x1>0,2x1x2﹣1>0,x1x2>0∴f(x2)﹣f(x1)>0,即f(x2)>f(x1),∴f(x)在(1,+∞)上是增函数…(12分)【点评】本题考查函数的单调性与奇偶性,考查学生分析解决问题的能力,属于中档题.20.【答案】【解析】解:(1)由a n+1=,可得a2==,a3===,a4===.(2)猜测a n=(n∈N*).下面用数学归纳法证明:①当n=1时,左边=a1=a,右边==a,猜测成立.②假设当n=k(k∈N*)时猜测成立,即a k=.则当n=k+1时,a k+1====.故当n=k+1时,猜测也成立.由①,②可知,对任意n∈N*都有a n=成立.21.【答案】【解析】解:(Ⅰ)由题意设MN:y=kx+,由,消去y得,x2﹣2pkx﹣p2=0(*)由题设,x1,x2是方程(*)的两实根,∴,故p=2;(Ⅱ)设R(x3,y3),Q(x4,y4),T(0,t),∵T在RQ的垂直平分线上,∴|TR|=|TQ|.得,又,∴,即4(y3﹣y4)=(y3+y4﹣2t)(y4﹣y3).而y3≠y4,∴﹣4=y3+y4﹣2t.又∵y3+y4=1,∴,故T(0,).因此,.由(Ⅰ)得,x1+x2=4k,x1x2=﹣4,=.因此,当k=0时,S△MNT有最小值3.【点评】本题考查抛物线方程的求法,考查了直线和圆锥曲线间的关系,着重考查“舍而不求”的解题思想方法,考查了计算能力,是中档题.22.【答案】【解析】解:(1)椭圆C:=1,(a>b>0)的离心率,点(2,)在C上,可得,,解得a2=8,b2=4,所求椭圆C方程为:.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),把直线y=kx+b代入可得(2k2+1)x2+4kbx+2b2﹣8=0,故x M==,y M=kx M+b=,于是在OM的斜率为:K OM==,即K OM k=.∴直线OM的斜率与l的斜率的乘积为定值.【点评】本题考查椭圆方程的综合应用,椭圆的方程的求法,考查分析问题解决问题的能力.23.【答案】【解析】解:(1)∵直线l的参数方程为(t为参数),∴直线l的普通方程为.∵曲线C的极坐标方程是ρ=4,∴ρ2=16,∴曲线C的直角坐标系方程为x2+y2=16.(2)⊙C的圆心C(0,0)到直线l:+y﹣4=0的距离:d==2,∴cos,∵0,∴,∴.24.【答案】【解析】解:(1)由题可知,,,又5+12+m+1=M,解得M=20,n=0.6,m=2,p=0.1,则[15,20)组的频率与组距之比a为0.12.…(2)所取出两所获品价值之差的绝对值可能为0元、200元、400元、600元,则,P(x=200)=,P(x=400)=,P(x=600)=…0 200 400 600EX==…【点评】本题考查的是频率分布直方图和离散型随机变量的分布列和数学期望,属中档题,高考常考题型.。

重庆市中山外国语学校高二数学上学期第二次月考试题 理

重庆市中山外国语学校高二数学上学期第二次月考试题 理

重庆市中山外国语学校高二第二次月考理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:人教必修5第一、二章。

5.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知ABC △中,三个内角,,A B C 的对边分别为,,a b c ,a =1,b,B =45°,则A 等于 A .150°B .90°C .60°D .30°2.设等比数列{}n a 的前n 项和为n S ,且满足638a a =,则63S S = A .4B .5C .8D .93.在ABC △中,角A 、B 、C 所对的边分别为a 、b 、c ,若120B =,则222a ac c b ++-的值 A .大于0B .小于0C .等于0D .不确定4.在数列{}n a 中,1112,1n na a a +=-=-,则2018a 的值为 A .−2 B .13C .12D .325.公比不为1的等比数列{}n a 的前n 项和为n S ,且12a -,212a -,3a 成等差数列,若11a =,则4S = A .−5B .0C .5D .76.在ABC △中,角A 、B 、C 所对的边分别为a 、b 、c ,且222.b c a b c +=+若sin sin B ⋅2sin C A =,则ABC△的形状是A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形7.在ABC △中,π3B =,2AB =,D 为AB 的中点,BCD △,则AC 等于A .2BCD8.朱世杰是历史上最伟大的数学家之一,他所著的《四元玉鉴》卷中“如像招数”五问中有如下问题:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升”。

江苏省宝应中学2021-2022学年高二上学期月考测试数学理试题 Word版含答案

江苏省宝应中学2021-2022学年高二上学期月考测试数学理试题 Word版含答案

江苏省宝应中学17-18学年第一学期高二班级月考测试 (数学理科)一、填空题(本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上........).. 1.赋值语句为:235T T T ←←-+,,则最终T 的值为 ▲ .2.在一次数学测验中,某小组16名同学的成果与全班的平均分116分的差分别是2,3,3-,5-,-6,12,12,8,2,1-,4,10-,2-,5,5,6那么这个小组的平均分是 ▲ . 3.抛物线2=4x y 的焦点到准线的距离为 ▲ .4.样本数据8321,,,,x x x x 的平均数为6,若数据)8,7,6,5,4,3,2,1(63=-=i x y i i ,则8321,,,,y y y y ⋅⋅⋅的平均数为▲ .5.某校高一班级有同学400人,高二班级有同学360人,现接受分层抽样的方法从全校同学中抽出56人,其中从高一班级同学中抽出20人,则从高三班级同学中抽取的人数为 ▲6. 以线段AB :40(04)x y x +-=≤≤为直径的圆的方程为 ▲ .7、阅读如图所示的程序框,若输入的n 是28,则输出的变量S 的值是__▲____. 8.、椭圆192522=+y x 的两个焦点是21,F F ,过1F 的直线交椭圆于B A ,两点,且1222=+B F A F ,则||AB 的长为 ▲ .9.已知无论p 取任何实数,0)32()32()41(=-+--+p y p x p 必经过肯定点,则定点坐标为 ▲ .10.若直线x +n y +3=0与直线nx +9y +9=0平行,则n 的值等于__▲___11.双曲线2212x y m m -=+ 的一条渐近线方程为x y 2=,则此m 等于 ▲ .12已知平面上两点A(0,2)、B(0,-2),有一动点P 满足PA-PB=2,则P 点的轨迹方程为 ▲ .13. 若关于x 的方程24420x kx k ---+=有且只有两个不同的实数根,则实数k 的取值范围是 ▲14、 如图,已知椭圆12222=+by a x (0a b >>)的左、右焦点为1F 、2F ,P 是椭圆上一点,M 在1PF 上,且满足MP P F 31=,M F PO 2⊥,O 为坐标原点.椭圆离心率e 的取值范围 ▲ .二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.(本题14分)某赛季甲、乙两名运动员每场竞赛得分状况如下表: 第一场 其次场 第三场 第四场 第五场 第六场 第七场 甲 26 28 24 22 31 29 36 乙26293326402927(1)绘制两人得分的茎叶图;(2)分析并比较甲、乙两人七场竞赛的平均得分及得分的稳定程度.16.(本题14分)已知椭圆C 的方程为.(1)求k 的取值范围; (2)若椭圆C 的离心率,求k 的值.17.(本题14分)为了调查高一新生是否住宿,招生前随机抽取部分准高一同学调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中上学路上所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100]. (1)求直方图中x 的值;(2)假如上学路上所需时间不少于40分钟的同学应住宿,且该校方案招生1800名,请估量新生中应有多少名同学住宿;(3)若担忧排住宿的话,请估量全部同学上学的平均耗时(用组中值代替各组数据的平均值).(第7题)18. (本题16分)已知△ABC 三个顶点坐标分别为:A (1,0),B (1,4),C (3,2),直线l 经过点(0,4). (1)求△ABC 外接圆⊙M 的方程;(2)若直线l 与⊙M 相切,求直线l 的方程;(3)若直线l 与⊙M 相交于A ,B 两点,且AB=2,求直线l 的方程.19.(本题16分)如图,在平面直角坐标系xoy 中,圆C :22(1)16x y ++=,点(1,0)F ,E 是圆C 上的一个动点,EF 的垂直平分线PQ 与CE 交于点B ,与EF 交于点D 。

惠安县外国语学校2018-2019学年高二上学期第二次月考试卷数学

惠安县外国语学校2018-2019学年高二上学期第二次月考试卷数学

惠安县外国语学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.对于复数,若集合具有性质“对任意,必有”,则当时,等于( )A1B-1C0D2.方程x=所表示的曲线是()A.双曲线B.椭圆C.双曲线的一部分D.椭圆的一部分3.函数y=|a|x﹣(a≠0且a≠1)的图象可能是()A. B.C.D.4.若动点A,B分别在直线l1:x+y﹣7=0和l2:x+y﹣5=0上移动,则AB的中点M到原点的距离的最小值为()A.3B.2C.3D.45.复数i﹣1(i是虚数单位)的虚部是()A.1 B.﹣1 C.i D.﹣i6.设命题p:,则p为()A. B.C. D.7.如图Rt△O′A′B′是一平面图形的直观图,斜边O′B′=2,则这个平面图形的面积是()A.B.1 C.D.8.已知f(x)为偶函数,且f(x+2)=﹣f(x),当﹣2≤x≤0时,f(x)=2x;若n∈N*,a n=f(n),则a2017等于()A.2017 B.﹣8 C.D.9.复数z=(其中i是虚数单位),则z的共轭复数=()A.﹣i B.﹣﹣i C.+i D.﹣+i10.过抛物线y2=4x焦点的直线交抛物线于A,B两点,若|AB|=10,则AB的中点到y轴的距离等于()A.1 B.2 C.3 D.411.若函数y=x2+bx+3在[0,+∞)上是单调函数,则有()A.b≥0 B.b≤0 C.b>0 D.b<012.如图,在正四棱锥S﹣ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论:①EP∥BD;②EP⊥AC;③EP⊥面SAC;④EP∥面SBD中恒成立的为()A.②④B.③④C.①②D.①③二、填空题13.如图,在长方体ABCD﹣A1B1C1D1中,AB=5,BC=4,AA1=3,沿该长方体对角面ABC1D1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为.14.在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 是A 1D 1的中点,点P 在侧面BCC 1B 1上运动.现有下列命题:①若点P 总保持PA ⊥BD 1,则动点P 的轨迹所在曲线是直线;②若点P 到点A 的距离为,则动点P 的轨迹所在曲线是圆;③若P 满足∠MAP=∠MAC 1,则动点P 的轨迹所在曲线是椭圆;④若P 到直线BC 与直线C 1D 1的距离比为1:2,则动点P 的轨迹所在曲线是双曲线; ⑤若P 到直线AD 与直线CC 1的距离相等,则动点P 的轨迹所在曲线是抛物丝. 其中真命题是 (写出所有真命题的序号)15.设x ,y 满足的约束条件,则z=x+2y 的最大值为 .16.已知偶函数f (x )的图象关于直线x=3对称,且f (5)=1,则f (﹣1)= . 17.幂函数1222)33)(+-+-=m m xm m x f (在区间()+∞,0上是增函数,则=m .18.某校开设9门课程供学生选修,其中A ,B ,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有 种.三、解答题19.已知函数f (x )=alnx+,曲线y=f (x )在点(1,f (1))处的切线方程为y=2.(I )求a 、b 的值;(Ⅱ)当x >1时,不等式f (x )>恒成立,求实数k 的取值范围.20.十八届四中全会明确提出“以法治手段推进生态文明建设”,为响应号召,某市红星路小区的环保人士向该市政府部门提议“在全市范围内禁放烟花、炮竹”.为此,红星路小区的环保人士对该小区年龄在[15,75)(2)若从年龄在[55,65)、[65,75)的被调查者中各随机选取两人进行追踪调查,记被选4人中不赞成“禁放烟花、炮竹”的人数为ξ,求随机变量ξ的分布列和数学期望.21.若数列{a n}的前n项和为S n,点(a n,S n)在y=x的图象上(n∈N*),(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若c1=0,且对任意正整数n都有,求证:对任意正整数n≥2,总有.22.如图,A 地到火车站共有两条路径和,据统计,通过两条路径所用的时间互不影响,所用时间落在个时间段内的频率如下表:现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站。

河北省石家庄正中实验中学2020-2021学年高二上学期第二次月考数学试题(解析版)

河北省石家庄正中实验中学2020-2021学年高二上学期第二次月考数学试题(解析版)

河北省石家庄正中实验中学2020-2021学年高二上学期第二次月考数学试题一、单选题(每小题5分,共40分)1. 已知集合305x A x x ⎧⎫-=<⎨⎬-⎩⎭,集合{|46}B x x =<<,则A B =( ) A. (3,6) B.[3,6)C. [4,5) D . (4,5)〖答 案〗D〖解 析〗因为35x x -<-,所以()()350x x --<,所以35x <<,所以(3,5)A =,又因为(4,6)B =,所以()4,5A B ⋂=,故选:D.2. 直线x +(1+m )y =2-m 和直线mx +2y +8=0平行,则m 的值为( )A. 1B. 2-C. 1或2-D.23-〖答 案〗A 〖解 析〗∵直线()12x m y m++=-和直线280mx y ++=平行,∴()1210m m ⨯-+=,解得1m =或2-,当2m =-时,两直线重合,故选A.3. 一次选拔运动员,测得7名选手的身高(单位:cm )分布茎叶图如图,已知7人的平均身高为177cm ,有一名选手的身高记录不清楚,其末位数记为x ,则x 的值是( )A. 8B. 7C. 6D. 5〖答 案〗A〖解 析〗依题意,101103891701777x +++++++=,整理得:41 77x +=,解得:8x =,故选A.4. 有10件产品,其中3件是次品,从中任取两件,若X 表示取得次品的个数,则()2P X <等于( )A. 715B. 815C. 1315D. 1415〖答 案〗D〖解 析〗()()()112377221010142==1+=0=15C C C P X P X P X C C <+=,故选:D.5. 已知某地区中小学生人数和近视情况分别如图1和如图2所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A. 100,20B. 200,20C. 100,10D. 200,10〖答 案〗B〖解 析〗由题意知,样本容量为()3500450020002%200++⨯=,其中高中生人数为20002%40⨯=,高中生的近视人数为4050%20⨯=,故选B. 6. 2020年3月31日,某地援鄂医护人员A ,B ,C ,D ,E ,F ,6人(其中A 是队长)圆满完成抗击新冠肺炎疫情任务返回本地,他们受到当地群众与领导的热烈欢迎.当地媒体为了宣传他们的优秀事迹,让这6名医护人员和接见他们的一位领导共7人站一排进行拍照,则领导和队长站在两端且BC 相邻,而BD 不相邻的排法种数为( ) A. 36种B. 48种C. 56种D. 72种〖答 案〗D 〖解 析〗让这6名医护人员和接见他们的一位领导共7人站一排进行拍照,则领导和队长站在两端且BC 相邻,分2步进行分析: ①领导和队长站在两端,有222A =种情况,②中间5人分2种情况讨论:若BC 相邻且与D 相邻,有232312A A =种安排方法,若BC 相邻且不与D 相邻,有22222324A A A =种安排方法,则中间5人有12+24=36种安排方法, 则有23672⨯=种不同的安排方法; 故选:D .7. 两圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,若,∈∈a b R R 且0ab ≠,则2211a b +的最小值为( ) A. 1 B. 3 C. 19D. 49〖答 案〗A〖解 析〗由题意得两圆22()4x a y ++=与22(2)1x y b y +-=相外切,222149a b =+⇒+=,所以22222222221111(4)141()[5][51999a b a b a b a b b a ++=+=++≥+=,当且仅当22224=a b ba 时取等号,所以选A. 8. 图中长方形的总个数中,其中含阴影部分的长方形个数的概率为( )A. 124B. 1235C. 115D. 31210〖答 案〗B〖解 析〗长方形可由横着的5条线段选2条,竖着的7条线段选2条构成,故有2257210C C =种,若含阴影部分,则横向共有12种可能,纵向有6种可能,共72种可能,故概率721221035p ==,故选:B.二、多选题(每小题5分,共20分)9. 一副三角板由一块有一个内角为60︒的直角三角形和一块等腰直角三角形组成,如图所示, 90,B F ∠=∠=︒60,45,A D BC DE ∠=︒∠=︒=,现将两块三角形板拼接在一起,得三棱锥F CAB -,取BC 中点O 与AC 中点M ,则下列判断中正确的是( )A. 直线BC ⊥面OFMB. AC 与面OFM 所成的角为定值C. 设面ABF面MOF l =,则有l ∥ABD. 三棱锥F COM -体积为定值. 〖答 案〗ABC〖解 析〗对于A ,由BC 中点O 与AC 中点M ,得//MO AB ,90,B F ∠=∠=︒得BC MO ⊥,由BCF △为等腰直角三角形得BC FO ⊥, 由MO FO O ⋂=,MO FO ⊂,面OFM ,得直线BC ⊥面OFM ,故A 正确;对于B ,由A 得,AC 与面OFM 所成的角为C ∠,为定值30,故B 正确; 对于C ,由A 得,//MO AB ,故//AB 面OFM ,由AB 面ABF ,面ABF面MOF l =,所以l ∥AB ,故C 正确;对于D ,COM 的面积为定值,但三棱锥F COM -的高会随着F 点的位置移动而变化, 故D 错误. 故选:ABC.10. 在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.过去10日,A 、B 、C 、D 四地新增疑似病例数据信息如下,一定符合没有发生大规模群体感染标志的是( ) A. A 地:中位数为2,极差为5 B. B 地:总体平均数为2,众数为2 C. C 地:总体平均数为1,总体方差大于0 D. D 地:总体平均数为2,总体方差为3 〖答 案〗AD〖解 析〗对A,因为甲地中位数为2,极差为5,故最大值不会大于257+=.故A 正确. 对B,若乙地过去10日分别为0,0,0,2,2,2,2,2,2,8则满足总体平均数为2,众数为2,但不满足每天新增疑似病例不超过7人,故B 错误.对C,若丙地过去10日分别为0,0,0,0,0,0,0,0,1,9,则满足总体平均数为1,总体方差大于0, 但不满足每天新增疑似病例不超过7人,故C 错误.对D,利用反证法,若至少有一天疑似病例超过7人,则方差大于()2182 3.6310⨯-=>.与题设矛盾,故连续10天,每天新增疑似病例不超过7人.故D 正确. 故选:AD.11. 设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )A. 数列{}n S n +为等比数列B. 数列{}n a 的通项公式为121n n a -=-C. 数列{}1n a +为等比数列D. 数列{}2n S 的前n 项和为2224n n n +--- 〖答 案〗AD〖解 析〗因为121n n S S n +=+-,所以11222n n n n S n S nS n S n ++++==++.又112S +=,所以数列{}n S n +是首项为2,公比为2的等比数列,故A 正确;所以2nn S n +=,则2n n S n=-.当2n ≥时,1121n n n n a S S --=-=-,但11121a -≠-,故B 错误;由1231,1,3a a a ===可得12312,12,14a a a +=+=+=,即32211111a a a a ++≠++,故C 错; 因为1222n n S n+=-,所以2311222...2221222...22n n S S S n++++=-⨯+-⨯++-()()()23122412122 (2)212 (22412)2n n n n n n n n n ++--⎡⎤=+++-+++=-+=---⎢⎥-⎣⎦所以数列{}2n S 的前n 项和为2224n n n +---,故D 正确. 故选:AD .12. 在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且::4:5:6a b c =,则下列结论正确的是( )A. sin :sin :sin 4:5:6A B C =B.ABC 是钝角三角形C.ABC 的最大内角是最小内角的2倍D. 若6c =,则ABC外接圆半径为7〖答 案〗ACD〖解 析〗由::4:5:6a b c =,可设4a x =,5b x =,6c x =,()0x >,根据正弦定理可知sin :sin :sin 4:5:6A B C =,选项A 描述准确;由c 为最大边,可得2222221625361cos 022458a b c x x x C ab x x +-+-===>⋅⋅,即C 为锐角,选项B 描述不准确;2222222536163cos 22564b c a x x x A bc x x +-+-===⋅⋅,291cos 22cos 121cos 168A A C =-=⨯-==,由2A ,C()0,π∈,可得2A C =,选项C 描述准确;若6c =,可得2sin 7c R C===,ABC外接圆半径为7,选项D 描述准确.故选:ACD.三、填空题(每小题5分,共20分) 13. 圆心在x 轴上,且与直线1:l y x=和2:2l y x =-都相切的圆的方程为______.〖答 案〗()22112x y -+=〖解 析〗设所求圆的方程为()()2220x a y r r -+=>,因圆()()2220x a y r r -+=>与直线1:l y x =和2:2l y x =-都相切,r==,解得1a =,22r,所以圆的方程为()22112x y -+=.故答案为:()22112x y -+=.14. 在()821121x x ⎛⎫++ ⎪⎝⎭的展开式中,常数项为______.(用数字作答)〖答 案〗57〖解 析〗由题得811x ⎛⎫+ ⎪⎝⎭的通项为1881()r r r r r T C C x x -+==, 令r =0得811x ⎛⎫+ ⎪⎝⎭的常数项为081C =,令-r =-2,即r=2,得811x ⎛⎫+ ⎪⎝⎭的2x -的系数为2828C =. 所以()821121x x ⎛⎫++ ⎪⎝⎭的常数项为1+2×28=57. 故答案为57.15. 高二某班共有60名学生,其中女生有20名,三好学生占全班人数的16,而且三好学生中女生占一半.现在从该班任选一名同学参加某一座谈会.则在已知没有选上女生的条件下,选上的是三好学生的概率为__________.〖答 案〗18〖解 析〗∵高二某班共有60名学生,其中女生有20名,三好学生占全班人数的16,而且三好学生中女生占一半.,∴本班有40名男生,男生中有5名三好学生, 由题意知,本题可看做一个古典概型,试验发生包含的事件是从40名男生中选出一个人,共有40种结果, 满足条件的事件是选到的是一个三好学生,共有5种结果,∴没有选上女生的条件下,选上的是三好学生的概率是540=18, 故答案为:18.16. 在三棱锥P ABC -中,2AB =,AC BC ⊥,若该三棱锥的体积为23,则其外接球表面积的最小值为_________.〖答 案〗25π4〖解 析〗2AB =,AC BC ⊥,故底面三角形外接圆半径为1r =,()2211124ABC S CA CB CA CB ∆=⋅≤+=,2CA CB ∴⋅≤,当CA CB ==时等号成立,由1233ABC V S h =⋅=△,112323V CA CB h =⨯⋅⋅=,42h CA CB =≥⋅,当P 离平面ABC 最远时,外接球表面积最小,此时,P 在平面ABC 的投影为AB 中点1O , 设球心为O ,则O 在1PO 上,故()2221R h R =-+,化简得到122h R h =+,注意到函数122x y x =+在[)2,+∞上单调递增,故min 54R =,所以2min min 254ππ4S R ==.故答案为:25π4.四、解答题(17题10分,18--22题每题12分,共70分)17. 已知a ,b ,c 分别是ABC 内角A ,B ,C 的对边,且满足()22-=-b c a bc .(1)求角A 的大小;(2)若=3a ,sin =2sin C B ,求ABC 的面积. 解:(1)∵()22=--b c a bc ,可得:222=+-b c a bc ,∴由余弦定理可得:2221cos 222+-===b c a bc A bc abc , 又∵()0,A π∈,∴3A π=.(2)由sin =2sin C B 及正弦定理可得:=2c b ,∵=3a ,3A π=,∴由余弦定理可得:222222=2cos ==3+-+-a b c bc A b c bc b ,∴解得:bc∴11bcsin =22ABCSA =.18. 随着互联网金融的发展,很多平台都推出了自己的虚拟信用支付,比较常用的有蚂蚁花呗、京东白条.花呗与信用卡有一个共同点就是可以透支消费,对于很多90后来说,他们更习惯提前消费.某研究机构随机抽取了1000名90后,对他们的信用支付方式进行了调查,得到如下统计表:每个人都仅使用一种信用支付方式,各人支付方式相互独立,以频率估计概率. (1)估计90后使用蚂蚁花呗的概率;(2)在所抽取的1000人中用分层抽样的方法在使用银行信用卡和蚂蚁花呗的人中随机抽取8人,再在这8人中随机抽取4人,记X 为这4人中使用蚂蚁花呗的人数,求X 的分布列及数学期望和方差.解:(1)100030015050500a =---=,所以使用蚂蚁花呗的概率为5000.51000=.(2)这8人中使用信用卡的人数为30083300500⨯=+人,使用蚂蚁花呗的人数为5人,则随机变量X 的取值为1,2,3,4.所以()3135481114C C P X C ===,()223548327C C P X C ===,()133548337C C P X C ===,()45481414C P X C ===.所以随机变量X 分布列为故()1331512341477142E X =⨯+⨯+⨯+⨯=,()222251535351151234214272721428D X ⎛⎫⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯+-⨯=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 19. 已知{}n a 为等差数列,前n 项和为*()∈n S n N ,{}n b 是首项为2的等比数列,且公比大于0,2334111412,2,11b b b a a S b +==-=.(Ⅰ)求{}n a 和{}n b 的通项公式; (Ⅱ)求数列2{}n n a b 的前n 项和*()∈n N .解:(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由已知2312b b +=,得()2112b q q +=,而12b =,所以260q q +-=.又因为0q >,解得2q =.所以,2n n b =.由3412b a a =-,可得138d a -=①.由11411S b =,可得1516a d +=②,联立①②,解得11,3a d ==,由此可得32n a n =-.所以,{}n a 通项公式为32n a n =-,{}n b 的通项公式为2nn b =.(Ⅱ)设数列2{}n n a b 前n 项和为nT ,由262n a n =-,有()2342102162622nn T n =⨯+⨯+⨯++-⨯,()()2341242102162682622n n n T n n +=⨯+⨯+⨯++-⨯+-⨯,上述两式相减,得()23142626262622n n n T n +-=⨯+⨯+⨯++⨯--⨯()()()12121246223421612nn n n n ++⨯-=---⨯=----.得()234216n n T n +=-+.所以,数列2{}n n a b 的前n 项和为()234216n n +-+.20. 某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费对年销售量(单位:t )的影响.该公司对近5年的年宣传费和年销售量数据进行了研究,发现年宣传费x (万元)和年销售量y (单位:t )具有线性相关关系,并对数据作了初步处理,得到下面的一些统计量的值.(1)根据表中数据建立年销售量y 关于年宣传费x 的回归方程;(2)已知这种产品的年利润z 与x ,y 的关系为20.05 1.85z y x =--,根据(1)中的结果回答下列问题:①当年宣传费为10万元时,年销售量及年利润的预报值是多少?②估算该公司应该投入多少宣传费,才能使得年利润与年宣传费的比值最大.附:问归方程ˆˆˆy bx a =+中的斜率和截距的最小二乘估计公式分别为()()()1111112221111ˆnni i nni i x ynx yx x yybx nxx x====---==--∑∑∑∑,ˆˆa y bx =-.参考数据:11188.5Si x y==∑,21190Si x==∑.解:(1)由题意2453645x ++++==, 2.5 4.543645y ++++==,21222188.554ˆ0.859054ni ii nii x y nx ybxnx ==--⨯∴===-⨯-∑∑,ˆˆ40.8540.6a y bx =-=-⨯=,0.80.ˆ56y x ∴=+. (2)①由(1)得220.05 1.850.050.85 1.25z y x x x =+--=--, 当10x =时,0.85100.ˆ69.1y ∴=⨯+=,20.05100.8510 1.25 2.25z =-⨯⨯-=+. 即当年宣传费为10万元时,年销售量为9.1,年利润的预报值为2.25.②令年利润与年宣传费的比值为w ,则()1.250.050.850w x x x =--+>,1.25 1.250.050.850.050.85w x x x x ⎛⎫=--+=-++≤- ⎪⎝⎭0.850.35=.当且仅当1.250.05x x =即5x =时取最大值.故该公司应该投入5万元宣传费,才能使得年利润与年宣传费的比值最大.21. 如图,多面体ABCDEF 中,四边形ABCD 为矩形,二面角A CD F --为60︒,//DE CF ,CD DE ⊥,2AD =,3DE DC ==,6CF =.(1)求证://BF 平面ADE ;(2)G 为线段CF 上的点,当14CG CF =时,求二面角B EG D --的余弦值. (1)证明:因为四边形ABCD 是矩形,所以//BC AD , 又因为BC ⊄平面ADE ,所以//BC 平面ADE ,因为//DE CF ,CF ⊄平面ADE ,所以//CF 平面ADE ,又因为BCCF C =,所以平面//BCF 平面ADF ,而BF ⊂平面BCF ,所以//BF 平面ADE .(2)解:因为CD AD ⊥,CD DE ⊥,所以60ADE ∠=︒, 因为CD ⊥平面ADE ,故平面CDEF ⊥平面ADE , 作AO DE ⊥于点O ,则AO ⊥平面CDEF ,以O 为原点,平行于DC 的直线为x 轴,DE 所在直线为y 轴,OA 所在直线为z 轴,建立如图所示的空间直角坐标系O xyz -,由2AD =,3DE =,60ADE ∠=︒,得1DO =,2EO =,则A ,(3,1,0)C -,(0,1,0)D -,(0,2,0)E ,所以OB OA AB OA DC =+=+=,由已知1(3,,0)2G,所以(3,2,BE =-,10,,2BG ⎛= ⎝, 设平面BEG 的一个法向量为(,,)m x y z =,则320102m BE x y m BG y ⎧⋅=-+=⎪⎨⋅=-=⎪⎩,取3x =,6y =,z =m =,又平面DEG 的一个法向量为(0,0,1)n =,所以31cos ,||||4936m nm n m n ⋅<>===⋅+,即二面角B EG D --的余弦值为14.22. 棋盘上标有第0,1,2,…,100站,棋子开始时位于第0站,棋手抛掷均匀硬币走跳棋游戏.若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到跳到第99站或第100站时,游戏结束.设棋子跳到第n 站的概率为P n .(1)当游戏开始时若抛掷均匀硬币3次后求棋手所走站数之和X 的分布列与数学期望;(2)证明:()()1111982n n n n P p p p n +--=--≤≤;(3)求P 99,P 100的值.(1)解:由题意得X 的可能取值为3,4,5,6,P (X =3)=(12)318=, P (X =4)13313()28C ==, P (X =5)23313()28C ==, P (X =6)=(12)318=.∴X 的分布列如下:∴()13319345688882E X =⨯+⨯+⨯+⨯=. (2)证明: 根据题意,棋子要到第(1)n +站,有两种情况,由第n 站跳1站得到,其概率为12nP ,也可以由第(n )1-站跳2站得到,其概率为112n P -,所以,111122n n n P P P +-=+.等式两边同时减去nP 得()111111(198)222n n n n n n P P P P P P n +---=-+=--≤≤;(3)解:由(2)可得01P =,112P =,210113224P P P =+=.由(2)可知,数列{}1n n P P +-是首项为2114P P -=,公比为12-的等比数列,111111422n n n n P P -++⎛⎫⎛⎫∴-=⋅-=- ⎪⎪⎝⎭⎝⎭,()()()98239999121329998111421111112222212P P P P P P P P ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎣⎦∴=+-+-++-=+-+-++-=+ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭-- ⎪⎝⎭10021132⎛⎫=- ⎪⎝⎭,又999998991122P P ⎛⎫-=-=- ⎪⎝⎭,则989921132P ⎛⎫=+ ⎪⎝⎭, 由于若跳到第99站时,自动停止游戏,故有10098991111232P P ⎛⎫==+ ⎪⎝⎭.。

高二数学上学期第二次月考试题含解析

高二数学上学期第二次月考试题含解析

远中学2021-2021学年度第一学期第二次月考阶段测试本卷贰O贰贰年贰月捌日编写;出题人:令狐学复;欧阳化语;令狐理总。

高二数学试题本套试卷满分是160分,考试时间是是120分钟。

填空题〔此题包括14小题,每一小题5分,一共70分。

答案写在答题卡相应位置〕1. 抛物线的准线方程为:______________。

【答案】【解析】试题分析:开口向右,所以它的准线方程为x=-1考点:此题考察抛物线的HY方程点评:开口向右的抛物线方程为,准线方程为2. 椭圆的离心率_______。

【答案】【解析】椭圆,故答案为:。

3. 函数,那么的导函数____________。

【答案】【解析】根据余弦函数的求导法那么和指数函数的求导法那么得到。

故答案为:。

4. 设为虚数单位,为实数〕,那么__________。

【答案】【解析】由题干知道根据复数相等的概念得到故答案为:2.5. 双曲线〔>0〕的一条渐近线为,那么______。

【答案】【解析】双曲线的渐近线方程为,,,那么考点:此题考点为双曲线的几何性质,正确利用双曲线的HY方程,求出渐近线方程,利用已给渐近线方程求参数.6. 椭圆中心在原点,一个焦点为,且长轴长是短轴长的2倍,那么该椭圆的HY方程是_____。

【答案】【解析】椭圆中心在原点,一个焦点为,且长轴长是短轴长的2倍。

故得到故得到椭圆方程为:。

故答案为:。

7. 函数的最大值是____________。

【答案】【解析】∵f〔x〕=,∴f′〔x〕=,令f′〔x〕=0得x=e.∵当x∈〔0,e〕时,f′〔x〕>0,f〔x〕在〔0,e〕上为增函数,当x∈〔e,+∞〕时,f′〔x〕<0,那么在〔e,+∞〕上为减函数,∴f max〔x〕=f〔e〕=.故答案为:。

8. 椭圆C:的左、右焦点为F1,F2,离心率为,过F2的直线交C于A,B两点.假设△AF1B的周长为,那么C的HY方程为________。

【答案】【解析】根据题意,因为△AF1B的周长为4,所以|AF1|+|AB|+|BF1|=|AF1|+|AF2| +|BF1|+|BF2|=4a=4,所以a=.又因为椭圆的离心率e=,所以c=1,b2=a2-c2=3-1=2,所以椭圆C的方程为9. ,函数,假设在上是单调减函数,那么的取值范围是______________。

2022-2023学年江西省南昌市第二中学高二上学期第二次月考数学试题(解析版)

2022-2023学年江西省南昌市第二中学高二上学期第二次月考数学试题(解析版)

2022-2023学年江西省南昌市第二中学高二上学期第二次月考数学试题一、单选题1.将直线l 沿x 轴正方向平移2个单位,再沿y 轴负方向平移3个单位,又回到了原来的位置,则l 的斜率是( ) A .32-B .4C .1D .12【答案】A【分析】设直线l 上任意一点()00,P x y ,再根据题意可得()2002,3P x y +-也在直线上,进而根据两点间的斜率公式与直线的斜率相等列式求解即可.【详解】设直线l 上任意一点()00,P x y ,将直线l 沿x 轴正方向平移2个单位,则P 点移动后为()1002,P x y +,再沿y 轴负方向平移3个单位,则1P 点移动后为()2002,3Px y +-. ∵2,P P 都在直线l 上,∴直线l 的斜率00003322k y y x x --=-+-=.故选:A .2.如图所示,在平行六面体1111ABCD A B C D -中,E 为AC 与BD 的交点,则下列向量中与1D E 相等的向量是( )A .111111122A B A D A A -+ B .111111122A B A D A A ++ C .111111122A B A D A A -++D .111111122A B A D A A --+【答案】A【分析】根据平行六面体的特征和空间向量的线性运算依次对选项的式子变形,即可判断. 【详解】A :11111111111111111()2222A B A D A A A B A D D D D B D D -+=-+=+1111=2DB D D DE D D D E =+=+,故A 正确; B :11111111111111111()2222A B A D A A A B A D A A AC A A ++=++=+ 111AE A A A E D E =+=≠,故B 错误;C :11111111111111111()2222A B A D A A B A A D B B B D B B -++=++=+111BE B B B E D E =+=≠,故C 错误;D :11111111111111111()2222A B A D A A A B A D A A AC A A --+=-++=-+111AE A A EA A A D E =-+=+≠,故D 错误;故选:A3.已知圆221:(1)(2)9O x y -++=,圆2224101:2O x x y y ++-+=,则这两个圆的位置关系为( )A .外离B .外切C .相交D .内含【答案】C【分析】求得两个圆的圆心和半径,求得圆心距,由此确定正确选项. 【详解】圆1O 的圆心为1,2,半径为13r =, 2242110x y x y +++-=可化为()()222214x y +++=,圆2O 的圆心为()2,1--,半径为24r =,圆心距12O O =21211,7,17r r r r -=-=,所以两个圆的位置关系是相交. 故选:C4.已知空间中三点(0,1,0)A ,(2,2,0)B ,(1,3,1)C -,则( )A .AB 与AC 是共线向量 B .与向量AB 方向相同的单位向量是55⎛⎫⎪ ⎪⎝⎭C .AB 与BCD .平面ABC 的一个法向量是(1,2,5)-【答案】D【分析】根据共线向量定理,单位向量,法向量,向量夹角的定义,依次计算,即可得到答案; 【详解】对A ,(2,1,0),(1,2,1)AB AC ==-,又不存在实数λ,使得AB AC λ=,∴AB 与AC 不是共线向量,故A 错误;对B ,||5AB =,∴与向量AB 方向相同的单位向量是55⎛⎫⎪ ⎪⎝⎭,故B 错误;对C ,(3,1,1)BC =-,cos ,||||5AB BC AB BC AB BC ⋅-<>===,故C 错误;对D ,设(,,)n x y z =为面ABC 的一个法向量,∴0,0n AB n AC ⋅=⋅=,∴2020x y x y z +=⎧⎨-++=⎩,取1,2,5x y z ==-=,∴平面ABC 的一个法向量是(1,2,5)-,故D 正确;故选:D5.已知椭圆22221(0)x y a b a b+=>>的左右焦点分别1F ,2F ,焦距为4,若以原点为圆心,12F F 为直径的圆恰好与椭圆有两个公共点,则此椭圆的方程为( ) A .22184x y +=B .2213216x y +=C .22148x y +=D .221164x y +=【答案】A【分析】已知2c ,又以原点为圆心,12F F 为直径的圆恰好与椭圆有两个公共点,这两个公共点只能是椭圆短轴的顶点,从而有b c =,于是可得a ,从而得椭圆方程。

山西省2024-2025学年高二上学期第二次月考试题 数学含答案

山西省2024-2025学年高二上学期第二次月考试题 数学含答案

山西省2024—2025学年第一学期第二次阶段性考试题(卷)高二年级数学(答案在最后)卷面总分值150分考试时间120分钟第I 卷(客观题)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.直线10x ++=的倾斜角为()A.π6B.5π6 C.π3D.2π32.已知m 为实数,直线()()12:220,:5210l m x y l x m y ++-=+-+=,则“12l l //”是“3m =-”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.若方程2224240x y mx y m m ++-+-=表示一个圆,则实数m 的取值范围是()A .1m <- B.1m < C.1m >- D.1m ≥-4.过点(1,2)的直线被圆229x y +=所截弦长最短时的直线方程是()A.250x y +-=B.20x y -=C.230x y -+= D.20x y +=5.已知a ,b 都是正实数,且直线()2360x b y --+=与直线50bx ay +-=互相垂直,则23a b +的最小值为()A.12B.10C.8D.256.如图,已知空间四边形OABC ,其对角线为,OB AC ,,M N 分别为,OA BC 的中点,点G 在线段MN上,3MG GN =,若OG xOA yOB zOC =++ ,则x y z ++=()A.118B.98C.78D.587.直线:(2)(21)340l m x m y m -++++=分别与x 轴,y 轴交于A 、B 两点,若三角形AOB 面积为5,则实数m 的解有几个()A.B.2C.3D.48.若圆()()22:344C x y -+-=上总存在两点关于直线43120ax by ++=对称,则过圆C 外一点(),a b 向圆C 所作的切线长的最小值是()A.4B.2C.25D.27二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.9.下列说法一定正确的是()A.过点(0,1)的直线方程为1y kx =+B.直线sin cos 10x y αα-+=的倾斜角为αC.若0ab >,0bc <,则直线0ax by c ++=不经过第三象限D.过()11,x y ,()22,x y 两点的直线方程为()()()()121121y y x x x x y y --=--10.已知直线:50l x y +-=与圆22:(1)2C x y -+=,若点P 为直线l 上的一个动点,下列说法正确的是()A.直线l 与圆C 相离B.圆C 关于直线l 对称的圆的方程为22(5)(4)2x y -++=C.若点Q 为圆C 上的动点,则PQ 的取值范围为)2,+∞D.圆C 上存在两个点到直线l 的距离为32211.如图,在三棱锥P ABC -中,2AB BC ==,BA BC ⊥,2PA PB PC ===,O 为AC 的中点,点M 是棱BC 上一动点,则下列结论正确的是()A.三棱锥P ABC -1+B.若M 为棱BC 的中点,则异面直线PM 与AB 所成角的余弦值为77C.若PC 与平面PAM 所成角的正弦值为12,则二面角M PA C --的正弦值为3D.PM MA +的取值范围为4⎤⎥⎦第Ⅱ卷(主观题)三、填空题:本大题共3小题,每小题5分,共15分.12.已知实数x ,y 满足1355y x =-,且23x -≤≤,则31y x -+的取值范围是__________.13.如图,已知点(8,0)A ,(0,4)B -,从点(3,0)P 射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到点P ,则光线所经过的路程是__________.14.已知圆C :()()22114x y ++-=,若直线5y kx =+上总存在点P ,使得过点P 的圆C 的两条切线夹角为60o ,则实数k 的取值范围是_________四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知直线1l 的方程为240x y +-=,若2l 在x 轴上的截距为32,且12l l ⊥.(1)求直线1l 与2l 的交点坐标;(2)已知直线3l 经过1l 与2l 的交点,且在y 轴上的截距是在x 轴上的截距的2倍,求3l 的方程.16.已知圆C 的圆心在直线y x =上,且过点(3,0)A ,(2,1)B -(1)求圆C 的方程;(2)若直线:4390l x y -+=与圆C 交于E 、F 两点,求线段EF 的长度.17.已知线段AB 的端点B 的坐标是(6,8),端点A 在圆2216x y +=上运动,M 是线段AB 的中点,且直线l 过定点(1,0).(1)求点M 的轨迹方程;(2)记(1)中求得的图形为曲线E ,若直线l 与曲线E 只有一个公共点,求直线l 的方程.18.已知三棱锥P ABC -满足,,AB AC AB PB AC PC ⊥⊥⊥,且3,AP BP BC ===(1)求证:⊥AP BC ;(2)求直线BC 与平面ABP 所成角的正弦值,19.在平面直角坐标系xOy 中,已知两点()()4,0,1,0S T ,动点P 满足2PS PT =,设点P 的轨迹为C .如图,动直线l 与曲线C 交于不同的两点,A B (,A B 均在x 轴上方),且180ATO BTO ∠+∠= .(1)求曲线C 的方程;(2)当A 为曲线C 与y 轴正半轴的交点时,求直线l 的方程;(3)是否存在一个定点,使得直线l 始终经过此定点?若存在,求出定点的坐标;若不存在,请说明理由.山西省2024—2025学年第一学期第二次阶段性考试题(卷)高二年级数学卷面总分值150分考试时间120分钟第I卷(客观题)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.【1题答案】【答案】B【2题答案】【答案】B【3题答案】【答案】C【4题答案】【答案】A【5题答案】【答案】D【6题答案】【答案】C【7题答案】【答案】D【8题答案】【答案】D二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.【9题答案】【答案】CD【10题答案】【答案】ACD【11题答案】【答案】ABD第Ⅱ卷(主观题)三、填空题:本大题共3小题,每小题5分,共15分.【12题答案】【答案】[)3,4,4⎛⎤-∞-+∞ ⎥⎝⎦【13题答案】【答案】【14题答案】【答案】0k ≥或815k ≤-.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)()2,1(2)20x y -=或250x y +-=【16题答案】【答案】(1)22(1)(1)5x y -+-=.(2)2.【17题答案】【答案】(1)()()22344x y -+-=(2)1x =或3430x y --=【18题答案】【答案】(1)证明见解析(2)10【19题答案】【答案】(1)224x y +=(2)122y x =-+4,0(3)存在,定点为()。

历下区第四中学2018-2019学年高二上学期第二次月考试卷数学

历下区第四中学2018-2019学年高二上学期第二次月考试卷数学

历下区第四中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.设0<a<1,实数x,y满足,则y关于x的函数的图象形状大致是()A. B. C.D.2.设F为双曲线22221(0,0)x ya ba b-=>>的右焦点,若OF的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为1||2OF,则双曲线的离心率为()A.B.3C.D.3【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想.3.某几何体的三视图如图所示,该几何体的体积是()A.B.C. D.4.垂直于同一条直线的两条直线一定()A.平行B.相交C.异面D.以上都有可能5.已知偶函数f(x)=log a|x﹣b|在(﹣∞,0)上单调递增,则f(a+1)与f(b+2)的大小关系是()A.f(a+1)≥f(b+2)B.f(a+1)>f(b+2)C.f(a+1)≤f(b+2)D.f(a+1)<f(b+2)6.已知数列,则5是这个数列的()A.第12项B.第13项C.第14项D.第25项7.直线l将圆x2+y2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l的方程是()A .x ﹣y+1=0,2x ﹣y=0B .x ﹣y ﹣1=0,x ﹣2y=0C .x+y+1=0,2x+y=0D .x ﹣y+1=0,x+2y=08. 已知曲线C 1:y=e x 上一点A (x 1,y 1),曲线C 2:y=1+ln (x ﹣m )(m >0)上一点B (x 2,y 2),当y 1=y 2时,对于任意x 1,x 2,都有|AB|≥e 恒成立,则m 的最小值为( )A .1B .C .e ﹣1D .e+19. 已知直线ax+by+c=0与圆O :x 2+y 2=1相交于A ,B 两点,且,则的值是( )A .B .C .D .010.四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )A .96B .48C .24D .011.把函数y=cos (2x+φ)(|φ|<)的图象向左平移个单位,得到函数y=f (x )的图象关于直线x=对称,则φ的值为( )A .﹣B .﹣C .D .12.为了解决低收入家庭的住房问题,某城市修建了首批108套住房,已知C B A ,,三个社区分别有低收入家 庭360户,270户,180户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从C 社 区抽取低收入家庭的户数为( )A .48B .36C .24D .18【命题意图】本题考查分层抽样的概念及其应用,在抽样考查中突出在实际中的应用,属于容易题.二、填空题13.已知含有三个实数的集合既可表示成}1,,{aba ,又可表示成}0,,{2b a a +,则 =+20042003b a .14.函数()y f x =的定义域是[]0,2,则函数()1y f x =+的定义域是__________.111]15.若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数1212||z z z +在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限【命题意图】本题考查复数的几何意义、模与代数运算等基础知识,意在考查转化思想与计算能力. 16.当a >0,a ≠1时,函数f (x )=log a (x ﹣1)+1的图象恒过定点A ,若点A 在直线mx ﹣y+n=0上,则4m +2n 的最小值是 .17.如图所示,在三棱锥C ﹣ABD 中,E 、F 分别是AC 和BD 的中点,若CD=2AB=4,EF ⊥AB ,则EF 与CD 所成的角是 .18.某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为 .三、解答题19.(本小题满分12分)设f (x )=-x 2+ax +a 2ln x (a ≠0). (1)讨论f (x )的单调性;(2)是否存在a >0,使f (x )∈[e -1,e 2]对于x ∈[1,e]时恒成立,若存在求出a 的值,若不存在说明理由.20.(本小题满分12分)设椭圆2222:1(0)x y C a b a b+=>>的离心率12e =,圆22127x y +=与直线1x y a b +=相切,O 为坐标原点.(1)求椭圆C 的方程;(2)过点(4,0)Q -任作一直线交椭圆C 于,M N 两点,记MQ QN λ=,若在线段MN 上取一点R ,使 得MR RN λ=-,试判断当直线运动时,点R 是否在某一定直一上运动?若是,请求出该定直线的方 程;若不是,请说明理由.21.已知集合A={x|2≤x≤6},集合B={x|x≥3}.(1)求C R(A∩B);(2)若C={x|x≤a},且A C,求实数a的取值范围.22.已知函数f(x0=.(1)画出y=f(x)的图象,并指出函数的单调递增区间和递减区间;(2)解不等式f(x﹣1)≤﹣.23.已知数列{a n}满足a1=﹣1,a n+1=(n∈N*).(Ⅰ)证明:数列{+}是等比数列;(Ⅱ)令b n=,数列{b n}的前n项和为S n.①证明:b n+1+b n+2+…+b2n<②证明:当n≥2时,S n2>2(++…+)24.已知函数f(x)=x|x﹣m|,x∈R.且f(4)=0(1)求实数m的值.(2)作出函数f(x)的图象,并根据图象写出f(x)的单调区间(3)若方程f(x)=k有三个实数解,求实数k的取值范围.历下区第四中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:0<a<1,实数x,y满足,即y=,故函数y为偶函数,它的图象关于y轴对称,在(0,+∞)上单调递增,且函数的图象经过点(0,1),故选:A.【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题.2.【答案】B【解析】3.【答案】A【解析】解:几何体如图所示,则V=,故选:A.【点评】本题考查的知识点是由三视图求体积,正确得出直观图是解答的关键.4.【答案】D【解析】解:分两种情况:①在同一平面内,垂直于同一条直线的两条直线平行;②在空间内垂直于同一条直线的两条直线可以平行、相交或异面.故选D【点评】本题主要考查在空间内两条直线的位置关系.5.【答案】B【解析】解:∵y=log a|x﹣b|是偶函数∴log a|x﹣b|=log a|﹣x﹣b|∴|x﹣b|=|﹣x﹣b|∴x2﹣2bx+b2=x2+2bx+b2整理得4bx=0,由于x不恒为0,故b=0由此函数变为y=log a|x|当x∈(﹣∞,0)时,由于内层函数是一个减函数,又偶函数y=log a|x﹣b|在区间(﹣∞,0)上递增故外层函数是减函数,故可得0<a<1综上得0<a<1,b=0∴a+1<b+2,而函数f(x)=log a|x﹣b|在(0,+∞)上单调递减∴f(a+1)>f(b+2)故选B.6.【答案】B【解析】由题知,通项公式为,令得,故选B答案:B7.【答案】C【解析】解:圆x2+y2﹣2x+4y=0化为:圆(x﹣1)2+(y+2)2=5,圆的圆心坐标(1,﹣2),半径为,直线l将圆x2+y2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l经过圆心与坐标原点.或者直线经过圆心,直线的斜率为﹣1,∴直线l的方程是:y+2=﹣(x﹣1),2x+y=0,即x+y+1=0,2x+y=0.故选:C.【点评】本题考查直线与圆的位置关系,直线的截距式方程的求法,考查计算能力,是基础题.8.【答案】C【解析】解:当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,∴0<1+ln(x2﹣m)≤,∴.∵lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.∴1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,化为m≥x﹣e x﹣e,x>m+.令f(x)=x﹣e x﹣e,则f′(x)=1﹣e x﹣e,可得x=e时,f(x)取得最大值.∴m≥e﹣1.故选:C.9.【答案】A【解析】解:取AB的中点C,连接OC,,则AC=,OA=1∴sin =sin∠AOC==所以:∠AOB=120°则•=1×1×cos120°=.故选A.10.【答案】B【解析】排列、组合的实际应用;空间中直线与直线之间的位置关系.【专题】计算题;压轴题.【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,求安全存放的不同方法的种数.首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况.然后求出即可得到答案.【解答】解:8种化工产品分4组,设四棱锥的顶点是P ,底面四边形的个顶点为A 、B 、C 、D .分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,(PA 、DC ;PB 、AD ;PC 、AB ;PD 、BC )或(PA 、BC ;PD 、AB ;PC 、AD ;PB 、DC )那么安全存放的不同方法种数为2A 44=48.故选B .【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖. 11.【答案】B【解析】解:把函数y=cos (2x+φ)(|φ|<)的图象向左平移个单位,得到函数y=f (x )=cos[2(x+)+φ]=cos (2x+φ+)的图象关于直线x=对称,则2×+φ+=k π,求得φ=k π﹣,k ∈Z ,故φ=﹣,故选:B .12.【答案】C【解析】根据分层抽样的要求可知在C 社区抽取户数为2492108180270360180108=⨯=++⨯.二、填空题13.【答案】-1 【解析】试题分析:由于{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,所以只能0b =,1a =-,所以()20032003200411a b +=-=-。

2022-2023学年湖南省郴州市明星高级中学高二上学期第二次月考数学试题

2022-2023学年湖南省郴州市明星高级中学高二上学期第二次月考数学试题

2022-2023学年湖南省郴州市明星高级中学高二上学期第二次月考数学试题1.直线的图象可能是( )A.B.C.D.2.在下列条件中,M与A,B,C一定共面的是()A.=3 --B.C.=--D.= + +3.若点是直线:外一点,则方程表示()A.过点且与垂直的直线B.过点且与平行的直线C.不过点且与垂直的直线D.不过点且与平行的直线4.以,为端点的线段的垂直平分线方程是A.B.C.D.5.已知,,且,则()A.,B.,C.,D.,6.在三棱锥中,平面平面,,,,,,则的长为()A.B.C.D.7.“”是“直线和直线平行且不重合”的().A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件8.如图所示,在三棱锥P–ABC中,PA⊥平面ABC,D是棱PB的中点,已知PA=BC=2,AB=4,CB⊥AB,则异面直线PC,AD所成角的余弦值为A.B.C.D.9.(多选题) 过点,并且在两轴上的截距相等的直线方程为()A.B.C.D.10.给出下列命题,其中正确的有()A.空间任意三个向量都可以作为一个基底B.已知向量,则,与任何向量都不能构成空间的一个基底C.,,,是空间中的四个点,若,,不能构成空间的一个基底,那么,,,共面D.已知是空间的一个基底,若,则也是空间的一个基底11.下列说法正确的是()A.直线必过定点B.直线在轴上的截距为C.直线的倾斜角为60°D.过点且垂直于直线的直线方程为12.设正六面体的棱长为2,下列命题正确的有()A.B.二面角的正切值为C.若,则正六面体内的P点所形成的面积为D.设为上的动点,则二面角的正弦值的最小值为13.已知入射光线经过点,被直线:反射,反射光线经过点,则反射光线所在直线的方程为____________.14.如图所示,平面,,,,则二面角的余弦值大小为________.15.若直线的方程为,的方程为,则直线与的关系是_______.(填“平行”或“垂直”);与的距离是___________..16.如图所示,在正四棱柱中,,,动点、分别在线段、上,则线段长度的最小值是______.17.已知直线l过点,直线l与坐标轴围成的三角形的面积为10,求直线l的方程.18.已知的顶点,AB边上的高所在的直线方程为,E为BC边的中点,且AE所在的直线方程为(1)求顶点A的坐标;(2)求过E点且与x轴、y轴截距相等的直线l的方程.19.如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.20.已知三棱柱,底面三角形为正三角形,侧棱底面,,为的中点,为中点.(1)求证:直线平面;(2)求平面和平面所成的锐二面角的余弦值.21.有一个既有进水管,又有出水管的容器,每单位时间进出的水量是一定的,设从某时刻开始10分钟内只进水、不出水,在随后的30分钟内既进水又出水,得到时间x(分)与水量y(升)之间的关系如图所示,若40分钟后只放水不进水,求y与x的函数关系.22.如图,在多面体中,底面是梯形,,,,底面,,,点为的中点,点在线段上.(1)证明:平面;(2)如果直线与平面所成的角的正弦值为,求点的位置.。

弓长岭区第三中学2018-2019学年高二上学期第二次月考试卷数学

弓长岭区第三中学2018-2019学年高二上学期第二次月考试卷数学

弓长岭区第三中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.两个随机变量x,y的取值表为若x,y具有线性相关关系,且y^=bx+2.6,则下列四个结论错误的是()A.x与y是正相关B.当y的估计值为8.3时,x=6C.随机误差e的均值为0D.样本点(3,4.8)的残差为0.652.函数f(x)=Asin(ωx+θ)(A>0,ω>0)的部分图象如图所示,则f()的值为()A.B.0 C.D.3.若命题p:∃x∈R,x﹣2>0,命题q:∀x∈R,<x,则下列说法正确的是()A.命题p∨q是假命题B.命题p∧(¬q)是真命题C.命题p∧q是真命题 D.命题p∨(¬q)是假命题4.设m,n表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是()A.m⊥α,m⊥β,则α∥βB.m∥n,m⊥α,则n⊥αC.m⊥α,n⊥α,则m∥n D.m∥α,α∩β=n,则m∥n5.已知集合M={0,1,2},则下列关系式正确的是()A.{0}∈M B.{0}∉M C.0∈M D.0⊆M6.已知函数f(x)=Asin(ωx+φ)(a>0,ω>0,|φ|<)的部分图象如图所示,则f(x)的解析式是()A .f (x )=sin (3x+)B .f (x )=sin (2x+)C .f (x )=sin (x+) D .f (x )=sin (2x+)7. 已知f (x )在R 上是奇函数,且满足f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2015)=( )A .2B .﹣2C .8D .﹣88. 执行如图所示的程序框图,若a=1,b=2,则输出的结果是( )A .9B .11C .13D .159. 已知函数1)1(')(2++=x x f x f ,则=⎰dx x f 1)(( )A .67-B .67C .65D .65- 【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等.10.已知M 是△ABC 内的一点,且=2,∠BAC=30°,若△MBC ,△MCA 和△MAB 的面积分别为,x ,y ,则+的最小值是( ) A .20 B .18C .16D .911.在极坐标系中,圆的圆心的极坐标系是( )。

大丰区第三中学2018-2019学年高二上学期第二次月考试卷数学

大丰区第三中学2018-2019学年高二上学期第二次月考试卷数学

大丰区第三中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.如图给出的是计算的值的一个流程图,其中判断框内应填入的条件是()A.i≤21 B.i≤11 C.i≥21 D.i≥112.已知直线ax+by+c=0与圆O:x2+y2=1相交于A,B两点,且,则的值是()A.B.C. D.03.“a≠1”是“a2≠1”的()A.充分不必条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件4.函数的定义域为()A.{x|1<x≤4} B.{x|1<x≤4,且x≠2} C.{x|1≤x≤4,且x≠2} D.{x|x≥4}5.设a=sin145°,b=cos52°,c=tan47°,则a,b,c的大小关系是()A.a<b<c B.c<b<a C.b<a<c D.a<c<b1,2,3的真子集共有()6.集合{}A.个B.个C.个D.个7.如图所示,函数y=|2x﹣2|的图象是()A .B .C .D .8. 复数的虚部为( )A .﹣2B .﹣2iC .2D .2i9. 函数f (x )=sin ωx (ω>0)在恰有11个零点,则ω的取值范围( ) A . C . D .时,函数f (x )的最大值与最小值的和为( )A .a+3B .6C .2D .3﹣a 10.已知抛物线C :y x 82=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FQ PF 2=,则=QF ( ) A .6B .3C .38D .34 第Ⅱ卷(非选择题,共100分)11.对某班学生一次英语测验的成绩分析,各分数段的分布如图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为( )A .92%B .24%C .56%D .5.6%12.下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )A .B .C .D .二、填空题13.函数y=f (x )的图象在点M (1,f (1))处的切线方程是y=3x ﹣2,则f (1)+f ′(1)= .14.已知函数22tan ()1tan x f x x =-,则()3f π的值是_______,()f x 的最小正周期是______. 【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力. 15.若双曲线的方程为4x 2﹣9y 2=36,则其实轴长为 .16.已知直线l 过点P (﹣2,﹣2),且与以A (﹣1,1),B (3,0)为端点的线段AB 相交,则直线l 的斜17.若执行如图3所示的框图,输入,则输出的数等于18.球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S ﹣ABC 的体积的最大值为 .三、解答题19.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y (单位:kg )与它的“相近”作物株数X 之间的关系如下表所示:X 1 2 3 4 Y 51 48 45 42这里,两株作物“相近”是指它们之间的直线距离不超过1米.(I )从三角形地块的内部和边界上分别随机选取一株作物,求它们恰 好“相近”的概率;(II )在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.20.一台还可以用的机器由于使用的时间较长,它按不同的转速生产出来的某机械零件有一些会有缺陷,每小时生产有缺陷零件的多少随机器运转的速率而变化,下表为抽样试验结果:转速x (转/秒)1614 12 8 每小时生产有缺陷的零件数y (件) 11985(1)画出散点图; (2)如果y 与x 有线性相关的关系,求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺陷的零件最多为10个,那么机器的转运速度应控制在什么范围内?参考公式:线性回归方程系数公式开始=, =﹣x .21.(本小题满分10分)选修4—5:不等式选讲 已知函数()f x x a =-,()a R ∈.(Ⅰ)若当04x ≤≤时,()2f x ≤恒成立,求实数a 的取值; (Ⅱ)当03a ≤≤时,求证:()()()()f x a f x a f ax af x ++-≥-.22.若函数f(x)=sinωxcosωx+sin2ωx﹣(ω>0)的图象与直线y=m(m为常数)相切,并且切点的横坐标依次构成公差为π的等差数列.(Ⅰ)求ω及m的值;(Ⅱ)求函数y=f(x)在x∈[0,2π]上所有零点的和.23.已知S n为等差数列{a n}的前n项和,且a4=7,S4=16.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n.24.已知全集U=R,函数y=+的定义域为A,B={y|y=2x,1≤x≤2},求:(1)集合A,B;(2)(∁U A)∩B.大丰区第三中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:∵S=并由流程图中S=S+故循环的初值为1终值为10、步长为1故经过10次循环才能算出S=的值,故i≤10,应不满足条件,继续循环∴当i≥11,应满足条件,退出循环填入“i≥11”.故选D.2.【答案】A【解析】解:取AB的中点C,连接OC,,则AC=,OA=1∴sin =sin∠AOC==所以:∠AOB=120°则•=1×1×cos120°=.故选A.3.【答案】B【解析】解:由a2≠1,解得a≠±1.∴“a≠1”推不出“a2≠1”,反之由a2≠1,解得a≠1.∴“a≠1”是“a2≠1”的必要不充分条件.故选:B.【点评】本题考查了简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.4.【答案】B【解析】解:要使函数有意义,只须,即,解得1<x≤4且x≠2,∴函数f(x)的定义域为{x|1<x≤4且x≠2}.故选B5.【答案】A【解析】解:∵a=sin145°=sin35°,b=cos52°=sin38°,c=tan47°>tan45°=1,∴y=sinx在(0,90°)单调递增,∴sin35°<sin38°<sin90°=1,∴a<b<c故选:A【点评】本题考查了三角函数的诱导公式的运用,正弦函数的单调性,难度不大,属于基础题.6.【答案】C【解析】考点:真子集的概念.7.【答案】B【解析】解:∵y=|2x﹣2|=,∴x=1时,y=0, x ≠1时,y >0. 故选B .【点评】本题考查指数函数的图象和性质,解题时要结合图象进行求解.8. 【答案】C【解析】解:复数===1+2i 的虚部为2.故选;C .【点评】本题考查了复数的运算法则、虚部的定义,属于基础题.9. 【答案】A【解析】A . C . D .恰有11个零点,可得5π≤ω•<6π,求得10≤ω<12, 故选:A . 10.【答案】A解析:抛物线C :y x 82的焦点为F (0,2),准线为l :y=﹣2,设P (a ,﹣2),B (m ,),则=(﹣a ,4),=(m ,﹣2),∵,∴2m=﹣a ,4=﹣4,∴m 2=32,由抛物线的定义可得|QF|=+2=4+2=6.故选A .11.【答案】C【解析】解:这次测验的优秀率(不小于80分)为0.032×10+0.024×10=0.56 故这次测验的优秀率(不小于80分)为56%故选C【点评】在解决频率分布直方图时,一定注意频率分布直方图的纵坐标是.12.【答案】C【解析】【知识点】样本的数据特征茎叶图 【试题解析】由题知:所以m 可以取:0,1,2. 故答案为:C二、填空题13.【答案】 4 .【解析】解:由题意得f ′(1)=3,且f (1)=3×1﹣2=1所以f (1)+f ′(1)=3+1=4.故答案为4.【点评】本题主要考查导数的几何意义,要注意分清f (a )与f ′(a ).14.【答案】π.【解析】∵22tan ()tan 21tan x f x x x ==-,∴2()tan 33f ππ==221tan 0x k x ππ⎧≠+⎪⎨⎪-≠⎩,∴()f x 的定义域为(,)(,)(,)244442k k k k k k ππππππππππππ-+-+-++++,k Z ∈,将()f x 的图象如下图画出,从而可知其最小正周期为π,故填:,π.15.【答案】 6 .【解析】解:双曲线的方程为4x2﹣9y2=36,即为:﹣=1,可得a=3,则双曲线的实轴长为2a=6.故答案为:6.【点评】本题考查双曲线的实轴长,注意将双曲线方程化为标准方程,考查运算能力,属于基础题.16.【答案】[,3].【解析】解:直线AP的斜率K==3,直线BP的斜率K′==由图象可知,则直线l的斜率的取值范围是[,3],故答案为:[,3],【点评】本题给出经过定点P的直线l与线段AB有公共点,求l的斜率取值范围.着重考查了直线的斜率与倾斜角及其应用的知识,属于中档题.17.【答案】【解析】由框图的算法功能可知,输出的数为三个数的方差,则。

高二数学上学期第二次月考试卷(含解析)

高二数学上学期第二次月考试卷(含解析)

高二数学上学期第二次月考试卷(含解析)一、选择题(共12小题,每小题5分,满分60分)1.若直线l经过原点和点A(﹣2,﹣2),则它的斜率为()A.﹣1 B.1 C.1或﹣1 D.02.已知直线l1经过两点(﹣1,﹣2)、(﹣1,4),直线l2经过两点(2,1)、(x,6),且l1∥l2,则x=()A.2 B.﹣2 C.4 D.13.过点(﹣1,3)且平行于直线x﹣2y+3=0的直线方程为()A.x﹣2y+7=0 B.2x+y﹣1=0 C.x﹣2y﹣5=0 D.2x+y﹣5=0 4.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3 B.100cm3 C.92cm3 D.84cm35.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊥α,n∥α,则m⊥n②若α∥β,β∥γ,m⊥α,则m⊥γ③若m∥α,n∥α,则m∥n④若α⊥γ,β⊥γ,则α∥β其中正确命题的序号是()A.①和②B.②和③C.③和④D.①和④6.圆(x+2)2+y2=5关于y轴对称的圆的方程为()A.x2+(y+2)2=5 B.x2+(y﹣2)2=5 C.(x﹣2)2+y2=5 D.(x﹣2)2+(y﹣2)2=57.经过两圆x2+y2=9和(x+4)2+(y+3)2=8的交点的直线方程为()A.8x+6y+13=0 B.6x﹣8y+13=0 C.4x+3y+13=0 D.3x+4y+26=0 8.不论k为何实数,直线(2k﹣1)x﹣(k+3)y﹣(k﹣11)=0恒通过一个定点,这个定点的坐标是()A.(5,2)B.(2,3)C.(5,9)D.(﹣,3)9.已知直线l1:x+my+6=0,l2:(m﹣2)x+3y+2m=0,若l1∥l2,则实数m的值是()A.3 B.﹣1,3 C.﹣1 D.﹣310.若直线ax+by=1与圆x2+y2=1有两个公共点,则点P(a,b)与圆的位置关系是()A.在圆上B.在圆外C.在圆内D.以上皆有可能11.若直线x﹣y=2被圆(x﹣a)2+y2=4所截得的弦长为,则实数a的值为()A.﹣1或B.1或3 C.﹣2或6 D.0或412.已知直线l:y=x+m与曲线y=有两个公共点,则实数m的取值范围是()A.(﹣2,2)B.(﹣1,1)C.[1,)D.(﹣,)二、填空题(共4小题,每小题5分,满分20分)13.如果点P在z轴上,且满足|PO|=1(O是坐标原点),则点P到点A(1,1,1)的距离是.14.已知斜率为且与两坐标轴围成的三角形的面积为4的直线方程是.15.当动点P在圆x2+y2=2上运动时,它与定点A(3,1)连线的中点Q的轨迹方程是.16.在平面直角坐标系xOy中,已知圆x2+y2=4上有且仅有四个点到直线12x﹣5y+c=0的距离为1,则实数c的取值范围是.三、解答题(共6小题,满分70分)17.一个长、宽、高分别是80cm、60cm、55cm的水槽中有水200000cm3,现放入一个直径为50cm的木球,且木球的三分之二在水中,三分之一在水上,那么水是否会从水槽中流出?18.在平面直角坐标系中,有三个点的坐标分别是A(﹣4,0),B (0,6),C(1,2).(1)证明:A,B,C三点不共线;(2)求过A,B的中点且与直线x+y﹣2=0平行的直线方程;(3)求过C且与AB所在的直线垂直的直线方程.19.已知圆心为C的圆经过点 A(1,1)和B(2,﹣2),且圆心C在直线L:x﹣y+1=0上,求圆C的标准方程.20.如图,PA⊥平面ABCD,矩形ABCD的边长AB=1,BC=2,E为BC的中点.(1)证明:PE⊥DE;(2)如果PA=2,求异面直线AE与PD所成的角的大小.21.如图,正方体ABCD﹣A1B1C1D1的棱长为a,E为DD1的中点.(1)求证:BD1∥平面EAC;(2)求点D1到平面EAC的距离.22.已知直线l:4x+3y+10=0,半径为2的圆C与l相切,圆心C在x 轴上且在直线l的上方(1)求圆C的方程;(2)设过点P(1,1)的直线l1被圆C截得的弦长等于2,求直线l1的方程;(3)过点M(1,0)的直线与圆C交于A,B两点(A在x轴上方),问在x轴正半轴上是否存在点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.2015-2016学年肇庆四中高二(上)第二次月考数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.若直线l经过原点和点A(﹣2,﹣2),则它的斜率为()A.﹣1 B.1 C.1或﹣1 D.0【考点】斜率的计算公式.【专题】计算题.【分析】把原点坐标(0,0)和点A的坐标(﹣2,﹣2)一起代入两点表示的斜率公式 k=,即可得到结果.【解答】解:根据两点表示的斜率公式得:k===1,故选 B.【点评】本题考查用两点表示的斜率公式得应用,注意公式中各量所代表的意义,体现了代入的思想.2.已知直线l1经过两点(﹣1,﹣2)、(﹣1,4),直线l2经过两点(2,1)、(x,6),且l1∥l2,则x=()A.2 B.﹣2 C.4 D.1【考点】两条直线平行与倾斜角、斜率的关系.【分析】根据条件可知直线l1的斜率不存在,然后根据两直线平行的得出x的值.【解答】解:∵直线l1经过两点(﹣1,﹣2)、(﹣1,4),∴直线l1的斜率不存在∵l1∥l2 直线l2经过两点(2,1)、(x,6),∴x=2故选:A.【点评】本题考查了两直线平行的条件,同时考查斜率公式,属于基础题.3.过点(﹣1,3)且平行于直线x﹣2y+3=0的直线方程为()A.x﹣2y+7=0 B.2x+y﹣1=0 C.x﹣2y﹣5=0 D.2x+y﹣5=0【考点】直线的一般式方程;两条直线平行的判定.【专题】计算题.【分析】由题意可先设所求的直线方程为x﹣2y+c=0再由直线过点(﹣1,3),代入可求c的值,进而可求直线的方程【解答】解:由题意可设所求的直线方程为x﹣2y+c=0∵过点(﹣1,3)代入可得﹣1﹣6+c=0 则c=7∴x﹣2y+7=0故选A.【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x﹣2y+c=0.4.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3 B.100cm3 C.92cm3 D.84cm3【考点】由三视图求面积、体积.【专题】立体几何.【分析】由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).据此即可得出体积.【解答】解:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).∴该几何体的体积V=6×6×3﹣=100.故选B.【点评】由三视图正确恢复原几何体是解题的关键.5.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊥α,n∥α,则m⊥n②若α∥β,β∥γ,m⊥α,则m⊥γ③若m∥α,n∥α,则m∥n④若α⊥γ,β⊥γ,则α∥β其中正确命题的序号是()A.①和②B.②和③C.③和④D.①和④【考点】空间中直线与平面之间的位置关系;命题的真假判断与应用;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.【专题】证明题;压轴题;空间位置关系与距离.【分析】根据线面平行性质定理,结合线面垂直的定义,可得①是真命题;根据面面平行的性质结合线面垂直的性质,可得②是真命题;在正方体中举出反例,可得平行于同一个平面的两条直线不一定平行,垂直于同一个平面和两个平面也不一定平行,可得③④不正确.由此可得本题的答案.【解答】解:对于①,因为n∥α,所以经过n作平面β,使β∩α=l,可得n∥l,又因为m⊥α,l⊂α,所以m⊥l,结合n∥l得m⊥n.由此可得①是真命题;对于②,因为α∥β且β∥γ,所以α∥γ,结合m⊥α,可得m⊥γ,故②是真命题;对于③,设直线m、n是位于正方体上底面所在平面内的相交直线,而平面α是正方体下底面所在的平面,则有m∥α且n∥α成立,但不能推出m∥n,故③不正确;对于④,设平面α、β、γ是位于正方体经过同一个顶点的三个面,则有α⊥γ且β⊥γ,但是α⊥β,推不出α∥β,故④不正确.综上所述,其中正确命题的序号是①和②故选:A【点评】本题给出关于空间线面位置关系的命题,要我们找出其中的真命题,着重考查了线面平行、面面平行的性质和线面垂直、面面垂直的判定与性质等知识,属于中档题.6.圆(x+2)2+y2=5关于y轴对称的圆的方程为()A.x2+(y+2)2=5 B.x2+(y﹣2)2=5 C.(x﹣2)2+y2=5 D.(x﹣2)2+(y﹣2)2=5【考点】关于点、直线对称的圆的方程.【专题】计算题;方程思想;综合法;直线与圆.【分析】求出关于y轴对称的圆的圆心坐标为(2,0),半径还是2,从而求得所求的圆的方程.【解答】解:已知圆关于y轴对称的圆的圆心坐标为(2,0),半径不变,还是2,故对称圆的方程为(x﹣2)2+y2=5,故选:C.【点评】本题主要考查求圆的标准方程,求出关于y轴对称的圆的圆心坐标为(2,0),是解题的关键,属于基础题.7.经过两圆x2+y2=9和(x+4)2+(y+3)2=8的交点的直线方程为()A.8x+6y+13=0 B.6x﹣8y+13=0 C.4x+3y+13=0 D.3x+4y+26=0【考点】圆系方程.【专题】计算题;函数思想;直线与圆.【分析】利用圆系方程,求解即可.【解答】解:联立x2+y2=9和(x+4)2+(y+3)2=8,作差可得:8x+6y+26=0,即6x﹣8y+13=0.故选:B.【点评】本题考查圆系方程的应用,考查计算能力.8.不论k为何实数,直线(2k﹣1)x﹣(k+3)y﹣(k﹣11)=0恒通过一个定点,这个定点的坐标是()A.(5,2)B.(2,3)C.(5,9)D.(﹣,3)【考点】恒过定点的直线.【专题】计算题.【分析】直线方程即 k(2x+y﹣1)+(﹣x+3y+11)=0,一定经过2x﹣y﹣1=0和﹣x﹣3y+11=0 的交点,联立方程组可求定点的坐标.【解答】解:直线(2k﹣1)x﹣(k+3)y﹣(k﹣11)=0即 k(2x﹣y﹣1)+(﹣x﹣3y+11)=0,根据k的任意性可得,解得,∴不论k取什么实数时,直线(2k﹣1)x+(k+3)y﹣(k﹣11)=0都经过一个定点(2,3).故选B【点评】本题考查经过两直线交点的直线系方程形式,直线 k(ax+by+c)+(mx+ny+p)=0 表示过ax+by+c=0和mx+ny+p=0的交点的一组相交直线,但不包括ax+by+c=0这一条.9.已知直线l1:x+my+6=0,l2:(m﹣2)x+3y+2m=0,若l1∥l2,则实数m的值是()A.3 B.﹣1,3 C.﹣1 D.﹣3【考点】直线的一般式方程与直线的平行关系.【专题】直线与圆.【分析】直接利用两直线平行对应的系数关系列式求得m的值.【解答】解:∵l1:x+my+6=0,l2:(m﹣2)x+3y+2m=0,若l1∥l2,则,解得:m=﹣1.故选:C.【点评】本题考查了直线的一般式方程与直线平行的关系,关键是对两直线系数所满足关系的记忆,是基础题.10.若直线ax+by=1与圆x2+y2=1有两个公共点,则点P(a,b)与圆的位置关系是()A.在圆上B.在圆外C.在圆内D.以上皆有可能【考点】点与圆的位置关系.【专题】直线与圆.【分析】由于直线ax+by=1与圆x2+y2=1有两个公共点,可得圆心(0,0)到直线ax+by=1的距离d<r.利用点到直线的距离公式和点与圆的位置关系判定即可得出.【解答】解:∵直线ax+by=1与圆x2+y2=1有两个公共点,∴圆心(0,0)到直线ax+by=1的距离d<r.∴,化为.∴点P(a,b)在圆的外部.故选:B.【点评】本题考查了直线与圆的位置关系、点到直线的距离公式和点与圆的位置关系,属于中档题.11.若直线x﹣y=2被圆(x﹣a)2+y2=4所截得的弦长为,则实数a的值为()A.﹣1或B.1或3 C.﹣2或6 D.0或4【考点】直线与圆相交的性质.【专题】计算题.【分析】由圆的方程,得到圆心与半径,再求得圆心到直线的距离,由求解.【解答】解:∵圆(x﹣a)2+y2=4∴圆心为:(a,0),半径为:2圆心到直线的距离为:∵解得a=4,或a=0故选D.【点评】本题主要考查直与圆的位置关系及其方程的应用,是常考题型,属中档题.12.已知直线l:y=x+m与曲线y=有两个公共点,则实数m的取值范围是()A.(﹣2,2)B.(﹣1,1)C.[1,)D.(﹣,)【考点】函数的零点与方程根的关系.【专题】函数的性质及应用.【分析】画出图象,当直线l经过点A,C时,求出m的值;当直线l 与曲线相切时,求出m.即可.【解答】解:画出图象,当直线l经过点A,C时,m=1,此时直线l 与曲线y=有两个公共点;当直线l与曲线相切时,m=.因此当时,直线l:y=x+m与曲线y=有两个公共点.故选C.【点评】正确求出直线与切线相切时的m的值及其数形结合等是解题的关键.二、填空题(共4小题,每小题5分,满分20分)13.如果点P在z轴上,且满足|PO|=1(O是坐标原点),则点P到点A(1,1,1)的距离是或.【考点】空间两点间的距离公式.【专题】空间位置关系与距离.【分析】设P(0,0,z),由于|OP|=1,可得,即|z|=1,解得z.再利用两点间的距离公式即可得出|PA|.【解答】解:设P(0,0,z),∵|OP|=1,∴,即|z|=1,解得z=±1.∴|PA|=或.故答案为:或.【点评】本题考查了空间中的两点间的距离公式,属于基础题.14.已知斜率为且与两坐标轴围成的三角形的面积为4的直线方程是y=±2.【考点】直线的截距式方程.【专题】直线与圆.【分析】设直线的方程为y=+m,分别令x=0,y=0,可得A(0,m),B(﹣2m,0).可得=4,解出即可.【解答】解:设直线的方程为y=+m,分别令x=0,y=0,可得A(0,m),B(﹣2m,0).∵=4,解得m=±2.∴直线方程为:y=±2,故答案为:y=±2.【点评】本题考查了直线的方程及其应用、三角形面积计算公式,考查了推理能力与计算能力,属于基础题.15.当动点P在圆x2+y2=2上运动时,它与定点A(3,1)连线的中点Q的轨迹方程是(2x﹣3)2+(2y﹣1)2=2 .【考点】轨迹方程.【专题】计算题;转化思想;综合法;直线与圆.【分析】根据已知,设出中点Q的坐标(x,y),根据中点坐标公式求出点P的坐标,根据点P在圆x2+y2=2上,代入圆的方程即可求得中点Q的轨迹方程.【解答】解:设中点Q(x,y),则动点P(2x﹣3,2y﹣1),∵P在圆x2+y2=2上,∴(2x﹣3)2+(2y﹣1)2=2,故答案为:(2x﹣3)2+(2y﹣1)2=2.【点评】此题是个基础题.考查代入法求轨迹方程和中点坐标公式,体现了数形结合的思想以及分析解决问题的能力.16.在平面直角坐标系xOy中,已知圆x2+y2=4上有且仅有四个点到直线12x﹣5y+c=0的距离为1,则实数c的取值范围是(﹣13,13).【考点】直线与圆的位置关系.【专题】直线与圆.【分析】求出圆心,求出半径,圆心到直线的距离小于1即可.【解答】解:圆半径为2,圆心(0,0)到直线12x﹣5y+c=0的距离小于1,即,c的取值范围是(﹣13,13).【点评】考查圆与直线的位置关系.(圆心到直线的距离小于1,此时4个,等于3个,等于1,大于1是2个.)是有难度的基础题.三、解答题(共6小题,满分70分)17.一个长、宽、高分别是80cm、60cm、55cm的水槽中有水200000cm3,现放入一个直径为50cm的木球,且木球的三分之二在水中,三分之一在水上,那么水是否会从水槽中流出?【考点】函数模型的选择与应用.【专题】应用题.【分析】根据长方体的体积公式求出水槽的体积,再根据球的体积公式求出木球的体积,结合题意,根据水槽中水的体积与木球在水中部分的体积之和与水槽的体积比较,即可确定答案.【解答】解:∵水槽是一个长、宽、高分别是80cm、60cm、55cm的长方体,根据长方体的体积公式可得,水槽的容积为V水槽=80×60×55=264000(cm3),∵木球的三分之二在水中,∴木球在水中部分的体积为(cm3),又∵水槽中有水200000cm3,∴水槽中水的体积与木球在水中部分的体积之和为(cm3),∴V<V水槽,故水不会从水槽中流出.【点评】本题考查了长方体的体积公式,考查了球体的体积公式,解题的关键是抓住水槽中水的体积与木球在水中部分的体积之和与水槽的体积之间的关系.属于中档题.18.在平面直角坐标系中,有三个点的坐标分别是A(﹣4,0),B (0,6),C(1,2).(1)证明:A,B,C三点不共线;(2)求过A,B的中点且与直线x+y﹣2=0平行的直线方程;(3)求过C且与AB所在的直线垂直的直线方程.【考点】直线的一般式方程与直线的垂直关系.【专题】直线与圆.【分析】(1)利用斜率计算公式分别计算出KAB,KAC,即可判断出;(2)利用中点坐标公式、点斜式即可得出;(3)利用相互垂直的直线斜率之间的关系、点斜式即可得出.【解答】解:(1)∵,,∴KAB≠KAC,∴A,B,C三点不共线.(2)∵A,B的中点坐标为M(﹣2,3),直线x+y﹣2=0的斜率k1=﹣1,所以满足条件的直线方程为y﹣3=﹣(x+2),即x+y﹣1=0为所求.(3)∵,∴与AB所在直线垂直的直线的斜率为,所以满足条件的直线方程为,即2x+3y﹣8=0.【点评】本题考查了中点坐标公式、相互垂直的直线斜率之间的关系、点斜式、三点共线与斜率之间的关系,考查了计算能力,属于基础题.19.已知圆心为C的圆经过点 A(1,1)和B(2,﹣2),且圆心C在直线L:x﹣y+1=0上,求圆C的标准方程.【考点】圆的标准方程.【专题】计算题;直线与圆.【分析】设圆心坐标为C(a,a+1),根据A、B两点在圆上利用两点的距离公式建立关于a的方程,解出a值.从而算出圆C的圆心和半径,可得圆C的方程.【解答】解:∵圆心在直线x﹣y+1=0上,∴设圆心坐标为C(a,a+1),根据点A(1,1)和B(2,﹣2)在圆上,可得=,解之得a=﹣3∴圆心坐标为C(﹣3,﹣2),半径r=5因此,此圆的标准方程是(x+3)2+(y+2)2=25.【点评】本题给出圆C满足的条件,求圆的方程.着重考查了两点间的距离公式和圆的标准方程等知识,属于基础题.20.如图,PA⊥平面ABCD,矩形ABCD的边长AB=1,BC=2,E为BC的中点.(1)证明:PE⊥DE;(2)如果PA=2,求异面直线AE与PD所成的角的大小.【考点】直线与平面垂直的判定;异面直线及其所成的角.【专题】空间位置关系与距离;空间角.【分析】(1)首先利用勾股定理的逆定理证明DE⊥AE,及PA⊥平面ABCD,根据三垂线定理即可证明PE⊥DE;(2)取PA的中点M,AD的中点N,连MC、NC、MN、AC.利用三角形的中位线定理可知∠MNC的大小等于异面直线PD与AE所成的角或其补角的大小.再利用余弦定理即可得出.【解答】(1)证明:连接AE,由AB=BE=1,得,同理,∴AE2+DE2=4=AD2,由勾股定理逆定理得∠AED=90°,∴DE⊥AE.∵PA⊥平面ABCD,DE⊂平面ABCD,根据三垂线定理可得PE⊥DE.(2)取PA的中点M,AD的中点N,连MC、NC、MN、AC.∵NC∥AE,MN∥PD,∴∠MNC的大小等于异面直线PD与AE所成的角或其补角的大小.由PA=2,AB=1,BC=2,得,,∴,.∴异面直线PD与AE所成的角的大小为.【点评】熟练掌握勾股定理的逆定理、线面垂直的判定与性质定理、三垂线定理、三角形的中位线定理、异面直线所成的角、余弦定理是解题的关键.21.如图,正方体ABCD﹣A1B1C1D1的棱长为a,E为DD1的中点.(1)求证:BD1∥平面EAC;(2)求点D1到平面EAC的距离.【考点】点、线、面间的距离计算;直线与平面平行的判定.【专题】计算题;证明题.【分析】(1)欲证BD1∥平面EAC,只需在平面EAC内找一条直线BD1与平行,根据中位线定理可知EF∥D1B,满足线面平行的判定定理所需条件,即可得到结论;(2)设D1到平面EAC的距离为d,根据建立等式关系可求出d,即可求出点D1到平面EAC的距离.【解答】解:(1)证明:连接BD交AC于F,连EF.(1分)因为F为正方形ABCD对角线的交点,所长F为AC、BD的中点.(3分)在DDD1B中,E、F分别为DD1、DB的中点,所以EF∥D1B.(5分)又EFÌ平面EAC,所以BD1∥平面EAC.(7分)(2)设D1到平面EAC的距离为d.在DEAC中,EF^AC,且,,所以,于是.(9分)因为,(11分)又,即,(13分)解得,故D1到平面EAC的距离为.(14分)【点评】本题主要考查了线面平行的判定以及点到平面距离的度量,同时考查了空间想象能力,转化能力和计算求解的能力,属于中档题.22.已知直线l:4x+3y+10=0,半径为2的圆C与l相切,圆心C在x 轴上且在直线l的上方(1)求圆C的方程;(2)设过点P(1,1)的直线l1被圆C截得的弦长等于2,求直线l1的方程;(3)过点M(1,0)的直线与圆C交于A,B两点(A在x轴上方),问在x轴正半轴上是否存在点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.【考点】直线和圆的方程的应用.【专题】计算题;直线与圆.【分析】(1)设出圆心C坐标,根据直线l与圆C相切,得到圆心到直线l的距离d=r,确定出圆心C坐标,即可得出圆C方程;(2)根据垂径定理及勾股定理,由过点P(1,1)的直线l1被圆C截得的弦长等于2,分直线l1斜率存在与不存在两种情况求出直线l1的方程即可;(3)当直线AB⊥x轴,则x轴平分∠ANB,当直线AB斜率存在时,设直线AB方程为y=k(x﹣1),联立圆与直线方程,消去y得到关于x 的一元二次方程,利用韦达定理表示出两根之和与两根之积,由若x 轴平分∠ANB,则kAN=﹣kBN,求出t的值,确定出此时N坐标即可.【解答】解:(1)设圆心C(a,0)(a>﹣),∵直线l:4x+3y+10=0,半径为2的圆C与l相切,∴d=r,即=2,解得:a=0或a=﹣5(舍去),则圆C方程为x2+y2=4;(2)由题意可知圆心C到直线l1的距离为=1,若直线l1斜率不存在,则直线l1:x=1,圆心C到直线l1的距离为1;若直线l1斜率存在,设直线l1:y﹣1=k(x﹣1),即kx﹣y+1﹣k=0,则有=1,即k=0,此时直线l1:y=1,综上直线l1的方程为x=1或y=1;(3)当直线AB⊥x轴,则x轴平分∠ANB,当直线AB斜率存在时,设直线AB方程为y=k(x﹣1),N(t,0),A (x1,y1),B(x2,y2),联立得:,消去y得:(k2+1)x2﹣2k2x+k2﹣4=0,∴x1+x2=,x1x2=,若x轴平分∠ANB,则kAN=﹣kBN,即+=0, +=0,整理得:2x1x2﹣(t+1)(x1+x2)+2t=0,即﹣+2t=0,解得:t=4,当点N(4,0),能使得∠ANM=∠BNM总成立.【点评】此题考查了直线与圆的方程的应用,涉及的知识有:垂径定理,勾股定理,圆的标准方程,点到直线的距离公式,以及斜率的计算,熟练掌握定理及公式是解本题的关键.。

城子河区二中2018-2019学年高二上学期第二次月考试卷数学

城子河区二中2018-2019学年高二上学期第二次月考试卷数学

城子河区二中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=a x ﹣1+log a x 在区间[1,2]上的最大值和最小值之和为a ,则实数a 为( )A .B .C .2D .42. 直线的倾斜角是( )A .B .C .D .3. 某三棱锥的三视图如图所示,该三棱锥的体积是( ) A . 2 B .4 C .34 D .38【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.4. 设全集U=M ∪N=﹛1,2,3,4,5﹜,M ∩∁U N=﹛2,4﹜,则N=( ) A .{1,2,3}B .{1,3,5}C .{1,4,5}D .{2,3,4}5. 直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”的逆命题、否命题、逆否命题中真命题的个数为( ) A .0B .1C .2D .36. 已知双曲线2222:1(0,0)x y C a b a b-=>>,12,F F 分别在其左、右焦点,点P 为双曲线的右支上的一点,圆M 为三角形12PF F 的内切圆,PM 所在直线与轴的交点坐标为(1,0),与双曲线的一条渐近线平行且距离为2,则双曲线C 的离心率是( )A B .2 C D7. 复数z=(其中i 是虚数单位),则z的共轭复数=( ) A.﹣iB.﹣﹣i C.+iD.﹣+i8.在二项式的展开式中,含x 4的项的系数是( )A .﹣10B .10C .﹣5D .59. 函数f (x )=kx +bx +1,关于点(-1,2)对称,且f (-2)=3,则b 的值为( )A .-1B .1C .2D .410.已知实数[1,1]x ∈-,[0,2]y ∈,则点(,)P x y 落在区域20210220x y x y x y +-⎧⎪-+⎨⎪-+⎩……… 内的概率为( )A.34B.38C.14D.18【命题意图】本题考查线性规划、几何概型等基础知识,意在考查数形结合思想及基本运算能力. 11.下列命题的说法错误的是( )A .若复合命题p ∧q 为假命题,则p ,q 都是假命题B .“x=1”是“x 2﹣3x+2=0”的充分不必要条件C .对于命题p :∀x ∈R ,x 2+x+1>0 则¬p :∃x ∈R ,x 2+x+1≤0D .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为:“若x ≠1,则x 2﹣3x+2≠0” 12.直线2x+y+7=0的倾斜角为( ) A .锐角 B .直角 C .钝角 D .不存在二、填空题13.数据﹣2,﹣1,0,1,2的方差是 .14.已知数列{a n }满足a 1=1,a 2=2,a n+2=(1+cos 2)a n +sin2,则该数列的前16项和为 .15.要使关于x 的不等式2064x ax ≤++≤恰好只有一个解,则a =_________. 【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力.16.若数列{a n }满足:存在正整数T ,对于任意的正整数n,都有a n+T =a n 成立,则称数列{a n }为周期为T 的周期数列.已知数列{a n }满足:a1>=m (m >a ),a n+1=,现给出以下三个命题:①若 m=,则a 5=2;②若 a 3=3,则m 可以取3个不同的值;③若 m=,则数列{a n }是周期为5的周期数列.其中正确命题的序号是 .17.【启东中学2018届高三上学期第一次月考(10月)】在平面直角坐标系xOy 中,P 是曲线x C y e :=上一点,直线20l x y c :++=经过点P ,且与曲线C 在P 点处的切线垂直,则实数c 的值为________.18.已知1a b >>,若10log log 3a b b a +=,b a a b =,则a b += ▲ .三、解答题19.设函数f (x )=lnx+,k ∈R .(Ⅰ)若曲线y=f (x )在点(e ,f (e ))处的切线与直线x ﹣2=0垂直,求k 值; (Ⅱ)若对任意x 1>x 2>0,f (x 1)﹣f (x 2)<x 1﹣x 2恒成立,求k 的取值范围;(Ⅲ)已知函数f (x )在x=e 处取得极小值,不等式f (x )<的解集为P ,若M={x|e ≤x ≤3},且M ∩P ≠∅,求实数m 的取值范围.20.已知函数.(Ⅰ)若曲线y=f (x )在点P (1,f (1))处的切线与直线y=x+2垂直,求函数y=f (x )的单调区间;(Ⅱ)若对于∀x ∈(0,+∞)都有f (x )>2(a ﹣1)成立,试求a 的取值范围;(Ⅲ)记g (x )=f (x )+x ﹣b (b ∈R ).当a=1时,函数g (x )在区间[e ﹣1,e]上有两个零点,求实数b 的取值范围.21.已知f(x)是定义在R上的奇函数,当x<0时,f(x)=()x.(1)求当x>0时f(x)的解析式;(2)画出函数f(x)在R上的图象;(3)写出它的单调区间.22.已知全集U=R,集合A={x|x2﹣4x﹣5≤0},B={x|x<4},C={x|x≥a}.(Ⅰ)求A∩(∁U B);(Ⅱ)若A⊆C,求a的取值范围.23.甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一队获胜4场就结束比赛.现已比赛了4场,且甲篮球队胜3场.已知甲球队第5,6场获胜的概率均为,但由于体力原因,第7场获胜的概率为.(Ⅰ)求甲队分别以4:2,4:3获胜的概率;(Ⅱ)设X表示决出冠军时比赛的场数,求X的分布列及数学期望.24.(本小题满分12分)在多面体ABCDEFG中,四边形ABCD与CDEF均为正方形,CF⊥平面ABCD,==.AB BG BHBG⊥平面ABCD,且24(1)求证:平面AGH⊥平面EFG;--的大小的余弦值.(2)求二面角D FG E城子河区二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:分两类讨论,过程如下:①当a>1时,函数y=a x﹣1和y=log a x在[1,2]上都是增函数,∴f(x)=a x﹣1+log a x在[1,2]上递增,∴f(x)max+f(x)min=f(2)+f(1)=a+log a2+1=a,∴log a2=﹣1,得a=,舍去;②当0<a<1时,函数y=a x﹣1和y=log a x在[1,2]上都是减函数,∴f(x)=a x﹣1+log a x在[1,2]上递减,∴f(x)max+f(x)min=f(2)+f(1)=a+log a2+1=a,∴log a2=﹣1,得a=,符合题意;故选A.2.【答案】A【解析】解:设倾斜角为α,∵直线的斜率为,∴tanα=,∵0°<α<180°,∴α=30°故选A.【点评】本题考查了直线的倾斜角与斜率之间的关系,属于基础题,应当掌握.3.【答案】B4. 【答案】B【解析】解:∵全集U=M ∪N=﹛1,2,3,4,5﹜,M ∩C u N=﹛2,4﹜, ∴集合M ,N 对应的韦恩图为 所以N={1,3,5} 故选B5. 【答案】B【解析】解:∵直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”, ∴命题P 是真命题,∴命题P 的逆否命题是真命题; ¬P :“若直线m 不垂直于α,则m 不垂直于l ”,∵¬P 是假命题,∴命题p 的逆命题和否命题都是假命题. 故选:B .6. 【答案】C 【解析】试题分析:由题意知()1,0到直线0bx ay -=的距离为22=,得a b =,则为等轴双曲故本题答案选C. 1 考点:双曲线的标准方程与几何性质.【方法点睛】本题主要考查双曲线的标准方程与几何性质.求解双曲线的离心率问题的关键是利用图形中的几何条件构造,,a b c 的关系,处理方法与椭圆相同,但需要注意双曲线中,,a b c 与椭圆中,,a b c 的关系不同.求双曲线离心率的值或离心率取值范围的两种方法:(1)直接求出,a c 的值,可得;(2)建立,,a b c 的齐次关系式,将用,a c 表示,令两边同除以或2a 化为的关系式,解方程或者不等式求值或取值范围.7. 【答案】C 【解析】解:∵z==,∴=.故选:C .【点评】本题考查了复数代数形式的乘除运算,是基础题.8. 【答案】B 【解析】解:对于,对于10﹣3r=4, ∴r=2, 则x 4的项的系数是C 52(﹣1)2=10故选项为B【点评】二项展开式的通项是解决二项展开式的特定项问题的工具.9. 【答案】【解析】解析:选B.设点P (m ,n )是函数图象上任一点,P 关于(-1,2)的对称点为Q (-2-m ,4-n ),则⎩⎪⎨⎪⎧n =km +b m +14-n =k (-2-m )+b -1-m ,恒成立.由方程组得4m +4=2km +2k 恒成立, ∴4=2k ,即k =2,∴f (x )=2x +b x +1,又f (-2)=-4+b -1=3,∴b =1,故选B. 10.【答案】B【解析】11.【答案】A【解析】解:A.复合命题p∧q为假命题,则p,q至少有一个命题为假命题,因此不正确;B.由x2﹣3x+2=0,解得x=1,2,因此“x=1”是“x2﹣3x+2=0”的充分不必要条件,正确;C.对于命题p:∀x∈R,x2+x+1>0 则¬p:∃x∈R,x2+x+1≤0,正确;D.命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”,正确.故选:A.12.【答案】C【解析】【分析】设直线2x+y+7=0的倾斜角为θ,则tanθ=﹣2,即可判断出结论.【解答】解:设直线2x+y+7=0的倾斜角为θ,则tanθ=﹣2,则θ为钝角.故选:C.二、填空题13.【答案】2.【解析】解:∵数据﹣2,﹣1,0,1,2,∴=,∴S2=[(﹣2﹣0)2+(﹣1﹣0)2+(0﹣0)2+(1﹣0)2+(2﹣0)2]=2,故答案为2;【点评】本题考查方差的定义与意义:一般地设n个数据,x,x2,…x n的平均数,是一道基础题;114.【答案】546.【解析】解:当n=2k﹣1(k∈N*)时,a2k+1=a2k﹣1+1,数列{a2k﹣1}为等差数列,a2k﹣1=a1+k﹣1=k;当n=2k(k∈N*)时,a2k+2=2a2k,数列{a2k}为等比数列,.∴该数列的前16项和S16=(a1+a3+…+a15)+(a2+a4+…+a16)=(1+2+...+8)+(2+22+ (28)=+=36+29﹣2=546.故答案为:546.【点评】本题考查了等差数列与等比数列的通项公式及前n项和公式、“分类讨论方法”,考查了推理能力与计算能力,属于中档题.15.【答案】±.【解析】分析题意得,问题等价于264++≤只有一解,x axx ax++≤只有一解,即220∴280∆=-=⇒=±,故填:±.a a16.【答案】①②.【解析】解:对于①由a n+1=,且a1=m=<1,所以,>1,,,∴a5=2 故①正确;对于②由a3=3,若a3=a2﹣1=3,则a2=4,若a1﹣1=4,则a1=5=m.若,则.若a1>1a1=,若0<a1≤1则a1=3,不合题意.所以,a3=2时,m即a1的不同取值由3个.故②正确;若a=m=>1,则a2=,所a3=>1,a4=1故在a1=时,数列{a}是周期为3的周期数列,③错;n故答案为:①②【点评】本题主要考查新定义题目,属于创新性题目,但又让学生能有较大的数列的知识应用空间,是较好的题目17.【答案】-4-ln2【解析】点睛:曲线的切线问题就是考察导数应用,导数的含义就是该点切线的斜率,利用这个我们可以求出点的坐标,再根据点在线上(或点在曲线上),就可以求出对应的参数值。

宁夏银川三沙源上游学校2019_2020学年高二数学上学期第二次月考试题理(含解析)

宁夏银川三沙源上游学校2019_2020学年高二数学上学期第二次月考试题理(含解析)

宁夏银川三沙源上游学校2019-2020学年高二数学上学期第二次月考试题 理(含解析)一、选择题(本大题共12小题,每小题5分,共60分) 1.命题“x R ∀∈,ln x x <”的否定为( ) A. x R ∀∈,ln x x ≥ B. x R ∀∈,ln x x > C. 0x R ∃∈,00ln x x ≥ D. 0x R ∃∈,00ln x x >【答案】C 【解析】分析:根据含有量词的命题的否定为:将任意改为存在,结论否定,即可写出命题的否定. 详解:由命题“x R ∀∈,ln x x <”,其否定为:0x R ∃∈,00ln x x ≥ . 故选C.点睛:本题的考点是命题的否定,主要考查含量词的命题的否定形式:将任意与存在互换,结论否定即可. 2.抛物线212y x =-的焦点坐标是( ) A. 10,8⎛⎫ ⎪⎝⎭ B. 1,08⎛⎫- ⎪⎝⎭C. 1,02⎛⎫-⎪⎝⎭D. 10,2⎛⎫-⎪⎝⎭【答案】D 【解析】 【分析】先将方程化为抛物线的标准方程,然后求出2p,可得到焦点坐标. 【详解】解:由212y x =-得,22x y =-,则22,1p p ==,所以 122p =, 因为抛物线22x y =-的焦点在y 的负半轴上, 所以焦点坐标为10,2⎛⎫- ⎪⎝⎭. 故选:D.【点睛】此题考查的是已知抛物线方程求其焦点坐标,属于基础题.3.椭圆以x 轴和y 轴为对称轴,经过点(2,0),长轴长是短轴长的2倍,则椭圆的方程为( )A. 2214x y +=B. 221164y x +=C. 2214x y +=或221164y x +=D. 2214x y +=或2214y x +=【答案】C 【解析】 【分析】由于椭圆长轴长是短轴长的2倍,即2a b =,又椭圆经过点(2,0),分类讨论,即可求解. 【详解】由于椭圆长轴长是短轴长的2倍,即2a b =,又椭圆经过点(2,0),则若焦点在x 轴上,则2a =,1b =,椭圆方程为2214x y +=;若焦点在y 轴上,则4a =,2b =,椭圆方程为221164y x +=,故选C .【点睛】本题主要考查了椭圆的方程的求解,其中解答中熟记椭圆的标准方程的形式,合理分类讨论是解答的关键,着重考查了推理与运算能力,属于基础题.4.设,m n 为两条不同的直线,,αβ为两个不同的平面,下列命题中正确的是( ) A. 若//m α,//m n ,//n β,则//αβB. 若//m α,m n ⊥,n β⊥,则//αβC. 若m α⊥,//m n ,//n β, 则αβ⊥D. 若//m α,m n ⊥,//n β, 则//αβ【答案】C 【解析】 【分析】通过作图的方法,可以逐一排除错误选项.【详解】如图,,αβ相交,故A 错误如图,,αβ相交,故B 错误D.如图,,αβ相交,故D 错误故选C.【点睛】本题考查直线和平面之间的位置关系,属于基础题. 5.下列四个命题:①命题“若20x x -=,则1x =”的逆否命题为“若1x ≠,则20x x -≠”; ②若“p ⌝或q ”是假命题,则“p 且q ⌝”是真命题; ③若p :(2)0x x -≤,q :2log 1x ≤,则p 是q 的充要条件;④已知命题p :存在x ∈R ,使得22x x <成立,则p ⌝:任意x ∈R ,均有22x x ≥成立; 其中正确命题的个数是( ) A. 1 B. 2 C. 3 D. 4【答案】C 【解析】①命题“若20x x -=,则1x =”的逆否命题为“若1x ≠,则20x x -≠”,故①正确; ②若“p ⌝或q ”是假命题,则p ⌝,q 均为假命题,所以p 和q ⌝是真命题,故②正确;③若p :()20x x -≤,得02x ≤≤;由q :2log 1x ≤,得02x <≤,则p 是q 的必要不充分条件,故③错误;④因为特称命题的否定为特称命题,所以命题p :存在x R ∈,使得22x x <成立,则p ⌝:任意x R ∈,均有22x x ≥成立,正确,故④正确.所以正确的命题由3个. 故选C6.已知()()2'21f x x x f =+⋅,则()'3f=( )A. 2B. 2-C. 1D. 4-【答案】A 【解析】 【分析】先对函数()f x 求导,然后令1x =先求出'(1)f ,再令3x =可求得()'3f 的值.【详解】解:因为()()2'21f x x x f =+⋅,所以''()22(1)f x x f =+,令1x =,则''(1)22(1)f f =+,解得'(1)2f =- 所以'()24f x x =-, 所以'(3)2342f =⨯-=, 故选:A【点睛】此题考查的是导数的基本运算,属于基础题.7.正方体1111ABCD A B C D -中,直线AD 与平面11A BC 所成角正弦值为( )A.12【答案】C 【解析】 【分析】作出相关图形,设正方体边长为1,求出11B C 与平面11A BC 所成角正弦值即为答案.【详解】如图所示,正方体1111ABCD A B C D -中,直线AD 与11B C 平行,则直线AD 与平面11A BC 所成角正弦值即为11B C 与平面11A BC 所成角正弦值.因为11A BC ∆为等边三角形,则1B 在平面11A BC 即为11A BC ∆的中心,则11B C O ∠为11B C 与平面11A BC 所成角.可设正方体边长为1,显然36=2=33BO ⨯,因此2163=1()=33B O -,则1111103sin 3B B C O B C ∠==,故答案选C.【点睛】本题主要考查线面所成角的正弦值,意在考查学生的转化能力,计算能力和空间想象能力.8.若双曲线22221(0,0)x y a b a b-=>>的一个焦点到一条渐近线的距离等于焦距的14,则该双曲线的渐近线方程是( ) A. 20x y ±=B. 20x y ±=C. 30x ±=D.30x y ±=【答案】C 【解析】试题分析:因为双曲线22221(0,0)x y a b a b -=>>的一个焦点到一条渐近线的距离为,b 所以2,2.4c b c b ==因此3.a b =因为双曲线22221(0,0)x y a b a b -=>>的渐近线方程为,by x a=±所以该双曲线的渐近线方程是30x ±=. 考点:双曲线的渐近线方程9.在空间直角坐标系中,点(2,1,3)A -关于平面xOz 的对称点为B ,则OA OB ⋅=( ) A. 10- B. 10C. 12-D. 12【答案】D 【解析】 【分析】由题意,根据点(2,1,3)A -关于平面xOz 的对称点(2,1,3)B ,求得,OA OB 的坐标,利用向量的数量积的坐标运算,即求解.【详解】由题意,空间直角坐标系中,点(2,1,3)A -关于平面xOz 的对称点(2,1,3)B , 所以 =(2,1,3),(2,1,3)OA OB -=,则22(1)13312OA OB ⋅=⨯+-⨯+⨯=,故选D. 【点睛】本题主要考查了空间直角坐标系的应用,以及空间向量的数量积的坐标运算,其中解答中熟记空间向量数量积的坐标运算公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.10.已知双曲线22145x y -=的左右焦点分别为12F F ,,点P 是双曲线上一点,且122·0F F PF =,则1PF 等于( ).A.132B.92C.72D.32【答案】A 【解析】由122·0F F PF =,可得12F F ⊥2PF ,双曲线22145x y -=的2,3a b c ====,左、右焦点分别为1F (−3,0),2F (3,0), 令x =3,29 145y -=,解得52y =±,即有252PF =,由双曲线的定义可得125132422PF a PF =+=+=. 故选A.11.函数()ln f x e x x =-在(]02e ,上的最大值为( ) A. 1e - B. 1-C. e -D. 0【答案】D 【解析】 【分析】求得函数的导数()1e e x f x x x-'=-=,得出函数的单调性,即可求解函数的最大值,得到答案.【详解】由题意,函数()ln f x e x x =-,则()1e e xf x x x-'=-=, 当(0,)x e ∈时,()0f x '>,函数()f x 单调递增; 当(,2]x e e ∈时,()0f x '<,函数()f x 单调递减,所以当x e =,函数()f x 取得最大值,最大值为()ln 0f e e e e =-=,故选D .【点睛】本题主要考查了导数在函数中的应用,其中解答中利用导数求得函数的单调性是解答的关键,着重考查了运算与求解能力,属于基础题.12.已知双曲线222:41(0)x C y a a -=>的右顶点到其一条渐近线的距离等于4,抛物线2:2E y px =的焦点与双曲线C 的右焦点重合,则抛物线E 上的动点M 到直线1:4360l x y -+=和2:1l x =-距离之和的最小值为( )A. 1B. 2C. 3D. 4【答案】B 【解析】分析:由双曲线的右顶点到渐近线的距离求出234a =,从而可确定双曲线的方程和焦点坐标,进而得到抛物线的方程和焦点,然后根据抛物线的定义将点M 到直线2l 的距离转化为到焦点的距离,最后结合图形根据“垂线段最短”求解.详解:由双曲线方程22241(0)x y a a-=>可得,双曲线的右顶点为(,0)a ,渐近线方程为12y x a=±,即20x ay ±=. ∵双曲线的右顶点到渐近线的距离等于3, ∴23414a =+,解得234a =,∴双曲线的方程为224413x y -=,∴双曲线的焦点为(1,0).又抛物线2:2E y px =的焦点与双曲线C 的右焦点重合, ∴2p =,∴抛物线的方程为24y x =,焦点坐标为(1,0)F .如图,设点M 到直线1l 的距离为||MA ,到直线2l 的距离为||MB ,则MB MF =, ∴MA MB MA MF +=+.结合图形可得当,,A M F 三点共线时,MA MB MA MF +=+最小,且最小值为点F 到直线1l 的距离22416243d ⨯+==+.故选B .点睛:与抛物线有关的最值问题一般情况下都与抛物线的定义有关,根据定义实现由点到点的距离与点到直线的距离的转化,具体有以下两种情形:(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解;(2)将抛物线上的点到焦点的距离转化为点到准线的距离,利用“与直线上所有点的连线中的垂线段最短”解决.二、填空题(本大题共4小题,每小题5分,共20分)13.已知椭圆2221(0)x y a a +=>的离心率为3,则实数a =_____.【解析】 【分析】分别在1a >和01a <<两种情况下利用离心率构造方程求得结果.【详解】当1a >时,离心率e ==,解得:2a =当01a <<时,离心率e ==,解得:3a =本题正确结果:2【点睛】本题考查根据椭圆的离心率求解参数值,易错点是忽略焦点可能在x 轴上,也可能在y 轴上,需分类讨论.14.已知函数43263f x x x -+1()=4,则0(1)(1)lim x f x f x∆→+∆-=∆__________.【答案】1- 【解析】 【分析】根据导数的定义和极限之间的关系进行求解. 【详解】根据导数的定义可知:0(1)(1)lim (1)x f x f f x∆→+∆-'=∆;由于43263f x x x -+1()=4,故32()2f x x x '=-; 则(1)121f '=-=-; 故答案为-1【点睛】本题考查导数的定义的应用,利用导数和极限之间的关系是解决本题的关键. 15.已知命题()22:2440p x a x a a -+++<,命题()():230q x x --<,若p ⌝是q ⌝的充分不必要条件,则a 的取值范围为 . 【答案】[]1,2- 【解析】解不等式可得命题:4p a x a <<+,:23q x,∵p ⌝是q ⌝的充分不必要条件,p q ∴⌝⇒⌝,∴q p ⇒,∴2,43,a a ≤⎧⎨+≥⎩∴12a -≤≤,所以a 的取值范围为[]1,2-.考点:一元二次不等式的解法,充分条件与必要条件.16.如图所示,二面角l αβ--为60,,A B 是棱l 上的两点,,AC BD 分别在半平面内,αβ,且AC l ⊥,BD l ⊥,4AB =,6AC =,8BD =,则CD 的长______.【答案】217【解析】 【分析】 推导出CD CA AB BD=++,从而()22CD CA AB BD=++,结合0,0AC AB BD AB ⋅=⋅=,4AB =,6AC =,8BD =能求出CD 的长.【详解】二面角l αβ--为60,,A B 是棱l 上的两点,,AC BD 分别在半平面α、β内,且,,4,6,8AC l BD l AB AC BD ⊥⊥=== 所以0,0AC AB BD AB ⋅=⋅=, 所以CD CA AB BD =++,()22CD CA AB BD =++,2222CA AB BD CA BD =+++⋅ 361664268cos12068=+++⨯⨯⨯=,CD ∴的长CD 68217==.故答案为217.【点睛】本题主要考查空间向量的运算法则以及数量积的运算法则,意在考查灵活应用所学知识解答问题的能力,是中档题.三、解答题(共70分)17.如图,四棱锥P ABCD -中,底面ABCD 是正方形,PD ⊥平面ABCD ,PD DC =,E 是PC 的中点.(1)求证://PA 平面BDE ;(2)证明:平面BDE ⊥平面PBC .【答案】(1)证明见解析;(2)证明见解析.【解析】【详解】试题分析:(1)连结AC ,设AC 与BD 交于O 点,连结EO ,易证EO 为PAC ∆中位线,从而//OE PA ,再利用线面平行的判断定理即可证得PA 平面BDE ;(2)依题意,易证DE ⊥底面PBC ,再利用面面垂直的判断定理即可证得平面BDE ⊥平面PBC . 试题解析:(1)连接AC 交BD 于O ,连接OE∵底面ABCD 是正方形,∴O 为AC 中点,∵在PAC 中,E 是PC 的中点, ∴//OE PA∵OE ⊂平面,EDB PA ⊄平面EDB ,∴//PA 平面EDB(2)∵侧棱PD ⊥底面,ABCD BC ⊂底面ABCD ,∴PD BC ⊥∵底面ABCD 是正方形,∴DC BC∵PD 与DC 为平面PCD 内两条相交直线,∴BC ⊥平面PCD∵DE ⊂平面PCD ,∴BC DE ⊥∵,PD CD E =是PC 的中点,∴DE PC ⊥∵PC 与BC 为平面PBC 内两条相交直线,∴DE ⊥平面PBC∵DE ⊂平面BDE ,∴平面BDE ⊥平面PBC考点:直线与平面平行的判定;平面与平面垂直的判定.18.已知函数()()32,,f x x ax bx c a b c R =-+++∈,且()()''130f f -==.(1)求-a b 的值;(2)若函数()f x 在[]2,2-上的最大值为20,求函数()f x 在[]1,4-上的最小值.【答案】(1)6-;(2)9-【解析】【分析】(1)先对函数()f x 求导,然后由()()''130f f -==,列出关于,a b 的方程组,解方程组可求出,a b 的值;(2)由函数()f x 在[]2,2-上的最大值为20,求出c 的值,然后由函数的单调性求函数()f x 在[]1,4-上的最小值.【详解】解:(1)因为()32f x x ax bx c =-+++,所以'2()32f x x ax b =-++, 因为()()''130f f -==,所以23(1)2(1)0a b -⨯-+⨯-+=,233230a b -⨯+⨯+=解得39a b =⎧⎨=⎩ 所以396a b -=-=-.(2)由(1)可知32()39f x x x x c =-+++,则'2()369f x x x =-++,令'()0f x =,得1,3x x =-=x 和()f x 的变化情况如下表:因为(2)2,(2)22f c f c -=+=+,所以函数()f x 在[]2,2-上的最大值为(2)22f c =+,所以2220c +=,解得2c =-,所以32()392f x x x x =-++-,由上面可知()f x 在[1,3]-上单调递增,在[3,4]上单调递减;又因为(1)13929,(4)644836218f f -=-+--=-=-++-=,所以函数()f x 在[]1,4-上的最小值为9-.【点睛】此题考查利用导数求函数的极值和最值,属于基础题. 19.已知双曲线()222:10y C x b b -=>. (1)若双曲线C 的一条渐近线方程为2y x =,求双曲线C 的标准方程;(2)设双曲线C 的左、右焦点分别为12,F F ,点P 在双曲线C 上,若12PF PF ⊥,且1PF F ∆的面积为9,求b 的值.【答案】(1) 2214y x -=; (2) 3b = 【解析】【分析】(1)由双曲线()222:10y C x b b -=>的渐近线为y bx ±=,而它的一条渐近线为2y x =,所以2b =,从而可得双曲线的标准方程;(2)由12PF PF ⊥,且12PF F ∆的面积为9,可得1218PF PF ⋅=,由双曲线的定义可知1222PF PF a -==,两边平方,再结合勾股定理和222c a b =+可求出b 的值.【详解】(1)因为双曲线()222:10y C x b b-=>的渐近线为y bx ±=,而它的一条渐近线为2y x =,所以2b =, 所以双曲线的标准方程为2214y x -=, (2)因为12PF PF ⊥,所以121212PF F S PF PF ∆=⋅⋅, 因为12PF F ∆的面积为9,所以1218PF PF ⋅=, 又因为1222PF PF a -==, 所以22112224PF PF PF PF -⋅+=, 所以221240PF PF +=, 又因为222212124PF PF F F c +==, 所以210c =,所以2110b +=,所以3b =.【点睛】此题考查的是双曲线的基本运算,属于基础题.20.已知抛物线C :22(0)y px p =>的焦点为F ,过F 的直线l 与抛物线C 交于A ,B 两点,弦AB 的中点的横坐标为32,5AB =. (Ⅰ)求抛物线C 的方程;(Ⅱ)若直线l 的倾斜角为锐角,求与直线l 平行且与抛物线C 相切的直线方程.【答案】(Ⅰ)24y x =(Ⅱ)122y x =+ 【解析】【分析】 (Ⅰ)由题得12322x x +=,再利用抛物线的定义求p 的值,即得抛物线C 的方程;(Ⅱ)设直线l 的方程为(1)y k x =-,0k >.根据已知求出k=2, 设与直线l 平行的直线的方程为2y x b =+,根据直线和抛物线相切求出b 的值得解.【详解】(Ⅰ)设11(,)A x y ,22(,)B x y ,因为AB 的中点的横坐标为32,所以12322x x +=. 根据抛物线定义知125AB AF BF p x x =+=++=所以35p +=,解得2p =,所以抛物线C 的方程为24y x =.(Ⅱ)设直线l 的方程为(1)y k x =-,0k >. 则由24(1)y x y k x ⎧=⎨=-⎩得()2222240k x k x k -++=. 所以212224k x x k ++=,即22243k k+=,解得2k =. 设与直线l 平行的直线的方程为2y x b =+,由242y x y x b⎧=⎨=+⎩得224(44)0x b x b +-+=. 依题知22(44)160b b ∆=--=,解得12b =. 故所求的切线方程为122y x =+. 【点睛】本题主要考查抛物线的标准方程的求法,考查抛物线的定义,考查直线和抛物线的位置关系,意在考查学生对这些知识的理解掌握水平和分析推理能力.21.如图,在平行六面体1111ABCD A B C D -中,底面ABCD 是菱形,四边形11BDD B 是矩形.(1)求证: 1BD A C ⊥;(2)若115,2,22,AB BD AA AC ===点E 在棱1BB 上,且114B B B E =,求二面角11E A C C --的余弦值.【答案】(1)见解析;(23【解析】【分析】(1)连接AC 交BD 于点O ,由菱形的性质得出BD AC ⊥,由矩形的性质得出1BD DD ⊥,结合11//AA DD ,得出1BD AA ⊥,再利用直线与平面垂直的判定定理证明BD ⊥平面1ACC ,于是得出1BD A C ⊥;(2)先证明OA ⊥平面ABCD ,再由AC BD ⊥得知OA 、OB 、1OA 两两相互垂直,建立以点O 为原点,OA 、OB 、1OA 所在直线为x 轴、y 轴、z 轴的空间直角坐标系O xyz -,利用向量法求出平面1A CE 和平面11A CC 的法向量,再利用向量法求出二面角11E A C C --的余弦值.【详解】(1)连接AC 交BD 于点O ,因为底面ABCD 是菱形,所以,AC BD ⊥,且O 为AC 的中点,因为四边形11BDD B 是矩形,所以,1BD DD ⊥,在平行六面体1111ABCD A B C D -中,11//AA DD ,所以,1BD AA ⊥,因为1AA 、AC ⊂平面11ACC A ,1AA AC A =,所以,BD ⊥平面11ACC A ,AC ⊂平面11ACC A ,1BD AC ∴⊥; (2)111AA AC =,且O 为AC 的中点,所以,1AO AC ⊥, BD ⊥平面11ACC A ,所以,平面ABCD ⊥平面11ACC A ,因为平面ABCD 平面11ACC A AC =,1A O ∴⊥平面ABCD ,1AO AO ∴⊥,1A O OB ⊥,所以,OA 、OB 、1OA 两两相互垂直, 分别以OA 、OB 、1OA 所在直线为x 轴、y 轴、z 轴建立如图空间直角坐标系,又因为11122AA AC ==,2BD =,5AB =1OB =,12OA OA ==, 所以()2,0,0A 、()0,1,0B 、()10,0,2A 、()2,0,0C -、()2,1,2B -, 所以,()12,0,2AC =--,()12,0,2B B =-,()112,1,0A B =-, 所以,11111,0,422B E B B ⎛⎫==- ⎪⎝⎭,111131,1,22A E A B B E ⎛⎫=+=-- ⎪⎝⎭, 设平面1A CE 的一个法向量为(),,n x y z =,则有110{0A E n AC n ⋅=⋅=,即310{22220x y z x z -+-=--=, 取1x =,则1z =-,1y =,()1,1,1n ∴=-易得平面11A CC 的一个法向量为()0,1,0OB =, 所以,3cos ,3OB nOB n OB n ⋅==⋅,所以,二面角11E A C C --3 【点睛】本题考查线线垂直的证明,考查二面角余弦值的求法,在证明线线垂直时,一般利用线面垂直得到线线垂直,所以找出并证明线面垂直是关键,另外,在求解二面角时,一般利用空间向量法求解,所以建系、求平面法向量是解空间角问题的核心,考查运算求解能力,属于中等题.22.已知斜率为1的直线l 与椭圆2222:1(0)x y C a b a b+=>>交于P ,Q 两点,且线段PQ 的中点为31,4A ⎛⎫- ⎪⎝⎭,椭圆C的上顶点为(B .(1)求椭圆C 的离心率;(2)设直线:(l y kx m m '=+≠与椭圆C 交于,M N 两点,若直线BM 与BN 的斜率之和为2,证明:l '过定点.【答案】(1)12e =(2)见证明 【解析】【分析】(1)设点P ,Q 的坐标,代入椭圆C 的方程,利用点差法及中点坐标公式可得a ,b 的关系,可得e ;(2)联立直线l '方程与椭圆方程,利用根与系数的关系可得M ,N 的横坐标的和与积,由直线AM 与AN 的斜率之和为2可得m 与k 的关系,再由直线系方程得答案.【详解】(1)设点()11,P x y ,()22,Q x y ,由于点A 为线段PQ 的中点 所以1212232x x y y +=⎧⎪⎨+=-⎪⎩, 又22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩两式作差212121212121x x y y b k a y y x x +--⋅===+-, 所以2234b a =,即12e =; (2)由(1)结合上顶点B ,椭圆的方程为22143x y +=, 设点()()3344,,,M x y N x y ,联立22143x y y kx m ⎧+=⎪⎨⎪=+⎩得()2223484120k x kmx m +++-=,则韦达定理得, 据题意可得342234283441234km x x k m x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩343434341122(2(BM BN x x k k k m k m x x x x ⎛⎫+=+=+=++=+ ⎪⎝⎭代入韦达定理得2822(412km k m m --==-,化简得m = 所以直线l '为(y kx k x =+=+,过定点(,综上,直线l '过定点(.【点睛】本题考查椭圆的简单性质,考查直线与椭圆位置关系的应用,考查了点差法的技巧,是中档题。

高州市二中2018-2019学年高二上学期第二次月考试卷数学

高州市二中2018-2019学年高二上学期第二次月考试卷数学

高州市二中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 抛物线x=﹣4y 2的准线方程为( )A .y=1B .y=C .x=1D .x=2. 函数f (x )=Asin (ωx+φ)(A >0,ω>0,)的部分图象如图所示,则函数y=f (x )对应的解析式为( )A .B .C .D .3. 矩形ABCD 中,AD=mAB ,E 为BC 的中点,若,则m=( )A .B .C .2D .34. 如图,棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 为线段A 1B 上的动点,则下列结论正确的有( ) ①三棱锥M ﹣DCC 1的体积为定值 ②DC 1⊥D 1M ③∠AMD 1的最大值为90° ④AM+MD 1的最小值为2.A .①②B .①②③C .③④D .②③④5. 已知直线y=ax+1经过抛物线y 2=4x 的焦点,则该直线的倾斜角为( )A .0B .C .D .6. 如图表示的是四个幂函数在同一坐标系中第一象限内的图象,则幂函数y=x 的图象是( )A .①B .②C .③D .④7. 现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③高新中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员2名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本. 较为合理的抽样方法是( )A .①简单随机抽样,②系统抽样,③分层抽样B .①简单随机抽样,②分层抽样,③系统抽样C .①系统抽样,②简单随机抽样,③分层抽样D .①分层抽样,②系统抽样,③简单随机抽样 8. 设复数1i z =-(i 是虚数单位),则复数22z z+=( ) A.1i - B.1i + C. 2i + D. 2i -【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力. 9. 已知函数f (x )的定义域为[a ,b],函数y=f (x )的图象如下图所示,则函数f (|x|)的图象是( )A.B.C.D.10.若命题p:∃x∈R,x﹣2>0,命题q:∀x∈R,<x,则下列说法正确的是()A.命题p∨q是假命题B.命题p∧(¬q)是真命题C.命题p∧q是真命题 D.命题p∨(¬q)是假命题11.若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为()A.1:2:3 B.2:3:4 C.3:2:4 D.3:1:212.对“a,b,c是不全相等的正数”,给出两个判断:①(a﹣b)2+(b﹣c)2+(c﹣a)2≠0;②a≠b,b≠c,c≠a不能同时成立,下列说法正确的是()A.①对②错B.①错②对C.①对②对D.①错②错二、填空题13.(x﹣)6的展开式的常数项是(应用数字作答).14.设全集______.15.若函数f(x)=3sinx﹣4cosx,则f′()=.16.某公司租赁甲、乙两种设备生产A B,两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产A类产品50件,B类产品140件,所需租赁费最少为__________元.17.设Rm∈,实数x,y满足23603260y mx yx y≥⎧⎪-+≥⎨⎪--≤⎩,若182≤+yx,则实数m的取值范围是___________.【命题意图】本题考查二元不等式(组)表示平面区域以及含参范围等基础知识,意在考查数形结合的数学思想与运算求解能力.18.如图:直三棱柱ABC ﹣A ′B ′C ′的体积为V ,点P 、Q 分别在侧棱AA ′和CC ′上,AP=C ′Q ,则四棱锥B ﹣APQC 的体积为 .三、解答题19.(本小题12分)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=, 5313a b +=.111](1)求{}n a ,{}n b 的通项公式; (2)求数列{}nnab 的前项和n S .20.已知顶点在坐标原点,焦点在x 轴上的抛物线被直线y=2x+1截得的弦长为,求此抛物线方程.21.证明:f (x )是周期为4的周期函数;(2)若f (x )=(0<x ≤1),求x ∈[﹣5,﹣4]时,函数f (x )的解析式.18.已知函数f(x)=是奇函数.22.已知﹣2≤x≤2,﹣2≤y≤2,点P的坐标为(x,y)(1)求当x,y∈Z时,点P满足(x﹣2)2+(y﹣2)2≤4的概率;(2)求当x,y∈R时,点P满足(x﹣2)2+(y﹣2)2≤4的概率.23.设F是抛物线G:x2=4y的焦点.(1)过点P(0,﹣4)作抛物线G的切线,求切线方程;(2)设A,B为抛物线上异于原点的两点,且满足FA⊥FB,延长AF,BF分别交抛物线G于点C,D,求四边形ABCD面积的最小值.24.如图,三棱柱ABC﹣A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,且AB⊥BC,O 为AC中点.(Ⅰ)证明:A1O⊥平面ABC;(Ⅱ)求直线A1C与平面A1AB所成角的正弦值;(Ⅲ)在BC1上是否存在一点E,使得OE∥平面A1AB,若不存在,说明理由;若存在,确定点E的位置.高州市二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】D【解析】解:抛物线x=﹣4y 2即为y 2=﹣x ,可得准线方程为x=.故选:D .2. 【答案】A【解析】解:由函数的图象可得A=1, =•=﹣,解得ω=2,再把点(,1)代入函数的解析式可得 sin (2×+φ)=1,结合,可得φ=,故有,故选:A .3. 【答案】A【解析】解:∵AD=mAB ,E 为BC 的中点,∴=+=+=+,=﹣,∵,∴•=(+)(﹣)=||2﹣||2+=(﹣1)||2=0,∴﹣1=0,解得m=或m=﹣(舍去),故选:A【点评】本题考查了向量的加减的几何意义和向量的数量积运算,以及向量垂直的条件,属于中档题.4. 【答案】A【解析】解:①∵A1B∥平面DCC1D1,∴线段A1B上的点M到平面DCC1D1的距离都为1,又△DCC1的面积为定值,因此三棱锥M﹣DCC1的体积V==为定值,故①正确.②∵A1D1⊥DC1,A1B⊥DC1,∴DC1⊥面A1BCD1,D1P⊂面A1BCD1,∴DC1⊥D1P,故②正确.③当0<A1P<时,在△AD1M中,利用余弦定理可得∠APD1为钝角,∴故③不正确;④将面AA1B与面A1BCD1沿A1B展成平面图形,线段AD1即为AP+PD1的最小值,在△D1A1A中,∠D1A1A=135°,利用余弦定理解三角形得AD1==<2,故④不正确.因此只有①②正确.故选:A.5.【答案】D【解析】解:抛物线y2=4x的焦点(1,0),直线y=ax+1经过抛物线y2=4x的焦点,可得0=a+1,解得a=﹣1,直线的斜率为﹣1,该直线的倾斜角为:.故选:D.【点评】本题考查直线的倾斜角以及直线的斜率的关系,抛物线的简单性质的应用,考查计算能力.6.【答案】D【解析】解:幂函数y=x为增函数,且增加的速度比价缓慢,只有④符合.故选:D.【点评】本题考查了幂函数的图象与性质,属于基础题.7.【答案】A【解析】解;观察所给的四组数据,①个体没有差异且总数不多可用随机抽样法,简单随机抽样,②将总体分成均衡的若干部分指的是将总体分段,在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号,系统抽样,③个体有了明显了差异,所以选用分层抽样法,分层抽样,故选A.8.【答案】A【解析】9.【答案】B【解析】解:∵y=f(|x|)是偶函数,∴y=f(|x|)的图象是由y=f(x)把x>0的图象保留,x<0部分的图象关于y轴对称而得到的.故选B.【点评】考查函数图象的对称变换和识图能力,注意区别函数y=f(x)的图象和函数f(|x|)的图象之间的关系,函数y=f(x)的图象和函数|f(x)|的图象之间的关系;体现了数形结合和运动变化的思想,属基础题.10.【答案】B【解析】解:∃x∈R,x﹣2>0,即不等式x﹣2>0有解,∴命题p是真命题;x<0时,<x无解,∴命题q是假命题;∴p∨q为真命题,p∧q是假命题,¬q是真命题,p∨(¬q)是真命题,p∧(¬q)是真命题;故选:B.【点评】考查真命题,假命题的概念,以及p∨q,p∧q,¬q的真假和p,q真假的关系.11.【答案】D【解析】解:设球的半径为R,则圆柱、圆锥的底面半径也为R,高为2R,则球的体积V球=圆柱的体积V圆柱=2πR3圆锥的体积V圆锥=故圆柱、圆锥、球的体积的比为2πR3::=3:1:2故选D【点评】本题考查的知识点是旋转体,球的体积,圆柱的体积和圆锥的体积,其中设出球的半径,并根据圆柱、圆锥的底面直径和高都等于球的直径,依次求出圆柱、圆锥和球的体积是解答本题的关键.12.【答案】A【解析】解:由:“a,b,c是不全相等的正数”得:①(a﹣b)2+(b﹣c)2+(c﹣a)2中至少有一个不为0,其它两个式子大于0,故①正确;但是:若a=1,b=2,c=3,则②中a≠b,b≠c,c≠a能同时成立,故②错.故选A.【点评】本小题主要考查不等关系与不等式等基础知识,考查运算求解能力,考查逻辑思维能力.属于基础题.二、填空题13.【答案】﹣160【解析】解:由于(x﹣)6展开式的通项公式为T r+1=•(﹣2)r•x6﹣2r,令6﹣2r=0,求得r=3,可得(x﹣)6展开式的常数项为﹣8=﹣160,故答案为:﹣160.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.14.【答案】{7,9}【解析】∵全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},∴(∁U A)={4,6,7,9 },∴(∁U A)∩B={7,9},故答案为:{7,9}。

广东省广州市天河区天河中学2020学年上学期高二数学第二次月考试题

广东省广州市天河区天河中学2020学年上学期高二数学第二次月考试题

天河中学2020学年上学期高二数学第二次月考试题考试时间120分钟满分150分一、单选题(本大题共8小题,共40分)1.抛物线的准线方程是y=12,则其标准方程是()A. y2=2xB. x2=−yC. y2=−xD. x2=−2y2.平行六面体(每个面都是平行四边形)中,M为AC与BD的交点,若,,,则下列式子中与相等的是A. B.C. D.2.已知等比数列{a n}满足a1a13=4a7,数列{b n}是等差数列,其前n项和为S n,且a7=b7,则S13=()A. 52B. 26C. 78D. 1044.已知双曲线的中心在原点,两个焦点F1,F2分别为(−√5,0)和(√5,0),点P在双曲线上,PF1⊥PF2,且△PF1F2的面积为1,则双曲线的方程为()A. x22−y23=1 B. x23−y22=1 C. x24−y2=1 D. x2−y24=15.已知P是椭圆x24+y2=1上的动点,则P点到直线l:x+y−2√5=0的距离的最小值为().A. √102B. √52C. √105D. √256.已知P为抛物线y2=4x上一个动点,Q为圆x2+(y−4)2=1上一个动点,那么点P到点Q的距离与点P到抛物线的准线距离之和的最小值是()A. 2√5−1B. 2√5−2C. √17−1D. √17−2 7.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点分别为F 1,F 2,其中焦点F 2与抛物线y 2=2px 的焦点重合,且椭圆与抛物线的两个交点连线正好过点F 2,则椭圆的离心率为( )A. √22B. √2−1C. 3−2√2D. √3−18.已知双曲线E 的中心为原点,是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为,则E 的方程为A. B. C. D.二、多项选择题(本大题共4小题,共20分;少选3分,多选错选0分)9.下列说法正确的是( )A. “若x 2=1,则x =1”的否命题为“若x 2=1,则x ≠1”B. “00>∃x ,012020>--x x ”的否定为“,0≤∀x 0122≤--x x ”C. “若x >1,则x 2>1”的逆否命题为真命题D. “x =−1”是“x 2−5x −6=0”的充分不必要条件10.已知A ,B 两点的坐标分别是(−1,0),(1,0),直线AP 、BP 相交于点P ,且两直线的斜率之积为m ,则下列结论正确的是( )A. 当m =−1时,点P 的轨迹为圆B. 当−1<m <0时,点P 的轨迹为焦点在x 轴上的椭圆(除去与x 轴的交点)C. 当0<m <1时,点P 的轨迹为焦点在x 轴上的抛物线D. 当m >1时,点P 的轨迹为焦点在x 轴上的双曲线(除去与x 轴的交点)11.设数列{a n }满足a 1+3a 2+5a 3+⋯+(2n −1)a n =2n ,*N n ∈,记数列{a n 2n+1}的前n 项和为S n ,则( )A. a 1=2 B. a n =22n−1 C. S n =n 2n+1 D. S n =na n+112.已知椭圆M :x 2a 2+y 2b 2=1(a >b >0),双曲线N :x 2m 2−y 2n 2=1.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,下列结论正确的是( )A. 椭圆的离心率B. 双曲线的离心率e =2C. 椭圆上不存在点A 使得D. 双曲线上存在不同的四个点B i (i=1,2,3,4),使得B i F 1垂直B i F 2 参考数据(74.13,414.12≈≈)三、填空题(本大题共4小题,共20分)13.与双曲线x 22−y 2=1有相同的渐近线,并且过点(−2,−3)的双曲线方程是 . 14.已知实数x ,y 满足不等式组{x ≥0y ≥0x +2y ≤83x +y ≤9,则z =x +3y 的最大值是______. 15.函数)1(12)(>-+=x x x x f 的最小值是 ;取到最小值时,x = 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

甘肃省兰州新区舟曲中学2016-2017学年高二数学上学期第二次月考试题理一、 选择题:(本大题共12小题,每小题5分,共60分.) 每小题中,只有一项符合题目要求,请将正确答案填在正确的位置.1.在数列,13,10,7,2,1……中,192是这个数列的 ( ) A.第16项 B.第24项 C.第26项 D.第28项2.关于x 的不等式)0(08222><--a a ax x 的解集为),(21x x ,且1512=-x x ,则=a ( )A .25 B. 27 C. 415 D. 2153.设b a ,是实数,则""b a >是22"b a >的 ( ) A .充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 4. 命题;1sin ,:<∈∀x R x p ;命题.1cos ,:-≤∈∃x R x q 则下列结论是真命题的是 ( ) A.q p ∧ B.q p ∧⌝ C.q p ⌝∨ D.q p ⌝∧⌝5.设,,,R c b a ∈则下列命题为真命题的是 ( ) A.c b c a b a ->-⇒> B.bc ac b a >⇒> C.22b a b a >⇒> D.22bc ac b a >⇒>6.在△ABC 中,若B A sin sin >,则A 与B 的大小关系为 ( )A .B A <B.B A ≥C.B A >D. A 、B 的大小关系不能确定7.在等差数列{}n a 中,前四项之和为20,最后四项之和为60,前n 项之和是100,则项数n 为 ( )A .9B .10C .11D .128.△ABC 中, ∠A ,∠B ,∠C 所对的边分别为a , b , c .若3,4a b ==,∠C=60,则c 的值等于( )A. 5B. 13C.13D.37 9.命题“若4πα=,则1tan =α”的逆否命题是 ( )A.若4πα≠则1tan ≠α B. 若4πα=则1tan ≠αC. 若1tan ≠α则4πα≠ D. 若1tan ≠α则4πα=10.如果}{n a 为递增数列,则}{n a 的通项公式可以为( )A. 32+-=n a n B. 132+-=n n a n C. n n a 21=D. 21log n a n =+ 11.给出下列命题:①若原命题为真,则这个命题的否命题,逆命题,逆否命题中至少有一个为真; ②若p 是q 成立的充分条件,则q 是p 成立的必要条件; ③若p 是q 的充要条件,则可记为q p ⇔; ④命题“若p 则q ”的否命题是“若p 则q ⌝”.其中是真命题的是 ( )A.①②③B.②③④C.①③④D. ②④ 12.设ABC ∆的内角C B A ,,所对的边分别为c b a ,,若cca B 22cos2+=,则ABC ∆的形状为( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定二、填空题:(本大题4小题,每小题5分,共20分. )请将正确的答案填在横线上。

13.若y x ,满足⎪⎩⎪⎨⎧≥-+≤--≤,01,01,1y x y x y 则y x z +=3的最小值为______________________14.命题[)"0,,0"3≥++∞∈∀x x x 的否定是________________________15. ABC ∆的内角C B A ,,所对的边分别为c b a ,,,若C B A sin ,sin ,sin 成等比数列,且a c 2=,则_____________________cos =B16. 若数列{}n a 满足n nn a a a 2,111==+则数列{}n a 的通项公式_____________=n a三、解答题(本大题共6小题,共70分.解答应写出文字说明、演算步骤或推证过程) 17. (本小题10分)已知集合{}}{,1,243,12322≥+=≤≤+-==m x x B x x x y y A A x p ∈:,q:B x ∈,并且p 是q 的充分条件,求m 的取值范围.18. (本小题12分)等差数列{}n a 和等比数列{}n b 中,n S 为数列{}n a 的前n 项和,n T 为数列{}n b 的前n 项和,若12,231==S a ,15,342==T T (1)求6a ; (2)求6T .19.(本小题12分)已知c b a ,,分别为ABC ∆三个内角C B A ,,的对边,c b C a C a --+sin 3cos0=.(1)求A;(2)若2=a ,ABC ∆的面积为3求c b ,20. (本小题12分)已知0,0>>y x ,且082=-+xy y x ,求:(1)xy 的最小值; (2)y x +的最小值.21. (本小题12分) 已知等差数列{}n a 的前n 项和n s 满足03=s ,55-=s . (1)求{}n a 的通项公式; (2)求数列⎭⎬⎫⎩⎨⎧+-12121n n a a 的前n 项和.22. (请选做其中一题,本小题12分)(1)请推导等差数列及等比数列前n 项和公式;(2)如果你在海上航行,请设计一种测量海上两个小岛之间距离的方法并作图说明; (3)某工厂要建造一个长方形无盖贮水池,其容积为4800立方米,深为3米,如果池底每平米的造价为150元,池壁每平米造价为120元,怎样设计水池能使造价最低?最低总造价是多少?兰州新区舟曲中学2016—2017学年度第一学期第二次月考答案卷 高二年级 数学必修⑤及选修2-1一、选择题(本大题共12小题,每小题5分,共60分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CADBACBCCDAB二、填空题(本大题共4小题,每小题5分,共20分)13、1.14、 [),,00+∞∈∃x 使得0030<+x x .15、43.16、2)1(2-=n n n a三、解答题(本大题共6小题,共70分.解答应写出文字说明、演算步骤或推证过程) 17.(本小题满分10分)解:化简集合{}243,1232≤≤+-==x x x y y A 配方,得167)43(2+-=x y .因为,2,167⎥⎦⎤⎢⎣⎡∈x ∴.2167|2,1672,167max min ⎩⎨⎧⎭⎬⎫≤≤=∴⎥⎦⎤⎢⎣⎡∈∴==y y A y y y (3分)化简集合B ,由,12≥+m x 得}{221|,1m x x B m x -≥=-≥(3分)因为命p 题是命题q 的充分条件,16712≤-∴⊆∴m B A 解得43≥m 或43-≤m 实数的取值范围是)∞+⎢⎣⎡⋃ ⎝⎛⎥⎦⎤-∞-,4343,(4分) 18、计算下列各式的值(本小题满分12分)(1)解设数列{}n a 的公差为d ,由题意可知d a S 223313⨯+=,代入数据解之得,2=d ,(3分)由等差数列通项公式d n a a n )1(1-+=可得126=a (3分).(2)解设等比数列{}n b 的公比为q ,首项为1b .由题意可知⎪⎪⎩⎪⎪⎨⎧--=--=q q b T qq b T 1)1(1)1(414212,代入数据解之得1,21==b q 或3,21-=-=b q (3分),由等比数列前n 项和公式可知qq b S --=1)1(616,代入数据得636=S (3分) 19.(本小题满分12分) (1)解:由c b C a C a --+sin 3cos 0=及正弦定理得B C A C A sin sin sin 3cos sin -+0sin =-C 由三角形内角和定理可知由于21)6sin(0sin =-∴≠πA C ,又30ππ=∴<<A A (6分)(2) ABC ∆的面积3sin 21==A bc S 故4=bc 而,cos 2222A bc c b a -+=故822=+c b 解得2==c b (6分).20. (本小题满分12分)解(1)因为0,0>>y x 所以08,02>>y x ,则y x y x 82282•≥+由题意可知xy y x =+82所以xy xy 8≥解之得64≥xy (6分)(2)xy y x xy y x =+∴=-+82082,xyy x x y y x y x x y 82)82()(,182+=+⨯+=+∴=+ 10+因为0,0>>y x 18)(882min =+∴≥+∴y x xyy x (6分) 21、(本小题满分12分)(1)解:{}n a 的公差为的d ,则()d n n na S n 211-+=。

由已知,可得⎩⎨⎧-=+=+510503311d a d a 解得⎩⎨⎧-==111d a 故{}n a 的通项公式为n a n -=2(6分)(2)解:由(1)知,12121+-n n a a =))((n n 21231--=21⎪⎭⎫-- ⎝⎛-121321n n 从而数列⎭⎬⎫⎩⎨⎧+-12121n n a a 的前n 项和为nn n n 21121321......3111111121-=⎪⎭⎫ ⎝⎛---++-+--(6分) 22. (本小题满分12分) (1)倒序相加;错位相减各6分 (2)课本A 组第7题作图3分,方案9分 (3)课本例题(12分)。

相关文档
最新文档