最新实数(2)教案汇编
第二章 实数全章教案-
第二章实数1.数怎么又不够用了第一课时 数怎么又不够用了(1)教学目标1.通过拼图活动,让学生感觉无理数产生的实际背景和学习它的必要性。
2.进一步丰富无理数的实际背景,使学生体会到无理数在实际生活中大量存在,并对无理数产生感性认识。
重点:对无理数的感识难点:对无理数的认识教学过程一、复习1.什么叫有理数,举出例子。
2.勾股定理的内容?若Rt △ABC 的两个直角边分别是5、12,求它的斜边。
二、创设问题情境,引导学生思考,引入课题出示投影(一)P25页首图文1教师指出:随着人类的认识不断发展,人们发现,现实生活中确实存在不同于有理数的数,本章我们将学习元理数、实数、平方根、立方根的概念,学习利用估算或借助计算器求出一个无理数的近似值,并解决有关的实际问题。
出示课题:数怎么不够用了.三、师生共同参与教学活动,获得生活中大量存在的不是有理数的认识1.拼图活动(1)让学生把准备好的两块边长相同的正方形,通过剪一剪、拼一拼,拼成一个大的正方形。
(2)鼓励学生充分思考,交流并给予引导。
(3)教师把学生的几种做法在全班展示。
2.对拼图的结果作进一步分析(1)设大正方形的边长为a ,a 满足什么条件?(2)a 可能是整数吗?说说你的理由。
(3)a 可能是以2为分母的分数吗?可能是以3为分母的分数吗?说说你的理由。
(4)a 可能是分数吗?说说你的理由,并与同伴交流。
教师鼓励学生充分进行思考、交流,给予适时引导。
学生的回答可能是。
“l 2=1,22=4,32=9……越来越大,所以a 不可能是整数。
”“(21)2=41,(32)2=94……结果都是分数,所以a 不可能是分数。
”“两个相同的最简分数的乘积仍然是分数,所以a 不可能是分数”等。
这里只要学生能进行简单的说理即可。
教师归纳:事实上,在等式a 2=2中,a 既不是整数也不是分数,所以a 不是有理数。
说明在生活中存在着不是有理数的数。
3.做一做出示投影(三):P25页“做一做”内容(1)让学生用勾股定理算出以直角三角形的斜边为边的正方形的面积是多少?(2)设正方形的边长为b ,b 满足什么条件? (3)b 是有理数吗?(4)让学生分组交流以上问题后回答。
11、4无理数与实数(2)——实数教案 - 副本
怀柔区第四中学教案(2017-2018学年第一学期)教学过程:预设问题:1、什么是实数?2、对所学过的数可以进行怎样的分类?3、从有理数扩充到实数后,运算法则变吗?(一)创设情境,导入新课1.任何一个有理数都可以写成或的形式。
反之,任何或也都是有理数。
2.无理数:_(二)自探、合探1.实数的概念和分类书上p46(1)实数: .(2)分类:按定义分:按符号分为: 实数 实数2.实数与数轴上的点 课本P46页(1)在数轴上找到表示无理数π的点(2)在数轴上找到表示有理数 和 2总结:(1)实数与数轴上的点是 对应的,即每一个实数都可以用数轴上的 来表示;反过来,数轴上的每一个点都表示 。
(2)数轴上任意两个点, 的点所表示的实数总比 的点表示的实数大。
实数与数轴上的点是 关系.(三)展示与评价(根据学生做题情况,找有共性的问题展示、评价)1.判断(1)无理数都是开方开不尽的数。
( )(2)无理数都是无限小数。
( )(3)无限小数都是无理数。
( )(4)无理数包括正无理数、零、负无理数。
( )(5)不带根号的数都是有理数。
( )(6)有理数都是有限小数。
( )(7)实数包括有限小数和无限小数( )(8)所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数。
( )2.- 的倒数是 , 相反数是 , 绝对值是 。
的倒数是 , 相反数是 , 绝对值是 。
绝对值为 的实数是 .(四)教师精讲例1. _________. 在数轴上离点3_________ _ _ _ _ ,_ ,_例2.按要求估计下列各数的范围(1)在哪两个整数之间2(2)在那两个数之间,这两个数精确到0.01(五)巩固训练_______.1.大于2.设a是最小的自然数,b是最大负整数,c是绝对值最小的实数,则a+b+c=______.3.如图,数轴上表示1A和B,点B关于点A的对称点为点C,则点C表示的数是( )A 1 B.1 C.2 D 24、|3-10|= , |π-3.14|= .(六)、课堂检测1. 下列四个实数中是无理数的是 ( )C. D.1.414A.2.5B.1032.两个无理数的和、差、积、商一定是( )A.无理数B.有理数C.0 D.实数3.在两个整数之间.(七)、小结:1.实数是有理数与无理数的统称.2.实数的分类3.实数与数轴上的点一一对应,会估计一个无理数的范围.4.倒数、相反数、绝对值的求法不变.(八)、作业:书49页8、9题;50页11题(九)、课后反思:11.4无理数与实数(2)——实数 学案(一)创设情境,导入新课1.任何一个有理数都可以写成 或 的形式。
实数教案(精选3则)
实数教案(精选3则)实数教案实数教案(一):初中数学教案----实数一、资料特点在知识与方法上类似于数系的第一次扩张。
也是后继资料学习的基础。
资料定位:了解无理数、实数概念,了解(算术)平方根的概念;会用根号表示数的(算术)平方根,会求平方根、立方根,用有理数估计一个无理数的大致范围,实数简单的四则运算(不要求分母有理化)。
二、设计思路[]整体设计思路:无理数的引入----无理数的表示----实数及其相关概念(包括实数运算),实数的应用贯穿于资料的始终。
学习对象----实数概念及其运算;学习过程----透过拼图活动引进无理数,透过具体问题的解决说明如何表示无理数,进而建立实数概念;以类比,归纳探索的方式,寻求实数的运算法则;学习方式----操作、猜测、抽象、验证、类比、推理等。
具体过程:首先透过拼图活动和计算器探索活动,给出无理数的概念,然后透过具体问题的解决,引入平方根和立方根的概念和开方运算。
最后教科书总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。
第一节:数怎样又不够用了:透过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想;会决定一个数是有理数还是无理数。
第二、三节:平方根、立方根:如何表示正方形的边长?它的值到底是多少?并引入算术平方根、平方根、立方根等概念和开方运算。
第四节:公园有多宽:在实际生活和生产实际中,对于无理数我们常常透过估算来求它的近似值,为此这一节资料介绍估算的方法,包括透过估算比较大小,检验计算结果的合理性等,其目的是发展学生的数感。
第五节:用计算器开方:会用计算器求平方根和立方根。
经历运用计算器探求数学规律的活动,发展合情推理的潜力。
第六节:实数。
总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。
三、一些推荐1.注重概念的构成过程,让学生在概念的构成的过程中,逐步理解所学的概念;关注学生对无理数和实数概念的好处理解。
4.3 实数(2)(教案)
4.3 实数(2)(教案)主备人:殷雯 审核人:叶旺竹【教学目标】1、通过自主学习课本P 103材料,知道有理数的运算在实数范围内仍然适用,并能进行相关的实数运算;2、通过用不同的方法比较两个有理数的大小,理解估算的意义,发展数感和估算能力。
【教学重点】知道实数的运算性质,能进行相关的实数运算【教学难点】掌握比较无理数大小的不同方法,会估算无理数的大小。
【教学过程】 一、情境创设1.什么是实数?实数能在数轴上表示吗?2.请你在数轴上表示2,你能说出2的相反数、绝对值吗?你认为()2-2+等于多少?二、探索新知(阅读课本P 103材料) 1.实数的性质在实数范围内绝对值、相反数、倒数的意义完全相同 练习:填表2.实数的简单运算有理数范围内的运算法则、运算律等在实数范围内也适用. 例1、计算(1)1-(π-3.14) (2)(3))31()31(-⋅+ (4)3018)132()41(--+--332)7()5(---练 习:(1) (2)3.实数的大小比较 问题一:请你比较 与 的大小。
问题二:尝试比较 与 的大小。
问题三:你能比较215-与0.5的大小吗?例2、(1)比较大小- 1.42 π7228(2)大家知道5是一个无理数,那么5-1在哪两个整数之间( ) A 、1与2 B 、2与3 C 、3与4 D 、4与5(3)将下列各数按从小到大的顺序排列5,3,2π-,0, -1.6例3、写出符合下列条件的数。
(1)大于17-且小于11的所有整数; (2)绝对值小于18的所有整数三.课堂小结:1、我们经历了多次数的扩充,使我们对数有了进一步的认识,从中你有什么感受?2、举例说明你是如何估算一个无理数的大小?373-7-30272)15)(15(---)(++233649)(--+。
2024年华东师大版八年级数学上册教案1122实数
2024年华东师大版八年级数学上册教案1122实数一、教学内容本节课选自2024年华东师大版八年级数学上册第十一章第二节数学广角,主题为“实数”。
具体内容包括实数的概念、分类和性质,以及实数在数轴上的表示。
教材涉及章节为11.2节。
二、教学目标1. 理解实数的概念,掌握实数的分类及性质。
2. 学会实数在数轴上的表示方法,并能运用其解决实际问题。
3. 培养学生的数感和逻辑思维能力。
三、教学难点与重点教学难点:实数的性质及其在数轴上的表示方法。
教学重点:实数的概念及其分类。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:直尺、圆规、练习本。
五、教学过程1. 引入:通过生活中的实例,如气温、身高等,引导学生了解实数的概念。
2. 新课导入:讲解实数的定义、分类(有理数、无理数)及性质。
3. 例题讲解:讲解实数在数轴上的表示方法,并举例说明。
4. 随堂练习:让学生在数轴上表示给定的实数,并判断其大小关系。
6. 知识拓展:介绍实数在数学及其他学科中的应用。
六、板书设计1. 实数的定义、分类及性质。
2. 实数在数轴上的表示方法。
3. 例题及解答步骤。
七、作业设计1. 作业题目:实数填空题、选择题、解答题。
(1)填空题:填写实数的分类及性质。
(2)选择题:选择正确的实数表示方法。
(3)解答题:求解实数的大小关系,并在数轴上表示。
2. 答案:课后提供标准答案。
八、课后反思及拓展延伸1. 反思:回顾本节课的教学过程,分析学生的掌握情况,针对问题进行改进。
2. 拓展延伸:引导学生了解实数与数的其他概念(如复数、虚数)的关系,激发学生的学习兴趣。
重点和难点解析1. 实数的性质及其在数轴上的表示方法。
2. 实数的概念及其分类。
3. 教学过程中的例题讲解和随堂练习。
4. 作业设计中的解答题和答案。
一、实数的性质及其在数轴上的表示方法实数的有序性:任意两个实数可以比较大小,这是实数在数轴上表示的基础。
实数的封闭性:实数的加、减、乘、除(除数不为零)结果仍为实数。
4.3《实数(2)》参考教案
例一让学生 理解实数的绝对 值和相反数概 念, 例二使学生 掌握计算器的使 用以及实数的运 算。
(1) 5 ; (2) 3 2 - 3 2 ;
3 (3) 5 3( - 3 5 5) .
归 纳 新 知
让学生自己独立解决,然后进行检查,找出问题,加 深理解和应用。
1.判断正误,若不对,请说明理由,并加以改正。 (1)无理数都是无限小数。 学 以 致 用 (2)带根号的数不一定是无理数。 (3)无限小数都是无理数。 (4)数轴上的点表示有理数。 (5)不带根号的数一定是有理数。 2.计算: (1) 4 2 6 2 ; 巩 固 提 高 课堂 小结 1.本节课你有哪些收获? 2.你还有什么问题或想法需要和大家交流? 引导学生从内容上、方法上、情感上小结。 整体 感知 作业布置:P105 习题 4.3 第 3 题。 1.比较下列各组数的大小。 (1)3 2 与 2 3 2.课本第 104 页练习 (2) 2 与 第 1、2、3 题 1 2 (2) 3( 3 2) ;
能展示学生 对所学知识的思 考过程,全班纠 错,小组互相监 督,培养学生良 好的学习习惯。
让学生按这 一模式进行小 结,培养学生学 习——总结—— 学习——反思的 良好习惯。
2/2
4.3 实数(2)
学 目 习 标 1.掌握实数的相反数和绝对值; 2.掌握实数的运算律和运算性质。 1.会求实数的相反数和绝对值; 重 点 2.会进行实数的加减法运算; 3.会进行实数的近似计算。 难 点 认识和理解有理数的一些概念和运算在实数中仍适用的这种扩充。 教 教学环节 创 设 情 境 教 学 学 过 活 程 动 设 计 意 图
复习引入:有理数的一些概念和运算性质运算律: 1.相反数:有理数 a 的相反数是 a 。 2.绝对值:当 a ≥0 时, a a ,当 a ≤0 时, a a 。 3.倒数: 4.有理数的大小比较: 5.运算律和运算性质: 有理数之间可以进行加、 减、 乘、 除 (除 数不为 0) 、乘方、非负数的开平方、任意数的开立方运算, 有理数的运算中还有交换律、结合律、分配律。 出示自学提纲: 给学生 充足的时间 和空间,理解 和感知无理 让学生 复习有理数 的一些概念 和运算性质、 运算律。
实数(2)教案
课题:13.3实数(第2课时)【教学目标】1. 了解实数的运算法则及运算律2. 会进行实数的运算.【教学重、难点】掌握实数的运算法则并会熟练进行实数的运算【教学过程】活动一 了解实数的运算法则及运算律自学课本P84~85例2以上内容,解决下面的问题:指出下列各式错在哪里。
(1)3352)52(-=--(2)3232-=-活动二 进行实数的运算自习课本85页的例题2和例题3完成下列各题:1.计算下列各式的值: ①5-(5+2) ②42 -2 2.化简:(1(2)a a -πa <π). 3. 计算: (1)32364)4(1683-⨯-⨯- (2)755331-+--- 实数范围内的运算方法及运算顺序与在有理数范围内的运算方法及运算顺序都是一样吗?(小组交流)本节课你学到了哪些知识?【检测反馈】1.a b 、是实数,下列命题正确的是( )A. a b ≠,则22a b ≠B. 若22a b >,则a b >C. 若a b >,则a b >D. 若a b >,则22a b >2.①23-的相反数是 ②3π的相反数 ③52-=3a 和b 之间,即a b <<,那么a 、b 的值是4.已知四个命题,正确的有( )⑴有理数与无理数之和是无理数;⑵有理数与无理数之积是无理数;⑶无理数与无理数之积是无理数;⑷无理数与无理数之积是无理数.A .1个B .2个C .3个D .4个5.下列说法正确的有( )⑴不存在绝对值最小的无理数;⑵不存在绝对值最小的实数;⑶不存在与本身的算术平方根相等的数;⑷比正实数小的数都是负实数.⑸非负实数中最小的数是0A .1个B .2个C .3个D .4个6.计算或化简:(1))()(3525432+-- (2)535225-----)(π【教学反思】。
2024年浙教版七年级数学上册32《实数》教案
2024年浙教版七年级数学上册32《实数》教案一、教学内容本节课选自2024年浙教版七年级数学上册第32讲,详细内容为实数的定义、性质及其运算。
教材涉及的章节为第二章第二节,主要包括实数的概念、分类、性质以及实数的四则运算。
二、教学目标1. 理解实数的定义,掌握实数的分类和性质。
2. 学会实数的四则运算,并能解决实际问题。
3. 培养学生的逻辑思维能力和数学运算能力。
三、教学难点与重点难点:实数的性质及四则运算。
重点:实数的定义、分类及其性质。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:数学课本、练习本、计算器。
五、教学过程1. 实践情景引入(5分钟)利用多媒体展示生活中实数的例子,如温度、长度等,引导学生思考实数的概念。
2. 知识讲解(15分钟)(1)实数的定义:讲解实数的概念,引导学生理解实数是表示物体数量的一种数学工具。
(2)实数的分类:介绍实数的分类,包括有理数和无理数。
(3)实数的性质:讲解实数的性质,如交换律、结合律、分配律等。
(4)实数的四则运算:详细讲解实数的四则运算方法。
3. 例题讲解(15分钟)选择具有代表性的例题进行讲解,引导学生掌握实数的性质和运算方法。
4. 随堂练习(10分钟)设计具有梯度的问题,让学生独立完成,巩固所学知识。
六、板书设计1. 实数的定义、分类、性质。
2. 实数的四则运算方法。
3. 具有代表性的例题及解答过程。
七、作业设计1. 作业题目:(3)已知a、b是实数,且a+b=5,ab=3,求a、b的值。
2. 答案:(1)实数:π、√2、3/2、5。
(2)2+3π、1、2。
(3)a=4,b=1。
八、课后反思及拓展延伸1. 反思:对本节课的教学过程进行反思,分析学生的掌握情况,调整教学方法。
2. 拓展延伸:引入复数的概念,为学生学习下一阶段的知识打下基础。
重点和难点解析1. 实数的定义及性质的教学。
2. 实数四则运算的教学。
3. 例题的选取与讲解。
实数(单元复习)标准教案
实数(单元复习)标准教案一、教学目标:1. 知识与技能:(1)理解实数的定义及分类,掌握有理数和无理数的特点。
(2)掌握实数的性质,如相反数、绝对值、平方等。
(3)学会实数的运算方法,包括加、减、乘、除、乘方等。
2. 过程与方法:(1)通过复习实数的定义和性质,提高学生的逻辑思维能力。
(2)运用实数运算方法,培养学生解决实际问题的能力。
3. 情感态度与价值观:培养学生对数学的兴趣,提高学生分析问题、解决问题的能力。
二、教学重点与难点:1. 教学重点:(1)实数的定义及分类。
(2)实数的性质和运算方法。
2. 教学难点:(1)实数分类的理解和运用。
(2)实数运算的灵活应用。
三、教学过程:1. 导入新课:回顾实数的定义,引导学生思考实数的分类和性质。
2. 知识讲解:(1)讲解实数的分类,包括有理数和无理数。
(2)阐述实数的性质,如相反数、绝对值、平方等。
(3)介绍实数的运算方法,如加、减、乘、除、乘方等。
3. 例题解析:选取典型例题,讲解实数的运算方法和应用。
4. 课堂练习:设计练习题,让学生巩固实数的分类、性质和运算方法。
5. 总结提升:对本节课的内容进行总结,强调实数在数学中的重要性。
四、课后作业:1. 复习实数的定义、分类和性质。
2. 练习实数的运算方法,解决实际问题。
3. 总结实数在实际生活中的应用。
五、教学评价:1. 学生对实数的定义、分类和性质的掌握程度。
2. 学生实数运算方法的运用能力。
3. 学生解决实际问题的能力。
4. 学生对数学学科的兴趣和积极性。
六、教学策略与方法:1. 采用问题驱动法,引导学生主动探究实数的性质和运算方法。
2. 通过小组讨论,培养学生合作学习的能力。
3. 利用信息技术辅助教学,如数学软件、网络资源等。
4. 设计富有挑战性的数学问题,激发学生的创新思维。
七、教学实践与拓展:1. 结合实际生活中的问题,让学生运用实数知识和方法解决问题。
2. 开展数学竞赛,提高学生的学习积极性。
八年级数学实数教案5篇
八年级数学实数教案5篇一节数学课不但要把该节的内容让学生能够接受,更重要的是启发学生去思考,引导学生从抽象的理论到实践的过程,对于方法的探索采用从特殊到一般的思想,下面是小编给大家整理的八年级数学实数教案5篇,希望大家能有所收获!八年级数学实数教案1一.教材分析1.教材的地位和作用本节课是北师大版实验教科书八年级上册第二章《实数》的第六节内容.在本节之前学生已学习了平方根.立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入.中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程.函数的基础.2.教学目标:(根据新课程标准的要求,结合本节教材的特点,以及八年级学生的认知规律,我制定如下目标).知识技能:(1)了解无理数和实数的概念以及实数的分类.(2)知道实数与数轴上的点具有一一对应关系.数学思考:(1)经历对实数进行分类的过程,发展学生的分类意识.(2)经历从有理数逐步扩充到实数的过程,了解人类对数的认识是不断发展的.解决问题:通过无理数的引入,使学生对数的认识由有理数扩充到实数.情感态度:(1)通过了解数系扩充体会数系扩充对人类发展的作用.(2)敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.3.教学重点.难点重点:了解实数意义,能对实数进行分类,明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数.难点:用数轴上的点来表示无理数.二.学情分析在学习本节课前,学生已掌握对一个非负数开平方和对一个数开立方运算.课本对学生掌握实数要求不高.只要求学生了解无理数和实数的意义.但实数的知识却贯穿中学数学始终,所以我们只能逐步加深学生对实数的认识.本节主要引导学生熟知实数的概念和意义,为后面学习打下基础.三.教法学法分析:教法分析:根据本节课的教学内容和学生的实际水平,我采用的是引导发现法.类比法和多媒体辅助教学.(1)在教学中通过设置疑问,创设出思维情境,然后引导学生动脑.动手,使学生在开放.民主.和谐的教学氛围中获取知识,提高能力,促进思维的发展.(2)借助多媒体辅助教学,增大教学的容量和直观性,增强学习兴趣,从而达到提高教学效果和教学质量的目的.(3)教具:三角板.圆规.多媒体.学法分析:我们在向学生传授知识的同时,必须教给他们好的学习方法,让他们学会学习.享受学习.因此,在本节课的教学中引导学生〝仔细看.动脑想.多交流.勤练习〞的学习,增强参与意识,让他们体验获取知识的历程,掌握思考问题的方法,逐渐培养他们〝会观察〞.〝会类比〞.〝会分析〞.〝会归纳〞的能力.四.教程分析:针对本节教材的特点,我把教学过程设计为以下五个环节:北师大版八年级数学上册第二章《2.6实数》说课稿一.创设问题情景,引出实数的概念内容:问题:(1)什么是有理数?有理数怎样分类?(2)什么是无理数?带根号的数都是无理数吗?意图:回顾以前学习过的内容,为进一步学习引入无理数后数的范围的扩充作准备.学生回答:无理数是无限不循环小数.带根号的数不一定是无理数.3.把下列各数分别填入相应的集合内.有理数集合.无理数集合,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)意图:通过将以上各数填入有理数集合和无理数集合,建立实数概念.教师引导学生得出实数概述并板书:有理数和无理数统称实数(realnumber).教师点明:实数可分为有理数与无理数.最后多媒体展示具体分类,并对有理数和无理数从小数的角度进行说明.二.议一议,1.在实数概念基础上对实数进行不同分类.无理数与有理数一样,也有正负之分,如是正的,是负的.教师提出以下问题,让学生思考:(1)你能把,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)等各数填入下面相应的集合中?正数集合:负数集合:(2)0属于正数吗?0属于负数吗?(3)实数除了可以分为有理数与无理数外,实数还可怎样分?意图:在实数概念形成的基础上对实数进行不同的分类.上面的数中有0,0不能放入上面的任何一个集合中,学生容易遗漏,强调0也是实数,但它既不是正数也不是负数,应单独作一类.提醒学生分类可以有不同的方法,但要按同一标准不重不漏.让学生讨论回答后,教师引导学生形成共识:实数也可以分为正实数.0.负实数.2.了解实数范围内相反数.倒数.绝对值的意义:在有理数中,有理数a的的相反数是什么,不为0的数a的倒数是什么.在实数范围内,相反数.倒数.绝对值的意义和有理数范围内的相反数.倒数.绝对值的意义完全一样.例如,和是互为相反数,和互为倒数.,,,.三.想一想让学生思考以下问题1.a是一个实数,它的相反数为,绝对值为;2.如果,那么它的倒数为.意图:从复习入手,类比有理数中的相关概念,建立实数的相反数.倒数和绝对值等概念,它们的意义和有理数范围内的意义是一致的让学生回答后,教师归纳并板书:实数a的相反数为,绝对值为,若它的倒数为(教师指明:0没有倒数)增加练习:(多媒体展示)第一组1.的绝对值是2.a是一个实数,它的绝对值是第二组:1.的相反数是,绝对值是2.绝对值等于的数是,3.的绝对值是4.正实数的绝对值是,0的绝对值是,负实数的绝对值是例题:求下列各数的相反数.倒数.绝对值(1)(2)(3)学生上黑板完成,教师巡视学生如何书写,对发现的问题及时处理,最后与学生共同纠正.明晰:实数和有理数一样,可以进行加.减.乘.除.乘方运算,而且有理数的运算法则与运算律对实数仍然适用.(媒体展示两个举例)四.议一议.探索用数轴上的点来表示无理数1.每个有理数都可以用数轴上的点表示,那么无理数是否也可以用数轴上的点来表示呢?你能在数轴上找到表示.和这样的无理数的点吗?2.多媒体展示的做法和和的做法如图OA=OB,数轴上A点对应的数是多少?让学生充分思考交流后,引导学生达成以下共识:探讨用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步领会数形结合的思想,利用数轴也可以直观地比较两个实数的大小.(1)A点对应的数等于,它介于1与2之间.(2)每一个有理数都可以用数轴上的点表示(3)每一个无理数都可以用数轴上的点来表示(4)每个实数都可以用数轴上的点来表示,每一个实数都可以用数轴上的点来表示;反过来数轴上的每一个点都表示一个实数.即实数和数轴上的点是一一对应的.(4)和有理数一样,在数轴上,右边的点比左边的点表示的数大.五.随堂练习(多媒体展示)第一组:判断题:①实数不是有理数就是无理数.②无理数都是无限不循环小数.③无理数都是无限小数④带根号的数都是无理数.⑤无理数一定都带根号.⑥两个无理数之积不一定是无理数.⑦两个无理数之和一定是无理数.⑧数轴上的任何一点都可以表示实数.第二组:1.判断下列说法是否正确:(1)无限小数都是无理数;(2)无理数都是无限小数;(3)带根号的数都是无理数.2.求下列各数的相反数.倒数和绝对值:(1)(2)(3)3.在数轴上作出对应的点.意图:通过以上练习,检测学生对实数相关知识的掌握情况.六.小结1.实数的概念2.实数可以怎样分类3.实数a的相反数为,绝对值,若,它的倒数为.4.数轴上的点和实数一一对应.七.作业课本习题2.81.2.3题结束语:多媒体展示:人生的价值,并不是用时间,而是用深度去衡量的.——列夫托尔斯泰八.板书设计:实数1.实数的概念4.实数与数轴上的点的关系2.实数的分类5.例题3.实数a的相反数为,6.学生练习绝对值,若,它的倒数为八年级数学实数教案2学习目标1 了解无理数和实数的概念2会对实数按照一定的标准进行分类;知道实数和数轴上的点的关系.能估算无理数的大小3了解实数范围内相反数和绝对值的意义学习重点正确理解实数的概念学习难点理解实数的概念问题用计算机把下列有理数写成小数的形式5?3,7,8,_90,9我们知道整数和分数统称有理数,所以任意一个有理数都可以写成有限小数或无限不循环小数的形式,反之,任何有限小数或无限小数也都是有理数.那么无限不循环小数叫什么呢?无理数:无限不循环小数叫做无理数.通过上两节课的学习,我们知道许多数的平方根或立方根都是无限不循环小数,例如 . .? . 等都是无理数,π=3.__926…也是无理数.实数:有理数和无理数统称为实数.有理数有限小数或无限小数依此分类实数无理数无限不循环小数像有理数一样,无理数也有正负之分,由于非0有理数和无理数都有3479_5 正负之分,所以依此分类为正实数正有理数正无理数实数0负有理数负实数负无理数例一.把下列各数填入相应的集合内0.6.-43.0.33. 0._ .π.(1)有理数集合:{}(2)无理数集合:{}(3)整数集合 :{}(4)分数集合:{}(5)实数集合:{}我们知道,每个有理数都可以用数轴上的点来表示.无理数是否也可以用数轴上的点来表示呢?事实上,每一个无理数都可以用数轴上的一个点表示出来.即数轴上的点有些表示有理数,有些表示无理数.当数从有理数扩充到实数后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示:反过来,数轴上的每一个点都表示一个实数.平面直角坐标系中的点与有序实数对之间也是一一对应的.与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大.当数从有理数扩充到实数以后,有理数关于相反数的绝对值的意义同样适合实数.(1)数a的相反数是-a,(a表示任何实数)(2)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.课堂小结1.这节课你学到的知识有2.这节课你的收获有3.这节课应注意的问题有练习题a1.若实数a满足a??1,则() A.a?0B.a?0C.a?0D.a?02.下列说法正确的是().A.无限小数都是无理数B.带根号的数都是无理数C.无理数是无限小数D.无理数是开方开不尽的数3.和数轴上的点一一对应的是()A 整数B 有理数C 无理数D 实数35?_4.绝对值等于的数是,的相反数是,?8的相反数是;1?2的相反数是_________________,绝对值是.5.如果一个实数的绝对值是3?7,那么这个实数是6.比较大小:-7?4八年级数学实数教案3教学难点:绝对值.教学过程:一. 复习:1.实数分类:方法(1) ,方法(2)注:有限小数.无限循环小数是有理数,可化为分数;无限不循环小数是无理数例1判断:(1) 两有理数的和.差.积.商是有理数;(2) 有理数与无理数的积是无理数;(3) 有理数与无理数的和.差是无理数;(4) 小数都是有理数;(5) 零是整数,是有理数,是实数,是自然数; (6) 任何数的平方是正数; (7) 实数与数轴上的点一一对应; (8) 两无理数的和是无理数. 例2下列各数中:-1,0, , ,1.1_0_ , , ,- , ,2, . 有理数集合{ …}; 正数集合{ …};整数集合{ …};自然数集合{…};分数集合{ …}; 无理数集合{ …};绝对值最小的数的集合{ …};2.绝对值: = (1) 有条件化简例3.①当1 ②a,b,c为三角形三边,化简③如图,化简 + . (2) 无条件化简 ;例4.化简解:步骤①找零点;②分段;③讨论.例5.①已知实数abc在数轴上的位置如图,化简|a+b|-|c-b|的结果为②当-3例6.阅读下面材料并完成填空你能比较两个数__和__的大小吗?为了解决这个问题先把问题一般化,既比较nn+1和(n+1)n的大小(的整数),然后从分析=1,=2,=3,....这些简单的情况入手,从中发现规律,经过规纳,猜想出结论.(1) 通过计算,比较下列①——⑦各组中两个数的大小(在横线上填〝 .=. 〞号〞)①_ _ ;②23 32;③34 43;④45 54;⑤56 65;⑥67 76⑦78 87(2)对第(1)小题的结果进行归纳,猜想出nn+1和(n+1)n的大小关系是(3)根据上面的归纳结果猜想得到的一般结论是: __ __练习:(1)若a -6,化简 ;(2)若a 0,化简(3)若 ;(4)若 = ;(5)解方程 ;(6)化简: .二. 小结:;三.作业:四.教后感:八年级数学实数教案41.体现了自主学习.合作交流的新课程理念.对于例题的处理,改变了传统的教学模式,采用了〝尝试—交流—讲评—讨论〞的方式,充分发挥学生的主体性.参与性.同样采用了〝尝试—发现—归纳〞的方式.使学生清楚新旧知识的区别和联系.当然类比的对象也可能出现差异,这在进一步的类比有理数与数轴的关系时就表现出来了,有理数与数轴上的点不是一一对应的,而实数与数轴上的点是一一对应的.2.重视数学思想方法与算法算理的渗透,本节课在这一方面主要是让学生感知研究数学问题的一般方法(分类.辨析.归纳.化归等),通过让学生不断回顾有理数的相反数.绝对值.混合运算等知识,有意识地让学生类比旧知识,自主学习新知识,很好地发展了学生的类比能力.3.在本节课的设计中,注重引导学生参与探究.归纳(用自己的语言叙述)实数范围内的相反数.绝对值含义,以及实数范围内的混合运算法则.4. 注意学生合作学习的学习方式,让学生在与他人合作中受益,学会交流,学会倾听和接受别人的意见和建议.从课堂上学生的反映情况也看到了不足:1.学生自主探索的时间较少.对于学生,会对实数进行分类,没有大面积利用小组合作提高学生的积极性,有些面面俱到包揽太多,过于低估学生的学习能力,应给学生留有一定的学习空间.2.有些细节的重点地方忽略了,比如学生在表示出根号5,根号_等点时引导学生总结无理数也可在数轴上表示,此处如果再设计一问:反过来说,有理数把数轴填满了吗?引导学生回到本节课题实数与数轴的点一一对应. 3.分层教学对于不同层次的学生应该有不同的要求,在教学中应该多加注意,采取不同的评价方式,并且要有相应的激励方法,学生才能有热情去学习.数学课堂不应仅仅是学习的地方,更应是学生〝生活〞的乐园.让生活走进初中数学课堂,适应学生的学习生活和个性发展的需要,让所有的学生都能在数学课堂中接触生活.感悟生活,学习生活中必需的数学,才能更好地实践课改精神,推进高效课堂的进行.八年级数学实数教案5教学目标(一)知识目标:1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为有理数;并能说出现由.(二)能力训练目标:1.让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养大家的动手能力和合作精神.2.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力.(三)情感与价值观目标:1.激励学生积极参与教学活动,提高大家学习数学的热情.2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的精神.教学重点1.让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数.2.会判断一个数是否为有理数.教学难点1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.2.判断一个数是否为有理数.教学方法教师引导,主要由学生分组讨论得出结果.教学过程一.创设问题情境,引入新课[师]同学们,我们学过不计其数的数,概括起来我们都学过哪些数呢?[生]在小学我们学过自然数.小数.分数.[生]在初一我们还学过负数.[师]对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数.零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.二.讲授新课1.问题的提出[师]请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?[生]好.(学生非常高兴地投入活动中).[师]经过大家的共同努力,每个小组都完成了任务,请各组把拼的图展示一下.同学们非常踊跃地呈现自己的作品给老师.[师]现在我们一齐把大家的做法总结一下:下面请大家思考一个问题,假设拼成大正方形的边长为a,则a应满足什么条件呢?[生甲]a是正方形的边长,所以a肯定是正数.[生乙]因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a2=2.[生丙]由a2=2可判断a应是1点几.[师]大家说得都有道理,前面我们已经总结了有理数包括整数和分数,那么a是整数吗?a是分数吗?请大家分组讨论后回答.[生甲]我们组的结论是:因为_=1,_=4,32=9,…整数的平方越来越大,所以a应在1和2之间,故a不可能是整数.[生乙]因为,…两个相同因数的乘积都为分数,所以a不可能是分数.[师]经过大家的讨论可知,在等式a2=2中,a既不是整数,也不是分数,所以a不是有理数,但在现实生活中确实存在像a这样的数,由此看来,数又不够用了.2.做一做投影片§2.1.1 A(1)在下图中,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b,则b应满足什么条件?b是有理数吗?[师]请大家先回忆一下勾股定理的内容.[生]在直角三角形中,若两条直角边长为a,b,斜边为c,则有a2+b2=c2.[师]在这题中,两条直角边分别为1和2,斜边为b,根据勾股定理得b2=_+_,即b2=5,则b是有理数吗?请举手回答.[生甲]因为_=4,32=9,4 5 9,所以b不可能是整数.[生乙]没有两个相同的分数相乘得5,故b不可能是分数.[生丙]因为没有一个整数或分数的平方为5,所以5不是有理数.[师]大家分析得很准确,像上面讨论的数a,b都不是有理数,而是另一类数——无理数.关于无理数的发现是付出了昂贵的代价的.早在公元前,古希腊数学家毕达哥拉斯认为万物皆〝数〞,即〝宇宙间的一切现象都能归结为整数或整数之比〞,也就是一切现象都可用有理数去描述.后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说为此希伯索斯被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的,后来古希腊人终于正视了希伯索斯的发现.也就是我们前面谈过的a2=2中的a不是有理数.我们现在所学的知识都是前人给我们总结出来的,我们一方面应积极地学习这些经验,另一方面我们也不能死搬教条,要大胆质疑,如不这样科学就会永远停留在某处而不前进,要向古希腊的希伯索斯学习,学习他为捍卫真理而勇于献身的精神.三.课堂练习(一)课本P35随堂练习如图,正三角形ABC的边长为2,高为h,h可能是整数吗?可能是分数吗?解:由正三角形的性质可知BD=1,在Rt△ABD中,由勾股定理得h2=3.h不可能是整数,也不可能是分数.(二)补充练习为了加固一个高2米.宽1米的大门,需要在对角线位置加固一条木板,设木板长为a米,则由勾股定理得a2=_+_,即a2=5,a的值大约是多少?这个值可能是分数吗?解:a的值大约是2.2,这个值不可能是分数.四.课堂小结1.通过拼图活动,经历无理数产生的实际背景,让学生感受有理数又不够用了.2.能判断一个数是否为有理数.五.课后作业:见作业本.§2.1 数怎么又不够用了(二)教学目标(一) 知识目标:1.借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想.2.会判断一个数是有理数还是无理数.(二)能力训练目标:1.借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并在活动中进一步发展学生独立思考.合作交流的意识和能力.2.探索无理数的定义,以及无理数与有理数的区别,并能辨别出一个数是无理数还是有理数,训练大家的思维判断能力.(三)情感与价值观目标:1.让学生理解估算的意义,掌握估算的方法,发展学生的数感和估算能力.2.充分调动学生的积极性,培养他们的合作精神,提高他们的辨识能力.教学重点1.无理数概念的探索过程.2.用计算器进行无理数的估算.3.了解无理数与有理数的区别,并能正确地进行判断.教学难点1.无理数概念的建立及估算.2.用所学定义正确判断所给数的属性.教学方法老师指导学生探索法教学过程一.创设问题情境,引入新课[师]同学们,我们在上节课了解到有理数又不够用了,并且我们还发现了一些数,如a2=2,b2=5中的a,b既不是整数,也不是分数,那么它们究竟是什么数呢?本节课我们就来揭示它的真面目.二.讲授新课1.导入:[师]请看图大家判断一下3个正方形的边长之间有怎样的大小关系?说说你的理由.[生]因为3个正方形的面积分别为1,2,4,而面积又等于边长的平方,所以面积大的正方形边长就大.[师]大家能不能判断一下面积为2的正方形的边长a的大致范围呢?[生]因为a2大于1且a2小于4,所以a大致为1点几.[师]很好.a肯定比1大而比2小,可以表示为1 a 2.那么a究竟是1点几呢?请大家用计算器进行探索,首先确定十分位,十分位究竟是几呢?如1._=1._,1._=1.44,1.32=1.69,1.42=1.96,1.52=2.25,而a2=2,故a应比1.4大且比1.5小,可以写成1.4 a 1.5,所以a是1点4几,即十分位上是4,请大家用同样的方法确定百分位.千分位上的数字. p=[生]因为1.4_=1.9881,1.4_=2._64,所以a应比1.41大且比1.42小,所以百分位上数字为1.[生]因为1.4_2=1.99__,1.4_2=1.993744,1.4_2=1.996569,1.4_2=1.999396,1.4_2=2.0__5,所以a应比1.4_大而比1.4_小,即千分位上的数字为4.[生]因为1.4__=1.99996_4,1.4_32=2.00_4449,所以a应比1.4_2大且比1.4_3小,即万分位上的数字为2.[师]大家非常聪明,请一位同学把自己的探索过程整理一下,用表格的形式反映出来.[生]我的探索过程如下.边长a 面积S1 a2 p= 1 s 41.4 a 1.5 p= 1.96 s2.251.41 a 1.42 p= 1.9881 s2._641.4_ a 1.4_ p= 1.999396 s2.0__51.4_2 a 1.4_3 p= 1.99996_4 s2.00_4449[师]还可以继续下去吗?[生]可以.[师]请大家继续探索,并判断a是有限小数吗?[生]a=1.4_2_56…,还可以再继续进行,且a是一个无限不循环小数.[师]请大家用上面的方法估计面积为5的正方形的边长b的值.边长b会不会算到某一位时,它的平方恰好等于5?请大家分组合作后回答.(约4分钟)[生]b=2.236_7978…,还可以再继续进行,b也是一个无限不循环小数.[生]边长b不会算到某一位时,它的平方恰好等于5,但我不知道为什么.[师]好.这位同学很坦诚,不会就要大胆地提出来,而不要冒充会,这样才能把知识学扎实,学透,大家应该向这位同学学习.这个问题我来回答.如果b算到某一位时,它的平方恰好等于5,即b是一个有限小数,那么它的平方一定是一个有限小数,而不可能是5,所以b不可能是有限小数.2.无理数的定义请大家把下列各数表示成小数.3,,并看它们是有限小数还是无限小数,是循环小数还是不循环小数.大家可以每个小组计算一个数,这样可以节省时间.[生]3=3.0, =0.8, = ,,[生]3, 是有限小数, 是无限循环小数.[师]上面这些数都是有理数,所以有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数都是有理数.。
实数(教案)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《实数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过无法用分数表示的数?”(如圆的周长与直径的比例)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索实数的奥秘。
实数(教案)
一、教学内容
本节教学内容选自人教版《数学》八年级下册第十二章“实数”部分。主要内容包括:
1.实数的定义:有理数和无理数的统称,包括整数、分数以及无限不循环小数。
2.无理数的概念:无法表示为两个整数之比的数,如π和e。
3.实数的分类:整数、分数、无理数。
4.实数的性质:包括交换律、结合律、分配律等。
(1)实数的定义及其分类:这是本节课的核心内容,要求学生掌握有理数和无理数的概念,理解实数的分类。
举例:区分整数、分数、无理数等不同类型的实数,如π、√2等。
(2)实数的性质和运算:使学生掌握实数的交换律、结合律、分配律等性质,并熟练进行实数的加减乘除及乘方运算。
举例:3+5=5+3,(3+4)×2=3×2+4×2等。
2.通过实数的分类和运算,提高学生的数学运算和数据分析能力。
3.借助数轴理解实数,发展学生的几何直观和空间想象能力。
4.在解决实际问题的过程中,培养学生运用数学知识解决现实问题的能力,提升数学建模素养。
5.通过小组合作交流,培养学生表达清晰、逻辑严谨的数学交流能力,增强合作意识。
最新6.3实数教案
6.3 实数(一)教学目标1、掌握无理数及实数的概念.2、会对实数进行分类.教学重点:无理数及实数的概念,以及实数的分类.教学难点:无理数及实数的概念,以及实数的分类.一、情境导入,明确目标问题:(1)我们知道有理数包括整数和分数,同学们能把下列分数写成小数的形式?它们有什么特征?25=___ , 53-=__ , 427=___ , 911=___ , 119=___特征:_____________________________3可以看成是3.0吗?整数能写成小数的形式吗?答:_____通过问题(1)、(2)可归纳:有理数都可以化成 或 .反过来,任何 或 也都是有理数.二、自主学习,发现问题阅读课本53-56页,完成学案29页的基础梳理。
三、合作探究,解决问题1、问题(3)我们学过的数是否都具有问题(1)、(2)中数的特征?举例说明。
π=3.1415926... , 0.1313313331...思考:它们都是 小数。
它们还是有理数吗?归纳:无理数:无限不循环小数叫做无理数实数:有理数和无理数统称为实数2、例题: 下列各数中,哪些是有理数,哪些是无理数?是有理数的打“√”,无理数的打“×”归纳:常见的无理数的三种形式:1.π及含π的一些数;2.开方开不尽的数;例如2,34..3.有规律但不循环的数;如1.010 010 001...0.1313313331... 问题(4)你还记得有理数的分类吗?分类的基本原则是什么?(二分法)按定义分,(三分法)按正负性分,分类原则:不重不漏(2)你能对我们学过的数进行合理的分类吗?二分法:按定义分 三分法:按正负性分实数 实数四、当堂检测,达成目标学案30页 基础达标五.反思总结,能力提高1、对照目标,自我反思.本节课你收获了什么?3π327-72232 131331333.03648-1604.032.0 392、作业:学案31页6.3 实数(二)教学目标:1、进一步理解无理数与实数的概念,会求一个实数的相反数和绝对值;2、能进行简单的实数四则运算和近似计算;教学重点:求一个实数的相反数绝对值及实数四则运算。
2021年八年级数学上册 第二章第六节 实数(二)教案 北师大版
2019-2020年八年级数学上册第二章第六节实数(二)教案北师大版一、教材分析实数(第2课时)是义务教育课程标准北师大版实验教科书八年级上册第二章《实数》第6节内容.本节内容分为3个课时,本节是第2课时.本课时用类比的方法,引入实数的运算法则,运算律等,并利用这些运算法则、运算率进行有关运算,解决有关实际问题.二、学情分析七年级上学期已学习了有理数的加、减、乘、除、乘方运算,本学期又学习了有理数的平方根、立方根.这些都为本课时学习实数的运算法则、运算率提供了知识基础。
当然,毕竟是一个新的运算,学生有一个熟悉的过程,运算的熟练程度尚有一定的差距,在本节课及下节课的学习中,应针对学生的基础情况,控制上课速度和题目的难度.三、目标分析1.教学目标●知识与技能目标(1)了解有理数的运算法则在实数范围内仍然适用.(2)用类比的方法,引入实数的运算法则、运算律,并能用这些法则、运算律在实数范围进行正确计算.[(3)正确运用公式:(≥0,≥0)(≥0,>0)这两个公式,实际上是二次根式内容中的两个公式,但这里不必向学生提出二次根式这个概念.●过程与方法目标(1)通过具体数值的运算,发现规律,归纳总结出规律.(2)能用类比的方法解决问题,用已有知识去探索新知识.●情感与态度目标由实例得出两条运算法则,培养学生归纳、合作、交流的意识,提高数学素养.2.教学重点(1)用类比的方法,引入实数的运算法则、运算律,能在实数范围内正确运算.(2)发现规律:(≥0,≥0)(≥0,>0)3.教学难点(1)类比的学习方法.(2)发现规律的过程.4.教学方法(1)探索——交流法.(2)课前准备:教材、课件、电脑.电脑软件:Word,Powerpoint.四、教学过程本节课设计了六个教学环节:第一环节:复习引入;第二环节:知识探究;第三环节:知识巩固;第四环节:知识拓展;第五环节:课时小结;第六环节:作业布置.第一环节:复习引入问题1 :有理数中学过哪些运算及运算律?答:加、减、乘、除、乘方,加法(乘法)交换律、结合律,分配律.问题2:实数包含哪些数?答:有理数,无理数.问题3:有理数中的运算法则、运算律等在实数范围内能继续使用?答:这是我们本节课要解决的新问题.意图:通过问题,回顾旧知,为导出新知打好基础。
实数(单元复习)标准教案
实数(单元复习)标准教案第一章:实数的概念与分类一、教学目标:1. 理解实数的定义及其分类;2. 掌握有理数和无理数的特点;3. 能够正确区分各种实数类型。
二、教学内容:1. 实数的定义;2. 有理数的概念及其分类;3. 无理数的概念及其分类;4. 实数的性质。
三、教学重点与难点:1. 实数的分类;2. 有理数与无理数的区别;3. 实数的性质。
四、教学方法:1. 讲授法:讲解实数的定义、分类及性质;2. 案例分析法:分析具体案例,引导学生理解实数的分类;3. 讨论法:组织学生讨论实数的性质。
五、教学步骤:1. 引入实数的概念,让学生回顾实数的定义;2. 讲解有理数的概念及其分类,让学生通过实例理解有理数的性质;3. 讲解无理数的概念及其分类,让学生通过实例理解无理数的性质;4. 组织学生讨论实数的性质,总结实数的特点;5. 布置练习题,巩固所学内容。
第二章:实数的运算一、教学目标:1. 掌握实数的运算方法;2. 能够熟练进行实数运算;3. 理解实数运算的性质。
二、教学内容:1. 实数的加减乘除运算;2. 实数的乘方与开方运算;3. 实数运算的性质。
三、教学重点与难点:1. 实数运算的规则;2. 实数运算的性质。
四、教学方法:1. 讲授法:讲解实数的运算方法及性质;2. 练习法:让学生通过练习题巩固实数运算的方法;3. 小组合作法:组织学生分组讨论实数运算的问题。
五、教学步骤:1. 复习实数的运算方法,让学生回顾加减乘除运算的规则;2. 讲解实数的乘方与开方运算,让学生理解乘方与开方的意义;3. 组织学生进行实数运算的练习,让学生熟练掌握运算方法;4. 讲解实数运算的性质,让学生理解运算的规律;5. 布置练习题,巩固所学内容。
第三章:实数与函数一、教学目标:1. 理解实数与函数的关系;2. 掌握函数的定义及性质;3. 能够运用实数解决函数问题。
二、教学内容:1. 实数与函数的关系;2. 函数的定义及其性质;3. 函数的图像与实数的关系。
《实数(2)》参考教案
实数(2)教案一.教学目标:1.了解有理数的运算法则在实数范围内仍然适用。
2.用类比的方法,引入实数的运算法则、运算律,并能用这些法则,运算律在实数范围内正确计算。
3.让学生根据现有的条件或式子找出它们的共性,进而发现规律,培养学生的钻研精神和创新能力。
二.教学重难点:1.重点:实数的运算法则、运算律,在实数范围内正确计算2.难点:发现规律的过程三.教学过程:1.复习:在实数范围内与在有理数范围内的相反数、倒数、绝对值意义完全一样。
那么,在有理数范围内的运算法则,运算律等能不能在实数范围内继续用呢?让我们一起来研究。
2.新课讲解:回顾在有理数范围内学过哪些法则和运算律。
(加、减、乘、除、乘方、加法交换律、结合律、分配律)。
有理数范围的运算法则在实数范围内仍然适用。
如:2332=⋅ ,321232123=⎪⎭⎫ ⎝⎛⋅⋅=⋅⋅ ()252322322=+=+3.例题讲解4.拓展讲解 ①=⨯94 , =⨯94 ②=⨯916 , =⨯916 ③=94, =94 ④=2516 , =2516 ⑤=⨯76 ,=⨯76 =76, =76 (利用计算器计算) 根据计算结果讨论:发现什么规律?学生讨论总结: ①=⨯9494⨯ ②=⨯916916⨯ ③=9494 ④=25162516 ⑤=⨯7676⨯ , =7676 用字母将规律表示出来: ①=⋅b a b a ⋅ (a≥0, b≥0)②=b a b a (a≥0, b>0)学生讨论补充完整a,b的条件.5.课堂练习(1)ppt演示或者板书练习题(2)直角三角形的一直角边和斜边分别为5cm、45cm,求这个直角三角形的面积。
6.课堂小结:实数范围内运算的技巧及规律。
最新湘教版八年级数学上册《实数二》教学设计(精品教案)
3.3.2 实数(2)【教学目标】1.了解有理数的运算在实数范围内仍然适用,能用有理数估计一个无理数的大致范围.2. 理解有效数字的概念,会根据要求进行近似值的运算.⒊能利用计算器比较实数的大小,进行实数的四则运算.⒋通过用不同的方法比较两个无理数的大小,理解估算的意义、发展数感和估算能力,在运用实数运算解决实际问题的过程中,增强应用意识,提高解决问题的能力,体会数学的应用价值.【教学重点】了解有理数的运算在实数范围内仍然适用,理解有效数字的概念,会比较实数的大小.【教学难点】理解估算的意义、发展数感和估算能力.【教学过程】一、新课引入把数从有理数扩充到实数后,我们可进行哪些运算?二、自主探究⒈实数也可以进行运算;而且非负数可以进行运算,任意实数可进行运算.⒉有理数的运算法则、运算律对于实数仍然成立.加法交换律:=a+b加法结合律:()ca++=ba0+a+==()=a+a-乘法交换律:=ab乘法结合律:()=cab1aa⨯1==⨯分配律:()=a+cbab+-a=a a(≠b)b⨯÷a=若,0a那么ab0≠b,0≠⒊利用数轴,我们怎样比较两个有理数的大小?⑴在数轴上表示的数,右边的数总比左边的大.这个结论在实数范围内也成立.⑵我们还有什么方法可以比较两个实数的大小吗?两个正实数的绝对值较大的值也较大;两个负实数的绝对值大的值反而小;正数大于零,负数小于零,正数大于负数.比较下列各组数里两个数的大小(1)2,1.4; (2)5-,-6; (3)-2,33三、应用迁移(一)典例精析例1计算下列各式的值: ⑴();553-+ ⑵.3332-例3用计算器计算:52⨯(精确到小数点后面第二位).(在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似的有限小数去代替无理数,再进行计算.)(二)变式运用 ⒈计算5352-+-的值,正确的是( )A.1B.-1C.535-D.55-⒉比较下列各组数的大小. ⑴7-与3-; ⑵225-与21.(三)综合运用已知b a ,是有理数,且满足()23131+=++b a ,求()b a -的值.四、 巩固提升★⒈教材P121 ⒈⒉⒊★★⒉将下列各数用“<”连接起来.π,3,4,)1(),3(,8,423-------★★★⒊已知,0c b a <<<化简:().22c b a b a +---六、课后练习A层:教材P121A组⒋⒌⒍B层:教材P122 B组⒏七、教学反思。
2.5 实数(2)教案
8上2.5 实数(2)教学目标:1、了解实数的意义,能对实数按要求进行分类。
2、了解实数范围内,相反数、倒数、绝对值的意义。
3、了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数。
重点、难点:重点:了解实数意义,能对实数进行分类,明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。
难点:用数轴上的点来表示无理数。
教学过程:一、创设问题情景,引出实数的概念1、什么叫无理数,什么叫有理数,举例说明。
2、把下列各数分别填入相应的集合内。
32,41,7,π,25-,2,320,5-,38-,94,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)教师引导学生得出实数概述并板书:有理数和无理数统称实数(real number )。
教师点明:实数可分为有理数与无理数。
二、议一议1、在实数概念基础上对实数进行不同分类。
无理数与有理数一样,也有正负之分,如3是正的,π-是负的。
教师提出以下问题,让学生思考:(1)你能把32,41,7,π,25-,2,320,5-,38-,94,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)等各数填入下面相应的集合中?正有理数:负有理数:有理数:无理数:(2)0属于正数吗?0属于负数吗?(3)实数除了可以分为有理数与无理数外,实数还可怎样分?让学生讨论回答后,教师引导学生形成共识:实数也可以分为正实数、0、负实数。
2、了解实数范围内相反数、倒数、绝对值的意义:在有理数中,有理数a 的的相反数是什么,不为0的数a 的倒数是什么。
在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。
例如,2和2-是互为相反数,35和351互为倒数。
33=,00=,ππ=-,33-=-ππ。
三、想一想让学生思考以下问题1、a 是一个实数,它的相反数为 ,绝对值为 ;2、如果0≠a ,那么它的倒数为 。
让学生回答后,教师归纳并板书:实数a 的相反数为a -,绝对值为a ,若0≠a 它的倒数为a1(教师指明:0没有倒数) 四、议一议。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:13.3实数(第2课时)
【教学目标】
1. 了解实数的运算法则及运算律
2. 会进行实数的运算.
【教学重、难点】掌握实数的运算法则并会熟练进行实数的运算
【教学过程】
活动一 了解实数的运算法则及运算律
自学课本P84~85例2以上内容,解决下面的问题:
指出下列各式错在哪里。
(1)3352)52(-=--
(2)
3232-=-
活动二 进行实数的运算
自习课本85页的例题2和例题3完成下列各题:
1.计算下列各式的值: ①5-(5+2) ②42 -
2 2.化简:
(1
(2)a a -πa <π). 3. 计算: (1)32364)4(1683-⨯-⨯- (2)755331-+---
实数范围内的运算方法及运算顺序与在有理数范围内的运算方法及运算顺序都是一样吗?(小组交流)
本节课你学到了哪些知识?
【检测反馈】
1.a b 、是实数,下列命题正确的是( )
A. a b ≠,则22a b ≠
B. 若22a b >,则a b >
C. 若a b >,则a b >
D. 若a b >,则22a b >
2.①23-的相反数是 ②3
π的相反数 ③52-=
3a 和b 之间,即a b <<,那么a 、b 的值是
4.已知四个命题,正确的有( )
⑴有理数与无理数之和是无理数;⑵有理数与无理数之积是无理数;
⑶无理数与无理数之积是无理数;⑷无理数与无理数之积是无理数.
A .1个
B .2个
C .3个
D .4个
5.下列说法正确的有( )
⑴不存在绝对值最小的无理数;⑵不存在绝对值最小的实数;⑶不存在与本身的算术平方根相等的数;⑷比正实数小的数都是负实数.⑸非负实数中最小的数是0
A .1个
B .2个
C .3个
D .4个
6.计算或化简:(1))()(3525432+-- (2)
535225-----)(π
【教学反思】。