全真模拟数学试卷(数学)
江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题04(高频考点版)
一、单选题二、多选题1. 关于x 的不等式的解集为,且:,则a =( )A.B.C.D.2. 把不超过的最大整数记作,如,,,若实数,满足,且,则( )A .6B .7C .8D .93.若,,,则( )A.B.C.D.4. 已知,,则与的夹角等于( )A.B.C.D.5. 已知空间中,是两条不同的直线,,是两个不同的平面,则下列命题正确的是( )A .,B .,C .,,与异面D .,,6. 过原点可以作曲线的两条切线,则这两条切线方程为( )A .和B .和C .和D .和7. 下列抽样问题中最适合用简单随机抽样法抽样的是( )A .从全班46人中抽取6人参与一项问卷调查B .某企业为了解该企业职工的身体健康情况,从职工(其中老年职工有180人,中青年职工有320人)中抽取50人进行体检C .某灯泡厂从一条生产线上生产的10000个灯泡中抽取100个测试灯泡的使用时长D .某市从参加高三第一次模拟考试的3000名考生中抽取120名考生分析试题作答情况8. 在棱长为a的正方体中,E 、F 、M 分别是AB 、AD 、的中点,又P 、Q 分别在线段、上,且,设平面平面,则下列结论中不成立的是()A .平面B.C .当时,平面D .当m 变化时,直线l 的位置不变9. 已知圆和圆的交点为,直线:与圆交于两点,则下列结论正确的是( )A .直线的方程为B.圆上存在两点和,使得C .圆上的点到直线的最大距离为D .若,则或10. 如图,正方体的棱长为,点为的中点,下列说法正确的是 ( )江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题04(高频考点版)江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题04(高频考点版)三、填空题四、解答题A.B.平面C.点到平面的距离为D.与平面所成角的正弦值为11. 一副三角板由一块有一个内角为的直角三角形和一块等腰直角三角形组成,如图所示,,现将两块三角形板拼接在一起,得三棱锥,取中点与中点,则下列判断中正确的是()A .直线面B.与面所成的角为定值C .设面面,则有∥D .三棱锥体积为定值.12. 已知函数()是奇函数,且,是的导函数,则( )A.B .的一个周期是4C.是偶函数D.13. 已知,且,那么的展开式中的常数项为______.14. 若一扇形的半径为2,面积为1,则该扇形的圆心角的弧度数是_________.15.已知,分别为椭圆()的左、右焦点,过的直线与C 交于A ,B 两点,若,则椭圆C 的离心率为______.16.如图,在直三棱柱中,,是的中点.(1)求证:;(2)求四棱锥的体积.17. 已知函数,.(1)若函数是R上的单调递增函数,求实数m的取值范围;(2)若,且对任意的,都有恒成立,求实数a的取值范围.18. 在数列中,,其中.(1)证明数列是等差数列,并写出证明过程;(2)设,数列的前n项和为,求;(3)已知当且时,,其中,求满足等式的所有n的值之和.19. 设函数(其中为自然对数的底数,,),曲线在点处的切线方程为.(1)求的值;(2)若对任意,函数有且只有两个零点,求的取值范围.20.在中,角,,的对边分别为,,,已知,的面积为.(1)求;(2)若,求的周长.21. 在中,.(1)求的最大值;(2)若,点满足和共线且反向,证明:.附:.。
江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题03
2x
2π 3
.
试卷第 4页,共 5页
(1)求 f x 在0, π 上的单调递增区间;
(2)若当
x
0,
π 4
时,关于
x
的不等式
f
x
m
恒成立,求实数
m
的取值范围.
试卷第 5页,共 5页
信噪比.当信噪比比较大时,公式中真数中的 1 可以忽略不计.按照香农公式,若不改变
带宽W ,而将信噪比 S 从 1000 提升到 8000,则 C 大约增加了( ) lg 2 0.301
N
A.10%
B.20%
C.30%
D.50%
27.已知在
ABC
中,AB
2
,AC
3 ,BAC
3
,点
D
为边
BC
上靠近
江苏省 2024 年普通高中学业水平合格性考试数学全真模拟 数学试题 03
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知集合 A x x2 x 6 0 , B 0,1,2,3 ,则 A B ( )
A.1, 2
A.﹣1
B.1
C.2
D.4
14.已知 x R,则“ x 3 1”是“ x2 x 6 0 ”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
15.青年大学习是共青团中央发起的青年学习行动,每期视频学习过程中一般有两个问
题需要点击回答.某期学习中假设同学小华答对第一、二个问题的概率分别为 1 , 3 ,且 35
D. x 0,1 , x2 x 0
江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01
一、单选题1. 函数的部分图像大致为( )A.B .C.D.2. 设全集,集合,则( )A.B.C.D.3. 已知点F 为双曲线(,)的左焦点,过原点O 的直线与双曲线交于A 、B 两点(点B 在双曲线左支上),连接BF 并延长交双曲线于点C ,且,AF ⊥BC ,则该双曲线的离心率为( )A.B.C.D.4.设是首项大于零的等比数列,则“”是“数列是递增数列”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5. 已知均为实数,下列不等式恒成立的是( )A .若,则B.若,则C .若,则D .若,则6. 下列有关命题的说法正确的是( ).A .命题“若,则”的否命题为:“若,则”B .“”是“”的必要不充分条件C .命题“,使得”的否定是:“,均有”D .命题“若,则”的逆否命题为真命题7. 已知函数为的导函数,则的大致图象是( )A. B.江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01二、多选题三、填空题C. D.8. 设集合A={1,2,3},B={x |x 2-2x +m=0},若A ∩B={2},则B=( )A.B.C.D.9. 如图,在直三棱柱中,,,则()A .平面B.平面平面C .异面直线与所成的角的余弦值为D .点,,,均在半径为的球面上10. 已知,且,则( )A.B.C.D.11. 已知直线与椭圆交于两点,点为椭圆的下焦点,则下列结论正确的是( )A .当时,,使得B.当时,,C .当时,,使得D .当时,,12. 如图甲所示,古代中国的太极八卦图是以同圆内的圆心为界,画出相等的两个阴阳鱼,阳鱼的头部有眼,阴鱼的头部有个阳殿,表示万物都在相互转化,互相涉透,阴中有阳,阳中有阴,阴阳相合,相生相克,蕴含现代哲学中的矛盾对立统一规律,其平面图形记为图乙中的正八边形,其中,则()A.B.C.D.四、解答题13. 已知函数,其中为常数,且,将函数的图象向左平移个单位所得的图象对应的函数在取得极大值,则的值为_____________________.14. 已知函数在处有极值8,则等于______.15. 样本数据的众数是______.16. 2024年1月,某市的高二调研考试首次采用了“”新高考模式.该模式下,计算学生个人总成绩时,“”的学科均以原始分记入,再选的“2”个学科(学生在政治、地理、化学、生物中选修的2科)以赋分成绩记入.赋分成绩的具体算法是:先将该市某再选科目原始成绩按从高到低划分为五个等级,各等级人数所占比例分别约为.依照转换公式,将五个等级的原始分分别转换到五个分数区间,并对所得分数的小数点后一位进行“四舍五入”,最后得到保留为整数的转换分成绩,并作为赋分成绩.具体等级比例和赋分区间如下表:等级比例赋分区间已知该市本次高二调研考试化学科目考试满分为100分.(1)已知转换公式符合一次函数模型,若学生甲、乙在本次考试中化学的原始成绩分别为84,78,转换分成绩为78,71,试估算该市本次化学原始成绩B 等级中的最高分.(2)现从该市本次高二调研考试的化学成绩中随机选取100名学生的原始成绩进行分析,其频率分布直方图如图所示,求出图中的值,并用样本估计总体的方法,估计该市本次化学原始成绩等级中的最低分.17. 北京时间2022年11月21日0时,卡塔尔世界杯揭幕战在海湾球场正式打响,某公司专门生产世界杯纪念品,今年的订单数量再创新高,为回馈球迷,该公司推出了盲盒抽奖活动,每位成功下单金额达500元的顾客可抽奖1次.已知每次抽奖抽到一等奖的概率为10%,奖金100元;抽到二等奖的概率为30%,奖金50元;其余视为不中奖.假设每人每次抽奖是否中奖互不影响.(1)任选2名成功下单金额达500元的顾客,求这两名顾客至少一人中奖的概率;(2)任选2名成功下单金额达500元的顾客,记为他们获得的奖金总数,求的分布列和数学期望.18. “学习强国”学习平台软件主要设有“阅读文章”“视听学习”两个学习模块和“每日答题”“每周答题”“专项答题”“挑战答题”四个答题模块,还有“四人赛”“双人对战”两个比赛模块.“四人赛”积分规则为首局第一名积3分,第二、三名积2分,第四名积1分;第二局第一名积2分,其余名次积1分;每日仅前两局得分.“双人对战”积分规则为第一局获胜积2分,失败积1分,每日仅第一局得分.某人在一天的学习过程中,完成“四人赛”和“双人对战”.已知该人参与“四人赛”获得每种名次的概率均为,参与“双人对战”获胜的概率为,且每次答题相互独立.(1)求该人在一天的“四人赛”中积4分的概率;(2)设该人在一天的“四人赛”和“双人对战”中累计积分为,求的分布列和.19. 已知,求的值.20. 近段时间,因为“新冠”疫情全体学生只能在家进行网上学习,为了研究学生网上学习的情况,某学校随机抽取120名学生对线上教学进行调查,其中男生与女生的人数之比为,男生中喜欢上网课的为,女生中喜欢上网课的为,得到如下列联表.喜欢上网课不喜欢上网课合计男生女生合计(1)请将列联表补充完整,试判断能否有的把握认为喜欢上网课与否与性别有关;(2)从不喜欢上网课的学生中采用分层抽样的方法,随机抽取6人,现从6人中随机抽取2人,若所选2名学生中的女生人数为X,求X的分布列及数学期望.附:,其中.0.1500.1000.0500.0250.0100.0050.001k 2.072 2.706 3.841 5.024 6.6357.87910.82821. 函数f(x)=的定义域为集合,关于的不等式的解集为,求使的实数的取值范围.。
2024年高考数学全真模拟试卷六(新高考、新结构)(全解全析)
2024年高考数学全真模拟试卷六(新高考、新结构)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知a b ∈R ,,i (3i )i a b -=-(i 为虚数单位),则()A .1a =,3b =-B .1a =-,3b =C .1a =-,3b =-D .1a =,3b =【答案】A【解析】因为3i (i)i 1i a b b -=-=+,所以1,3a b ==-.故选A2.已知{}n a 为等差数列,n S 为其前n 项和.若122a a =,公差0,0m d S ≠=,则m 的值为()A .4B .5C .6D .7【答案】B【解析】由已知()12122a a a d ==+,得12a d =-,又()()1112022m m m m m S ma d md d --=+=-+=,又0d ≠,所以()1202m m m --+=,解得5m =或0m =(舍去),故选B.3.纯电动汽车是以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆,它使用存储在电池中的电来发动.因其对环境影响较小,逐渐成为当今世界的乘用车的发展方向.研究发现电池的容量随放电电流的大小而改变,1898年Peukert 提出铅酸电池的容量C 、放电时间t 和放电电流I 之间关系的经验公式:C I t λ=,其中λ为与蓄电池结构有关的常数(称为Peukert 常数),在电池容量不变的条件下,当放电电流为7.5A 时,放电时间为60h ;当放电电流为25A 时,放电时间为15h ,则该蓄电池的Peukert 常数λ约为(参考数据:lg 20.301≈,lg 30.477≈)()A .1.12B .1.13C .1.14D .1.15【答案】D【解析】由题意知7.5602515C λλ=⨯=⨯,所以410325607.515λλ⎛⎫= ⎪⎝⎭⎛⎫== ⎪⎝⎭,两边取以10为底的对数,得10lg2lg 23λ=,所以2lg 220.301 1.151lg310.477λ⨯=≈≈--,故选D.4.已知向量,a b 满足||2,(2,0)a b ==,且||2a b += ,则,a b 〈〉= ()A .π6B .π3C .2π3D .5π6【答案】C【解析】由已知||2,2a b == ,所以()22224222cos ,44a ba b a b a b +=+⋅+=+⨯⨯⨯〈〉+=r r r r r r r r,得1cos ,2a b 〈〉=- ,又[],0,πa b 〈〉∈ ,所以2π,3a b 〈〉= .故选C.5.在平面直角坐标系xOy 中,已知()()3,0,1,0,A B P -为圆22:(3)(3)1C x y -+-=上动点,则22PA PB +的最小值为()A .34B .40C .44D .48【答案】B【解析】设(),P x y ,则()()222222223122410PA PB x y x y x y x +=+++-+=+++()22218x y ⎡⎤=+++⎣⎦,即22PA PB +等价于点P 到点()1,0Q -的距离的平方的两倍加8,又1PQ QC PC ≥-=514=-=,即22224840PA PB +≥⨯+=.故选B.6.如图,四棱锥A BCDE -是棱长均为2的正四棱锥,三棱锥A CDF -是正四面体,G 为BE 的中点,则下列结论错误的是()A .点,,,ABC F 共面B .平面ABE 平面CDF C .FG CD ⊥D .FG ⊥平面ACD【答案】D【解析】选项A :如图,取CD 中点H ,连接GH ,FH ,AG ,AH ,因为A BCDE -是正四棱锥,A CDF -是正四面体,G 为BE 的中点,所以CD GH ⊥,CD AH ⊥,CD FH ⊥,因为GH AH H = ,,GH AH ⊂平面AGH ,所以CD ⊥平面AGH ,因为AH FH H = ,,AH FH ⊂平面AFH ,所以CD ⊥平面AFH ,所以,,,A G H F 四点共面,由题意知3AG HF ==2GH AF ==,所以四边形AGHF是平行四边形,所以GH AF ∥,因为BC GH ∥,所以BC AF ∥,所以,,,A B C F 四点共面,故A 说法正确;选项B :由选项A 知AG FH ∥,又AG ⊄平面CDF ,FH ⊂平面CDF ,所以AG 平面CDF ,因为CD BE ∥,且BE ⊄平面CDF ,CD ⊂平面CDF ,所以BE 平面CDF ,又AG ⊂平面ABE ,BE ⊂平面ABE ,且AG BE G = ,所以平面ABE 平面CDF ,故B 说法正确;C 选项:由选项A 可得CD ⊥平面AGHF ,又FG ⊂平面AGHF ,所以FG CD ⊥,故C 说法正确;D 选项:假设FG ⊥平面ACD ,因为AH ⊂平面ACD ,则FG AH ⊥,由选项A 知四边形AGHF 是平行四边形,所以四边形AGHF 是菱形,与3AG =2GH =矛盾,故D 说法错误;故选D7.甲、乙两人进行一场友谊比赛,赛前每人记入3分.一局比赛后,若决出胜负,则胜的一方得1分,负的一方得1-分;若平局,则双方各得0分.若干局比赛后,当一方累计得分为6时比赛结束且该方最终获胜.令i P 表示在甲的累计得分为i 时,最终甲获胜的概率,若在一局中甲获胜的概率为0.5,乙获胜的概率为0.3,则1P =()A .555535-B .666535-C .5662553⨯-D .677553-【答案】C【解析】由题意可知:i 的取值集合为{}0,1,2,3,4,5,6,且060,1P P ==,在甲累计得分为1时,下局甲胜且最终甲获胜的概率为20.5P ,在甲累计得分为1时,下局平局且最终甲获胜的概率为10.2P ,在甲累计得分为1时,下局甲败且最终甲获胜的概率为00.3P ,根据全概率公式可得12100.50.20.3P P P P =++,整理得2108355P P P =-,变形得()211035P P P P -=-,因为100P P ->,则211035P P P P -=-,同理可得324354652132435435P P P P P P P P P P P P P P P P ----====----,所以{}()10,1,2,,5i i P P i +-= 是公比为35的等比数列,所以()()11030,1,2,,55i i i P P P P i +⎛⎫-=-= ⎪⎝⎭ ,各项求和得()()551101135i i i i i P P P P +==⎡⎤⎛⎫-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦∑∑,则()661103355315P P P P ⎛⎫- ⎪⎝⎭-=-⋅-,即61133551315P P ⎛⎫- ⎪⎝⎭-=⋅-,解得51662553P ⨯=-.故选C.8.已知0,2a b c <<>,且12212,e (1),2ln2bab c c a==+=,则()A .b a c <-<B .a b c -<<C .c a b <-<D .b c a<<-【答案】B 【解析】令1t a=,则22t t =,令()22,0t f t t t =-<,则()2ln 220t f t t '=->在(),0t ∈-∞上恒成立,故()22t f t t =-在(),0t ∈-∞上单调递增,且()11102f -=-<,110224f ⎛⎫-=-> ⎪⎝⎭,故112t -<<-,故()1,2a -∈,令()()2e 1x g x x =-+,0x >,则()()e 21x g x x '=-+,令()()e 21x q x x =-+,则()e 2x q x '=-,令()0q x '>得ln 2x >,令()0q x '<得0ln 2x <<,故()()e 21xq x x =-+在()0,ln 2上单调递减,在()ln 2,+∞上单调递增,则()()ln 222ln 210q =-+<,()22e 60q =->,由零点存在性定理可得,存在()0ln 2,2x ∈,使得()00q x =,且()()2e 1x g x x =-+在()00,x 上单调递减,在()0,x +∞上单调递增,又()00g =,故()()000g x g <=,又()22e 90g =-<,()33e 160g =->,故()2,3b ∈,令()2ln 2,2h x x x x =->,则()21h x x'=-,当2x >时,()0h x '>,故()2ln 2h x x x =-在()2,+∞上单调递增,又因为()446ln 20h =-<,()552ln100h =->,故()4,5c ∈,综上,a b c -<<.故选B二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知()()1,1,2,1AB AC =-= ,则下列结论正确的是()A .()3,0BC =B .()25AB BC AC ⋅-=C.cos ,AB AC = D .若()3,1AB AC λμμλ+=+,则2μλ-=【答案】ACD【解析】对于A ,()3,0BC AC AB =-= ,故A 正确;对于B ,因为()24,1BC AC -=-,所以()25AB BC AC ⋅-=- ,故B 错误;对于C,因为1,AB AC AB AC ⋅=-==所以cos ,10AB AC ==,故C 正确;对于D ,()()2,3,1AB AC λμμλμλμλ+=-+=+ ,所以231μλμμλλ-=⎧⎨+=+⎩,解得1,1λμ=-=,则2μλ-=,故D 正确.故选ACD.10.关于方程[]()22cos 10,πx y αα+=∈表示的曲线Γ,下列说法正确的是()A .Γ可以表示两条平行的直线,且这两条直线的距离为2B .若Γ为双曲线,则α为钝角C .若α为锐角,则Γ为焦点在y 轴上的椭圆D .若Γ为椭圆,P 为椭圆Γ上不与长轴顶点,A B 重合的点,则cos PA PB k k α⋅=-【答案】AD【解析】对于A 项,当cos 0α=,即π2α=时,方程为21y =,解得1y =±,因此Γ可以表示两条平行的直线,且这两条直线的距离为2,故A 选项正确;对于B 项,若Γ为双曲线,则cos 0α<,即ππ2α<≤,故α为钝角或平角,故B 选项错误;对于C 项,若α为锐角,则0cos 1α<<,即11cos α>.将原方程化为标准方程为2211cos x y α+=⎛⎫⎪⎝⎭,因此Γ为焦点在x 轴上的椭圆,故C 选项错误;对于D 项,若Γ为椭圆,则α为锐角,设椭圆方程为()222210x y a b a b+=>>,则221,1cos a b α==,不妨设()()()00,0,,0,,A a B a P x y -,将点P 的坐标代入椭圆方程得2200cos 1x y α+=,即22001cos y x α=-,故22000022200001cos cos 1cos PA PBy y y x k k x a x a x a x ααα-⋅=⋅===-+---,故D 选项正确.故选AD .11.对于集合A 中的任意两个元素,x y ,若实数(),d x y 同时满足以下三个条件:①“(),0d x y =”的充要条件为“x y =”;②()(),,d x y d y x =;③z A ∀∈,都有()()(),,,d x y d x z d y z ≤+.则称(),d x y 为集合A 上的距离,记为A d .则下列说法正确的是()A .(),d x y x y =-为d RB .(),sin sin d x y x y =-为d RC .若()0,A =+∞,则(),ln ln d x y x y =-为Ad D .若d 为R d ,则1e d -也为R d (e 为自然对数的底数)【答案】AC【解析】对于A ,(),d x y x y =-,即x y =,①,(),0d x y =,即(),0d x y x y =-=,即x y =,若x y =,则(),0d x y x y x x =-=-=,所以“(),0d x y =”的充要条件为“x y =”.②,()(),,d x y x y y x d y x =-=-=,成立,③,,,R x y z ∀∈,()()x y x z z y x z z y -=-+-≤-+-,故A 正确;对于B ,(),sin sin d x y x y =-,①,(),0d x y =,即(),sin sin 0d x y x y =-=,即sin sin x y =,此时若0,πx y ==,则x y ≠,故B 错误;对于C ,(),ln ln d x y x y =-,①,(),0d x y =即ln ln ln0xx y y-==,即1x y =,得x y =,若x y =,则(),ln ln ln ln 0d x y x y x x =-=-=,所以“(),0d x y =”的充要条件为“x y =”.②,()(),ln ln ln ln ,d x y x y y x d y x =-=-=,成立;③,()()(),ln ln ln ln ln ln d x y x y x z z y =-=-+-()()ln ln ln ln ,,x z z y d x z d y z ≤-+-=+,故成立,故C 正确;对于D ,设,x y ∀∈R ,(),d x y x y =-,则()1,1e e x y d x y ---=,①,若(),0d x y =,则0x y -=,即x y =,111e e 0x y d e ----==≠,故D 错误.故选AC.三、填空题:本题共3小题,每小题5分,共15分.12.函数()()2312(2)log 22x f x x a +=+-+是偶函数,则=a .【答案】38【解析】因为()()2312(2)log 22x f x x a +=+-+是偶函数,可得()()()31231228log 83022x x f x f x ax a x +-++--=-=-=+,所以38a =.13.《九章算术》中记录的“羡除”是算学和建筑学术语,指的是一段类似隧道形状的几何体,如图,羡除ABCDEF 中,底面ABCD 是正方形,//EF 平面ABCD ,ADE V 和BCF △均为等边三角形,且26EF AB ==.则这个几何体的外接球的体积为.【答案】36π【解析】连接BD ,分别取EF 、BD 、AD 中点G 、H 、I ,连接GH 、HI 、EI ,由底面ABCD 是正方形,//EF 平面ABCD ,ADE V 和BCF △均为等边三角形,故//EG IH ,GH ⊥底面ABCD ,又26EF AB ==,故3EG AD AB ===,则22EI AD ==,故2GH ==,由H 为底面正方形中心,HG IH ⊥,故羡除ABCDEF 外接球球心O 在直线GH 上,连接OI 、OE 、OA ,设半径为r ,OH a =,则==OA OE r ,由GH ⊥底面ABCD ,AD ⊂平面ABCD ,故GH AD ⊥,又AD IH ⊥,IH 、GH Ì平面IOH ,故AD ⊥平面IOH ,又IO ⊂平面IOH ,故AD IO ⊥,故2222232IO r AI r ⎛⎫=-=- ⎪⎝⎭,又222223+2IO OH IH a ⎛⎫=+= ⎪⎝⎭,故有222233+22r a ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,即229+2r a =,又2222227322EO r a a ⎛⎫==-+=-+ ⎪ ⎪⎝⎭,故有22279+22a a -+=,解得2a =,故22999+9222r a ==+=,即3r =,则这个几何体的外接球的体积为34π36π3V r ==.14.已知函数π2cos (0)4y x ωω⎛⎫=-> ⎪⎝⎭在区间ππ,42⎛⎫⎪⎝⎭上有且仅有一个零点,则ω的取值范围为.【答案】371115(3)(][7]2222,,, 【解析】由题意知函数π2cos (0)4y x ωω⎛⎫=-> ⎪⎝⎭在区间ππ,42⎛⎫⎪⎝⎭上有且仅有一个零点,故函数的最小正周期πππ2ππ082444T ,,ωω≥-=∴≥∴<≤,又ππ,42x ⎛⎫∈ ⎪⎝⎭,则πππππ44424x ωωω-<-<-,而πππ7π4444ω-<-≤,当ππππ4442ω-<-<时,即03ω<<时,需有πππ3π2242ω<-≤,即3722ω<≤,此时3(3)2,ω∈;当πππ442ω-=时,即3ω=时,ππ5π244ω-=,此时函数在π5π(,24)上无零点,不合题意;当πππ3π2442ω<-<时,即37ω<<时,需有3πππ5π2242ω<-≤,即71122ω<≤,此时711(]22,ω∈;当ππ3π442ω-=时,即7ω=时,ππ13π244ω-=,此时函数在3π13π(,)24上有一零点5π2,符合题意;当3πππ7π2444ω<-≤时,即78ω<≤时,需有5πππ7π2242ω<-≤,即111522ω<≤,此时15(7]2,ω∈;综合上述,得ω的取值范围为371115(3)(][7]2222,,, 三、解答题:本题共5小题,共77分,解答应写出文字说明,证明过程和解题步骤.15.(13分)近年来“天宫课堂”受到广大中小学生欢迎,激发了同学们对科学知识的探索欲望和对我国航天事业成就的自豪.为领悟航天精神,感受中国梦想,某校组织了一次“寻梦天宫”航天知识竞赛(满分100分),各年级学生踊跃参加.校团委为了比较高一、高二学生这次竞赛的成绩,从两个年级的答卷中各随机选取了50份,将成绩进行统计得到以下频数分布表:成绩[)60,70[)70,80[)80,90[]90,100高一学生人数1551515高二学生人数10102010试利用样本估计总体的思想,解决下列问题:(1)从平均数与方差的角度分析哪个年级学生这次竞赛成绩更好(同一组中的数据用该组区间的中点值为代表)?(2)校后勤部决定对参与这次竞赛的学生给予一定的奖励,奖励方案有以下两种:方案一:记学生得分为x ,当70x <时,奖励该学生10元食堂代金券;当7090x ≤<时,奖励该学生25元食堂代金券;当90x ≥时,奖励该学生35元食堂代金券;方案二:得分低于样本中位数的每位学生奖励10元食堂代金券;得分不低于中位数的每位学生奖励30元食堂代金券.若高一年级组长希望本年级学生获得多于高二年级的奖励,则他应该选择哪种方案?解:(1)设高一年级学生竞赛成绩的平均数为x ,方差为21s .高二年级学生竞赛成绩的平均数为y ,方差为22s .则6515755851595158150x ⨯+⨯+⨯+⨯==,(1分)2222211[15(6581)5(7581)15(8581)15(9581)]144,50s =⨯-+⨯-+⨯-+⨯-=(3分)1(6510751085209510)8150y =⨯+⨯+⨯+⨯=,(4分)2222221[10(6581)10(7581)20(8581)10(9581)]161.650s =⨯-+⨯-+⨯-+⨯-=,(6分)因x y =2212s s <,故高一年级学生这次竞赛成绩比较稳定集中,成绩更好;(7分)(2)按照方案一,高一年级学生获得奖励为:1510(515)2515351175⨯++⨯+⨯=元,而高二年级学生获得奖励为:1010(1020)2510351200⨯++⨯+⨯=元,即按照方案一,高一年级获得奖励少于高二;(9分)按照方案二,依题意,所抽取的100名参加竞赛学生的成绩中位数为90806801082357-+⨯=,则样本中,高一年级学生成绩低于中位数的人数约为682807155152410-++⨯≈人,则高一年级获得奖励为:241026301020⨯+⨯=元;高二年级学生成绩低于中位数的人数约为6828071010202610-++⨯≈人,则高二年级获得奖励为:26102430980⨯+⨯=元.(11分)因1020980>,即按照方案二,高一年级获得奖励多于高二.故若高一年级组长希望本年级学生获得多于高二年级的奖励,则他应该选择方案二.(13分)16.(15分)已知在四边形ABCD 中,ABD △为锐角三角形,对角线AC 与BD 相交于点O,π2,4,4AD AC BD ABD ∠====.(1)求AB ;(2)求四边形ABCD 面积的最大值.解:(1)由余弦定理可得2222πcos 42AB BD AD AB BD +-=⋅,化简为220AB -+=,解得1AB =1,(4分)当1=AB时,因为2146cos 0BAD +-∠=<,与ABD △为锐角三角形不符合,故1AB =.(7分)(2)作,AE CF 垂直BD 于,E F ,设1AOB ∠=∠,(9分)则()1111sin 1sin 1sin 12222ABCD ABD CBD S S S BD AE BD CF BD AO CO BD AC =+=⋅+⋅=∠+∠=⋅∠ ,当sin 11190AC BD ∠=⇒∠=︒⇒⊥,四边形面积最大,最大面积为146262⨯=(15分)17.(15分)如图,在几何体111B C D ABCD -中,平面111//B C D 平面ABCD ,四边形ABCD 为正方形,四边形11BB D D 为平行四边形,四边形11D DCC 为菱形,112,22,120,DC AC D DC E ︒==∠=为棱11C D 的中点,点F 在棱1CC 上,//AE 平面BDF .(1)证明DE ⊥平面ABCD ;(2)求平面1AB D 与平面BDF 夹角的余弦值.解:(1)如图,连接DC 1,因为四边形11D DCC 为菱形,1120︒∠=D DC ,所以160DCC ︒∠=,所以12DC =,因为12,22AD DC AC ===22211AD DC AC +=,所以1AD DC ⊥,又11,,,AD DC DC DC D DC DC ⊂⊥= 平面11CDD C ,所以AD ⊥平面11CDD C ,所以,AD DE AD DC ⊥⊥,(3分)因为四边形11D DCC 为菱形,且1120︒∠=D DC ,所以1111DD DC D C ==,因为E 为棱11C D 的中点,所以11DE C D ⊥,又11//C D CD ,所以DE CD ⊥,(5分)因为,,,DE AD AD DC D AD DC ⊥=⊂ 平面ABCD ,所以DE ⊥平面ABCD .(7分)(2)以D 为坐标原点,,,DA DC DE分别为x 轴、y 轴、z 轴正方向,建立如图所示的空间直角坐标系D xyz -.易知3DE =所以()0,0,0,(2,0,0),(2,2,0),(0,2,0),3)D A B C E ,113),(0,3)C D -,所以1(0,3),(0,2,0),(2,0,3),(2,2,0),(2,0,0)CC DC AE DB DA =-==-== ,1(0,3)DD -= ,设()10,3(01)CF tCC t t t ==-≤≤ ,则(0,2,3)DF DC CF t t =+=- ,(9分)因为//AE 平面BDF ,所以存在唯一的,R λμ∈,使得(2,2,0)(0,2,3)(2,22,3)AE DB DF t t t λμλμλλμμμ=+=+-=+- .所以22,220,33t t λλμμμ=-+-==23t =,所以111114230,,,(2,1,3)33DF DB DD D B DD DB ⎛⎫==+=+= ⎪ ⎪⎝⎭,(11分)设平面BDF 的法向量为()111,,x n y z = ,则00DF n DB n ⎧⋅=⎪⎨⋅=⎪⎩ ,所以1111423033220y x y ⎧=⎪⎨⎪+=⎩,取13y =-,则113,23x z ==,故(3,3,23)n =- ,设平面1AB D 的法向量为()222,,m x y z = ,则100DA m DB m ⎧⋅=⎪⎨⋅=⎪⎩ ,所以222220230x x y z =⎧⎪⎨+=⎪⎩,取23y =,则220,3x z ==-(0,3,3)m =- ,(13分)设平面1AB D 与平面BDF 的夹角为θ,则10cos cos ,43023m n m n m nθ⋅=〈〉===⨯ ,故平面1AB D 与平面BDF 104(15分)18.(17分)已知抛物线C :()2205y px p =<<上一点M 的纵坐标为3,点M 到焦点距离为5.(1)求抛物线C 的方程:(2)过点()1,0作直线交C 于A ,B 两点,过点A ,B 分别作C 的切线1l 与2l ,1l 与2l 相交于点D ,过点A 作直线3l 垂直于1l ,过点B 作直线4l 垂直于2l ,3l 与4l 相交于点E ,1l 、2l 、3l 、4l 分别与x 轴交于点P 、Q 、R 、S .记DPQ V 、DAB 、ABE 、ERS △的面积分别为1S 、2S 、3S 、4S .若3412S S S S λ=,求实数λ的取值范围.解:(1)设(),3M t ,由题意可得9252pt p t =⎧⎪⎨+=⎪⎩,即9522p p +=,(2分)解得1p =或9p =(舍去),所以抛物线C 的方程为22y x =.(4分)(2)如图,设经过()11,A x y ,()22,B x y 两点的直线方程为AB l :1x my =+(m ∈R ,0m ≠),与抛物线方程22y x =联立可得222y my =+,即2220y my --=,2480m ∆=+>∴122y y m +=,122y y =-.∵22y x =,则y =∴'1y y=,(6分)∴过点A 作C 的切线1l 方程为()11111112y y x x y x y y =-+=+,令0y =,得212y x =-,即21,02y P ⎛⎫- ⎪⎝⎭.同理,过点B 作C 的切线2l 方程为2212y y x y =+,令0y =,得222y x =-,即22,02y Q ⎛⎫- ⎪⎝⎭.∴222122y y PQ =-.(8分)联立两直线方程11221212y y x y y y x y ⎧=+⎪⎪⎨⎪=+⎪⎩,解得1212122y y x y y y m ⎧==-⎪⎪⎨+⎪==⎪⎩,即()1,D m -,则D 到直线AB l的距离2D AB d -==又∵过点A 作直线3l 垂直于1l ,直线3l 的方程为311111112y y y x x y y y x y =-++=-++,令0y =,得2112y x =+,即211,02y R ⎛⎫+ ⎪⎝⎭.(10分)同理,直线4l 的方程为32222y y y x y =-++,令0y =,得2212y x =+,即221,02y S ⎛⎫+ ⎪⎝⎭.∴222122y y RS =-.联立两直线方程3111322222y y y x y y y y x y ⎧=-++⎪⎪⎨⎪=-++⎪⎩,解得()2212121212122y y y y x y y y y y ⎧++=+⎪⎪⎨+⎪=-⎪⎩,整理后可得2222x m y m⎧=+⎨=⎩,即()222,2E m m +,则E 到直线AB l的距离E AB d -==.(13分)由上可得22211112222D y y S PQ y m =⋅=-,212d AB S AB d -=⋅=,312E AB S AB d -=⋅=,222141122222E y y S RS y m =⋅=-,(15分)∴2123422S S m S S +==,得2212m λ=<+,故λ的取值范围为()0,1.(17分)19.(17分)超越数得名于欧拉,它的存在是法国数学家刘维尔(Joseph Liouville )最早证明的.一个超越数不是任何一个如下形式的整系数多项式方程的根:11100n n n n a x a x a x a --++++= (0a ,1a ,…,n a ∈Z ,0n a ≠).数学家证明了自然对数的底数e 与圆周率π是超越数.回答下列问题:已知函数()e x n n n f x b x =-(*n ∈N )只有一个正零点.(1)求数列{}n b 的通项公式;(2)(ⅰ)构造整系数方程00n n a x a +=,证明:若N m ∈,则e m 为有理数当且仅当0m =.(ⅱ)数列{}n b 中是否存在不同的三项构成等比数列?若存在,求出这三项的值;否则说明理由.解:(1)若()e x n n n f x b x =-只有一个正零点,可得e ,e 1,x n n x n n b x b x -==(1分)令()e n x g x x -=,()11()e e e n x n x n x g x nx x x n x -----=-=-',令()0g x '<,(,)x n ∈+∞,令()0g x '>,(0,)x n ∈,故()g x 在(0,)n 上单调递增,在(,)n +∞上单调递减,可得()g x 在x n =处取得最大值,且最大值为()e n n g n x -=,(4分)而当0x →时,()0g x →,当x →+∞时,()0g x →,由题意得,当()g x 最大时,符合题意,故e 1n n n b n -=,即e n n n b n -=⋅.(6分)(2)(ⅰ)若0m =,则e 1m =为有理数;若m 正整数,假设e m 为有理数,则e ,,,0m p y p q q q==∈≠Z ,则方程0q y p ⋅-=的根中有有理数,又在方程0m q x p ⋅-=中,发现e x =是它的根,(8分)而已知e 是超越数,故e 不是方程的根,与0q y p ⋅-=矛盾,即e m 不为有理数;综上所述:m ∈N ,e m 为有理数当且仅当0m =;(10分)(ⅱ)若数列{}n b 中存在不同的三项构成等比数列,则()2e e e e m m n n l l m n ---⋅⋅⋅=⋅,可得22e m n l m n l m n l +--=⋅⋅,由方程右边是有理数知左边是有理数,由上问知当且仅当2m n l +=时成立,故2m n l m n m n l l l ⋅==⋅,则()()1m n m n l l ⋅=,设1m x l-=,则(1)m l x =-,(1)n l x =+,则()()111m n x x -⋅+=,将(1)m l x =-,(1)n l x =+代入进行化简,可得()()(1)111l x l x x x -+-⋅+=,故()()11111l x x x x -+⎡⎤-⋅+=⎣⎦,故()()11111x x x x -+-⋅+=,(14分)构造函数()()()()()1ln 11ln 1f x x x x x =--+++,而()()2ln 10f x x ='-<,知()f x 在其定义域内单调递减,又()00f =,故若()()11111x x x x -+-⋅+=,则有0x =,即2m n l m n l ⋅=成立,当且仅当m n l ==时成立.即数列{}n b 中不存在不同的三项构成等比数列.(17分)。
中考全真模拟测试 数学试题 附答案解析
一.选择题
1.计算 的结果是( )
A.1 8B.9C.-9D.-1.8
【答案】B
【解析】
【分析】
先去括号,然后计算,即可得到答案.
【详解】解: ;
故选择:B.
【点睛】本题考查了有理数的减法运算,解题的关键是掌握去括号法则.
2.如图,直线 , , ,则 的度数是()
A. B. C. D.
【答案】C
5.若不等式组 无解,那么m的取值范围是()
A.m>2B.m<2C.m≥2D.m≤2
【答案】D
【解析】
【分析】
先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m的取值范围.
【详解】解:
由①得,x>2,
由②得,x<m,
又因为不等式组无解,
所以根据”大大小小解不了”原则,
m≤2.
读书时间(小时)
7
8
9
10
11
学生人数
6
10
9
8
7
A.9,8B.9,9C.9.5,9D.9.5,8
【答案】A
【解析】
【分析】
根据中位数和众数的定义进行解答即可.
【详解】由表格,得该班学生一周读书时间的中位数和众数分别是9,8.
【点睛】本题主要考查了中位数和众数,掌握中位数和众数的定义及求法是解答的关键.
15.某班共有6名学生干部,其中4名是男生,2名是女生,任意抽一名学生干部去参加一项活动,其中是女生的概率为_____.
16.如图,PA,PB分别切⊙O于点A,B.若∠P=100°,则∠ACB的大小为_____(度).
17.用一个半径为10cm半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为.
江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01(3)
一、单选题二、多选题1. 已知函数,若不等式对任意均成立,则的取值范围为( )A.B.C.D.2.复平面内表示复数的点在直线上,则( )A .1B.C .2D.3.已知函数的定义域为,给出以下两个结论:① 若函数②的图像是轴对称图形,则函数的图像是轴对称图形;② 若函数的图像是中心对称图形,则函数的图像是中心对称图形.它们的成立情况是( )A .①成立,②不成立B .①不成立,②成立C .①②均不成立D .①②均成立4.已知直线经过双曲线的一个焦点,且平行于的一条渐近线,则的实轴长为( )A.B.C.D.5. 已知,,则的最大值为( )A.B.C.D.6. 已知函数,若函数在区间上没有零点,则的取值范围是( )A.B.C.D.7. 已知,且.若,则的最大值是( )A .6B .5C .4D .38.已知复数,是的共轭复数,则( )A .0B.C .1D .29. 下列条件中,使M 与A ,B ,C 一定共面的是( )A.B.C.D.10. 已知P 为抛物线C :上的动点,在抛物线C 上,过抛物线C 的焦点F 的直线l 与抛物线C 交于A ,B 两点,,,则( )A.的最小值为4B .若线段AB 的中点为M ,则的面积为C .若,则直线l 的斜率为2D.过点作两条直线与抛物线C 分别交于点G ,H ,且满足EF 平分,则直线GH 的斜率为定值11. 设,分别是双曲线的左、右焦点,且,则下列结论正确的是( )A.B .的取值范围是C .到渐近线的距离随着的增大而减小D .当时,的实轴长是虚轴长的3倍江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01(3)江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01(3)三、填空题四、解答题12. 为了得到函数的图象,只需将函数的图象( )A .所有点的横坐标缩短到原来的,纵坐标不变,再将所得图象向右平移个单位长度B .所有点的横坐标伸长到原来的3倍,纵坐标不变,再将所得图象向右平移个单位长度C .向右平移个单位长度,再将所得图象所有点的横坐标缩短到原来的,纵坐标不变D .向右平移个单位长度,再将所得图象所有点的横坐标缩短到原来的,纵坐标不变13. 已知圆台的上底面半径为1,下底面半径为2,其表面积为,则圆台的体积为___________.14. 已知椭圆,直线与轴交于点,与椭圆交于,两点,若,则________.15. i 是虚数单位,则复数______.16. 自1980年以来我国逢整十年进行一次人口普查,总人口等指标与年份如下表所示:指标19801990200020102020年份数12345总人口(亿)9.811.312.613.414.1(1)建立总人口关于年份数的回归直线方程.(2)某市某街道青年人(15-35岁)、中年人(36-64岁)与老年人(65岁及以上)比例约为,为了比较中青年人与老年人购物方式,街道工作人员按比例随机调查了120位居民,购物方式统计如下表.实体店购物网上购物电视购物其它青年人15354中年人1582老年人221将实体店购物视作传统购物方式,网上购物、电视购物和其它方式视作新兴购物方式.根据所给数据,补充上表并完成下面的列联表:传统购物方式新兴购物方式总计中青年人(15-64岁)老年人(65岁及以上)总计并请判断是否有99.9%的把握认为该街道居民购物方式与其是否为老年人有关?参考公式:,.,其中.参考数据:,0.100.050.010.0050.0012.7063.841 6.6357.87910.82817. 已知函数(1)当时,求函数的单调区间;(2)当时,过点可作几条直线与曲线相切?请说明理由.18. 已知函数的图象过点,.(1)求函数的解析式;(2)记是正整数,是数列的前n项和,解关于n的不等式;(3)对(2)中的数列,求数列的前n项和.19. 已知函数.(1)讨论函数f(x)的极值点的个数;(2)若f(x)有两个极值点证明:.20. 已知函数.(1)若,求证;函数的图象与轴相切于原点;(2)若函数在区间,各恰有一个极值点,求实数的取值范围.21. 已知函数.当m=1时,曲线在点处的切线与直线x-y+1=0垂直.(1)若的最小值是1,求m的值;(2)若,是函数图象上任意两点,设直线AB的斜率为k.证明:方程在上有唯一实数根.。
2024-2025学年海南省部分学校高三(上)全真模拟数学试卷(二)(含答案)
2024-2025学年海南省部分学校高三(上)全真模拟数学试卷(二)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知全集U =Z ,A ={1,2,3},B ={x|−2<x <2,x ∈Z},则图中阴影部分表示的集合为( )A. {1}B. {2}C. {2,3}D. {1,2,3}2.已知不等式2x 2−ax +6<0的解集是{x|−2<x <−32},则实数a =( )A. −7B. −6C. 6D. 73.若命题“∀a ,b ∈R ,a−2b <b−2a ”为真命题,则a ,b 的大小关系为( )A. a <bB. a >bC. a ≤bD. a ≥b4.已知向量a =(−1,3),b =(2,0),c =(1,3),若a 与λb−c 平行,则实数λ的值为( )A. −3B. −1C. 1D. 35.霉菌有着很强的繁殖能力,主要依靠孢子进行繁殖.已知某种霉菌的数量y 与其繁殖时间t(天)满足关系式:y =ma t .若繁殖5天后,这种霉菌的数量为20,10天后数量为40,则要使数量达到100大约需要( )(lg2≈0.3,结果四舍五入取整)A. 16天B. 17天C. 18天D. 20天6.已知α∈(0,π2),sin 2α+12sin2α−cos 2α=−12,则tanα=( )A. 13B.22C. 2D. 227.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且acosB−bcosA−c =0,则A =( )A. 45°B. 60°C. 90°D. 135°8.已知函数f(x)=(a +1)x−lna ,g(x)=−e x −lnx ,若函数f(x)的图象与g(x)的图象在(0,+∞)上恰有两对关于x 轴对称的点,则实数a 的取值范围是( )A. (e2,e)B. (1,e )C. (1,+∞)D. (e,+∞)二、多选题:本题共3小题,共18分。
2023年数学全真模拟试题(20230601)
2023年数学全真模拟试题满分:150分,考试时间:120分钟一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题纸上相应位置)1.﹣2023的绝对值等于( ▲ )A .2023B .﹣2023C.D .2.计算a6•(﹣a )2的结果是( ▲ )A .a 8B .﹣a 8C .a 12D .a 43.用数学的眼光观察下面的网络图标,其中可以抽象成轴对称图形的是( ▲ )A .B .C .D .4.如图是由5个相同的正方体搭成的立体图形,则它的主视图为( ▲ )A .B .C .D .5.据统计我国每年浪费的粮食约35000000吨,我们要勤俭节约,反对浪费,积极的加入“光盘行动”中来.用科学记数法表示35000000是( ▲ )A .3.5×106B .3.5×107C .35×106D .35×1076.如图所示,一副三角尺按不同的位置摆放,摆放位置中∠α≠∠β的图形是( ▲ )A .B .C .D .7.欢欢将自己的核酸检测二维码打印在面积为900cm 2的正方形纸上,如图所示,为了估计图中黑色部分的面积,他在纸内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的面积约为( ▲ )A .540cm 2B .360cm 2C .450cm 2D .300cm 28.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币1202312023单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为( ▲ )A.B.C.D.二.填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题纸上相应位置)9.代数式在实数范围内有意义,则x的取值范围是 ▲ .10.分解因式:x2+2x+1= ▲ .11.如图,A、B、C点在圆O上,若∠ACB=36°,则∠AOB= ▲ °.12.分式方程=的解为x= ▲ .第11题图13.用一个圆心角为150°,半径为12的扇形作一个圆锥的侧面,则这个圆锥的底面半径为 ▲ .14.根据物理学规律,如果不考虑空气阻力,以40m/s的速度将小球沿与地面成30°角的方向击出,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间的函数关系是h=﹣5t2+20t,当飞行时间t 为 s时,小球达到最高点.15.七巧板是我国祖先的一项卓越创造,被誉为“东方魔板”.由边长为的正方形可以制作一副如图1所示的七巧板,现将这副七巧板在拼成如图2所示的造型恰好放入矩形ABCD中(其中点E,F,G,H都在矩形边上),若AB:BC=7:6,则∠AGF的正切值为 .第16题图16.如图,在△ABC中,∠ABC=90°,tan∠BAC=,AD=2,BD=4,连接CD,则CD长的最大值为 ▲.三、解答题(本大题共有11小题,共102分.请在答题纸指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17.(本题满分6分)计算:()0+2﹣1+cos45°﹣|﹣|.18.(本题满分6分)先化简,再求值:,其中.19.(本题满分8分)已知关于x的一元二次方程x2+2x﹣k=0有实数根.(1)求k的取值范围.(2)若方程有一个根为1,求方程的另一个根.20.(本题满分8分)如图,O为△ABC边AC的中点,AD∥BC交BO的延长线于点D,连接DC,DB 平分∠ADC,求证:四边形ABCD为菱形.21.(本题满分8分)读懂一座城,从博物馆开始。
小升初数学全真模拟卷
小升初数学全真模拟卷一、选择题 (每题2分,共10分)1.一个班的人数不超过30人,现在大扫除,其中12扫地,14摆桌椅,15擦玻璃。
这个班没有参加大扫除的有( )人。
A .4B .3C .2D .12.有四张图,比例尺分别如下,图中5厘米长的线段表示的实际距离最长的是( )。
A .1∶3000000B .11500000C .D .50∶13.下列关系式与此线段图不相符的是( )。
A .1118045x x x −−=B .1118045x x x ⎛⎫−+=⎪⎝⎭ C .11118045x ⎛⎫⨯−−= ⎪⎝⎭D .1118045x x += 4.修一条长4千米的公路,甲队单独修10天完成,乙队单独修8天完成。
如果两队合修多少天能修完公路的一半?解答这个问题的正确算式是( )。
A .()4108÷+B .()2108÷+C .1112108⎛⎫÷+ ⎪⎝⎭ D .114108⎛⎫÷+ ⎪⎝⎭5.甲、乙两商场,甲商场以“打九折”优惠售货,乙商场以“满200元送30元购物券”形式促销,小明打算花掉300元,他在( )购物合算一些。
A .甲商场B .乙商场C .甲、乙商场一样D .无法确定二、判断题 (每题1分,共5分)6.a 和b 互为倒数,4545a b ⨯=。
( )7.电厂平均每天的用煤量一定,购进煤的总量与用煤天数成反比例。
( )8.一个正方体的棱长扩大到它的2倍,它的表面积扩大到它的2倍,体积扩大到它的8倍。
( )9.一件衣服涨价20%,若想恢复原价,就要降价20%。
( )10.小明排在一个正方形方阵中,无论从队伍的哪一面看,他的位置都用(7,7)表示,这个队伍共有169人。
( )三、填空题 (每空1分,共22分)11.台州市地处浙江中部沿海,全市下辖9个县市区,仙居便是其中之一。
台州总面积达10050.43平方千米,据第七次人口普查统计,常住人口有6622888人,是长江三角洲中心区27城之一。
2024年高考数学“九省联考”全真模拟试卷1(新高考、新结构)(考试版)
2024年高考数学“九省联考”全真模拟试卷1(新高考、新结构)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}14,{3}A xx B x x =-≤≤=<∣∣,则A B =( ) A .{13}x x -≤<∣ B .{}14x x -≤≤∣ C .{}4x x ≤∣ D .{3}xx <∣ 2.已知单位向量,a b 的夹角为π3,则56+=a b ( ) A .9 B 91C .10 D .3103.清初著名数学家孔林宗曾提出一种“蒺藜形多面体”,其可由相同的两个正交的正四面体组合而成(如图1),也可由正方体切割而成(如图2).在“蒺藜形多面体”中,若正四面体的棱长为2,则该几何体的体积为( )A 2B .2C .22D .44.548除以7,所得余数为( )A .1B .3C .5D .6 5.已知1F ,2F 分别为双曲线22221(0,0)x y a b a b -=>>的左、右焦点,过点1F 的直线与圆222x y a +=相切于点P ,且与双曲线的右支交于点Q ,若2||||PQ QF =,则该双曲线的离心率为( )A 2B 3C .2D 56.在ABC 中,点D 在AC 上,2π3CDB ∠=,24AD CD ==,则BC BA 的最大值为( ) A 31-B 31+ C 31 D 217.若过点(),m n 可作函数()120y x x x =+>图象的两条切线,则必有( ) A .102m n m <+< B .02n m <<C .122m n m m <<+D .2n m <8.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是( )A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数z=a+b i (a,b ∈R ),其共轭复数为z ,则下列结果为实数的是( )A .2zB .2zC .(1)(1)z z ++D .2023()i z z -⋅10.过抛物线C :24y x =的焦点F 作直线l 交C 于,A B 两点,则( )A .C 的准线方程为2x =-B .以AB 为直径的圆与C 的准线相切 C .若5AB =,则线段AB 中点的横坐标为32D .若AB 4=,则直线l 有且只有一条11.若()sin 33cos x x x x f x =-,则下列说法正确的是( )A .()f x 的最小正周期是π2B .()f x 的对称轴方程为ππ212k x =-,()k ∈Z C .存在实数a ,使得对任意的x ∈R ,都存在125π,012,x x ⎡⎤∈-⎢⎥⎣⎦且12x x ≠,满足()()()210k f x af x f x -+=⎡⎤⎣⎦,()1,2k =D .若函数()()2g x f x b =+,25π0,12x ⎡⎤∈⎢⎥⎣⎦,(b 是实常数),有奇数个零点()12221,,,,N n n x x x x n +⋅⋅⋅∈,则()12322150π23n n x x x x x ++++⋅⋅⋅++= 三、填空题:本题共3小题,每小题5分,共15分.12.已知22log 3a a b b +=+=,求2a b += .13.如图,正方形ABCD 和正方形ABEF 的边长都是1,且它们所在的平面所成的二面角D AB F --的大小是60︒,则直线AC 和BF 夹角的余弦值为 .若,M N 分别是,AC BF 上的动点,且AM BN =,则MN 的最小值是 .14.某蓝莓基地种植蓝莓,按1个蓝莓果重量Z (克)分为4级:10Z ≥的为A 级,810Z ≤<的为B 级,68Z ≤<的为C 级,46Z ≤<的为D 级,4Z <的为废果.将A 级与B 级果称为优等果.已知蓝莓果重量Z 服从正态分布()5,9N .对该蓝莓基地的蓝莓进行随机抽查,每次抽出1个蓝莓果.记每次抽到优等果的概率为p (可精确到0.1).若为优等果,则抽查终止,否则继续抽查直到抽出优等果,但抽查次数最多不超过n 次,若抽查次数X 的期望值不超过3,n 的最大值为.附:0().6827P Z μσμσ-<≤+=,2205().945P Z μσμσ-<≤+=,(33)0.9773P Z μσμσ-<≤+=三、解答题:本题共5小题,共77分,解答应写出文字说明,证明过程和解题步骤.15.(13分)大学生刘铭去某工厂实习,实习结束时从自己制作的某种零件中随机选取了10个样品,测量每个零件的横截面积(单位:2mm )和耗材量(单位:3mm ),得到如下数据: 样本号i 1 2 3 4 5 6 7 8 9 10 总和零件的横截面积i x 0.03 0.05 0.04 0.07 0.07 0.04 0.05 0.06 0.06 0.05 0.52耗材量i y0.24 0.40 0.23 0.55 0.50 0.34 0.35 0.45 0.43 0.413.9 并计算得101010222111241010.2143, 1.49013610i i i i i i i x y x x y y -===⎛⎫⎛⎫==⨯ ⎪⎪⎝⎭⎝⎭--∑∑∑.(1)估算刘铭同学制作的这种零件平均每个零件的横截面积以及平均一个零件的耗材量;(2)求刘铭同学制作的这种零件的横截面积和耗材量的样本相关系数(精确到0.01);(3)刘铭同学测量了自己实习期制作的所有这种零件的横截面积,并得到所有这种零件的横截面积的和为2182mm ,若这种零件的耗材量和其横截面积近似成正比,请帮刘铭计算一下他制作的零件的总耗材量的估计值.附:相关系数1222211 1.49136 1.221n i ii n n i i i i x y nx y r x nx y n y ===-=≈⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭∑∑∑.16.(15分)如图,在四棱锥P ABCD -中,底面ABCD 是直角梯形,AB BC ⊥,AB AD ⊥,2AD BC =,2DE PE =.(1)证明://BP 平面ACE ;(2)已知2AD =,2AP =10PD =平面PAD ⊥底面ABCD ,若平面PAC 与平面EAC 的夹角的余弦值为15,求AB . 17.(15分)已知函数()e log e x a f x a x =--,其中1a >.(1)若e a =,证明()f x 0≥; (2)讨论()f x 的极值点的个数.18.(17分)已知椭圆()2222:10x y C a b a b+=>>,1F ,2F 分别是椭圆C 的左、右焦点,点A 为左顶点,椭圆上的点到左焦点距离的最小值是焦距的14. (1)求椭圆C 的离心率;(2)直线l 过椭圆C 的右焦点2F ,与椭圆C 交于P ,O 两点(点P 在第一象限).且APQ △面积的最大值为253, ①求椭圆C 的方程;②若直线AP ,AQ 分别与直线34x =交于M ,N 两点,求证:以MN 为直径的圆恒过右焦点2F . 19.(17分)若有穷数列12:,,,(4)n A a a a n >满足:()1,1,2,,i n i a a c c i n +-+=∈=R ,则称此数列具有性质c P .(1)若数列23:2,,,2,6A a a -具有性质c P ,求23,,a a c 的值;(2)设数列A 具有性质0P ,且12,n a a a n <<<为奇数,当(),01,i j a a i j n >≤≤时,存在正整数k ,使得j i k a a a -=,求证:数列A 为等差数列; (3)把具有性质c P ,且满足212k k a a m -+=(*,,2n k k m ∈≤N 为常数)的数列A 构成的集合记作(),c T n m .求出所有的n ,使得对任意给定的,m c ,当数列(),c A T n m ∈时,数列A 中一定有相同的两项,即存在(),1,i j a a i j i j n =≠≤≤.。
江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01(1)
一、单选题二、多选题1. 已知复数z满足,则( )A.B.C.D.2. 三棱锥中,底面,若,则该三棱锥外接球的表面积为( )A.B.C.D.3. 双曲线C :的左,右焦点分别为,,是C 上一点,满足,且,则C 的离心率为( )A.B .2C.D.4. 已知函数在区间内单调递减,则实数ω的取值范围是( )A.B.C.D.5.已知长方体的高,则当最大时,二面角的余弦值为( )A.B.C.D.6. 设,,则下列不等式中,恒成立的是( )A.B.C.D.7. 若集合,,且,则的值为( )A.B.C.或D.或或8. 已知分别为双曲线E :的左、右焦点,过的直线与的左、右两支分别交于两点.若是等边三角形,则双曲线E 的离心率为( )A.B .3C.D.9. 在棱长为2的正四面体中,点分别为棱的中点,则( )A .平面B .过点的截面的面积为C .异面直线与所成角的大小为D.与平面所成角的大小为10.如图,直线,点A 是之间的一个定点,点A到的距离分别为1和2.点是直线上一个动点,过点A作,交直线于点,则()A.B .面积的最小值是C.D .存在最小值11. 已知函数,则( )江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01(1)江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01(1)三、填空题四、解答题A.是周期函数B .函数在定义域上是单调递增函数C .函数是偶函数D .函数的图象关于点对称12. 关于x的不等式在上恒成立,则( )A.B.C.D.13.在的展开式中,x 的系数为_________.14.已知函数,则______.15. 已知三棱锥内接于体积为的半球,为半球底面圆的直径,平面平面,且,则平面截半球所得截面面积的最小值为______.16. 已知双曲线的离心率为2,F 为双曲线C 的右焦点,M 为双曲线C 上的任一点,且点M 到双曲线C 的两条渐近线距离的乘积为,(1)求双曲线C 的方程;(2)设过点F 且与坐标轴不垂直的直线l 与双曲线C 相交于点P ,Q ,线段PQ 的垂直平分线与x 轴交于点B ,求的值.17. 解关于x的不等式:.18.在等腰直角三角形中,斜边,现将绕直角边所在直线旋转一周形成一个圆锥.(1)求这个圆锥的表面积;(2)若在这个圆锥中有一个圆柱,且圆柱的一个底面在圆锥的底面上,当圆柱侧面积最大时,求圆柱的体积.19. 某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成.每件产品的非原料成本(元)与生产该产品的数量(千件)有关,经统计得到如下数据:x 12345678y56.53122.7517.815.9514.51312.5根据以上数据绘制了散点图观察散点图,两个变量间关系考虑用反比例函数模型和指数函数模型分别对两个变量的关系进行拟合.已求得用指数函数模型拟合的回归方程为,与x的相关系数.(1)用反比例函数模型求y 关于x 的回归方程;(2)用相关系数判断上述两个模型哪一个拟合效果更好(精确到0.001),并用其估计产量为10千件时每件产品的非原料成本;(3)根据企业长期研究表明,非原料成本y 服从正态分布,用样本平均数作为的估计值,用样本标准差s 作为的估计值,若非原料成本y 在之外,说明该成本异常,并称落在之外的成本为异样成本,此时需寻找出现异样成本的原因.利用估计值判断上述非原料成本数据是否需要寻找出现异样成本的原因?参考数据(其中):0.340.115 1.531845777.55593.0630.70513.9参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:,,相关系数.20. 已知函数与.(1)若与有相同的零点,求的值;(2)若对恒成立,求的最小值.21. 已知为实数,数列满足:①;②.若存在一个非零常数,对任意,都成立,则称数列为周期数列.(1)当时,求的值;(2)求证:存在正整数,使得;(3)设是数列的前项和,是否存在实数满足:①数列为周期数列;②存在正奇数,使得.若存在,求出所有的可能值;若不存在,说明理由.。
2023年新高考数学全真模拟卷 (1)
2023年新高考数学全真模拟卷 (1)一、单选题(本题共8小题 每小题5分 共40分.在每小题给出的四个选项中 只有一项是符合题目要求的.)1.已知集合2{|280},{|ln(1)}A x x x B x y x =--<==+,则A B =( )A.()1,2-B.()1,4-C.(0,2)D.(0,4)2.已知复数z 是方程2450x x ++=的一个根,且复数z 在复平面内对应的点位于第三象限,则z =( ) A.2i - B.2i + C.2i -- D.2i -+3.函数()()ln 3f x mx =+在(],1-∞上单调递减的充分必要条件是( ) A .42m -<<-B .30m -<<C .40m -<<D .31m -<<-4.如图 在三棱锥V ABC -中 8VA VB VC === 30AVB AVC BVC ∠=∠=∠=︒ 过点A 作截面AEF 则AEF △周长的最小值为( )A .B .C .D .5.蜜蜂的巢房是令人惊叹的神奇天然建筑物.巢房是严格的六角柱状体 它的一端是平整的六角形开口 另一端是封闭的六角菱形的底 由三个相同的菱形组成.巢中被封盖的是自然成熟的蜂蜜.如图是一个蜂巢的正六边形开口ABCDEF 下列说法正确的是( )A .AC AE BF -=B .12AC AE AD +=C .AD AB AD DE ⋅=⋅D .AD 在AB 上的投影向量为AB6.某医用口罩生产厂家生产医用普通口罩、医用外科口罩、医用防护口罩三种产品 三种产品的生产比例如图所示 且三种产品中绑带式口罩的比例分别为90% 50% 40%.若从该厂生产的口罩中任选一个 则选到绑带式口罩的概率为( )A .0.23B .0.47C .0.53D .0.777.在三棱锥P ABC -中 4PA BC == 5PB AC ==PC AB ==则三棱锥P ABC -的外接球的表面积为( ) A .26πB .12πC .8πD .24π8.已知实数a b ()0,e c ∈ 且33a a = 44b b = 55c c = 则( ) A .c b a <<B .b c a <<C .a c b <<D .a b c <<二、选择题:本题共4小题 每小题5分 共20分.在每小题给出的选项中 有多项符合题目要求.全部选对的得5分 部分选对的得2分 有选错的得0分.9.已知函数()sin f x x x = 下列结论正确的是( ) A .()f x 的最小正周期为2π B . π2f ⎛⎫⎪⎝⎭是()f x 的最大值C .把函数2sin y x =的图象上所有点向左平移π3个单位长度 可得到函数()y f x =的图象 D .ππ,22x ⎡⎤∈-⎢⎥⎣⎦时 ()f x 的最小值为2- ()f x 的最大值为1 10.如图 正方体1111ABCD A B C D -的棱长为1 线段11B D 上有两个动点E 、F 且12EF = 则下列结论中正确的是( )A .AC BE ⊥B .EF ∥平面ABCDC .三棱锥A BEF -的体积为定值D .AEF △的面积与BEF △的面积相等11.已知OA OB 是平面内两个夹角为120°的单位向量 点C 在以O 为圆心的AB 上运动 若OC xOA yOB =+(,x y R ∈).下列说法正确的有( )A .当C 位于AB 中点时 1x y == B .当C 位于AB 中点时 x y +的值最大C .OC 在OA 上的投影向量的模的取值范围为112⎡⎤⎢⎥⎣⎦, D .()OC OA OB ⋅-的取值范围为3322⎡⎤-⎢⎥⎣⎦,12.已知函数12()log f x x x =+ 2cos 2,0()()20a x x g x a R x a x +≥⎧=∈⎨+<⎩, 若对任意[)12,x ∈+∞ 总存在2x R ∈ 使12()()f x g x = 则实数a 的值可以是( )A .12-B .72C .1D .2三、填空题:(本题共4小题 每小题5分 共20分 其中第16题第一空2分 第二空3分。
2023-2024学年苏教版一年级上学期数学期末全真模拟试卷(含答案解析)
2023-2024学年一年级上学期期末全真模拟数学试卷姓名:_________ 班级:_________ 学号:_________注意事项:1.答题前,填写好自己的姓名、班级、考号等信息,请写在答题卡规定的位置上。
2.选择题、判断题必须使用2B铅笔填涂答案,非选择、判断题必须使用黑色墨迹签字笔或钢笔答题,请将答案填写在答题卡规定的位置上。
3.所有题目必须在答题卡上作答,在试卷上作答无效。
4.考试结束后将试卷和答题卡一并交回。
一、注意审题,细心计算。
(共15分)1.(6分)计算小能手。
3+9=0+8=4+6=6+9=9+10=6+10=10-7=17-7=17-7+4=2+2-4=9-8+9=4+5+9=2.(6分)看图列式计算。
□○□=□□○□=□□○□=□□○□=□3.(3分)看图回答。
□○□○□=□(人)二、用心思考,正确填空。
(共24分)4.(2分)每次多( )只。
每次少( )个。
5.(1分)比一比。
最长的铅笔画“√”。
6.(3分)分一分,把下面动物的序号填在合适的括号里。
四条腿的:( )。
会游泳的:( )。
既有四条腿又会游泳的:( )。
7.(4分)根据图片填一填。
的家是( )号,的家是( )号,的家是( )号,的家是( )号。
8.(1分)照下图,晒4块手帕要用( )个夹子。
9.(4分)有( )个,有( )个,有( )个,有( )个。
10.(4分)分与合。
11.(1分)9个小朋友玩捉迷藏游戏,丽丽负责找人,她已经找到了4人,还有( )人没有找到。
12.(2分)苹果最多有( )个,最少有( )个。
13.(2分)小美买了图中的两盆花,这两盆最多有( )朵花,最少有( )朵花。
三、反复比较,谨慎选择。
(共10分)14.(2分)如图方框中“?”部分表示的是()。
A.△的个数B.△比〇多的个数C.〇比△多的个数15.(2分)下面的三个杯子里放了同样多的白糖,哪杯水最甜?()A.B.C.16.(2分)小红住在小萍楼上,小萍住在小美楼上,()住在最上面。
中考全真模拟考试 数学试卷 含答案解析
∴旋转角α=24°,
故选:D.
【点睛】本题考查旋转变换,正多边形与圆,等边三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
10.设实数a,b,c满足a+b=3c2﹣4c+6,a﹣b=c2﹣4c+4,则a,b,c的大小关系是()
A.a<b≤cB.b≤a<cC.c<b≤aD.c长是_________.
【答案】 ;
【解析】
【分析】
因为正方形的面积等于边长乘以边长,即边长的平方,根据正方形面积是5,可得:正方形边长的平方等于5,即边长等于 .
分数段/分
频数
频率
A
90<x≤100
a
0.12
B
80<x≤90
b
0.18
C
70<x≤80
20
c
D
60<x≤70
15
d
请根据以上信息,解答下列问题:
(1)已知A,B档的学生人数之和等于D档学生人数,求被抽取的学生人数,并把频数分布直方图补充完整.
(2)该校七年级共有200名学生参加测试,请估计七年级成绩在C档的学生人数.
A B. C. D.
5.对于一次函数y=3x﹣1,下列说法正确的是()
A.图象经过第一、二、三象限
B.函数值y随x的增大而增大
C.函数图象与直线y=3x相交
D.函数图象与y轴交于点(0, )
6.如图,直线l1∥l2,且分别与等腰△ABC的两条腰相交,若∠1=40°,∠2=86°,则∠B的度数为()
A.54°B.60°C.63°D.70°
【详解】∵∠3=∠2=86°,∠5=∠1=40°,
∵直线l1∥l2,
∴∠4=180°﹣∠3=94°,
江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题03 (2)
一、单选题二、多选题1. 已知不等式有实数解,则实数的取值范围为( )A.B.C.D.2. 已知,都是定义在上的函数,对任意,满足,且,则下列说法正确的是( )A.B .若,则C.函数的图像关于直线对称D.3.若为奇函数,则( )A .-8B .-4C .-2D .04. 如图,已知,,,,,则等于A.B.C.D.5. 已知实数集,集合,则( )A.B.C.D.6.已知等比数列的前项和为,,则数列的公比( )A .-1B .1C .1D .27. 设某圆锥的母线长和高分别为,,侧面积和底面积分别为,,若,则( )A.B.C.D.8.已知函数,下列对于函数性质的四个描述:①是的极小值点;②的图像关于点中心对称;③有且仅有三个零点;④若区间上递增,则的最大值为.其中正确的描述的个数是( )A .1B .2C .3D .49. 某高中学校积极响应国家“阳光体育运动”的号召,为确保学生每天一小时的体育锻炼,调查该校2000名高中学生每周平均参加体育锻炼时间的情况,现从高一、高二、高三三个年级学生中按照的比例分层抽样,收集了200名学生每周平均体育运动时间的样本数据(单位:小时),整理后得到如图所示的频率分布直方图,则下列说法中,正确的是()A .估计该校高中学生每周平均体育运动时间不足4小时的人数为500人B .估计该校高中学生每周平均体育运动时间不少于8小时的人数百分比为20%C .估计该校高中学生每周平均体育运动时间的中位数为5小时江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题03 (2)江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题03 (2)三、填空题四、解答题D .估计该校高中学生每周平均体育运动时间为5.8小时10. 双曲线C的两个焦点为,以C 的实轴为直径的圆记为D ,过作D 的切线与C 交于M ,N 两点,且,则C 的离心率为( )A.B.C.D.11.如图,在直三棱柱中,,,,分别为,和的中点,为棱上的一动点,且,则下列说法正确的是()A.B.三棱锥的体积为定值C.D .异面直线与所成角的余弦值为12. 中国茶文化博大精深,茶水的口感与茶叶类型和水的温度有关为了建立茶水温度随时间变化的函数模型,小明每隔1分钟测量一次茶水温度,得到若干组数据,,,,绘制了如图所示的散点图.小明选择了如下2个函数模型来拟合茶水温度随时间的变化情况,函数模型一:;函数模型二:,下列说法正确的是()A .变量与具有负的相关关系B .由于水温开始降得快,后面降得慢,最后趋于平缓,因此模型二能更好的拟合茶水温度随时间的变化情况C .若选择函数模型二,利用最小二乘法求得到的图象一定经过点D.当时,通过函数模型二计算得,用温度计测得实际茶水温度为65.2,则残差为0.113.(文)指数方程的解是__________.14. 已知函数的周期为,当时,函数恰有两个不同的零点,则实数的取值范围是__________.15. 若双曲线的渐近线方程为,则双曲线的离心率为________.16. 甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为且各人正确与否相互之间没有影响.用ε表示甲队的总得分.(Ⅰ)求随机变量分布列;(Ⅱ)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB).17. 如图,在长方体中,已知,E为BC中点,连接,F为线段上的一点,且.(1)证明:平面;(2)求平面与平面所成的锐二面角的余弦值.18. 已知椭圆C:()的左,右焦点分别为,,上,下顶点分别为A,B,四边形的面积和周长分别为2和.(1)求椭圆C的方程;(2)若直线l:()与椭圆C交于E,F两点,线段EF的中垂线交y轴于M点,且为直角三角形,求直线l的方程.19. 已知函数.(1)若对时,,求正实数a的最大值;(2)证明:;(3)若函数的最小值为m,证明:方程有唯一的实数根,(其中是自然对数的底数)20. 已知正整数数列满足:,,.(1)已知,,求和的值;(2)若,求证;(3)求的取值范围.21.已知抛物线C:的焦点为F,若点在C上,且.(1)求C的方程:(2)P为y轴上一点,过点F的直线l交C于A,B两点,若是以点P为直角顶点的等腰直角三角形,求线段AB的长.。
2024年高考数学全真模拟试题
2024年高考数学全真模拟试题一、选择题(本大题共 12 小题,每小题 5 分,共 60 分)1、已知集合 A ={x | x² 3x + 2 = 0},B ={1, 2},则A ∩ B =()A {1}B {2}C {1, 2}D ∅2、复数 z =(1 + i)(2 i),则|z| =()A 2B 5C 10D 2 23、已知向量 a =(1,2),b =(2,-1),则 a·b =()A 0B 3C 4D 54、函数 f(x) = sin(2x +π/3)的最小正周期为()A πB 2πC π/2D 4π5、若直线 l₁:x + 2y 3 = 0 与直线 l₂:2x my + 1 = 0 平行,则 m =()A -4B -1C 1D 46、已知等差数列{aₙ}的前 n 项和为 Sₙ,若 a₁= 1,d = 2,则S₅=()A 25B 20C 15D 107、从 5 名男生和 3 名女生中选出 3 人参加某项活动,至少有 1 名女生的选法有()A 80 种B 70 种C 65 种D 60 种8、抛物线 y²= 8x 的焦点到准线的距离为()A 2B 4C 8D 169、已知函数 f(x) = x³ 3x + 1,则函数 f(x) 的单调递增区间是()A (∞,-1)和(1,+∞)B (-1,1)C (∞,-1)D (1,+∞)10、若函数 f(x) =logₐx(a > 0 且a ≠ 1)在区间2,4上的最大值与最小值之差为 1,则 a =()A 2B 4C 1/2D 1/411、若圆 C:x²+ y² 2x 4y + 1 = 0 关于直线 l:ax + by 1 = 0(a > 0,b > 0)对称,则 1/a + 2/b 的最小值为()A 4B 6C 8D 1012、已知函数 f(x) =2sin(ωx +φ)(ω > 0,|φ| <π/2)的图象过点(0,1),且在区间(π/12,5π/12)上单调递减,则ω 的最大值为()A 11B 9C 7D 5二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)13、曲线 y = x³ 3x²+ 1 在点(1,-1)处的切线方程为________。
2024届辽宁省沈阳七中学中考数学全真模拟试卷含解析
2024届辽宁省沈阳七中学中考数学全真模拟试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)1.港珠澳大桥是连接香港、珠海、澳门的超大型跨海通道,全长约55000米,把55000用科学记数法表示为( ) A .55×103 B .5.5×104 C .5.5×105 D .0.55×1052.如图1,在△ABC 中,D 、E 分别是AB 、AC 的中点,将△ADE 沿线段DE 向下折叠,得到图1.下列关于图1的四个结论中,不一定成立的是( )A .点A 落在BC 边的中点B .∠B+∠1+∠C=180°C .△DBA 是等腰三角形D .DE ∥BC3.如图,把长方形纸片ABCD 折叠,使顶点A 与顶点C 重合在一起,EF 为折痕.若AB=9,BC=3,试求以折痕EF 为边长的正方形面积( )A .11B .10C .9D .164.函数y =4x -中自变量x 的取值范围是A .x ≥0B .x ≥4C .x ≤4D .x >45.下列各式中的变形,错误的是(( )A .B .C .D .6.下列各点中,在二次函数2y x =-的图象上的是( )A .()1,1B .()2,2-C .()2,4D .()2,4--7.下列性质中菱形不一定具有的性质是( )A .对角线互相平分B .对角线互相垂直C .对角线相等D .既是轴对称图形又是中心对称图形8.如图,将含60°角的直角三角板ABC 绕顶点A 顺时针旋转45°度后得到△AB′C′,点B 经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是( )A .2πB .3πC .4πD .π9.已知:二次函数y=ax 2+bx+c (a≠1)的图象如图所示,下列结论中:①abc>1;②b+2a=1;③a-b<m (am+b )(m≠-1);④ax 2+bx+c=1两根分别为-3,1;⑤4a+2b+c>1.其中正确的项有( )A .2个B .3个C .4个D .5个10.函数y =mx 2+(m+2)x+12m+1的图象与x 轴只有一个交点,则m 的值为( ) A .0 B .0或2C .0或2或﹣2D .2或﹣2 二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB =6cm ,BC =8cm ,则EF =_____cm .12.在平面直角坐标系xOy 中,点P 到x 轴的距离为1,到y 轴的距离为2.写出一个..符合条件的点P 的坐标________________.13.若a 2+3=2b ,则a 3﹣2ab+3a =_____.14.两圆内切,其中一个圆的半径长为6,圆心距等于2,那么另一个圆的半径长等于__.15.如图,在ABC 中A 60∠=︒,BM AC ⊥于点M ,CN AB ⊥于点N ,P 为BC 边的中点,连接PM,PN ,则下列结论:①PM PN =,②MN AB BC AC ⋅=⋅,③PMN 为等边三角形,④当ABC 45∠=︒时,CN 2PM =.请将正确结论的序号填在横线上__.16.对于实数a ,b ,我们定义符号max {a ,b }的意义为:当a ≥b 时,max {a ,b }=a ;当a <b 时,max {a ,b ]=b ;如:max {4,﹣2}=4,max {3,3}=3,若关于x 的函数为y =max {x +3,﹣x +1},则该函数的最小值是_____.三、解答题(共8题,共72分)17.(8分)如图,已知矩形 OABC 的顶点A 、C 分别在 x 轴的正半轴上与y 轴的负半轴上,二次函数228255y x x =--的图像经过点B 和点C .(1)求点 A 的坐标;(2)结合函数的图象,求当 y<0 时,x 的取值范围.18.(8分)已知函数y=3x(x >0)的图象与一次函数y=ax ﹣2(a≠0)的图象交于点A (3,n ). (1)求实数a 的值;(2)设一次函数y=ax ﹣2(a≠0)的图象与y 轴交于点B ,若点C 在y 轴上,且S △ABC =2S △AOB ,求点C 的坐标. 19.(8分)(1)解不等式组:2322112323x x x x >-⎧⎪-⎨≥-⎪⎩; (2)解方程:22212x x x x +=--.20.(8分)如图,四边形ABCD 是边长为2的正方形,以点A ,B ,C 为圆心作圆,分别交BA ,CB ,DC 的延长线于点E ,F ,G .(1)求点D 沿三条圆弧运动到点G 所经过的路线长;(2)判断线段GB 与DF 的长度关系,并说明理由.21.(8分)如图,在每个小正方形的边长为1的网格中,点A ,B ,M ,N 均在格点上,P 为线段MN 上的一个动点(1)MN 的长等于_______,(2)当点P 在线段MN 上运动,且使PA 2+PB 2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P 的位置,并简要说明你是怎么画的,(不要求证明)22.(10分)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.求每张门票原定的票价;根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.23.(12分)如图,已知一次函数12y kx =-的图象与反比例函数()20m y x x =>的图象交于A 点,与x 轴、y 轴交于,C D 两点,过A 作AB 垂直于x 轴于B 点.已知1,2AB BC ==.(1)求一次函数12y kx =-和反比例函数()20m y x x=>的表达式; (2)观察图象:当0x >时,比较12,y y .24.已知关于x的方程(a﹣1)x2+2x+a﹣1=1.若该方程有一根为2,求a的值及方程的另一根;当a为何值时,方程的根仅有唯一的值?求出此时a的值及方程的根.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】55000是5位整数,小数点向左移动4位后所得的数即可满足科学记数法的要求,由此可知10的指数为4,所以,55000用科学记数法表示为5.5×104,故选B.【题目点拨】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2、A【解题分析】根据折叠的性质明确对应关系,易得∠A=∠1,DE是△ABC的中位线,所以易得B、D答案正确,D是AB中点,所以DB=DA,故C正确.【题目详解】根据题意可知DE是三角形ABC的中位线,所以DE∥BC;∠B+∠1+∠C=180°;∵BD=AD,∴△DBA是等腰三角形.故只有A错,BA≠CA.故选A.【题目点拨】主要考查了三角形的内角和外角之间的关系以及等腰三角形的性质.还涉及到翻折变换以及中位线定理的运用.(1)三角形的外角等于与它不相邻的两个内角和.(1)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.通过折叠变换考查正多边形的有关知识,及学生的逻辑思维能力.解答此类题最好动手操作.3、B【解题分析】根据矩形和折叠性质可得△EHC≌△FBC,从而可得BF=HE=DE,设BF=EH=DE=x,则AF=CF=9﹣x,在Rt△BCF 中,由BF2+BC2=CF2可得BF=DE=AG=4,据此得出GF=1,由EF2=EG2+GF2可得答案.【题目详解】如图,∵四边形ABCD是矩形,∴AD=BC,∠D=∠B=90°,根据折叠的性质,有HC=AD,∠H=∠D,HE=DE,∴HC=BC,∠H=∠B,又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,∴∠HCE=∠BCF,在△EHC和△FBC中,∵H BHC BCHCE BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EHC≌△FBC,∴BF=HE,∴BF=HE=DE,设BF=EH=DE=x,则AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2,解得:x=4,即DE=EH=BF=4,则AG=DE=EH=BF=4,∴GF=AB﹣AG﹣BF=9﹣4﹣4=1,∴EF2=EG2+GF2=32+12=10,故选B.【题目点拨】本题考查了折叠的性质、矩形的性质、三角形全等的判定与性质、勾股定理等,综合性较强,熟练掌握各相关的性质定理与判定定理是解题的关键.4、B【解题分析】根据二次根式的性质,被开方数大于等于0,列不等式求解.【题目详解】根据题意得:x﹣1≥0,解得x≥1,则自变量x的取值范围是x≥1.故选B.【题目点拨】本题主要考查函数自变量的取值范围的知识点,注意:二次根式的被开方数是非负数.5、D【解题分析】根据分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变,可得答案.【题目详解】A、,故A正确;B、分子、分母同时乘以﹣1,分式的值不发生变化,故B正确;C、分子、分母同时乘以3,分式的值不发生变化,故C正确;D、≠,故D错误;故选:D.【题目点拨】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变.6、D【解题分析】将各选项的点逐一代入即可判断.【题目详解】解:当x=1时,y=-1,故点()1,1不在二次函数2y x =-的图象;当x=2时,y=-4,故点()2,2-和点()2,4不在二次函数2y x =-的图象;当x=-2时,y=-4,故点()2,4--在二次函数2y x =-的图象;故答案为:D .【题目点拨】本题考查了判断一个点是否在二次函数图象上,解题的关键是将点代入函数解析式.7、C【解题分析】根据菱形的性质:①菱形具有平行四边形的一切性质; ②菱形的四条边都相等; ③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角; ④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.【题目详解】解:A 、菱形的对角线互相平分,此选项正确;B 、菱形的对角线互相垂直,此选项正确;C 、菱形的对角线不一定相等,此选项错误;D 、菱形既是轴对称图形又是中心对称图形,此选项正确;故选C .考点:菱形的性质8、A【解题分析】试题解析:如图,∵在Rt △ABC 中,∠ACB=90°,∠BAC=60°,AC=1,∴BC=ACtan60°AB=2∴S △ABC =12AC•BC=2. 根据旋转的性质知△ABC ≌△AB′C′,则S △ABC =S △AB′C′,AB=AB′.∴S 阴影=S 扇形ABB′+S △AB′C′-S △ABC =2452360π⨯=2π. 故选A .考点:1.扇形面积的计算;2.旋转的性质.9、B【解题分析】根据二次函数的图象与性质判断即可.【题目详解】①由抛物线开口向上知: a >1; 抛物线与y 轴的负半轴相交知c <1; 对称轴在y 轴的右侧知:b >1;所以:abc<1,故①错误; ②对称轴为直线x=-1,12b a∴-=-,即b=2a, 所以b-2a=1.故②错误;③由抛物线的性质可知,当x=-1时,y 有最小值,即a-b+c <2am bm c ++(1m ≠-),即a ﹣b <m (am+b )(m≠﹣1),故③正确;④因为抛物线的对称轴为x=1, 且与x 轴的一个交点的横坐标为1, 所以另一个交点的横坐标为-3.因此方程ax+bx+c=1的两根分别是1,-3.故④正确;⑤由图像可得,当x=2时,y >1,即: 4a+2b+c >1,故⑤正确.故正确选项有③④⑤,故选B.【题目点拨】本题二次函数的图象与性质,牢记公式和数形结合是解题的关键.10、C【解题分析】根据函数y =mx 2+(m+2)x+12m+1的图象与x 轴只有一个交点,利用分类讨论的方法可以求得m 的值,本题得以解决.【题目详解】解:∵函数y =mx 2+(m+2)x+12m+1的图象与x 轴只有一个交点,∴当m =0时,y =2x+1,此时y =0时,x =﹣0.5,该函数与x 轴有一个交点,当m≠0时,函数y =mx 2+(m+2)x+12m+1的图象与x 轴只有一个交点, 则△=(m+2)2﹣4m (12m+1)=0,解得,m 1=2,m 2=﹣2, 由上可得,m 的值为0或2或﹣2,故选:C .【题目点拨】本题考查抛物线与x 轴的交点,解答本题的关键是明确题意,利用分类讨论的数学思想解答.二、填空题(本大题共6个小题,每小题3分,共18分)11、2.1【解题分析】根据勾股定理求出AC ,根据矩形性质得出∠ABC=90°,BD=AC ,BO=OD ,求出BD 、OD ,根据三角形中位线求出即可.【题目详解】∵四边形ABCD 是矩形,∴∠ABC=90°,BD=AC ,BO=OD ,∵AB=6cm ,BC=8cm ,∴由勾股定理得:=10(cm ),∴DO=1cm ,∵点E 、F 分别是AO 、AD 的中点,∴EF=12OD=2.1cm , 故答案为2.1.【点评】本题考查了勾股定理,矩形性质,三角形中位线的应用,熟练掌握相关性质及定理是解题的关键.12、()()()()21212121----,,,,,,,(写出一个即可) 【解题分析】【分析】根据点到x 轴的距离即点的纵坐标的绝对值,点到y 轴的距离即点的横坐标的绝对值,进行求解即可.【题目详解】设P (x ,y ),根据题意,得|x|=2,|y|=1,即x=±2,y=±1,则点P的坐标有(2,1),(2,-1),(-2,1),(2,-1),故答案为:(2,1),(2,-1),(-2,1),(2,-1)(写出一个即可).【题目点拨】本题考查了点的坐标和点到坐标轴的距离之间的关系.熟知点到x轴的距离即点的纵坐标的绝对值,点到y轴的距离即点的横坐标的绝对值是解题的关键.13、1【解题分析】利用提公因式法将多项式分解为a(a2+3)-2ab,将a2+3=2b代入可求出其值.【题目详解】解:∵a2+3=2b,∴a3-2ab+3a=a(a2+3)-2ab=2ab-2ab=1,故答案为1.【题目点拨】本题考查了因式分解的应用,利用提公因式法将多项式分解是本题的关键.14、4或1【解题分析】∵两圆内切,一个圆的半径是6,圆心距是2,∴另一个圆的半径=6-2=4;或另一个圆的半径=6+2=1,故答案为4或1.【题目点拨】本题考查了根据两圆位置关系来求圆的半径的方法.注意圆的半径是6,要分大圆和小圆两种情况讨论.15、①③④【解题分析】①根据直角三角形斜边上的中线等于斜边的一半可判断①;②先证明△ABM∽△ACN,再根据相似三角形的对应边成比例可判断②;③先根据直角三角形两锐角互余的性质求出∠ABM=∠ACN=30°,再根据三角形的内角和定理求出∠BCN+∠CBM=60°,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BPN+∠CPM=120°,从而得到∠MPN=60°,又由①得PM=PN,根据有一个角是60°的等腰三角形是等边三角形可判断③;④当∠ABC=45°时,∠BCN=45°,进而判断④.【题目详解】①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,∴PM=12BC,PN=12BC,∴PM=PN,正确;②在△ABM与△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴AM ANAB AC,错误;③∵∠A=60°,BM⊥AC于点M,CN⊥AB于点N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM=180°-60°-30°×2=60°,∵点P是BC的中点,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等边三角形,正确;④当∠ABC=45°时,∵CN⊥AB于点N,∴∠BNC=90°,∠BCN=45°,∵P为BC中点,可得PC,故④正确.所以正确的选项有:①③④故答案为①③④【题目点拨】本题主要考查了直角三角形斜边的中线等于斜边的一半的性质,相似三角形、等边三角形、等腰直角三角形的判定与性质,等腰三角形三线合一的性质,仔细分析图形并熟练掌握性质是解题的关键.16、2【解题分析】试题分析:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x <﹣1,∴﹣x >1,∴﹣x+1>2,∴y >2,∴y min =2,三、解答题(共8题,共72分)17、(1)(40),;(2)15x -<<【解题分析】(1)当0x =时,求出点C 的坐标,根据四边形OABC 为矩形,得出点B 的坐标,进而求出点A 即可; (2)先求出抛物线图象与x 轴的两个交点,结合图象即可得出.【题目详解】解:(1)当0x =时,函数228255y x x =--的值为-2, ∴点C 的坐标为(0,2)-∵四边形OABC 为矩形, ,2OA CB AB CO ∴=== 解方程2282255x x --=-,得120,4x x ==. ∴点B 的坐标为(4)2-,. ∴点A 的坐标为(40),. (2)解方程2282055x x --=,得121,5x x =-=. 由图象可知,当0y <时,x 的取值范围是15x -<<.【题目点拨】本题考查了二次函数与几何问题,以及二次函数与不等式问题,解题的关键是灵活运用几何知识,并熟悉二次函数的图象与性质.18、(1)a=1;(2)C (0,﹣4)或(0,0).【解题分析】(1)把 A (3,n )代入y=3x(x >0)求得 n 的值,即可得A 点坐标, 再把A 点坐标代入一次函数 y=ax ﹣2 可得 a 的值;(2)先求出一次函数 y=ax ﹣2(a≠0)的图象与 y 轴交点 B 的坐标,再分两种情况(①当C 点在y 轴的正半轴上或原点时;②当C点在y轴的负半轴上时)求点C的坐标即可.【题目详解】(1)∵函数y=3x(x>0)的图象过(3,n),∴3n=3,n=1,∴A(3,1)∵一次函数y=ax﹣2(a≠0)的图象过点A(3,1),∴1=3a﹣1,解得a=1;(2)∵一次函数y=ax﹣2(a≠0)的图象与y 轴交于点B,∴B(0,﹣2),①当C点在y轴的正半轴上或原点时,设C(0,m),∵S△ABC=2S△AOB,∴12×(m+2)×3=2×12×3,解得:m=0,②当C点在y 轴的负半轴上时,设(0,h),∵S△ABC=2S△AOB,∴12×(﹣2﹣h)×3=2×12×3,解得:h=﹣4,∴C(0,﹣4)或(0,0).【题目点拨】本题主要考查了一次函数与反比例函数交点问题,解决第(2)问时要注意分类讨论,不要漏解.19、(1)﹣2≤x<2;(2)x=45.【解题分析】(1)先求出不等式组中每个不等式的解集,再求出不等式组的解集即可;(2)先把分式方程转化成整式方程,求出整式方程的解,再进行检验即可.【题目详解】(1)2322x112323x xx①②>-⎧⎪⎨-≥-⎪⎩,∵解不等式①得:x<2,解不等式②得:x≥﹣2,∴不等式组的解集为﹣2≤x<2;(2)方程两边都乘以(2x﹣1)(x﹣2)得2x(x﹣2)+x(2x﹣1)=2(x﹣2)(2x﹣1),解得:x=45,检验:把x=45代入(2x﹣1)(x﹣2)≠0,所以x=45是原方程的解,即原方程的解是x=45.【题目点拨】本题考查了解一元一次不等式组和解分式方程,根据不等式的解集找出不等式组的解集是解(1 )的关键,能把分式方程转化成整式方程是解(2)的关键.20、(1)6π;(2)GB=DF,理由详见解析.【解题分析】(1)根据弧长公式l=计算即可;(2)通过证明给出的条件证明△FDC≌△GBC即可得到线段GB与DF的长度关系.【题目详解】解:(1)∵AD=2,∠DAE=90°,∴弧DE的长l1==π,同理弧EF的长l2==2π,弧FG的长l3==3π,所以,点D运动到点G所经过的路线长l=l1+l2+l3=6π.(2)GB=DF.理由如下:延长GB交DF于H.∵CD=CB,∠DCF=∠BCG,CF=CG,∴△FDC≌△GBC.∴GB=DF.【题目点拨】本题考查弧长公式以及全等三角形的判定和性质,题目比较简单,解题关键掌握是弧长公式.21、(1)34;(2)见解析.【解题分析】(1)根据勾股定理即可得到结论;(2)取格点S ,T ,得点R ;取格点E ,F ,得点G ;连接GR 交MN 于点P 即可得到结果.【题目详解】(1)223534MN =+=;(2)取格点S ,T ,得点R ;取格点E ,F ,得点G ;连接GR 交MN 于点P【题目点拨】本题考查了作图-应用与设计作图,轴对称-最短距离问题,正确的作出图形是解题的关键.22、(1)1(2)10%.【解题分析】试题分析:(1)设每张门票的原定票价为x 元,则现在每张门票的票价为(x-80)元,根据“按原定票价需花费6000元购买的门票张数,现在只花费了4800元”建立方程,解方程即可;(2)设平均每次降价的百分率为y ,根据“原定票价经过连续二次降价后降为324元”建立方程,解方程即可. 试题解析:(1)设每张门票的原定票价为x 元,则现在每张门票的票价为(x-80)元,根据题意得6000480080x x =-, 解得x=1.经检验,x=1是原方程的根.答:每张门票的原定票价为1元;(2)设平均每次降价的百分率为y ,根据题意得1(1-y )2=324,解得:y 1=0.1,y 2=1.9(不合题意,舍去).答:平均每次降价10%.考点:1.一元二次方程的应用;2.分式方程的应用.23、(1)()12162,02y x y x x =-=>;(2)12121206,;6,;6,x y y x y y x y y <== 【解题分析】(1)由一次函数的解析式可得出D 点坐标,从而得出OD 长度,再由△ODC 与△BAC 相似及AB 与BC 的长度得出C 、B 、A 的坐标,进而算出一次函数与反比例函数的解析式;(2)以A 点为分界点,直接观察函数图象的高低即可知道答案.【题目详解】解:(1)对于一次函数y=kx-2,令x=0,则y=-2,即D (0,-2),∴OD=2,∵AB ⊥x 轴于B , ∴AB OD BC OC= , ∵AB=1,BC=2,∴OC=4,OB=6,∴C (4,0),A (6,1)将C 点坐标代入y=kx-2得4k-2=0,∴k=12, ∴一次函数解析式为y=12x-2; 将A 点坐标代入反比例函数解析式得m=6, ∴反比例函数解析式为y=6x ; (2)由函数图象可知:当0<x <6时,y 1<y 2;当x=6时,y 1=y 2;当x >6时,y 1>y 2;【题目点拨】本题考查了反比例函数与一次函数的交点问题.熟悉函数图象上点的坐标特征和待定系数法解函数解析式的方法是解答本题的关键,同时注意对数形结合思想的认识和掌握.24、(3)a=15,方程的另一根为12;(2)答案见解析. 【解题分析】(3)把x=2代入方程,求出a 的值,再把a 代入原方程,进一步解方程即可;(2)分两种情况探讨:①当a=3时,为一元一次方程;②当a≠3时,利用b 2-4ac =3求出a 的值,再代入解方程即可.【题目详解】(3)将x =2代入方程2(a 1)x 2x a 10-++-=,得4(a 1)4a 10-++-=,解得:a =15. 将a =15代入原方程得24x 2054x 5-+-=,解得:x 3=12,x 2=2. ∴a =15,方程的另一根为12; (2)①当a =3时,方程为2x =3,解得:x =3.②当a≠3时,由b 2-4ac =3得4-4(a -3)2=3,解得:a =2或3.当a =2时, 原方程为:x 2+2x +3=3,解得:x 3=x 2=-3;当a =3时, 原方程为:-x 2+2x -3=3,解得:x 3=x 2=3.综上所述,当a =3,3,2时,方程仅有一个根,分别为3,3,-3.考点:3.一元二次方程根的判别式;2.解一元二次方程;3.分类思想的应用.。
中考全真模拟测试 数学试卷 含答案解析
一、选择题(每小题3分,共30分)1.下列各数中比3大比4小的无理数是( )A B C .3.1 D .1032.国产科幻电影《流浪地球》上映17日,票房收入突破40亿人民币,将40亿用科学记数法表示为( ) A.84010⨯B.9410⨯C.104010⨯D.110.410⨯3.如图是由四个相同的小正方形组成的立体图形,它的俯视图为( )A .B .C .D .4.下列运算正确的是( ) A.5510a aaB.76a a aC.326a a aD.236aa5. 关于x 的一元二次方程220x x m -+=无实数根,则实数m 的取值范围是( ) A.m <1B.m ≥1C.m ≤1D.m >16. 如图,在△ABC 中,AB =AC,∠A =30°,直线a ∥b,顶点C 在直线b 上,直线a 交AB 于点D,交AC 于点E,若∠1=145°,则∠2的度数是( ) A.30°B.35°C.40°D.45°7. 从-1,2,3,-6这四个数中任取两个数,分别记作m,n,那么点(m,n) 在函数6y x =图象上的概率是 A.12B.13C.14D.188. 将抛物线y =x 2-6x +5向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是( ) A .y =(x -4)2-6 B .y =(x -1)2-3 C .y =(x -2)2-2 D .y =(x -4)2-29. 如图,在Rt △ABC 中,∠ABC =90°,AB ==2,以AB 的中点O 为圆心,OA 的长为半径作半圆交AC于点D,则图中阴影部分的面积为( )2π2πC.πD.2π10. 已知60AOB ∠=︒,以O 为圆心,以任意长为半径作弧,交OA,OB 于点M ,N ,分别以M ,N 为圆心,以大于12MN 的长度为半径作弧,两弧在AOB ∠内交于点P ,以OP 为边作15POC ∠=︒,则BOC ∠的度数为( ).A .15︒B .45︒C .15︒或30︒D .15︒或45︒ 二、填空题(每小题3分,共15分)11. 若一个数的平方等于5,则这个数等于________.. 12. 若关于x 的分式方程2222xmm x x有增根,则m 的值为________.13. 如图,直线2y x =+与直线y ax c =+相交于点(,3)P m ,则关于x 的不等式2x +≤ax c +的解为 .14. 如图,在△ABC 中,∠BAC =90°,AB =AC =10cm,点D 为△ABC 内一点,∠BAD =15°,AD =6cm,连接BD,将△ABD 绕点A 按逆时针方向旋转,使AB 与AC 重合,点D 的对应点为点E,连接DE,DE 交AC 于点F,则CF 的长为________cm.15. 如图,矩形ABCD 中,AB =,BC =12,E 为AD 中点,F 为AB 上一点,将△AEF 沿EF 折叠后,点A 恰好落到CF 上的点G 处,则折痕EF 的长是________.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:222221121x x x xx x x x⎛⎫--÷⎪---+⎝⎭,其中x是不等式组的整数解.17.(9分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题.(1)参加此次诗词大会预选赛的同学共有人;(2)在扇形统计图中,”三等奖”所对应的扇形的圆心角的度数为;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有14来自七年级,12来自九年级,其余的来自八年级.学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛.请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.18.(9分)如图,已知反比例函数y=(k≠0)的图象与一次函数y=﹣x+b的图象在第一象限交于A(1,3),B(3,1)两点(1)求反比例函数和一次函数的表达式;(2)已知点P (a ,0)(a >0),过点P 作平行于y 轴的直线,在第一象限内交一次函数y =﹣x +b 的图象于点M ,交反比例函数y =上的图象于点N .若PM >PN ,结合函数图象直接写出a 的取值范围.19.(9分)如图,⊙O 与△ABC 的AC 边相切于点C ,与AB 、BC 边分别交于点D 、E ,DE ∥OA ,CE 是⊙O 的直径. (1)求证:AB 是⊙O 的切线; (2)若BD =4,CE =6,求AC 的长.20.(9分)如图,某建筑物CD 高96米,它的前面有一座小山,其斜坡AB 的坡度为i =1:1.为了测量山 顶A的高度,在建筑物顶端D 处测得山顶A 和坡底B 的俯角分别为α,β.已知tan 2α=,tan 4β=,求山顶A 的高度AE(C 、B 、E 在同一水平面上).21.(10分)某商店销售一种商品,童威经市场调查发现:该商品的周销售量y (件)是售价x (元/件)的一次函数,其售价、周销售量、周销售利润w (元)的三组对应值如下表:注:周销售利润=周销售量×(售价-进价)(1) 求y 关于x 的函数解析式(不要求写出自变量的取值范围)(2) 该商品进价是_________元/件;当售价是________元/件时,周销售利润最大,最大利润是__________元 (3) 由于某种原因,该商品进价提高了m 元/件(m >0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m 的值22.(10分)如图1,在Rt △ABC 中,∠ACB =90°,∠B =60°,D 为AB 的中点,∠EDF =90°,DE 交AC 于点G ,DF 经过点C .(1)求∠ADE 的度数;(2)如图2,将图1中的∠EDF 绕点D 顺时针方向旋转角α(0°<α<60°),旋转过程中的任意两个位置分别记为∠E 1DF 1,∠E 2DF 2,DE 1交直线AC 于点P ,DF 1交直线BC 于点Q ,DE 2交直线AC 于点M ,DF 2交直线BC 于点N ,求PMQN 的值;(3)若图1中的∠B =β(60°<β<90°),(2)中的其余条件不变,请直接写出PMQN的值(用含β的式子表示).23.(11分)如图,抛物线2y ax bx c =++与x 轴交于点A(-1,0),点B(3,0),与y 轴交于点C,且过点D(2,-3).点P 、Q 是抛物线2y ax bx c =++上的动点. (1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求△POD 面积的最大值.(3)直线OQ 与线段BC 相交于点E,当△OBE 与△ABC 相似时,求点Q 的坐标.图1G FED C B AQ NM PE 2F 2图2F 1E 1D CBA答案与解析一、选择题(每小题3分,共30分)1.下列各数中比3大比4小的无理数是( )A B C .3.1 D .103【答案】A所以3<4,,故选项A 正确.2.国产科幻电影《流浪地球》上映17日,票房收入突破40亿人民币,将40亿用科学记数法表示为( )A.84010⨯B.9410⨯C.104010⨯D.110.410⨯【答案】B.【解析】本题考查了科学记数法,科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是非负数;当原数的绝对值<1时,n 是负数.因此40亿可用科学记数法表示为9410⨯,故选B.3.如图是由四个相同的小正方形组成的立体图形,它的俯视图为( )A .B .C .D .【答案】B【解析】俯视图是上面往下观察所得的图形,观察可知第一层一个靠左边,第二层两根,故选B. 4.下列运算正确的是( ) A.5510aa aB.76aa aC.326aa aD.236a a【答案】B【解析】A.合并同类项得5552aa a ,B.同底数幂除法底数不变指数相减,故正确,C.同底数幂乘法,底数不变指数相加,应为325aa a ,C.指数乘方运算底数不变指数相乘,且负数的偶次幂应为正数,故结果应为236a a .5. 关于x 的一元二次方程220x x m -+=无实数根,则实数m 的取值范围是( ) A.m <1B.m ≥1C.m ≤1D.m >1【答案】D.【解析】∵方程无实数根, ∴△=(-2)2-4×1·m =4-4m <0. 解得,m >1. 故选D.6. 如图,在△ABC 中,AB =AC,∠A =30°,直线a ∥b,顶点C 在直线b 上,直线a 交AB 于点D,交AC 于点E,若∠1=145°,则∠2的度数是( ) A.30°B.35°C.40°D.45°【答案】C【解析】△ABC 中,AB =AC,∠A =30°,∴∠B =75°,∵∠1=145°,∴∠FDB =35°过点B 作BG ∥a ∥b,∴∠FDB=∠DBG,∠2=∠CBG,∵∠B =∠ABG+∠CBG,∴∠2=40°,故选C7. 从-1,2,3,-6这四个数中任取两个数,分别记作m,n,那么点(m,n) 在函数6y x =图象上的概率是 A.12B.13C.14D.18【答案】B【解析】从-1,2,3,-6这四个数中任取两个数,所有可能的结果有12种,每种结果的可能性相同,其中,两数乘积为6的结果有4种,当两数乘积为6时,点(m,n)必定在函数6y x =的图象上,因此P =41=123.故选B. 8. 将抛物线y =x 2-6x +5向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是( )A .y =(x -4)2-6B .y =(x -1)2-3C .y =(x -2)2-2D .y =(x -4)2-2 【答案】D【解析】y =x 2-6x +5= (x -3) 2-4,把向上平移两个单位长度,再向右平移一个单位长度后, 得y = (x -3-1) 2-4+2,即y =(x -4)2-2.9. 如图,在Rt △ABC 中,∠ABC =90°,AB ==2,以AB 的中点O 为圆心,OA 的长为半径作半圆交AC 于点D,则图中阴影部分的面积为( )2π2πC.πD.2π【答案】A【解题过程】在Rt △ABC 中,连接OD,∠ABC =90°,AB ==2,∴∠A =30°,∠DOB =60°,过点D 作DE⊥AB 于点E,∵AB =∴AO =OD ∴DE =32,∴S 阴影=S △ABC -S △AOD -S 扇形BOD =-2π2π,故选A.10. 已知60AOB ∠=︒,以O 为圆心,以任意长为半径作弧,交OA,OB 于点M ,N ,分别以M ,N 为圆心,以大于12MN 的长度为半径作弧,两弧在AOB ∠内交于点P ,以OP 为边作15POC ∠=︒,则BOC ∠的度数为( ).A .15︒B .45︒C .15︒或30︒D .15︒或45︒ 【答案】D【解析】由题目可以得出OP 为AOB ∠的平分线,所以1302AOP BOP AOB ∠=∠=∠=︒,又因为15POC ∠=︒,考虑到点C 有可能在AOP ∠内也有可能在BOP ∠内,所以当点C 在AOP ∠内时BOC ∠45BOP POC =∠+∠=︒,当点C 在BOP ∠内时BOC ∠15BOP POC =∠-∠=︒.二、填空题(每小题3分,共15分)11. 若一个数的平方等于5,则这个数等于________.【答案】【解析】∵正数的平方根有两个,且互为相反数,故5的平方是 12. 若关于x 的分式方程2222xmm x x有增根,则m 的值为________.【答案】1【解析】解原分式方程,去分母得:x -2m =2m(x -2),若原分式方程有增根,则x =2,将其代入这个一元一次方程,得2-2m =2m(2-2),解之得,m =1.13. 如图,直线2y x =+与直线y ax c =+相交于点(,3)P m ,则关于x 的不等式2x +≤ax c +的解为.【答案】1x ≤-【解析】因为直线2y x =+与直线y ax c =+相交于点(,3)P m ,所以32m =+,解得1m =,由图象可以直接得出关于x 的不等式2x +≤ax c +的解为1x ≤-.14. 如图,在△ABC 中,∠BAC =90°,AB =AC =10cm,点D 为△ABC 内一点,∠BAD =15°,AD =6cm,连接BD,将△ABD 绕点A 按逆时针方向旋转,使AB 与AC 重合,点D 的对应点为点E,连接DE,DE 交AC 于点F,则CF 的长为________cm.【答案】10-【解题过程】∵∠BAC=90°,∠BAD=15°,∴∠DAF=75°由旋转可知,∠ADF=45°,过点A作AM⊥DF于点M,∴AM AD=∴AF=∵AC=AB=10,∴FC=AC-AF=10-15. 如图,矩形ABCD中,AB=,BC=12,E为AD中点,F为AB上一点,将△AEF沿EF折叠后,点A恰好落到CF上的点G处,则折痕EF的长是________.【答案】【解析】连接CE,∵点E是AD的中点,∴AE=ED=EG,∠EGC=∠D,∴△EGC≌△EDC,∴GC=AB=,设AF=GF=x,∴FB=x,在Rt△FBC中,FB2+BC2=FC2,即(x)2+122=(x+)2,解之,得:x=在Rt△AFE中,EF.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:222221121x x x xx x x x⎛⎫--÷⎪---+⎝⎭,其中x是不等式组的整数解.【答案】解:原式=[-]•=•=解不等式组,得1≤x<3,则不等式组的整数解为1、2.当x=1时,原式无意义;当x=2,∴原式=.【解析】先化简分式,再解不等式,找出符合条件的值,最后代入求值.17.(9分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题.(1)参加此次诗词大会预选赛的同学共有人;(2)在扇形统计图中,”三等奖”所对应的扇形的圆心角的度数为;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有14来自七年级,12来自九年级,其余的来自八年级.学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛.请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.【答案】解:(1)40(2)90°;(3)二等奖人数为:20%×40=8(人),一等奖人数为:40-8-10-18=4(人),条形统计图如下:(4)一等奖有4人,则七年级有1人,八年级1人,九年级2人,用树状图表示如下:由树状图可得,总共有12种结果,符合条件的有4种,故所选两名同学中,恰好是一名七年级和一名九年级同学的概率是4÷12=13.【解析】(1)鼓励奖人数为18,百分率为45%,所以样本容量为:18÷45%=40(人) (2)三等奖所对应的圆心角=4010×360°=90°; 18.(9分)如图,已知反比例函数y =(k ≠0)的图象与一次函数y =﹣x +b 的图象在第一象限交于A (1,3),B (3,1)两点(1)求反比例函数和一次函数的表达式;(2)已知点P (a ,0)(a >0),过点P 作平行于y 轴的直线,在第一象限内交一次函数y =﹣x +b 的图象于点M ,交反比例函数y =上的图象于点N .若PM >PN ,结合函数图象直接写出a 的取值范围.【答案】解:(1)y=,y=﹣x+4;(2)由图象可得:当1<a<3时,PM>PN.【解析】(1)∵反比例函数y=(k≠0)的图象与一次函数y=﹣x+b的图象在第一象限交于点A(1,3),∴3=,3=﹣1+b,∴k=3,b=4,∴反比例函数和一次函数的表达式分别为y=,y=﹣x+4;19.(9分)如图,⊙O与△ABC的AC边相切于点C,与AB、BC边分别交于点D、E,DE∥OA,CE是⊙O的直径.(1)求证:AB是⊙O的切线;(2)若BD=4,CE=6,求AC的长.【答案】证明:(1)连接OD,∵DE∥OA,∴∠AOC=∠OED,∠AOD=∠ODE,∵OD=OE,∴∠OED=∠ODE,∴∠AOC=∠AOD,又∵OA=OA,OD=OC,∴△AOC≌△AOD(SAS),∴∠ADO=∠ACO.∵CE是⊙O的直径,AC为⊙O的切线,∴OC⊥AC,∴∠OCA=90°,∴∠ADO==90°,∴OD⊥AB,∵OD为⊙O的半径,∴AB是⊙O的切线.(2)∵CE=6,∴OD=OC=3,∵∠BDO=90°,∴222BO BD OD=+,∵BD=4,∴OB=5,∴BC=8,∵∠BDO=∠OCA=90°,∠B=∠B,∴△BDO∽△BCA,∴BD OD BC AC=,∴438AC=,OEDCBA∴AC =6. 【解析】先连接切点和半径,再证明垂直,即可得出第一问; 利用三角形相似,即可得出第二问.20.(9分)如图,某建筑物CD 高96米,它的前面有一座小山,其斜坡AB 的坡度为i =1:1.为了测量山 顶A的高度,在建筑物顶端D 处测得山顶A 和坡底B 的俯角分别为α,β.已知tan 2α=,tan 4β=,求山顶A 的高度AE(C 、B 、E 在同一水平面上).【答案】解:如图,设DA 与CB 的交点为O . ∵96tan tan 2DC O OC OCα∠====, ∴48OC =同理,∵96tan tan 4DC DBC BC BCβ∠==== ∴24BC =.∴482424OB OC BC =-=-=.设AE x =米,则 则由i =1:1得BE x =,12OE x =; ∴1242x x +=, ∴16x =∴山顶A 的高度AE 为16米.【解析】利用坡比的定义,找出同角的正切值即可.21.(10分)某商店销售一种商品,童威经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如下表:注:周销售利润=周销售量×(售价-进价)(1) 求y关于x的函数解析式(不要求写出自变量的取值范围)(2) 该商品进价是_________元/件;当售价是________元/件时,周销售利润最大,最大利润是__________元(3) 由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值【答案】(1)设y与x的函数关系式为y=kx+b,依题意有,50100 6080k bk b+=⎧⎨+=⎩,解得,k=-2,b=200,y与x的函数关系式是y=-2x+200;(2)将售价50,周销售量100,周销售利润1000,带入周销售利润=周销售量×(售价-进价)得到,1000=100×(50-进价),即进价为40元/件;周销售利润w=(x-40)y=(x-40)(-2x+200)=-2(x-70)2+1800,故当售价是70元/件时,周销售利润最大,最大利润是1800元,故答案为40,70,1800;(3)依题意有,w=(-2x+200)(x-40-m)=-2x2+(2m+280)x-8000-200m=221401260180022m x m m +⎛⎫--+-+ ⎪⎝⎭∵m >0, ∴对称轴140=702m x +>, ∵-2<0, ∴抛物线开口向下, ∵x ≤65,∴w 随x 的增大而增大,∴当x =65时,w 有最大值(-2×65+200)(65-40-m ), ∴(-2×65+200)(65-40-m )=1400, ∴m =5.【解析】注意进价、售价、利润之间的关系,第三问注意销售单价、销售量、销售总价之间的关系. 22.(10分)如图1,在Rt △ABC 中,∠ACB =90°,∠B =60°,D 为AB 的中点,∠EDF =90°,DE 交AC 于点G ,DF 经过点C .(1)求∠ADE 的度数;(2)如图2,将图1中的∠EDF 绕点D 顺时针方向旋转角α(0°<α<60°),旋转过程中的任意两个位置分别记为∠E 1DF 1,∠E 2DF 2,DE 1交直线AC 于点P ,DF 1交直线BC 于点Q ,DE 2交直线AC 于点M ,DF 2交直线BC 于点N ,求PM QN的值;(3)若图1中的∠B =β(60°<β<90°),(2)中的其余条件不变,请直接写出PM QN的值(用含β的式子表示).【答案】解:(1)∵∠ACB =90°,D 为AB 的中点, ∴CD=DB , ∴∠DCB =∠B ∵∠B =60°,∴∠DCB =∠B =∠CDB =60°.图1G FEC B Q NM PE 2F 2图2F 1E 1CB∴∠CDA =120°. ∵∠EDC =90°, ∴∠ADE =30°;(2)∵∠C =90°,∠MDN =90°, ∴∠DMC +∠CND =180°. ∵∠DMC +∠PMD =180°, ∴∠CND =∠PMD . 同理∠CPD =∠DQN . ∴△PMD ∽△QND过点D 分别做DG ⊥AC 于G ,DH ⊥BC 于H . 可知DG,DH 分别为△PMD 和△QND 的高. ∴DH DGQN PM =∵DG ⊥AC 于G,DH ⊥BC 于H , ∴DG ∥BC . 又∵D 为AB 中点,∴G 为AC 中点. ∵∠C =90°,∴四边形CGDH 为矩形,有CG =DH =AG ,Rt △AGD 中, ,3330tan tan 0===∠AG GD A . 即33=HD GD . 33=∴QN PM (3)tan(90°﹣β)(或=βtan 1. 【解析】利用旋转和三角形相似是解决本题的关键,最后要注意三角函数的定义.23.(11分)如图,抛物线2y ax bx c =++与x 轴交于点A(-1,0),点B(3,0),与y 轴交于点C,且过点D(2,-3).点P 、Q 是抛物线2y ax bx c =++上的动点. (1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求△POD 面积的最大值.(3)直线OQ 与线段BC 相交于点E,当△OBE 与△ABC 相似时,求点Q 的坐标.【答案】解:(1)将点A(-1,0),点B(3,0),点D(2,3)代入2y ax bx c =++得0930423a b c a b c a b c -+=⎧⎪++=⎨⎪++=-⎩,解得123a b c =⎧⎪=-⎨⎪=-⎩∴抛物线的解析式为223y x x =--(2)如图,设PD 与y 轴相交于点F,OD 与抛物线相交于点G,设P 坐标为(2,23m m m --),则直线PD 的解析式为23y mx m =--,它与y 轴的交点坐标为F(0,-2m-3),则OF =2m+3.∴()()()21112323222ODP S OF D P m m m m ∆=⨯-=+-=-++点的横坐标点的横坐标 由于点P 在直线OD 下方,所以322m -<<.∴当()1122214b m a =-=-=⨯-时,△POD 面积的最大值2211114933242416ODP S m m ∆⎛⎫=-++=-+⨯+= ⎪⎝⎭ (3)①由223y x x =--得抛物线与y 轴的交点C(0,-3),结合A(-1,0)得直线AC 的解析式为33y x =--, ∴当OE ∥AC 时,△OBE 与△ABC 相似;此时直线OE 的解析式为3y x =-.又∵2233y x x y x ⎧=--⎨=-⎩的解为11x y ⎧=⎪⎪⎨⎪=⎪⎩,22x y ⎧=⎪⎪⎨⎪=⎪⎩∴Q的坐标为1322⎛-- ⎝⎭和1322⎛⎫--+ ⎪ ⎪⎝⎭. ②如图,作EN ⊥y 轴于N,由A(-1,0),B(3,0),C(0,-3)得AB =3-(-1)=4,BO =3,BC=当BE OB BA BC=即4BE =时 ,△OBE 与△ABC 相似;此时BE= 又∵△OBC ∽△ONE,∴NB =NE =2,此时E 点坐标为(1,-2),直线OE 的方程为2y x =-.又∵2232y x x y x ⎧=--⎨=-⎩的解为11x y ⎧=⎪⎨=-⎪⎩,22x y ⎧=⎪⎨=⎪⎩ ∴Q的坐标为-和(. 综上所述,Q的坐标为13,22⎛-+- ⎝⎭,1322⎛-+ ⎝⎭,-,(. 【解析】(1)方法二、∵抛物线2y ax bx c =++与x 轴交于点A(-1,0),点B(3,0), ∴设抛物线的解析式为()()13y a x x =+-.又∵抛物线过点 D(2,-3),∴()()21233a +-=-∴1a =∴()()211323y x x x x =⨯+-=--. (2)注意平面直角坐标系中线段的表示方法,注意求三角形面积时可以构造同底等高.(3)注意相似中的对应,应进行分类讨论。
江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01(高频考点版)
一、单选题二、多选题三、填空题四、解答题1. 如果直线与直线平行,那么等于( )A.B .1C.D .22. 酒驾是严重危害交通安全的违法行为.根据规定:血液中酒精含量达到的驾驶员即为酒后驾车,及以上为醉酒驾车.某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了,若在停止喝酒后,他血液中酒精含量会以每小时的速度减少,要想安全驾驶,那么他至少经过( )A .2小时B .4小时C .6小时D .8小时3. 某展示柜共有32个不同的手办摆件,起初上层放14个手办摆件,下层放18个手办摆件,现要从下层的18个手办摆件中抽2个调整到上层,若其他手办摆件的相对顺序不变,则不同的调整方法有( )A .18360种B .24480种C .36720种D .73440种4. 集合A ={1,2,3}的非空子集个数为( )A .5B .6C .7D .85.已知实数满足:,则( )A.B.C.D.6. 若集合A 的子集个数有4个,则集合A 中的元素个数是( )A .2B .4C .8D .167. 已知函数,则( )A .当时,单调递减B .当时,C.若有且仅有一个零点,则D .若,则8.已知数列满足,其中,为数列的前n 项和,则下列四个结论中,正确的是( )A.B .数列的通项公式为:C .数列的前n项和为:D .数列为递减数列9.已知函数(1)函数的值域是____________.(2)若关于x 的方程恰有两个互异的实数解,则a 的取值范围是______________-.10. 已知圆锥的表面积为,且它的侧面展开图是一个半圆,则它的母线长为__________;该圆锥的体积为__________.11.已知随机变量,若,则_________.12.函数,则_________13. 某商品的包装纸如图1,其中菱形的边长为3,且,,,将包装纸各三角形沿菱形的江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01(高频考点版)江苏省2024年普通高中学业水平合格性考试数学全真模拟数学试题01(高频考点版)边进行翻折后,点E,F,M,N汇聚为一点P,恰好形成如图2的四棱锥形的包裹.(1)证明底面;(2)设点T为BC上的点,且二面角的正弦值为,试求PC与平面PAT所成角的正弦值.14. 如图,已知是正三角形,EA、CD都垂直于平面ABC,且,,F是BE的中点,(1)求证:平面ABC;(2)求证:平面EDB;15. 如图在四棱锥中,底面是矩形,,,,为的中点,面面.(1)证明:面(2)求二面角的余弦值.16. 已知函数.(1)求函数的定义域;(2)求函数的值域.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018届浙江大学附属中学高考科目全真模拟
数学试卷
参考公式:
如果事件
,A B 互斥,那么
柱体的体积公式 ()()()P A B P A P B +=+
V Sh =
如果事件,A B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高 ()()()P AB P A P B =
锥体的体积公式 如果事件
A 在一次试验中发生的概率为p ,那么n 13
V Sh =
次独立重复试验中事件
A 恰好发生k 次的概率为 其中S 表示锥体的底面积,h 表示锥体的高
()()10,1,2),,(k k n k n n P k C p p k n -==⋯-
球的表面积公式
台体的体积公式
24S R =π
11221
()3
V S S S S h =
++
球的体积公式
其中12,S S 分别表示台体的上、下底面积,
343
V R =
π
h 表示为台体的高 其中R 表示球的半径
选择题部分(共40分)
一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合,,则
A .
B .
C .
D . 2.设R x ∈,i 是虚数单位,则“2x =”是“复数()
()242i z x x =-++为纯虚数的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .即不充分也不必要条件 3.. 一个几何体的三视图如图所示,则该几何体的体积为 A .8
B .
83
C .
45
D .45
4.若x ,y 满足约束条件210,0,10x y x y x y -+≥⎧⎪
-≤⎨⎪+-≥⎩
,则z =x +3y 的最小值是
A .4
B .73
C .2
D .
5
3
2
{|}M x x x =={|lg 0}N x x =≤M
N =[0,1](0,1][0,1)(,1]-∞(第3题图)
5.直线1+=kx y 与双曲线
11692
2=-x y 的一条渐近线垂直,则实数k 的值是 A .
54或54- B .45或45- C .43或43- D .34或3
4- 6.设是两条异面直线,下列命题中正确的是
A .过m 且与n 平行的平面有且只有一个
B .过m 且与n 垂直的平面有且只有一个
C .过空间一点P 与m ,n 均相交的的直线有且只有一条
D .过空间一点P 与m ,n 均平行的的平面有且只有一个 7.在等比数列{}n a 中,设12
n n T a a a =,N n *∈,则
A .若210n T +>,则10a >
B .若210n T +<,则10a <
C .若310n T +<,则10
a >
D .若410n T +<,则10a <
8.已知箱中装有2个白球和3个黑球,现从该箱中任取(无放回,且每球取到的机会均等)2个球,规定:
(a )取出一个白球得2分,取出一个黑球得1分,取出2球所得分数之和记随机变量1ξ. (b )取出一个白球得1分,取出一个黑球得2分,取出2球所得分数之和记随机变量2ξ. 则
A .<,=
B .<,>
C .>,=
D .>,>
9.若向量,a b 满足22a a b =+=,则a 在b 方向上投影的最大值是
A .1
B .1-
C .3
D .3- 10.已知等腰直角三角形ABC 斜边BC 上的一点P 满足CP =
1
3
CB ,将△CAP 沿AP 翻折至△C′AP (点C '不在平面ABP 内),记二面角C ′−AB −P ,C ′−AC −B ,C ′−BP −A 的平面角分别为α,β,γ,则 A .对任意点C ',都有γ>β>α B .对任意点C ',都有γ>α>β
C .存在点C ',使得γ>α>β
D .存在点C ',使得β>α>γ
,m n 1E()ξ2E()ξ1D()ξ2D()ξ1E()ξ2E()ξ1D()ξ2D()ξ1E()ξ2E()ξ1D()ξ2D()ξ1E()ξ2E()ξ1D()ξ2D()ξ(第10题图)
非选择题部分 (共110分)
二、填空题:本大题共7小题,第11至14题每小题6分,第15至17题每题4分,共36分.
11.已知(1-2x )n 展开式的二项式系数和为64,则其展开式中含x 3的项是_ ▲___;各项系
数的绝对值和是___ ▲_____(用数字作答).
12.已知圆C :,则圆的半径为 ▲ ,若P ,)x y (为圆C 上任意一
点,则2x y +的最小值是 ▲ .
13.过抛物线2
4y x =的焦点F 的直线l 交抛物线于P 、Q 两点,若线段PF 的长为3,则
线段FQ 的长为 ▲ ;直线l 的斜率为 ▲ .
14.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos 2
b
c a B -=, 则角A 的 ▲_,若6b c -=,23a =,则BC 边上的高___ ▲____.
15.从5名女生和4名男生中任意挑选3名同学担任交通安全宣传志愿者,则男生女生保证都要有的选派方法有____▲ 种.
16.设R a ∈,若0x >时,恒有()
2[(1)1]10a x x ax -+-+>,则
实数a 的取值范围是___ ▲______.
17.如图,在广场上,一盏路灯挂在一根4.5米的电线杆顶上(电 线杆的底部记为A ,假设把路灯看作是一个点光源,身高1.5 米的女孩站在离A 点3米的B 处,若女孩向点A 前行2米到达 D 点,然后从D 点出发,绕着以BD 为对角线的正方形走一圈,
则女孩头顶的影子轨迹所围城的图形面积是___ ▲_____.
三、解答题:本大题共5个题,共74分,解答应写出文字说明、证明过程或演算步骤. 18.(本题满分14分)设函数()2
πsin 2cos 3sin cos 6f x x x x x ⎛⎫=+
++ ⎪⎝
⎭
. (Ⅰ)求函数()f x 的最小正周期和单调递增区间; (Ⅱ)若π
4
x ≤
,求函数()x f 的最大值.
2
2
40x y y +-=(第17题图)
19.(本题满分15分)如图,三棱锥P ABC -中,1==PC AB ,
3==BP AC ,AC AB ⊥
(Ⅰ)若3
3
cos =
∠PCA ,求证:PC AB ⊥; (Ⅱ) 若二面角A BC P --余弦值的大小为13
,求直线BC 与平面ABP 所成角的正弦值.
20.(本题满分15分)已知函数
()(ln 1)f x a x x
=-+
(Ⅰ)讨论函数()f x 的单调区间;
(Ⅱ
)若函数()f x 的图象与x 轴相切,求证:对于任意的(]m ∈0,1,
2
1)()x f x mx -≤(.
21.(本题满分15分)已知,A B 为椭圆2
2C :12
x y +=上两个不
同的点,O 为坐标原点.设直 线,,OA OB AB 的斜率分别为12,,k k k .
(Ⅰ) 当12k =时,求OA ;
(Ⅱ) 当12121k k k k -=+时,求k 的取值范围.
22.(本题满分15分)设3>a ,数列{a n }中,2*11,,N 23
n
n n a a a a n a +==∈-
(Ⅰ)求证:3>n a ,且
11
<+n
n a a ; (Ⅱ)当4≤a 时,证明:15
13-+
≤n n a .。