解析几何知识点总结复习题教学内容
(完整版)解析几何考点和答题技巧归纳
解析几何考点和答题技巧归纳一、解析几何的难点从解题的两个基本环节看:1、翻译转化:将几何关系恰当转化(准确,简单),变成尽量简单的代数式子(等式 / 不等式),或反之…2、消元求值:对所列出的方程 / 不等式进行变形,化简,消元, 计算,最后求出所需的变量的值/范围 等等难点:上述两个环节中 ⎩⎪⎨⎪⎧变量、函数/方程/不等式的思想灵活性和技巧性分类讨论综合应用其他的代数几何知不小的计算量二、复习建议分两个阶段,两个层次复习: 1、基础知识复习:落实基本问题的解决,为后面的综合应用做好准备。
这个阶段主要突出各种曲线本身的特性,以及解决解析问题的一般性工作的落实,如: ① 直线和圆:突出平面几何知识的应用(d 和r 的关系!);抛物线:突出定义在距离转化上的作用,以及设点消元上与椭圆双曲线的不同之处。
② 圆锥曲线的定义、方程、基本量(a 、b 、c 、p )的几何意义和计算③ 直线和圆锥曲线的位置关系的判断(公共点的个数)④ 弦长、弦中点问题的基本解法⑤ 一般程序性工作的落实:设点、设直线(讨论?形式?)、联立消元、列韦达结论… 中的计算、讨论、验…2、综合复习:重点攻坚翻译转化和消元求值的能力① 引导学生在 “解题路径规划”的过程中理解解析法:变量、等式(方程/函数)、不等式的思想② 积累常见的翻译转化, 建立常见问题的解决模式③ 一定量的训练, 提高运算的准确性、速度, 提高书写表达的规范性、严谨性● 具体说明1、引导学生在“解题路径规划”的过程中理解解析法:变量、等式(方程/函数)、不等式的思想建议在例题讲解时,总是在具体计算之前进行“解题路径规划”:① 条件和结论与哪几个变量相关?解决问题需要设哪些变量?② 能根据什么条件列出几个等式和不等式?它们之间独立吗?够用了吗?③ 这些等式/不等式分别含有什么变量?如何消元求解最方便?④ 根据这些等式和不等式,能变形、消元后得到什么形式的结论(能消掉哪些变量?得到两个变量的新等式/不等式?变量的范围?求出变量的值?)好处: ①选择合适的方法;②避免中途迷失[注] 关于消元常用的消元法: ⎩⎪⎨⎪⎧代入消元加减/乘除消元韦达定理整体代入消掉交点坐标 点差法 弦中点与弦斜率的等量关系 ……换元,消元的能力非常重要2、积累常见翻译转化,建立常见问题的解决模式(1)常见的翻译转化:① 点在曲线上 点的坐标满足曲线方程② 直线与二次曲线的交点⎣⎢⎡点坐标满足直线方程点坐标满足曲线方程x 1 + x 2 = …‚ x 1x 2= …y 1 + y 2 = …‚ y 1y 2 = … ③ 两直线AB 和CD 垂直 01AB CD AB CD k k ⎡⋅=⎢⋅=-⎣④ 点A 与B 关于直线l 对称⎩⎨⎧中: AB 的中点l 垂: AB ⊥l ⑤ 直线与曲线相切 ⎣⎡圆: d = r 一般二次曲线: 二次项系数 ≠ 0 且∆ = 0⑥ 点(x 0,y 0)在曲线的一侧/内部/外部 代入后 f (x 0,y 0) > 0或f (x 0,y 0) < 0⑦ ABC 为锐角 或 零角 BA → ∙ BC → > 0⑧ 以AB 为直径的圆过点C⎣⎢⎡CA → ∙ CB → = 0|CA |2 + |CB |2 = |AB |2 ⑨ AD 平分BAC → ⎣⎢⎢⎡AD ⊥x 轴或y 轴时:k BA = − k AC AD 上点到AB 、AC 的距离相等AD →∥(AB → + AC →)⑩ 等式恒成立系数为零或对应项系数成比例○11 A 、B 、C 共线 → ⎣⎢⎢⎡AB →∥BC→k AB = k BC C 满足直线AB 的方程……[注] 关于直线与圆锥曲线相交的列式与消元:① 如果几何关系与两个交点均有关系,尤其是该关系中,两个交点具有轮换对称性,那么可优先尝试利用韦达定理得到交点坐标的方程,然后整体消元如果几何关系仅与一个交点相关, 那么优先尝试“设点代入”(交点坐标代入直线方程和曲线方程);② 如果几何关系翻译为交点的坐标表示后, 与x 1 + x 2, y 1 + y 2相关 (如:弦的中点的问题),还可尝试用 “点差法”(“代点相减” 法) 来整体消元,但仍需保证∆ > 0(2)建立常见题型的“模式化”解决方法 (不能太过模式化,也不能没有模式化)如:① 求曲线方程: ⎩⎪⎨⎪⎧待定系数法直译法定义法相关点法参数法… 难度较大,上海常考的是待定系数法、定义法和相关点法。
高中数学必修二平面解析几何知识点梳理教学内容
高中数学必修二平面解析几何知识点梳理平面解析几何1.直线的倾斜角与斜率:(1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角.倾斜角)180,0[︒∈α,︒=90α斜率不存在.(2)直线的斜率:αtan ),(211212=≠--=k x x x x y y k .(111(,)P x y 、222(,)P x y ). 2.直线方程的五种形式:(1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ).注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =.(2)斜截式:b kx y += (b 为直线l 在y 轴上的截距).(3)两点式:121121x x x x y y y y --=-- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线;② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线.(4)截距式:1=+by a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线.(5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式:B C x B A y --=,即,直线的斜率:BA k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =.已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =.已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =.(2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合.3.直线在坐标轴上的截矩可正,可负,也可为0.(1)直线在两坐标轴上的截距相等....⇔直线的斜率为1-或直线过原点.(2)直线两截距互为相反数.......⇔直线的斜率为1或直线过原点.(3)直线两截距绝对值相等.......⇔直线的斜率为1±或直线过原点.4.两条直线的平行和垂直:(1)若111:l y k x b =+,222:l y k x b =+① 212121,//b b k k l l ≠=⇔; ② 12121l l k k ⊥⇔=-.(2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有① 1221122121//C A C A B A B A l l ≠=⇔且.② 0212121=+⇔⊥B B A A l l .5.平面两点距离公式:(111(,)P x y 、222(,)P x y ),22122121)()(y y x x P P -+-=.x 轴上两点间距离:A B x x AB -=.线段21P P 的中点是),(00y x M ,则⎪⎪⎩⎪⎪⎨⎧+=+=22210210y y y x x x . 6.点到直线的距离公式:点),(00y x P 到直线0=++C By Ax l :的距离:2200B A C By Ax d +++=. 7.两平行直线间的距离:两条平行直线002211=++=++C By Ax l C By Ax l :,:距离:2221B A C C d +-=.8.直线系方程:(1)平行直线系方程:① 直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程..② 与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=.③ 过点00(,)P x y 与直线:0l Ax By C ++=平行的直线可表示为:00()()0A x x B y y -+-=.(2)垂直直线系方程:① 与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=.② 过点00(,)P x y 与直线:0l Ax By C ++=垂直的直线可表示为:00()()0B x x A y y ---=.(3)定点直线系方程:① 经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数.② 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(4)共点直线系方程:经过两直线0022221111=++=++C y B x A l C y B x A l :,:交点的直线系方程为0)(222111=+++++C y B x A C y B x A λ (除2l ),其中λ是待定的系数.9.曲线1:(,)0C f x y =与2:(,)0C g x y =的交点坐标⇔方程组{(,)0(,)0f x y g x y ==的解.10.圆的方程:(1)圆的标准方程:222)()(r b y a x =-+-(0>r ).(2)圆的一般方程:)04(02222>-+=++++F E D F Ey Dx y x .(3)圆的直径式方程:若),(),(2211y x B y x A ,,以线段AB 为直径的圆的方程是:0))(())((2121=--+--y y y y x x x x .注:(1)在圆的一般方程中,圆心坐标和半径分别是)2,2(E D --,F E D r 42122-+=. (2)一般方程的特点:① 2x 和2y 的系数相同且不为零;② 没有xy 项; ③ 0422>-+F E D(3)二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的等价条件是:① 0≠=C A ; ② 0=B ; ③ 0422>-+AF E D .11.圆的弦长的求法:(1)几何法:当直线和圆相交时,设弦长为l ,弦心距为d ,半径为r ,则:“半弦长2+弦心距2=半径2”——222)2(r d l =+;(2)代数法:设l 的斜率为k ,l 与圆交点分别为),(),(2211y x B y x A ,,则||11||1||22B A B A y y k x x k AB -+=-+= (其中|||,|2121y y x x --的求法是将直线和圆的方程联立消去y 或x ,利用韦达定理求解)12.点与圆的位置关系:点),(00y x P 与圆222)()(r b y a x =-+-的位置关系有三种①P 在在圆外22020)()(r b y a x r d >-+-⇔>⇔.②P 在在圆内22020)()(r b y a x r d <-+-⇔<⇔.③P 在在圆上22020)()(r b y a x r d =-+-⇔=⇔. 【P 到圆心距离2200()()d a x b y =-+-】13.直线与圆的位置关系:直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种(22BA CBb Aa d +++=):圆心到直线距离为d ,由直线和圆联立方程组消去x (或y )后,所得一元二次方程的判别式为∆.0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d .14.两圆位置关系:设两圆圆心分别为21,O O ,半径分别为21,r r ,d O O =21条公切线外离421⇔⇔+>r r d ; 无公切线内含⇔⇔-<21r r d ;条公切线外切321⇔⇔+=r r d ;条公切线内切121⇔⇔-=r r d ; 条公切线相交22121⇔⇔+<<-r r d r r .15.圆系方程:)04(02222>-+=++++F E D F Ey Dx y x(1)过直线0=++C By Ax l :与圆C :022=++++F Ey Dx y x 的交点的圆系方程:0)(22=+++++++C By Ax F Ey Dx y x λ,λ是待定的系数.(2)过圆1C :011122=++++F y E x D y x 与圆2C :022222=++++F y E x D y x 的交点的圆系方程:0)(2222211122=+++++++++F y E x D y x F y E x D y x λ,λ是待定的系数.特别地,当1λ=-时,2222111222()0x y D x E y F x y D x E y F λ+++++++++=就是 121212()()()0D D x E E y F F -+-+-=表示两圆的公共弦所在的直线方程,即过两圆交点的直线.16.圆的切线方程:(1)过圆222r y x =+上的点),(00y x P 的切线方程为:200r y y x x =+.(2)过圆222)()(r b y a x =-+-上的点),(00y x P 的切线方程为:200))(())((r b y b y a x a x =--+-- .(3)当点),(00y x P 在圆外时,可设切方程为)(00x x k y y -=-,利用圆心到直线距离等于半径,即r d =,求出k ;或利用0=∆,求出k .若求得k 只有一值,则还有一条斜率不存在的直线0x x =.17.把两圆011122=++++F y E x D y x 与022222=++++F y E x D y x 方程相减即得相交弦所在直线方程:0)()()(212121=-+-+-F F y E E x D D .18.对称问题:(1)中心对称:① 点关于点对称:点),(11y x A 关于),(00y x M 的对称点)2,2(1010y y x x A --.② 直线关于点对称:法1:在直线上取两点,利用中点公式求出两点关于已知点对称的两点坐标,由两点式求直线方程.法2:求出一个对称点,在利用21//l l 由点斜式得出直线方程.(2)轴对称:① 点关于直线对称:点与对称点连线斜率是已知直线斜率的负倒数,点与对称点的中点在直线上.点 A A '、关于直线l 对称⎩⎨⎧''⇔上中点在⊥l A A l A A ⎩⎨⎧'-=⇔'方程中点坐标满足·l A A k k l A A 1 . ② 直线关于直线对称:(设b a ,关于l 对称)法1:若b a ,相交,求出交点坐标,并在直线a 上任取一点,求该点关于直线l 的对称点.若l a //,则l b //,且b a ,与l 的距离相等.法2:求出a 上两个点B A ,关于l 的对称点,在由两点式求出直线的方程.(3)点(a , b )关于x 轴对称:(a ,- b )、关于y 轴对称:(-a , b )、关于原点对称:(-a ,- b )、点(a , b )关于直线y=x 对称:(b , a )、关于y=- x 对称:(-b ,- a )、关于y = x +m 对称:(b -m 、a +m )、关于y=-x+m 对称:(-b+m 、-a+m ) .19.若),(),(),(332211y x C y x B y x A ,,,则△ABC 的重心G 的坐标是⎪⎭⎫ ⎝⎛++++33321321y y y x x x ,. 20.各种角的范围:直线的倾斜角 ︒<≤︒1800α 两条相交直线的夹角 ︒≤<︒900α两条异面线所成的角︒0α︒90<≤。
解析几何基础题的归纳
第十二讲 解析几何基础题的归纳一、考点演绎解析几何基础内容包括直线的概念和方程、轨迹方程的求法、圆的标准方程和一般方程、直线与圆的位置关系、圆锥曲线的定义和几何性质、直线和圆锥曲线的位置关系等,圆锥曲线的定义和几何性质是高考的选择题和填空题常考查的重要知识点,而直线与曲线的位置关系则是解答题常考查的内容,复习时学生应重点掌握这部分内容.对于直线,需要重点掌握直线方程的几种形式、直线之间的位置关系、有关距离的公式、直线中的对称问题等内容;对于圆,复习时要以圆的标准方程、直线与圆的位置关系为中心,强化使用几何方法解决代数问题的能力,培养学生数形结合思想;对于圆锥曲线,要强化各种曲线的定义、方程以及几何性质这些基础知识,直线与圆锥曲线的综合问题是高考拔高题的主要出题点,对学生分析问题、解决问题的能力和运算能力都有较高的要求,处理这类问题要注意数形结合的思想、设而不求的思想、整体带入的思想以及方程的思想的灵活运用.熟练解决解析几何的问题,除了需要记住如焦点三角形的面积公式这种常用的结论外,还需要掌握解决解析几何问题的通性通法,如解决直线与圆锥曲线问题时一般需联立方程、研究一元二次方程的根的情况,在0∆>的前提下,运用韦达定理、弦长公式等解决有关弦长和三角形面积的问题.在掌握通性通法的同时,也不应只形成局限的解题套路,而应当从宏观上去把握,从微观上去突破,在审题和解题思路的整体设计上下功夫,不断克服解题征途中的道道运算难关.二、例题精讲I 直线和圆的方程例1.已知点()1,1-P 和点()Q 2,2,若直线:0x my m ++=与线段PQ 不相交,则实数的取值范围是.例2.已知,AC BD 为圆22:4O x y +=的两条互相垂直的弦,,AC BD 交于点()21,M ,则四边形ABCD 面积的最大值为( )A 、4B 、5C 、6D 、7II 圆锥曲线的定义、方程及几何性质 例3.ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三角形重心G 的轨迹和顶点A 的轨迹.l m例4.(1)已知1F 是椭圆225945x y +=的左焦点,点P 是此椭圆上的一个动点,()1,1A 为一个定点,那么1PF PA +的最大值为 ;(2)已知点()Q 及抛物线24x y =上一动点()00,P x y ,则0y PQ +的最小值为 .例5.已知12F F 、是椭圆2214x y +=的两个焦点,椭圆上一点P 满足120PF PF ⋅= ,则点P 到y 轴的距离是 .例6.若21,F F 分别为双曲线22:1927x y C -=的左、右焦点,点A 在双曲线C 上,点M 的坐标为(2,0),AM 为21AF F ∠的平分线.则2AF 的值为( )A 、3B 、6C 、9D 、27III 直线与圆锥曲线的综合例7.椭圆)0(1:2222>>=+b a by a x C 的左、右焦点分别是1F ,2F ,过1F 的直线l 与椭圆C 相交于A ,B 两点,且2AF ,AB ,2BF 成等差数列.(1)求证:a AB 34=; (2)若直线l 的斜率为1,且点)1,0(-在椭圆C 上,求椭圆C 的方程.(3)在(2)的椭圆中,过1F 的直线'l 与椭圆C 交于A 、B 两点,若0OA OB ⋅= ,求直线'l 的方程.例8.已知点P 是直角坐标平面内的动点,点P 到直线12l x =-:的距离为1d ,到点(10)F -,的距离为2d,且21d d = (1)求动点P 所在曲线C 的方程;(2)直线l 过点F 且与曲线C 交于不同两点、A B (点A 或B 不在x 轴上),分别过、A B 点作直线1:2l x =-的垂线,对应的垂足分别为M N 、,试判断点F 与以线段MN 为直径的圆的位置关系(指在圆内、圆上、圆外等情况);(3)记1FAM S S ∆=,2FMN S S ∆=,3FBN S S ∆=(A 、B 、M N 、是(2)中的点),问是否存在实数λ,使2213S S S =λ成立.若存在,求出λ的值;若不存在,请说明理由. 进一步思考问题:若上述问题中直线21:=-a l x c、点(0)-,F c 、曲线C:22221(0+=>>=,x y a b c a b,则使等式2213λ=S S S 成立的λ的值仍保持不变.请给出你的判断 (填写“不正确”或“正确”)(限于时间,这里不需要举反例,或证明).三、易错警示若圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点.则实数a 的取值范围为 .四、高考预测已知动点P 与双曲线221y x -=的两个焦点1F 、2F 的距离之和为定值,且12cos F PF ∠的最小值为0.(1)求动点P 的轨迹方程; (2)当点P 在第一象限且满足121PF PF ⋅= 时,过P 作倾斜角互补的两条直线PA 、PB 分别交P 的轨迹于A 、B 两点,求证直线AB 的斜率为定值;(3)在(2)的前提下,求PAB ∆面积的最大值.五、方法总结在2004年高考上海理科卷中有这样一个试题:教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是__________.当时给出的参考答案是:用代数的方法研究图形的几何性质.由此可见解析几何是用代数方法来研究几何图形的一门学科,因此,数形结合必然是研究解析几何问题的重要手段.学生在学习这部分内容时应该感受解析几何的本质,并通过实践有所领悟,对于形成正确的、良好的数学思维是有很大的帮助的.六、实战演练一、填空题1.与直线4350x y -+=垂直,且与两坐标轴围成的三角形的面积为24的直线方程为________ ______.2.若两条直线()014=--+y m mx 和022=-+my x 互相垂直,则实数m 的值为_______________.3.已知直线l 的方程为230x y --=,点()1,4A 与点B 关于直线l 对称,则点B 为 .4.已知椭圆1121622=+y x 的左焦点是1F ,右焦点是2F ,点P 在椭圆上,如果线段1PF 的中 点在y 轴上,那么12:=PF PF .5.已知AB 是椭圆)0(12222>>=+b a by a x 的长轴,若把该长轴n 等分,过每个等分点作AB的垂线,依次交椭圆的上半部分于点121,,,-n P P P ,设左焦点为1F , 则1111111lim ()________-→∞++++= n n F A F P F P F B n. 6.若双曲线的渐近线方程为3y x =±,它的一个焦点与抛物线2y =的焦点重合,则双曲线的标准方程为 .7.已知双曲线22221x y a b-=的两焦点为F 、F ',若该双曲线与抛物线28y x =有一个公共的焦点F ,且两曲线的一个交点为P ,5PF =,则FPF '∠的大小为 (结果用反三角函数表示).8.过抛物线x y 42=焦点的直线交抛物线于A ,B 两点,若10=AB ,则AB 的中点P 到y 轴的距离等于 .9.从抛物线上一点引其准线的垂线,垂足为,设抛物线的焦点为,且,则的面积为 .10.点P 是椭圆2212516x y +=上一点,12,F F 是椭圆的两个焦点,且12PF F ∆的内切圆半径为1,当P 在第一象限时,P 点的纵坐标为 .二、选择题11.设直线1l 与2l 的方程分别为与0222=++c y b x a ,则“02121=b b a a ”是“1l 2//l ”的( )A 、充分而不必要条件B 、必要而不充分条件C 、充分必要条件D 、既不充分也不必要条件 12.设斜率为2的直线l 过抛物线()20y ax a =≠的焦点F ,且和y 轴交于点A ,若OAF∆(O 为坐标原点)的面积为4,则抛物线方程为( )A 、24y x =±B 、24y x =C 、28y x =±D 、28y x = 13.已知两点()5,0M -和()5,0N ,若直线上存在点P ,使6PM PN -=,则称该直线为“B 型直线”.给出下列直线:①1y x =+;②2y =;③43y x =;④21y x =+,其中为“B 型直线”的是( ) A 、①② B 、①③ C 、①④D 、③④ 14.P 为双曲线C 上一点,1F 、2F 是双曲线C 的两个焦点,过双曲线C 的一个焦点1F 作x y 42=P M F 5||=PF MPF ∆0111=++c y b x a12F PF ∠的平分线的垂线,设垂足为Q ,则Q 点的轨迹是( )A 、直线B 、圆C 、椭圆D 、双曲线三、解答题 15.已知椭圆1222=+y x , (1)求过点⎪⎭⎫ ⎝⎛2121,P 且被P 平分的弦所在直线的方程;(2)求斜率为2的平行弦的中点轨迹方程; (3)过()21,A 引椭圆的割线,求截得的弦的中点的轨迹方程; (4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=⋅OQ OP k k , 求线段PQ 中点M 的轨迹方程.16.已知:椭圆12222=+by a x (0>>b a ),过点)0,(a A -,),0(b B 的直线倾斜角为6π,原点到该直线的距离为23. (1)求椭圆的方程;(2)斜率大于零的直线过)0,1(-D 与椭圆交于E ,F 两点,若2=,求直线EF 的方程;(3)是否存在实数k ,直线2+=kx y 交椭圆于P ,Q 两点,以PQ 为直径的圆过点()10-,D ?若存在,求出k 的值;若不存在,请说明理由.17.已知椭圆E :22221x y a b+=(0a b >>)过点(3, 1)P ,其左、右焦点分别为12 F F 、,且126F P F P ⋅=- .(1)求椭圆E 的方程;(2)若,M N 是直线5x =上的两个动点,且12F M F N ⊥,则以MN 为直径的圆C 是否过定点?请说明理由.18.抛物线()240y px p =>的准线与x 轴交于M 点,过点M 作直线l 交抛物线于A 、B 两点.(1)若线段AB 的垂直平分线交x 轴于()0,0N x ,求证:03x p >;(2)若直线l 的斜率依次为p ,2p ,3p ,…,线段AB 的垂直平分线与x 轴的交点依次为1N ,2N ,3N ,…,当01p <<时,求122311N N N N ++…+10111N N 的值.。
高三解析几何总结知识点
高三解析几何总结知识点解析几何是高中数学中的一个重要分支,通过运用坐标系和代数方法,研究几何图形的性质和变换规律。
在高三阶段,解析几何是帮助学生巩固和拓展几何知识的重要内容。
下面将对高三解析几何的知识点进行总结,并以例题进行说明。
一、直线的方程1. 一般式方程:Ax + By + C = 02. 点斜式方程:y - y₁ = k(x - x₁)3. 两点式方程:(y - y₁)/(x - x₁) = (y₂ - y₁)/(x₂ - x₁)例题:已知直线L过点A(3,-2),斜率为2,求直线L的方程。
解:利用点斜式方程,代入已知条件可得:y - (-2) = 2(x - 3)化简得:y + 2 = 2x - 6转化为一般式方程:2x - y + 8 = 0所以直线L的方程为2x - y + 8 = 0。
二、直线的位置关系1. 平行关系:两条直线的斜率相同。
2. 垂直关系:两条直线的斜率之积为-1。
3. 直线的交点:联立两条直线的方程,求解方程组得到交点坐标。
例题:已知直线L₁的方程为3x - y + 5 = 0,直线L₂过点B(1, 4)且与L₁垂直,求直线L₂的方程。
解:根据L₁的一般式方程,可以得到L₁的斜率为3。
由于L₂与L₁垂直,故L₂的斜率为-1/3。
利用点斜式方程可得:y - 4 = -1/3(x - 1)化简得:3y - 12 = -x + 1转化为一般式方程:x + 3y - 13 = 0所以直线L₂的方程为x + 3y - 13 = 0。
三、直线的距离和垂足1. 点到直线的距离:利用点到直线的距离公式,d = |Ax₀ + By₀ + C|/√(A² + B²)2. 直线的垂足:垂直于直线的直线与给定直线的交点。
例题:已知直线L的方程为2x - 3y + 6 = 0,点P(4, -2),求点P到直线L的距离和直线L的垂足的坐标。
解:根据点到直线的距离公式,代入已知条件可得:d = |2(4) - 3(-2) + 6|/√(2² + (-3)²)化简得:d = 4/√13所以点P到直线L的距离为4/√13。
《解析几何》知识点总结:第1章-向量代数
第一章向量代数一、向量及其线性运算1.向量及其表示(1)向量:有大小和方向的量。
(2)表示:AB ,A 为向量的起点,B 为向量的重点。
(3)向量的模:||AB 。
(4)向径(半径向量/定位向量):称为P 的向径,简记为P 。
(5)单位向量:模为1,记为|a |aa o =。
(6)零向量:模为0,任意方向,与任何向量共线。
(7)自由向量:可自由平行移动。
(8)相等(相反):大小相等,方向相同(相反)。
(9)共线(平行):平行移动到同一始点,在一条直线上;共面。
(10)共面:平行移动到同一始点,在一个平面上。
2.向量的加法和减法(1)加法:①三角/多边形法则(定义1.1):首尾相连,第一个向量起点到最后一个向量终点;②平行四边形法则(定义1.2):首首相连,平行四边形过起点的对角线;③三角/多边形不等式:|a 1+a 2+…+a n |≤|a 1|+|a 2|+…+|a n |。
(2)减法:三角形法则(定义1.3):首首相连,OA OB AB -=。
3.向量的数乘(1)定义1.4:实数λ与向量a 的乘积是一个向量,记为λa。
|λa|=|λ||a|,方向取决于λ。
4.运算律(图形法证明)①交换律:a ±b =b ±a②结合律:(a ±b )±c =a ±(b ±c );λ(μa )=(λμ)a③分配律:(λ+μ)a =λa +μa ;λ(a +b )=λa +λb5.共线及共面向量的判定(1)定理1.1:向量b 与非零向量a 共线⟺∃λ∈R ,使b=λa ;推论1.1:两个向量a ,b 共线⟺∃λ,μ∈R ,且λ,μ不同时为0,使λa +μb =0。
(2)定理1.2:若a ,b 不共线,向量c 与a ,b 共面⟺∃λ,μ∈R ,使c =λa +μb ;推论1.2:三个向量a ,b ,c 共面⟺∃λ,μ,φ∈R ,使λa +μb+φc =0。
2024高考数学解析几何知识点总结与题型分析
2024高考数学解析几何知识点总结与题型分析随着时间的推移,我们离2024年的高考越来越近。
数学作为高考的一门重要科目,解析几何是其中的一个重点内容。
为了帮助同学们更好地复习解析几何,并在高考中取得好成绩,本文将对2024高考数学解析几何的知识点进行总结与题型分析。
1. 直线与平面1.1 直线的方程直线的一般方程为Ax + By + C = 0,其中A、B、C为常数。
根据直线的特点,我们可以将其方程转化为其他形式,如点斜式、两点式、截距式等,以便于解题。
1.2 平面的方程平面的一般方程为Ax + By + Cz + D = 0,其中A、B、C、D为常数。
类似于直线的情况,根据平面的性质,我们可以将其方程转化为点法式、截距式等形式。
2. 空间几何体2.1 球球是解析几何中的一个重要概念。
其方程为(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2,其中(a, b, c)为球心坐标,r为半径长度。
2.2 圆锥曲线圆锥曲线包括圆、椭圆、双曲线和抛物线。
通过对几何体的方程进行适当的变化,可以得到不同类型的圆锥曲线方程。
掌握其特点和方程形式,对于解析几何的学习非常重要。
3. 空间几何关系3.1 直线与直线的位置关系直线与直线的位置关系包括相交、平行、重合等情况。
根据两条直线的方程,我们可以通过求解方程组或直线的斜率等方式,判断它们之间的空间位置关系。
3.2 直线与平面的位置关系直线与平面的位置关系包括相交、平行、重合等情况。
根据直线的方程和平面的方程,我们可以通过代入求解或者检验点的方法,判断它们之间的位置关系。
4. 解析几何的常见题型4.1 直线与平面的交点求解给定直线和平面的方程,我们需要求解它们的交点。
通过将直线方程代入平面方程中,可以得到关于未知变量的方程组,进而求解出交点的具体坐标。
4.2 距离计算在解析几何中,我们常常需要计算点、直线或平面之间的距离。
对于给定的两点,我们可以利用距离公式进行计算;对于直线和平面,我们可以利用点到直线/平面的距离公式进行计算。
(完整版)解析几何基础知识汇总
解析几何基础知识5.0≤d <|r 1-r 2|(r 1≠r 2)⇔两圆内含6.椭圆一、椭圆的定义和方程 1.椭圆的定义平面内到两定点F 1、F 2的距离的和等于常数2a (大于|F 1F 2|=2c )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦点.定义中特别要注意条件2a >2c ,否则轨迹不是椭圆;当2a =2c 时,动点的轨迹是线段;当2a <2c 时,动点的轨迹不存在。
2.椭圆的方程(1)焦点在x 轴上的椭圆的标准方程:x 2a 2+y 2b2=1(a >b >0).(2)焦点在y 轴上的椭圆的标准方程:y 2a 2+x 2b2=1(a >b >0).二、椭圆的简单几何性质(a 2=b 2+c 2)标准方程 x 2a 2+y 2b 2=1(a >b >0)y 2a 2+x 2b 2=1(a >b >0) 图 形性 质范围-a ≤x ≤a -b ≤y ≤b-b ≤x ≤b -a ≤y ≤a对称性 对称轴:x 轴,y 轴 对称中心:坐标原点顶点A 1(-a,0),A 2(a,0)B 1(0,-b ),B 2(0,b ) A 1(0,-a ),A 2(0,a ) B 1(-b,0),B 2(b,0)性 质轴长轴A 1A 2的长为2a短轴B 1B 2的长为2b焦距 |F 1F 2|=2c 离心率 e =ca∈(0,1) a ,b ,c 的关系c 2=a 2-b 28.抛物线(1)抛物线的概念平面内与一定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线(定点F 不在定直线l 上)。
定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线。
方程()022>=p pxy 叫做抛物线的标准方程。
注意:它表示的抛物线的焦点在x 轴的正半轴上,焦点坐标是F (2p ,0),它的准线方程是2p x -= ;(2)抛物线的性质一条抛物线,由于它在坐标系的位置不同,方程也不同,有四种不同的情况,所以抛物线的标准方程还有其他几种形式:px y 22-=,py x 22=,py x 22-=.这四种抛物线的图形、标准方程、焦点坐标以及准线方程如下表: [一次项的字母定轴(对称轴),一次项的符号定方向(开口方向)]标准方程22(0)y pxp =>22(0)y px p =->22(0)x py p =>22(0)x pyp =->图形焦点坐标 (,0)2p (,0)2p -(0,)2p(0,)2p -准线方程 2p x =-2p x =2p y =-2p y =范围 0x ≥ 0x ≤ 0y ≥ 0y ≤对称性 x 轴 x 轴 y 轴 y 轴 顶点 (0,0) (0,0) (0,0) (0,0) 离心率1e = 1e =1e = 1e =说明:(1)通径:过抛物线的焦点且垂直于对称轴的弦称为通径;(2)抛物线的几何性质的特点:有一个顶点,一个焦点,一条准线,一条对称轴,无对称中心,没有渐近线;(3)注意强调p 的几何意义:是焦点到准线的距离。
2025年高考数学解析几何知识点总结
2025年高考数学解析几何知识点总结解析几何是高中数学的重要组成部分,在高考中占有较大的比重。
它将代数与几何巧妙地结合在一起,通过建立坐标系,用代数方法研究几何图形的性质。
下面为大家详细总结 2025 年高考数学中解析几何的相关知识点。
一、直线方程1、直线的倾斜角与斜率倾斜角:直线与 x 轴正方向所成的角,范围是0, π)。
斜率:当倾斜角不是 90°时,斜率 k =tanα(α 为倾斜角)。
过两点 P1(x1, y1),P2(x2, y2)(x1 ≠ x2)的直线的斜率 k =(y2 y1) /(x2 x1)。
2、直线方程的几种形式点斜式:y y1 = k(x x1) (直线过点(x1, y1),斜率为 k)斜截式:y = kx + b (k 为斜率,b 为直线在 y 轴上的截距)两点式:(y y1) /(y2 y1) =(x x1) /(x2 x1) (直线过两点(x1, y1),(x2, y2))截距式:x / a + y / b = 1 (a 为直线在 x 轴上的截距,b 为直线在 y 轴上的截距)一般式:Ax + By + C = 0 (A、B 不同时为 0)二、两条直线的位置关系1、平行两条直线斜率都不存在时,平行。
两条直线斜率都存在时,斜率相等,纵截距不相等,则平行。
2、垂直两条直线斜率都存在时,斜率之积为-1,则垂直。
一条直线斜率为 0,另一条直线斜率不存在,则垂直。
3、交点联立两条直线的方程,求解即可得到交点坐标。
三、圆的方程1、圆的标准方程(x a)²+(y b)²= r²(圆心为(a, b),半径为 r)2、圆的一般方程x²+ y²+ Dx + Ey + F = 0 (D²+ E² 4F > 0 时,表示圆,圆心为(D/2, E/2),半径为√(D²+ E² 4F) / 2)四、直线与圆的位置关系1、几何法比较圆心到直线的距离 d 与半径 r 的大小关系。
数学复习资料解析几何重点题型精讲
数学复习资料解析几何重点题型精讲解析几何是高中数学中的重要内容之一,也是很多学生难以掌握的部分。
在数学复习中,正确理解和熟练掌握解析几何的重点题型是非常关键的。
本文将以解析几何为主题,重点讲解解析几何中的一些典型题型,帮助读者全面复习解析几何知识。
一、平面几何1. 平面向量与立体几何平面向量是解析几何的基础,它在解决立体几何问题中起到了关键作用。
在复习过程中,我们需要重点掌握平面向量的定义、运算规则以及与立体几何的联系。
例如,在求解空间中直线的方程时,可以通过平面向量的方法进行简化。
2. 直线与圆的方程直线与圆是解析几何中的常见图形,掌握它们的方程是解析几何的基本要求。
在复习中,我们需要熟悉直线和圆的一般方程、点斜式方程以及截距式方程,并能够准确地根据题目条件确定方程形式。
3. 平面方程的求解平面方程求解是解析几何中的难点之一,需要通过用点或直线来确定平面的方程。
在复习过程中,我们需要掌握平面方程的一般形式、点法式以及法向量式,并能够根据条件将其转化为标准的方程形式。
二、空间几何1. 点、直线、平面的位置关系点、直线和平面的位置关系是解析几何中的基本概念,也是解决空间几何问题的前提。
在复习中,我们需要熟悉点在直线或平面上的条件、直线与平面的位置关系,以及平面间的相交、平行或垂直等情况。
2. 空间几何的距离公式在解决空间几何问题中,求点到直线或平面的距离是常见的要求。
在复习中,我们需要掌握点到直线的距离公式、点到平面的距离公式,以及直线间的距离公式,并能够在实际问题中准确应用。
3. 空间几何的相交问题空间几何的相交问题是解析几何中的重点内容。
在复习过程中,我们需要熟悉直线与平面相交的条件、平面与平面相交的条件,以及球与平面或球与球相交的情况,并能够准确判断相交的结果。
三、解析几何的应用1. 三角形的面积与共线性判定在解析几何中,三角形是常见的图形之一,掌握三角形的面积计算公式是解析几何的基本要求。
高中解析几何知识点
解析几何学问点一、基本内容(一)直线的方程1、 直线的方程确定直线方程须要有两个相互独立的条件,而其中一个必不行少的条件是直线必需经过一已知点.确定直线方程的形式许多,但必需留意各种形式的直线方程的适用范围.2、两条直线的位置关系两条直线的夹角,当两直线的斜率k 1,k 2都存在且k 1·k 2≠外留意到角公式与夹角公式的区分.(2)推断两直线是否平行,或垂直时,若两直线的斜率都存在,可用斜率的关系来推断.但若直线斜率不存在,则必需用一般式的平行垂直条件来推断.(二)圆的方程(1)圆的方程1、 驾驭圆的标准方程及一般方程,并能娴熟地相互转化,一般地说,具有三个条件(独立的)才能确定一个圆方程.在求圆方程时,若条件与圆心有关,则一般用标准型较易,若已知圆上三点,则用一般式便利,留意运用圆的几何性质,去简化运算,有时利用圆系方程也可使解题过程简化.2、 圆的标准方程为(x -a )2+(y -b )2=r 2;一般方程x 2+y 2+Dx+Ey +F =0,圆心坐标(,)22D E --,半径为22142D E F +-。
3、 在圆(x -a )2+(y -b )2=r 2,若满意a 2+b 2=r 2条件时,能使圆过原点;满意a=0,r >0条件时,能使圆心在y 轴上;满意b r =时,能使圆与x 轴相切;满意2a b r -=条件时,能使圆与x -y =0相切;满意|a |=|b |=r 条件时,圆与两坐标轴相切.4、 若圆以A (x 1,y 1)B (x 2,y 2)为直径,则利用圆周上任一点P (x ,y ),1PA PBk k =-求出圆方程(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0 (2) 直线与圆的位置关系①在解决的问题时,肯定要联系圆的几何性质,利用有关图形的几何特征,尽可能简化运算,探讨直线与圆的位置关系时,一般不用△>0,△=0,△<0,而用圆心到直线距离d <r ,d=r ,d >r ,分别确定相关交相切,相离的位置关系.涉及到圆的切线时,要考虑过切点与切线垂直的半径,计算交弦长时,要用半径、弦心距、半弦构成直角三角形,当然,不失一般性弦长式(三)曲线与方程(1)求曲线方程的五个步骤:(1)建立适当的直角坐标系,用(x ,y )表示曲线上随意一点M 的坐标;建标(2)写出适合条件P 的点M 的集合P ={M |P (M )}; 设点(3)用坐标表示条件P (M ),列出方程f (x ,y )=0 列式(4)化方程f (x ,y )=0为最简方程 化简(5)证明以化简后的方程的解为坐标的点都是这条曲线上的点.除个别状况外,化简过程都是同解变形过程,步骤(5)可以不写,也可以省略步骤(2),干脆列出曲线方程.(2)求曲线方程主要有四种方法:(1)条件直译法:假如点运动的规律就是一些几何量的等量关系,这些条件简洁、明确,易于表达,我们可以把这些关系直译成含“x ,y ”(或ρ,θ)的等式,我们称此为“直译法”.(2)代入法(或利用相关点法):有时动点所满意的几何条件不易求出,但它随另一动点的运动而运动,称之为相关点.假如相关点满意的条件简明、明确,就可以用动点坐标把相关的点的坐标表示出来,再用条件直译法把相关点的轨迹表示出来,就得到原动点的轨迹.(3)几何法:利用平面几何或解析几何的学问分析图形性质,发觉动点运动规律.(4)参数法:有时很难干脆找出动点的横纵坐标之间关系.假如借助中间参量(参数),使x ,y 之间的关系建立起联系,然后再从所求式子中消去参数,这便可得动点的轨迹方程.(四)圆锥曲线(1)椭圆(1)椭圆的定义平面内与两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距.这里应特殊留意常数大于|F1F2|因为,当平面内的动点与定点F1,F2的距离之和等于|F1F2|时,其动点轨迹就是线段F1F2;当平面内的动点与定点F1,F2的距离之和小于|F1F2|时,其轨迹不存在.(2)椭圆的标准方程之所以称它为标准方程,是因为它的形式最简洁,这与利用对称性建立直角坐标系有关.同时,还应留意理解下列几点,1)标准方程中的两个参数a和b,确定了椭圆的形态和大小,是椭圆的定形条件.2)焦点F1,F2的位置,是椭圆的定位条件,它确定椭圆标准方程的类型.也就是说,知道了焦点位置,其标准方程只有一种形式,不知道焦点位置,其标准方程具有两种类型.3)任何一个椭圆,只需选择适当的坐标系,其方程均可以写成标准形式,当且仅当椭圆的中心在原点,其焦点在坐标轴上时,椭圆的方程才具有标准形式.1)范围:焦点在x轴时,椭圆位于直线x=±a和y=±b所围成的矩形里.2)对称性:椭圆关于x轴,y轴和原点都是对称的,这时坐标轴为椭圆的对称轴,原点是椭圆的对称中心.椭圆的对称中心叫做椭圆中心.3)顶点:椭圆与对称轴的交点为椭圆的顶点A1(-a,0)A2(a,0)B1(0,b)B2(0,-b)线段A1A2,B1B2分别叫做椭圆的长轴,短轴,长分别为2a,2b.<1.e越接近于1,则椭圆越扁,反之,e越接近于0,椭圆越接近于圆.5)焦半径:椭圆上任一点到焦点的距离为焦半径.如图所示,当焦点在x轴上时,任一点到左焦点的焦半径为r1=a+ex0.6)|A1F1|=a-c|A1F1|=a+c10)椭圆的其次定义:平面内的点到定点的距离和它到定直线的距离的比为常数e(e<1=的点的轨迹.。
高中数学解析几何总结(非常全)
高中数学解析几何总结(非常全)高中数学解析几何第一部分:直线一、直线的倾斜角与斜率1.倾斜角α直线l向上的方向与x轴正向所成的角叫做直线的倾斜角α,其范围为0≤α<180度。
2.斜率直线倾斜角α的正切值叫做这条直线的斜率,表示为k=tanα。
1)倾斜角为90度的直线没有斜率。
2)每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率。
当直线垂直于x轴时,其斜率不存在,因此在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。
3)设经过A(x1,y1)和B(x2,y2)两点的直线的斜率为k,则当x1≠x2时,k=(y1-y2)/(x1-x2);当x1=x2时,斜率不存在。
二、直线的方程1.点斜式已知直线上一点P(x,y)及直线的斜率k(倾斜角α),求直线的方程,可以用点斜式表示为y-y1=k(x-x1)。
需要注意的是,当直线斜率不存在时,不能用点斜式表示,此时方程为x=x1.2.斜截式若已知直线在y轴上的截距(直线与y轴焦点的纵坐标)为b,斜率为k,则直线方程为y=kx+b。
特别地,斜率存在且经过坐标原点的直线方程为y=kx。
需要正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。
3.两点式若已知直线经过(x1,y1)和(x2,y2)两点,且(x1≠x2,y1≠y2),则直线的方程为(y-y1)/(x-x1)=(y2-y1)/(x2-x1)。
需要注意的是,不能表示与x轴和y轴垂直的直线。
4.截距式若已知直线在x轴,y轴上的截距分别是a,b(a≠0,b≠0),则直线方程为xy/a + y/b = 1.需要注意的是,截距式方程不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。
5.一般式任何一条直线方程均可写成一般式:Ax+By+C=0(A、B不同时为零)。
反之,任何一个二元一次方程都表示一条直线。
首先,我们需要指出直线方程的特殊形式可以化为直线方程的一般式,但一般式不一定能化为特殊形式,这取决于系数A、B、C是否为零。
解析几何知识点大总结
解析几何知识点大总结第一局部:椭圆椭圆,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|=2c};这里两个定点F 1,F 2叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c 。
(c F F a 2221==时为线段21F F ,c F F a 2221=<无轨迹)。
2.标准方程: 222ca b =-①焦点在x 轴上:12222=+by a x (a >b >0); 焦点F (±c ,0)②焦点在y 轴上:12222=+bx a y (a >b >0); 焦点F (0, ±c )注意:①在两种标准方程中,总有a >b >0,222c b a +=并且椭圆的焦点总在长轴上;②一般形式表示:221x y m n+=或者 ),0,0(122n m n m ny mx ≠>>=+ 二.椭圆的简单几何性质: 1.范围(1)椭圆12222=+by a x (a >b >0) 横坐标-a ≤x ≤a ,纵坐标-b ≤x ≤b(2)椭圆12222=+bx a y (a >b >0) 横坐标-b ≤x ≤b,纵坐标-a ≤x ≤a2.对称性椭圆关于x 轴y 轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心 3.顶点(1)椭圆的顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b )(2)线段A 1A 2,B 1B 2 分别叫做椭圆的长轴长等于2a ,短轴长等于2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长。
4.离心率(1)我们把椭圆的焦距与长轴长的比22c a,即a c称为椭圆的离心率,记作e (10<<e ),22221()b e a a==-c e 越接近于0 (e 越小),椭圆就越接近于圆;e 越接近于1 (e 越大),椭圆越扁;注意:离心率的大小只与椭圆本身的形状相关,与其所处的位置无关。
解析几何专题教案
解析几何专题教案一、教学目标1. 知识与技能:(1)理解解析几何的基本概念,掌握直角坐标系中点的坐标表示方法。
(2)熟练运用解析几何方法解决实际问题,提高空间想象能力。
2. 过程与方法:(1)通过实例分析,引导学生掌握点的坐标表示方法,培养学生的抽象思维能力。
(2)运用图形直观展示解析几何问题,培养学生数形结合的解题思想。
3. 情感态度与价值观:(1)培养学生对数学的兴趣,激发学生探索几何问题的热情。
(2)培养学生克服困难的意志,增强学生解决问题的信心。
二、教学内容1. 解析几何基本概念(1)直角坐标系(2)点的坐标表示方法(3)直线、圆的方程2. 点的坐标表示方法及应用(1)坐标轴上的点(2)坐标轴上的点与几何图形的关系(3)点的坐标在实际问题中的应用三、教学重点与难点1. 教学重点:(1)解析几何的基本概念(2)点的坐标表示方法及应用2. 教学难点:(1)直线、圆的方程的推导与理解(2)坐标轴上的点与几何图形的关系四、教学方法与手段1. 教学方法:(1)讲授法:讲解解析几何基本概念、直线的方程等。
(2)实践操作法:引导学生动手绘制图形,分析点的坐标表示方法。
(3)案例分析法:分析实际问题,培养学生运用解析几何方法解决问题的能力。
2. 教学手段:(1)黑板:板书关键知识点、解题步骤等。
(2)多媒体课件:展示图形、动态演示等。
(3)练习题:巩固所学知识,提高解题能力。
五、教学过程1. 导入新课:(1)复习相关知识点,如坐标轴、坐标系等。
(2)通过实例引入解析几何的基本概念。
2. 讲解新课:(1)讲解直线的方程,引导学生理解直线的几何性质。
(2)讲解点的坐标表示方法,结合实例进行分析。
3. 课堂练习:(1)布置练习题,巩固点的坐标表示方法。
(2)选讲典型题目,分析解题思路和方法。
4. 课堂小结:总结本节课所学内容,强调解析几何的基本概念和点的坐标表示方法的重要性。
5. 课后作业:布置作业,要求学生掌握点的坐标表示方法,并能运用解析几何解决实际问题。
高中数学知识点总结(第九章 平面解析几何 第二节 两直线的位置关系)
第二节 两直线的位置关系一、基础知识1.两条直线平行与垂直的判定 (1)两条直线平行①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. ②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直①如果两条直线l 1,l 2的斜率存在, 设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1.②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2. 2.两条直线的交点的求法直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解. 3.三种距离公式 (1)两点间的距离公式平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式为|P 1P 2|=x 2-x 12+y 2-y 12.(2)点到直线的距离公式点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(3)两平行直线间的距离公式两条平行直线Ax +By +C 1=0与Ax +By +C 2=0 间的距离d =|C 1-C 2|A 2+B 2.二、常用结论(1)与直线Ax +By +C =0(A 2+B 2≠0)垂直或平行的直线方程可设为: ①垂直:Bx -Ay +m =0;②平行:Ax +By +n =0. (2)与对称问题相关的四个结论:①点(x ,y )关于点(a ,b )的对称点为(2a -x,2b -y ).②点(x ,y )关于直线x =a 的对称点为(2a -x ,y ),关于直线y =b 的对称点为(x,2b -y ). ③点(x ,y )关于直线y =x 的对称点为(y ,x ),关于直线y =-x 的对称点为(-y ,-x ). ④点(x ,y )关于直线x +y =k 的对称点为(k -y ,k -x ),关于直线x -y =k 的对称点为(k +y ,x -k ).考点一 两条直线的位置关系[典例] 已知两直线l 1:mx +8y +n =0和l 2:2x +my -1=0,试确定m ,n 的值,使 (1)l 1与l 2相交于点P (m ,-1); (2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为-1.[解] (1)由题意得⎩⎪⎨⎪⎧m 2-8+n =0,2m -m -1=0,解得⎩⎪⎨⎪⎧m =1,n =7.即m =1,n =7时,l 1与l 2相交于点P (m ,-1).(2)∵l 1∥l 2,∴⎩⎪⎨⎪⎧m 2-16=0,-m -2n ≠0,解得⎩⎪⎨⎪⎧m =4,n ≠-2或⎩⎪⎨⎪⎧m =-4,n ≠2.即m =4,n ≠-2或m =-4,n ≠2时,l 1∥l 2. (3)当且仅当2m +8m =0, 即m =0时,l 1⊥l 2. 又-n8=-1,∴n =8.即m =0,n =8时,l 1⊥l 2,且l 1在y 轴上的截距为-1.[解题技法]1..由一般式确定两直线位置关系的方法[题组训练]1.已知直线4x+my-6=0与直线5x-2y+n=0垂直,垂足为(t,1),则n的值为() A.7B.9C.11 D.-7解析:选A由直线4x+my-6=0与直线5x-2y+n=0垂直得,20-2m=0,m=10.直线4x+10y-6=0过点(t,1),所以4t+10-6=0,t=-1.点(-1,1)又在直线5x-2y+n=0上,所以-5-2+n=0,n=7.2.(2019·保定五校联考)直线l1:mx-2y+1=0,l2:x-(m-1)y-1=0,则“m=2”是“l1∥l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选C由l1∥l2得-m(m-1)=1×(-2),得m=2或m=-1,经验证,当m=-1时,直线l1与l2重合,舍去,所以“m=2”是“l1∥l2”的充要条件,故选C.考点二距离问题[典例](1)过点P(2,1)且与原点O距离最远的直线方程为()A.2x+y-5=0B.2x-y-3=0C.x+2y-4=0 D.x-2y=0(2)若两平行直线l1:x-2y+m=0(m>0)与l2:2x+ny-6=0之间的距离是5,则m +n=()A .0B .1C .-2D .-1[解析] (1)过点P (2,1)且与原点O 距离最远的直线为过点P (2,1)且与OP 垂直的直线,因为直线OP 的斜率为1-02-0=12,所以所求直线的斜率为-2,故所求直线方程为2x +y -5=0.(2)因为l 1,l 2平行,所以1×n =2×(-2),1×(-6)≠2×m ,解得n =-4,m ≠-3,所以直线l 2:x -2y -3=0.又l 1,l 2之间的距离是 5,所以|m +3|1+4=5,解得m =2或m =-8(舍去),所以m +n =-2,故选C.[答案] (1)A (2)C[解题技法]1.点到直线的距离的求法可直接利用点到直线的距离公式来求,但要注意此时直线方程必须为一般式. 2.两平行线间的距离的求法(1)利用“转化法”将两条平行线间的距离转化为一条直线上任意一点到另一条直线的距离.(2)利用两平行线间的距离公式. [题组训练]1.已知点P (2,m )到直线2x -y +3=0的距离不小于25,则实数m 的取值范围是________________.解析:由题意得,点P 到直线的距离为|2×2-m +3|22+12≥25,即|m -7|≥10,解得m ≥17或m ≤-3,所以实数m 的取值范围是(-∞,-3]∪[17,+∞).答案:(-∞,-3]∪[17,+∞)2.如果直线l 1:ax +(1-b )y +5=0和直线l 2:(1+a )x -y -b =0都平行于直线l 3:x -2y +3=0,则l 1,l 2之间的距离为________.解析:因为l 1∥l 3,所以-2a -(1-b )=0,同理-2(1+a )+1=0,解得a =-12,b =0,因此l 1:x -2y -10=0,l 2:x -2y =0,d =|-10-0|12+-22=2 5.答案:25考点三 对称问题[典例] 已知直线l :2x -3y +1=0,点A (-1,-2). (1)求点A 关于直线l 的对称点A ′的坐标;(2)求直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程. [解] (1)设A ′(x ,y ),再由已知得 ⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧x =-3313,y =413,所以A ′⎝⎛⎭⎫-3313,413. (2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在m ′上.设对称点为M ′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1,解得M ′⎝⎛⎭⎫613,3013.设m 与l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又因为m ′经过点N (4,3),所以由两点式得直线m ′方程为9x -46y +102=0.[变透练清] 1.变结论在本例条件下,则直线l 关于点A (-1,-2)对称的直线l ′的方程为________________.解析:法一:在l :2x -3y +1=0上任取两点, 如M (1,1),N (4,3),则M ,N 关于点A 的对称点M ′,N ′均在直线l ′上. 易知M ′(-3,-5),N ′(-6,-7), 由两点式可得 l ′的方程为2x -3y -9=0. 法二:设P (x ,y )为l ′上任意一点, 则P (x ,y )关于点A (-1,-2)的对称点为 P ′(-2-x ,-4-y ),∵P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0. 答案:2x -3y -9=02.(2019·合肥四校联考)已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.解析:设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎪⎨⎪⎧b -4a --3=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0.答案:6x -y -6=0[解题技法]1.中心对称问题的两个类型及求解方法 (1)点关于点对称若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1进而求解.(2)直线关于点对称①在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;②求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程; ③轨迹法,设对称直线上任一点M (x ,y ),其关于已知点的对称点在已知直线上. 2.轴对称问题的两个类型及求解方法 (1)点关于直线的对称若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称, 由方程组⎩⎪⎨⎪⎧A ×x 1+x 22+B ×y 1+y22+C =0,y 2-y 1x 2-x 1×⎝⎛⎭⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2).(2)直线关于直线的对称一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.[课时跟踪检测]1.过点(1,0)且与直线x -2y -2=0垂直的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0D .x +2y -1=0解析:选C 因为直线x -2y -2=0的斜率为12,所以所求直线的斜率k =-2.所以所求直线的方程为y -0=-2(x -1), 即2x +y -2=0.2.已知直线l 1:2ax +(a +1)y +1=0和l 2:(a +1)x +(a -1)y =0,若l 1⊥l 2,则a =( ) A .2或12B.13或-1 C.13D .-1解析:选B 因为直线l 1⊥l 2,所以2a (a +1)+(a +1)(a -1)=0,解得a =13或-1.3.若点P 在直线3x +y -5=0上,且P 到直线x -y -1=0的距离为2,则点P 的坐标为( )A .(1,2)B .(2,1)C .(1,2)或(2,-1)D .(2,1)或(-1,2) 解析:选C 设P (x,5-3x ),则d =|x -5+3x -1|12+-12=2,化简得|4x -6|=2,即4x -6=±2,解得x =1或x =2,故P (1,2)或(2,-1).4.(2018·揭阳一模)若直线l 1:x -3y +2=0与直线l 2:mx -y +b =0关于x 轴对称,则m +b =( )A.13 B .-1 C .-13D .1解析:选B 直线l 1:x -3y +2=0关于x 轴对称的直线为x +3y +2=0.由题意知m ≠0. 因为mx -y +b =0,即x -y m +bm=0,且直线l 1与l 2关于x 轴对称,所以有⎩⎨⎧-1m=3,bm =2,解得⎩⎨⎧m =-13,b =-23,则m +b =-13+⎝⎛⎭⎫-23=-1. 5.点A (1,3)关于直线y =kx +b 对称的点是B (-2,1),则直线y =kx +b 在x 轴上的截距是( )A .-32B.54 C .-65D.56解析:选D 由题意,知⎩⎨⎧3-11+2·k =-1,2=k ·⎝⎛⎭⎫-12+b ,解得⎩⎨⎧k =-32,b =54.∴直线方程为y =-32x +54,它在x 轴上的截距为-54×⎝⎛⎭⎫-23=56.故选D. 6.(2019·成都五校联考)已知A ,B 是x 轴上的两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( )A .2x +y -7=0B .x +y -5=0C .2y -x -4=0D .2x -y -1=0解析:选B 由|P A |=|PB |得点P 一定在线段AB 的垂直平分线上,根据直线P A 的方程为x -y +1=0,可得A (-1,0),将x =2代入直线x -y +1=0,得y =3,所以P (2,3),所以B (5,0),所以直线PB 的方程是x +y -5=0,选B.7.若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为( )A .3 2B .22C .3 3D .42解析:选A 依题意知AB 的中点M 的集合为与直线l 1:x +y -7=0和l 2:x +y -5=0距离都相等的直线,则M 到原点的距离的最小值为原点到该直线的距离.设点M 所在直线的方程为l :x +y +m =0,根据平行线间的距离公式得|m +7|2=|m +5|2⇒|m +7|=|m +5|⇒m =-6,即l :x +y -6=0.根据点到直线的距离公式,得M 到原点的距离的最小值为|-6|2=3 2. 8.已知点A (1,3),B (5,-2),在x 轴上有一点P ,若|AP |-|BP |最大,则P 点坐标为( )A .(3.4,0)B .(13,0)C .(5,0)D .(-13,0)解析:选B 作出A 点关于x 轴的对称点A ′(1,-3),则A ′B 所在直线方程为x -4y -13=0.令y =0得x =13,所以点P 的坐标为(13,0).9.经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程为________.解析:由方程组⎩⎪⎨⎪⎧x -2y +4=0,x +y -2=0得x =0,y =2,即P (0,2).因为l ⊥l 3,所以直线l 的斜率k =-43,所以直线l 的方程为y -2=-43x ,即4x +3y -6=0.答案:4x +3y -6=010.已知点P 1(2,3),P 2(-4,5)和A (-1,2),则过点A 且与点P 1,P 2距离相等的直线方程为________.解析:当直线与点P 1,P 2的连线所在的直线平行时,由直线P 1P 2的斜率k =3-52+4=-13,得所求直线的方程为y -2=-13(x +1),即x +3y -5=0.当直线过线段P 1P 2的中点时,因为线段P 1P 2的中点坐标为(-1,4),所以直线方程为x =-1.综上所述,所求直线方程为x +3y -5=0或x =-1.答案:x +3y -5=0或x =-111.直线x -2y +1=0关于直线x =1对称的直线方程是________.解析:由题意得直线x -2y +1=0与直线x =1的交点坐标为(1,1).又直线x -2y +1=0上的点(-1,0)关于直线x =1的对称点为(3,0),所以由直线方程的两点式,得y -01-0=x -31-3,即x +2y -3=0.答案:x +2y -3=012.过点P (0,1)作直线l 使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________.解析:设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,把B 点坐标代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上, 所以由两点式得直线l 的方程为x +4y -4=0. 答案:x +4y -4=013.已知△ABC 的三个顶点是A (1,1),B (-1,3),C (3,4). (1)求BC 边的高所在直线l 1的方程;(2)若直线l 2过C 点,且A ,B 到直线l 2的距离相等,求直线l 2的方程.解:(1)因为k BC =4-33+1=14,又直线l 1与BC 垂直,所以直线l 1的斜率k =-1k BC =-4,所以直线l 1的方程是y =-4(x -1)+1,即4x +y -5=0.(2)因为直线l 2过C 点且A ,B 到直线l 2的距离相等, 所以直线l 2与AB 平行或过AB 的中点M , 因为k AB =3-1-1-1=-1,所以直线l 2的方程是y =-(x -3)+4,即x +y -7=0. 因为AB 的中点M 的坐标为(0,2), 所以k CM =4-23-0=23,所以直线l 2的方程是y =23(x -3)+4,即2x -3y +6=0. 综上,直线l 2的方程是x +y -7=0或2x -3y +6=0.。
解析几何知识点管综
解析几何知识点管综一、直线。
1. 直线的倾斜角与斜率。
- 倾斜角α:直线l向上的方向与x轴正方向所成的最小正角,α∈[0,π)。
- 斜率k = tanα(α≠(π)/(2)),经过两点P_1(x_1,y_1),P_2(x_2,y_2)(x_1≠x_2)的直线的斜率k=(y_2 - y_1)/(x_2 - x_1)。
2. 直线方程的几种形式。
- 点斜式:y - y_0=k(x - x_0)(直线过点(x_0,y_0),斜率为k)。
- 斜截式:y = kx + b(k为斜率,b为直线在y轴上的截距)。
- 两点式:(y - y_1)/(y_2 - y_1)=(x - x_1)/(x_2 - x_1)(x_1≠ x_2,y_1≠ y_2,直线过两点(x_1,y_1),(x_2,y_2))。
- 截距式:(x)/(a)+(y)/(b)=1(a≠0,b≠0,a为x轴上的截距,b为y轴上的截距)。
- 一般式:Ax + By+C = 0(A、B不同时为0)。
3. 两直线的位置关系。
- 平行:l_1:y = k_1x + b_1,l_2:y = k_2x + b_2,则l_1∥ l_2Leftrightarrow k_1 = k_2且b_1≠ b_2;对于l_1:A_1x + B_1y + C_1 = 0,l_2:A_2x + B_2y + C_2 = 0,l_1∥ l_2Leftrightarrow(A_1)/(A_2)=(B_1)/(B_2)≠(C_1)/(C_2)。
- 垂直:l_1:y = k_1x + b_1,l_2:y = k_2x + b_2,则l_1⊥ l_2Leftrightarrowk_1k_2=- 1;对于l_1:A_1x + B_1y + C_1 = 0,l_2:A_2x + B_2y + C_2 = 0,l_1⊥l_2Leftrightarrow A_1A_2 + B_1B_2 = 0。
- 相交:联立两直线方程求解交点坐标。
(完整版)解析几何知识点总结
① 焦点在 x 轴上的方程: x 2 a2
y2 b2
1 ( a>b>0);
③当焦点位置不能确定时,也可直接设椭圆方程为:
mx2+ny2=1(m>0,n>0) ;
y2 x2 ②焦点在 y 轴上的方程: a 2 b 2 1
x a cos
④、参数方程:
y b sin
( a>b>0);
2、椭圆的定义: 平面内与两个定点 F1, F2 的距离的和等于常数(大于 | F1F2 | )的点的轨迹。
O
F1
B1
A1 ( b,0), A2 (b,0) B1 (0, a), B2 (0, a)
x 轴, y 轴;短轴为 2b ,长轴为 2a
F1 ( c,0), F 2( c,0)
F1 (0, c), F2 (0, c)
| F1F2 | 2c( c 0) c 2 a2 b 2
a2 x
c
| PF1 | a ex0 | PF2 | a ex0
过解不等式(组)得出参数的变化范围;第二种
是函数的值域求解法:把所讨论的参数表示为某个变量的函数,通过讨论函数的值域求得参数的变化范围
椭圆图象及几何性质: 标准方程 参数方程
图形
顶点 对称轴 焦点 焦距 离心率 准线 通径 焦半径 焦点弦 焦准距
中心在原点,焦点在 x 轴上
x2
y2
a2
b2
1 (a
通径
焦半径
焦点弦 焦准距
F ( p ,0) 2 p
x 2
x轴
p | PF | | x0 |
2
p F ( ,0)
2
p x
2
O( 0,0)
(解析几何)基础知识点总结
《高中数学解析几何基础知识总结》一、圆1、 定义:平面内与定点距离等于定长的点的集合叫圆2、 圆的方程1)特殊式:222x y r += 圆心(0,0)半径r 2)标准式:222()()x a y b r -+-=3)一般式:220x y Dx Ey F ++++=(2240D E F +->)圆心(,22D E --)4)参数式:cos sin x a r y b r θθ=+⋅⎧⎨=+⋅⎩(θ为参数)圆心(a ,b )半径为r3、点与圆的位置关系:设点到圆心距离为d ,圆的半径为r点在圆外⇔d>r 点在圆上⇔d=r 点在圆内⇔d<r4、直线与圆的位置关系:直线:0l Ax By C ++= 圆C 222()()x a y b r -+-= 线心距d =相交⇔0>或d<r 相切⇔0=或d=r 相离⇔0<或d>r 5、圆的切线求法1)切点00(,)x y 已知222x y r += 切线2x x y y r +=222()()x a y b r -+-= 切线200()()()()x a x a y b y b r --+--=220x y Dx Ey F ++++= 切线0000022x x y yx x y y DE F ++++++= 满足规律:20x x x →、20y y y →、02x x x +→、02y y y +→2)切线斜率k 已知时,222x y r += 切线y kx =±222()()x a y b r -+-= 切线()y b k x a -=-± 6、圆的切线长:自圆外一点P 00(,)x y 引圆外切线,切点为P ,则20PP x =7、切点弦方程:过圆外一点p 00(,)x y 引圆222x y r +=的两条切线,过切点的直线即切点弦200x x y y r +=(其推到过程逆向思维的运用)8、圆与圆的位置关系:设两圆圆心距离为d ,半径分别为12,r r 1)外离::12d r r >+ 2)外切:12d r r =+ 3)相交:1212r r d r r -<<+ 4)内切:12d r r =- 5)内含:12d r r <-圆与圆位置关系的判定中,不能简单的应用联立方程求根当有两个根时候,肯定两圆相交;当没有根时候,不能确定是外离还是内含;当有且只有一个根时候,也不能确定是外切和内切9、公共弦方程(相交弦):相交两圆1C :221110x y D x E y F ++++=、222222:0C x y D x E y F ++++=公共弦方程121212()()()0D D x E E y F F -++++=10、圆系:具有某些共同性质的圆的集合1)同心圆系:222()()x a y b r -+-=(a ,b 为定值,r 为变量且r>0) 2)等圆系:222()()x a y b r -+-=(a ,b 为变量,r 为定值)3)过直线:0l Ax By C ++=与圆22:0C x y Dx Ey F ++++=的交点的圆系方程:22()0x y Dx Ey F Ax By C λ+++++++=()λθ∈简记为0C l λ+=4)过两圆221111:0C x y D x E y F ++++=,222222:0C x y D x E y F ++++=交点的圆系方程:2222111222()0(1)x y D x E y F x y D x E y F λλ+++++++++=≠-简记为120C C λ+=二、椭圆椭圆:平面内到两定点距离之和等于定长(定长大于两定点间距离)的点的集合1、定义:12122(2)PF PF a a F F +=> 第二定义:(01)PF ce e d a==<< 2、标准方程:22221(0)x y a b a b +=>> 或 22221(0)y x a b a b+=>>;3、参数方程cos sin x a y b θθ=⎧⎨=⎩(θ为参数)θ几何意义:离心角4、几何性质:(只给出焦点在x 轴上的的椭圆的几何性质) ①、顶点(,0),(0,)a b ±± ②、焦点(,0)c ± ③、离心率(01)ce e a=<< ④准线:2a x c=±(课改后对准线不再要求,但题目中偶尔给出)5、焦点三角形面积:122tan 2PF F Sb θ=⋅(设12F PF θ∠=)(推导过程必须会)6、椭圆面积:S a b π=⋅⋅椭(了解即可)7、直线与椭圆位置关系:相离(0∆<);相交(0∆>);相切(0∆=) 判定方法:直线方程与椭圆方程联立,利用判别式判断根的个数 8、椭圆切线的求法1)切点(00x y )已知时,22221(0)x y a b a b +=>> 切线00221x x y y a b +=22221(0)y x a b a b +=>> 切线00221y y x x a b +=2)切线斜率k 已知时, 22221(0)x y a b a b +=>> 切线y kx =±22221(0)y x a b a b+=>> 切线y kx =±9、焦半径:椭圆上点到焦点的距离22221(0)x y a b a b +=>> 0r a ex =±(左加右减)22221(0)y a a b a b+=>> 0r a ey =±(下加上减)三、双曲线1、定义:122PF PF a -=± 第二定义:(1)PF ce e d a ==>2、标准方程:22221(0,0)x y a b a b-=>>(焦点在x 轴)22221(0,0)y x a b a b -=>>(焦点在y 轴) 参数方程:sec tan x a y b θθ=⋅⎧⎨=⋅⎩(θ为参数) 用法:可设曲线上任一点P (sec ,tan )a b θθ3、几何性质 ① 顶点(,0)a ±② 焦点(,0)c ± 222c a b =+ ③ 离心率ce a=1e > ④ 准线2a x c±⑤ 渐近线 22221(0,0)x y a b a b -=>> by x a=±或22220x y a b -=22221(0,0)y x a b a b -=>> by x a=±或22220y x a b -= 4、特殊双曲线①、等轴双曲线22221x y a a -= e =渐近线y x =±②、双曲线22221x y a b-=的共轭双曲线22221x y a b -=-性质1:双曲线与其共轭双曲线有共同渐近线性质2:双曲线与其共轭双曲线的四个焦点在同一圆上 5、直线与双曲线的位置关系 ① 相离(0∆<);② 相切(0∆=); ③ 相交(0∆>) 判定直线与双曲线位置关系需要与渐近线联系一起 0∆=时可以是相交也可以是相切 6、焦半径公式22221(0,0)x y a b a b-=>> 点P 在右支上 0r ex a =±(左加右减) 点P 在左支上 0()r ex a =-±(左加右减)22221(0,0)y x a b a b-=>> 点P 在上支上 0r ey a =±(下加上减) 点P 在上支上 0()r ey a =-±(下加上减) 7、双曲线切线的求法① 切点P 00(,)x y 已知 22221(0,0)x y a b a b -=>> 切线00221x x y y a b -=22221(0,0)y x a b a b -=>> 切线00221y y x x a b -=② 切线斜率K 已知 22221x y a b -= 222()by kx a k b k a =->22221y x a b -= 222()by kx a b k k a=-<8、焦点三角形面积:122cot2PF F Sb θ=⋅(θ为12F PF ∠)四、抛物线1、定义:平面内与一定点和一定直线的距离相等的点的集合(轨迹)2、几何性质:P 几何意义:焦准距 焦点到准线的距离设为P 标准方程:22(0)y px p => 22(0)y px p =->图 像:范 围: 0x ≥ 0x ≤ 对 称 轴: x 轴 x 轴 顶 点: (0,0) (0,0)焦 点: (,02p ) (,02p-) 离 心 率: 1e = 1e =准 线: 2px =- 2p x =标准方程:22(0)x py p => 22(0)x py p =->图 像:范 围: 0y ≥ 0y ≤ 对 称 轴: y 轴 y 轴 定 点: (0,0) (0,0)焦 点: (0,2p ) (0,)2p - 离 心 率: 1e = 1e =准 线: 2py =- 2p y =3、参数方程222x pt y pt⎧=⎨=⎩(t 为参数方程)⇔22(0)y px p =>4、通径:过焦点且垂直于对称轴的弦椭圆:双曲线通径长22b a抛物线通径长2P5、直线与抛物线的位置关系1)相交(有两个交点或一个交点) 2)相切(有一个交点); 3)相离(没有交点) 6、抛物线切线的求法1)切点P 00(,)x y 已知:22(0)y px p =>的切线;00()y y p x x =+2)切线斜率K 已知:22(0):2p y px p y kx k =>=+22(0):2py px p y kx k=->=-222(0):2pk x py p y kx =>=-222(0):2pk x py p y kx =->=+此类公式填空选择或解答题中(部分)可作公式直接应用五、弦长公式:若直线y kx b =+与圆锥曲线相交于两点A 、B ,且12,x x 分别为A 、B 的横坐标,则AB =2121k x +-,若12,y y 分别为A 、B 的纵坐标,则AB =21211y y k-+,若弦AB 所在直线方程设为x ky b =+,则AB 2121k y y +-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何知识点总结复习题一、直线与方程基础:1、直线的倾斜角α: [0,)απ∈2121tan k x x α==-; 注意:倾斜角为90°的直线的斜率不存在。
3、直线方程的五种形式:①点斜式:00()y y k x x -=-;②斜截式:y kx b =+;③一般式:0Ax By C ++=;④截距式:1x y a b+=; ⑤两点式:121121y y y y x x x x --=-- 注意:各种形式的直线方程所能表示和不能表示的直线。
4、两直线平行与垂直的充要条件:1111:0l A x B y C ++=,2222:0l A x B y C ++=,1l ∥2l 12211221A B A B C B C B =⎧⇔⎨≠⎩; 1212120l l A A B B ⊥⇔+= .5、相关公式:①两点距离公式:11(,)M x y ,22(,)N x y ,MN =②中点坐标公式:11(,)M x y ,22(,)N x y ,则线段MN 的中点1122(,)22x y x y P ++; ③点到直线距离公式: 00(,)P x y ,:0l Ax By C ++=,则点P 到直线l 的距离d =; 11:0l Ax By C ++=,22:0l Ax By C ++=, 则平行直线1l 与2l 之间的距离d =;⑤到角公式:(补充)直线1111:0l A x B y C ++=到直线2222:0l A x B y C ++=的角为θ,(0,)(,)22ππθπ∈U ,则2112tan 1k k k k θ-=+⋅ .(两倾斜角差的正切) 二、直线与圆,圆与圆基础:1、圆的标准方程:222()()x a y b r -+-=;确定圆的两个要素:圆心(,)C a b ,半径r ;2、圆的一般方程:220x y Dx Ey F ++++=,(2240D E F +->);3、点00(,)P x y 与圆222:()()C x a y b r -+-=的位置关系:点00(,)P x y 在圆内⇔ 22200()()x a y b r -+-<;点00(,)P x y 在圆上⇔ 22200()()x a y b r -+-=;点00(,)P x y 在圆外⇔ 22200()()x a y b r -+->;4、直线:0l Ax By C ++=与圆222:()()C x a y b r -+-=的位置关系:从几何角度看:令圆心(,)C a b 到直线:0l Ax By C ++=的距离为d ,相离⇔d r >;相切⇔=d r ;相交⇔0d r ≤<;若直线:0l Ax By C ++=与圆222:()()C x a y b r -+-=相交于两点M ,N ,则弦长MN =从代数角度看:联立:0l Ax By C ++=与圆222:()()C x a y b r -+-=,消去y (或x )得一元二次方程,24b ac ∆=-,相离⇔0∆<;相切⇔0∆=;相交⇔0∆>;相交时的弦长1212MN x x y y =-=- . 5、圆与圆的位置关系: .圆2221111:()()O x x y y r -+-=;圆2222222:()()O x x y y r -+-=, 根据这三个量之间的大小关系来确定:12r r -,12O O ,12r r +;相离⇔1212O O r r >+;外切⇔1212O O r r =+;相交⇔121212r r O O r r -<<+;内切⇔1212O O r r =-;内含⇔12120O O r r ≤<-;6、两圆2221111:()()O x x y y r -+-=①;圆2222222:()()O x x y y r -+-=②若相交,则相交弦所在的直线方程的求法:交轨法: ①式-②式,整理化简即可得到相交弦所在直线方程 .三、椭圆:1、(第一)定义:12122PF PF a F F +=>;22221(0)x y a b a b+=>>; :a 长半轴;b :短半轴;:c 半焦距 .椭圆中a ,b ,c 的关系:222a b c =+;椭圆的离心率(0,1)c e a =∈ . 3、弦长公式:直线:l y kx b =+与椭圆2222:1()x y C m n m n+=≠交于两点11(,)M x y ,22(,)N x y , 则相交时的弦长1212MN x x y y =-=- . 弦长公式是由两点距离公式与4、中点弦结论(点差法):椭圆2222:1()x y C m n m n+=≠上的两点11(,)M x y ,22(,)N x y , 弦MN 的中点1212(,)22x x y y P ++, 则22MN OP n k k m ⋅=- .5、焦点三角形面积:椭圆2222:1(0)x y C a b a b +=>>的两个焦点分别为1F 、2F ,点P 是椭圆C 上除左、右端点外的一点,令12F PF θ∠=,则:122tan 2PF F S b θ∆=⋅ . 该公式是由三角形面积公式、椭圆第一定义、余弦定理结合三角恒等变换推导出来。
6、直线与椭圆位置关系:联立:0l Ax By C ++=与椭圆2222:1()x y C m n m n +=≠,消去y (或x )得一元二次方程,24b ac ∆=-,相离⇔0∆<;相切⇔0∆=;相交⇔0∆>;7、与点坐标相关的面积公式:(0,0)O ,11(,)A x y ,22(,)B x y ,点O ,A ,B 不在一条直线上, 则:122112OAB S x y x y ∆=-. 该公式是由三角形面积公式、余弦定理结合三角恒等式推导出。
四、双曲线:(类比椭圆来学习双曲线)1、定义:12122PF PF a F F -=<;2、双曲线标准方程及离心率、渐近线方程:焦点在x 轴上的双曲线标准方程为:22221(0,0)x y a b a b-=>>; :a 实半轴;b :虚半轴;:c 半焦距 .双曲线中a ,b ,c 的关系:222c a b =+; 双曲线的离心率(1,)c e a=∈+∞ ; 焦点在x 轴上的双曲线的渐近线方程为b y x a =±; 焦点到渐近线的距离d b = .焦点在y 轴上的双曲线相关性质可以类比。
3、弦长公式:直线:l y kx b =+与双曲线2222:1(0,0)x y C a b a b-=>>交于两点11(,)M x y ,22(,)N x y ,则相交时的弦长1212MN x x y y =-=- . 4、中点弦结论(点差法): 双曲线2222:1(0,0)x y C a b a b-=>>上的两点11(,)M x y ,22(,)N x y , 弦MN 的中点1212(,)22x x y y P ++, 则22MN OP b k k a ⋅= . 5、焦点三角形面积: 双曲线2222:1(0,0)x y C a b a b -=>>的两个焦点分别为1F 、2F ,点P 是双曲线C 上除左、右端点外的一点,令12F PF θ∠=,则:12tan 2PF F S θ∆= .6、直线与双曲线位置关系:①当直线l 与双曲线C 的其中一条渐近线重合时,显然直线l 与双曲线C 无交点;②当直线l 与双曲线C 的其中一条渐近线平行时,有且仅有一个交点,此时联立直线方程与双曲线方程,会得到一个一次方程(二次项系数为0); ③当直线l 与双曲线C 的渐近线既不平行也不重合时,此时联立直线方程与双曲线方程,消去y (或x )得一元二次方程,24b ac ∆=-,相离⇔0∆<;相切⇔0∆=;相交⇔0∆>;五、抛物线:1、定义:P l PF d -= (到定点的距离等于到定直线的距离的这样的点的轨迹即2焦点(,0)2p F ,准线:2p l x =-,离心率1e =. 3、常见性质:① 普通的弦长公式:直线y kx b =+与抛物线22(0)y px p =>相交于两点11(,)M x y ,22(,)N x y , 12y y - .222sin p x p α+= (α为倾斜角);(ii )124x x =,212y y p =- . ③过抛物线2:2(0)C y px p =>的顶点(0,0)O 作两条互相垂直的射线OM 、ON 分别与抛物线C 交于两点M ,N ,弦MN 与x 轴交于点P ,则(2,0)P p ,即:4OP OF =. 反之亦然,即:若4OP OF =,则90MON ∠=︒.4、抛物线中过焦点弦的其它性质(补充,作为了解,切记不能死记硬背。
如死记硬背,如下知识点不如不用掌握。
可以尝试证明。
)设MN 是过抛物线22(0)y px p =>焦点F 的弦,11(,)M x y ,22(,)N x y ,如图(抛物线图2), 则:①22sin MON p S α∆=; ②112MF NF p+=; ③以MN 为直径的圆与准线相切;④90PFQ ∠=︒;⑤以MF 或NF 为直径的圆与y 轴相切 .5、直线与抛物线的位置关系:①若直线与抛物线的对称轴平行或重合,则有一个交点;②若直线与抛物线的对称轴不平行,也不垂直,则根据判别式∆的符号来确定交点个数;③若直线与抛物线的对称轴垂直,画图数形结合很容易判断交点个数。
圆锥曲线大题常见题型(归纳总结):题型一、求点的轨迹问题:常见方法:①直接法:(设出所求点(,)P x y ,根据题意列出等式,建立起y 与x 的关系。
) 如椭圆的标准方程的求出,本身就是利用这种方法。
②几何定义法:根据题意画出图形,通过已知条件及所学知识(如三角形中位线、圆与圆内切与外切,直线与圆相切的等价条件)得出所求点(,)P x y 满足圆的几何定义或椭圆、双曲线、抛物线的定义,从而求出点的轨迹方程;③伴随动点转化法: 该类题型的特征往往是: 其中一个动点如点00(,)Q x y 的轨迹方程是已知的,另有一个定点A 或多个定点,所求动点(,)P x y 与定点A 和动点00(,)Q x y 有着一定关系。
这时只需这么做:根据已知条件得出:00(,)(,)x f x y y g x y =⎧⎨=⎩,代入到点00(,)Q x y 的轨迹方程中,从而建立起y 与x 的关系,求出点(,)P x y 的轨迹方程 .④ 交轨法: 如求两圆相交时的相交弦所在的直线方程,采用的就是这种方法。
相交弦的两个端点同时在两个圆上,将这两个圆的方程相减,进行整理即得到所求直线方程 .交轨法常用于解决两动曲线交点的轨迹方程问题。