习题答案选01_线性规划和单纯形法

合集下载

运筹学思考练习题答案

运筹学思考练习题答案

运筹学思考练习题答案第⼀章 L.P 及单纯形法练习题答案⼀、判断下列说法是否正确1. 线性规划模型中增加⼀个约束条件,可⾏域的范围⼀般将缩⼩,减少⼀个约束条件,可⾏域的范围⼀般将扩⼤。

(?)2. 线性规划问题的每⼀个基解对应可⾏域的⼀个顶点。

(?)3. 如线性规划问题存在某个最优解,则该最优解⼀定对应可⾏域边界上的⼀个点。

(?)4. 单纯形法计算中,如不按最⼩⽐值原则选取换出变量,则在下⼀个基可⾏解中⾄少有⼀个基变量的值为负。

(?)5. ⼀旦⼀个⼈⼯变量在迭代中变为⾮基变量后,该变量及相应列的数字可以从单纯形表中删除,⽽不影响计算结果。

(?)6. 若1X 、2X 分别是某⼀线性规划问题的最优解,则1212X X X λλ=+也是该线性规划问题的最优解,其中1λ、2λ为正的实数。

(?)7. 线性规划⽤两阶段法求解时,第⼀阶段的⽬标函数通常写为ai iMinZ x =∑(x ai 为⼈⼯变量),但也可写为i ai iMinZ k x =∑,只要所有k i 均为⼤于零的常数。

(?)8. 对⼀个有n 个变量、m 个约束的标准型的线性规划问题,其可⾏域的顶点恰好为m n C 个。

(?)9. 线性规划问题的可⾏解如为最优解,则该可⾏解⼀定是基可⾏解。

(?)10. 若线性规划问题具有可⾏解,且其可⾏域有界,则该线性规划问题最多具有有限个数的最优解。

(?)⼆、求得L.P 问题121231425j MaxZ 2x 3x x 2x x 84x x 164x x 12x 0;j 1,2,,5=+++=??+=??+=?≥=的解如下: X ⑴=(0,3,2,16,0)T ;X ⑵=(4,3,-2,0,0)T ;X ⑶=(3.5,2,0.5,2,4)T ;X ⑷=(8,0,0,-16,12)T ; =(4.5,2,-0.5,-2,4)T ; X ⑹=(3,2,1,4,4)T ;X ⑺=(4,2,0,0,4)T 。

要求:分别指出其中的基解、可⾏解、基可⾏解、⾮基可⾏解。

运筹学教材编写组《运筹学》课后习题(第1章 线性规划与单纯形法——第3章 运输问题)【圣才出品】

运筹学教材编写组《运筹学》课后习题(第1章 线性规划与单纯形法——第3章 运输问题)【圣才出品】

②因为 P1 、 P3 线性无关,故有
2xx11
x3 8 6x3
3x2 3 2x2
4
x4 7 x4
令非基变量
x2
x4
0 ,解得
x1
45 13 , x3
14 13
,故
X (2)
45 13
,
0,
14 13
,
0
T
不是可
行解。
③因为 P1 、x2 3 2x2
x3 6x3
令非基变量
x2
x3
0 ,解得
x1
34 5 , x4
7 5
,故有基可行解
X
(3)
34 5
, 0, 0,
7
T
5

z3
117 5

④因为 P2 、 P3 线性无关,故有
32xx22
x3 8 6x3
2 3
x1 x1
4x4 7 x4
令非基变量
x1
x4
0 ,解得
4x1 x2 2x3 x4 2
s.t.
x1
x2
2x1
3x3 3x2
x4 x3
14 2x4
2
x1, x2 , x3 0, x4无约束
解:令 x4 x4 ' x4 '',且 x4 ', x4 '' 0 ;在第一个约束条件两边同时乘以-1 后引入人工
变量 x5 ,在第二个约束条件右端加上松弛变量 x6 ;在第三个约束条件右端减去剩余变量 x7 ,
令非基变量
x1
x3
0 ,解得
X
(5)
0,
68 , 0, 29

运筹学:线性规划的数学模型与单纯形法习题与答案

运筹学:线性规划的数学模型与单纯形法习题与答案

一、单选题1、线性规划具有唯一最优解是指()。

A.不加入人工变量就可进行单纯形法计算B.最优表中非基变量检验数全部非零C.可行解集合有界D.最优表中存在非基变量的检验数为零正确答案:B2、线性规划具有多重最优解是指()。

A.最优表中存在非基变量的检验数为零B.可行解集合无界C.基变量全部大于零D.目标函数系数与某约束系数对应成比例正确答案:A3使函数z=−x1+x2+2x3减少得最快的方向是()。

A. (1,-1,-2)B. (-1,-1,-2)C. 1,1,2)D. (-1,1,2)正确答案:A4、线性规划的退化基可行解是指()。

A.基可行解中存在为零的非基变量B.基可行解中存在为零的基变量C.非基变量的检验数为零D.所有基变量不等于零正确答案:B5、线性规划无可行解是指()。

A.有两个相同的最小比值B.第一阶段最优目标函数值等于零C.用大M法求解时,最优解中还有非零的人工变量D. 进基列系数非正正确答案:C6、若线性规划不加入人工变量就可以进行单纯形法计算()。

A.一定有最优解B.全部约束是小于等于的形式C.可能无可行解D.一定有可行解正确答案:D7、设线性规划的约束条件为x1+x2+x3=22x1+2x2+x4=4x1,…,x4≥0则非可行解是()。

A. (0,1,1,2)B. (2,0,0,0)C. (1,0,1,0)D. (1,1,0,0)正确答案:C8、线性规划可行域的顶点一定是()。

A.可行解B.非基本解C.非可行解D.最优解正确答案:A9、X是线性规划的基本可行解则有()。

A.X不一定满足约束条件B.X不是基本解C.X中的基变量非零,非基变量为零D.X中的基变量非负,非基变量为零正确答案:D10、下例错误的结论是()。

A.检验数就是目标函数的系数B.检验数是用来检验可行解是否是最优解的数C.不同检验数的定义其检验标准也不同D.检验数是目标函数用非基变量表达的系数正确答案:A11、在解决运筹学问题时,根据对问题内在机理的认识直接构造出模型的方法称为()。

规划数学(运筹学)第三版课后习题答案 习 题 1(1)

规划数学(运筹学)第三版课后习题答案 习 题 1(1)

习 题 11 用图解法求解下列线性规划问题,并指出问题具有唯一最优解、无穷最优解、无界解还是无可行解。

⎪⎩⎪⎨⎧≥≥+≥++=0x x 42x 4x 66x 4x 3x 2x minz )a (21212121, ⎪⎩⎪⎨⎧≥≥+≤++=0x ,x 124x 3x 2x 2x 2x 3x maxz )b (21212121⎪⎩⎪⎨⎧≤≤≤≤≤++=8x 310x 512010x 6x x x maxz )c (212121⎪⎩⎪⎨⎧≥≤+-≥-+=0x ,x 23x 2x 2x 2x 6x 5x maxz )d (21212121 答案: (a)唯一解3*,)5.0,75.0(*==z X T); (b)无可行解;(c)唯一解16*,)6,10(*==z X T); (d)无界解)2 用单纯形法求解下列线性规划问题。

⎪⎩⎪⎨⎧≥≤+≤++=0x ,x 82x 5x 94x 3x 5x 10x maxz )a (21212121 ⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+=0x ,x 5x x 242x 6x 155x x 2x maxz )b (212121221 答案:(a)唯一解5.17*,)5.1,1(*==z X T),对偶问题5.17*,)786.1,357.0(*==w Y T; (b)唯一解5.8*,)5.1,5.3(*==z X T),5.8*,)5.0,25.0,0(*==w Y T3 用大M 法和两阶段法求解下列线性规划问题,并指出属于哪一类解。

⎪⎪⎩⎪⎪⎨⎧≥≥-≥+-≥+++-=0x x x 0x 2x 2x 2x 6x x x 2x x 2x maxz )a (3,2,13231321321 ⎪⎩⎪⎨⎧≥≥+≥++++=0x ,x ,x 62x 3x 82x 4x xx 3x 2x minz )b (32121321321答案:(a)无界解;(b)唯一解8*,)0,8.1,8.0(*==z X T),对偶问题8*,)0,1(*==w Y T4已知线性规划问题的初始单纯形表(如表1-54所示)和用单纯形法迭代后得到的表(如表1-55所示)如下,试求括弧中未知数a ~l 的值。

《运筹学》课堂作业及答案

《运筹学》课堂作业及答案

第一部分绪论第二部分线性规划与单纯形法1 判断下列说法是否正确:(a)图解法同单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的;(b)线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大;(c)线性规划问题的每一个基解对应可行域的一个顶点;(d)如线性规划问题存在可行域,则可行域一定包含坐标的原点;(e)对取值无约束的变量x i,通常令其中,在用单纯形法求得的最优解中有可能同时出现(f)用单纯形法求解标准型的线性规划问题时,与对应的变量都可以被选作换入变量;(g)单纯形法计算中,如不按最小比值原则选取换出变量,则在下一个解中至少有一个基变量的值为负;(h)单纯形法计算中,选取最大正检验数δk对应的变量x k作为换入变量,将使目标函数值得到最快的增长;(i)一旦一个人工变量在迭代中变为非基变量后,则该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果;(j)线性规划问题的任一可行解都可以用全部基可行解的线性组合表示;(k)若x1,x2分别是某一线性规划问题的最优解,则也是该线性规划问题的最优解,其中λ1,λ2可以为任意正的实数;(1)线性规划用两阶段法求解时,第一阶段的目标函数通常写为X ai为人工变量),但也可写为,只要所有k i均为大于零的常数;(m)对一个有n个变量、m个约束的标准型的线性规划问题,其可行域的顶点恰好为个;(n)单纯形法的迭代计算过程是从一个可行解转转换到目标函数值更大的另一个可行解;(o)线性规划问题的可行解如为最优解,则该可行解一定是基可行解;(p)若线性规划问题具有可行解,且其可行域有界,则该线性规划问题最多具有有限个数的最优解;(q)线性规划可行域的某一顶点若其目标函数值优于相邻的所有顶点的目标函数值,则该顶点处的目标函数值达到最优;(r)将线性规划约束条件的“≤”号及“≥”号变换成“=”号,将使问题的最优目标函数值得到改善;(s)线性规划目标函数中系数最大的变量在最优解中总是取正的值;(t)一个企业利用3种资源生产4种产品,建立线性规划模型求解得到的最优解中,最多只含有3种产品的组合;(u)若线性规划问题的可行域可以伸展到无限,则该问题一定具有无界解;(v)一个线性规划问题求解时的迭代工作量主要取决于变量数的多少,与约束条件的数量关系相对较小。

规划数学(运筹学)第三版课后习题答案-习-题-1(1)

规划数学(运筹学)第三版课后习题答案-习-题-1(1)

习 题 11 用图解法求解下列线性规划问题,并指出问题具有唯一最优解、无穷最优解、无界解还是无可行解。

⎪⎩⎪⎨⎧≥≥+≥++=0x x 42x 4x 66x 4x 3x 2x minz )a (21212121, ⎪⎩⎪⎨⎧≥≥+≤++=0x ,x 124x 3x 2x 2x 2x 3x maxz )b (21212121⎪⎩⎪⎨⎧≤≤≤≤≤++=8x 310x 512010x 6x x x maxz )c (212121⎪⎩⎪⎨⎧≥≤+-≥-+=0x ,x 23x 2x 2x 2x 6x 5x maxz )d (21212121 答案: (a)唯一解3*,)5.0,75.0(*==z X T); (b)无可行解;(c)唯一解16*,)6,10(*==z X T); (d)无界解)2 用单纯形法求解下列线性规划问题。

⎪⎩⎪⎨⎧≥≤+≤++=0x ,x 82x 5x 94x 3x 5x 10x maxz )a (21212121 ⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+=0x ,x 5x x 242x 6x 155x x 2x maxz )b (212121221 答案:(a)唯一解5.17*,)5.1,1(*==z X T),对偶问题5.17*,)786.1,357.0(*==w Y T; (b)唯一解5.8*,)5.1,5.3(*==z X T),5.8*,)5.0,25.0,0(*==w Y T3 用大M 法和两阶段法求解下列线性规划问题,并指出属于哪一类解。

⎪⎪⎩⎪⎪⎨⎧≥≥-≥+-≥+++-=0x x x 0x 2x 2x 2x 6x x x 2x x 2x maxz )a (3,2,13231321321 ⎪⎩⎪⎨⎧≥≥+≥++++=0x ,x ,x 62x 3x 82x 4x x x 3x 2x minz )b (32121321321 答案:(a)无界解;(b)唯一解8*,)0,8.1,8.0(*==z X T),对偶问题8*,)0,1(*==w Y T4已知线性规划问题的初始单纯形表(如表1-54所示)和用单纯形法迭代后得到的表(如表1-55所示)如下,试求括弧中未知数a ~l 的值。

运筹学习题答案(1)

运筹学习题答案(1)

第一章 线性规划及单纯形法(作业)1.4 分别用图解法和单纯型法求解下列线性规划问题,并对照指出单纯形表中的各基可行解对应图解法中可行域的哪一顶点。

(1)Max z=2x 1+x 2St.⎪⎩⎪⎨⎧≥≤+≤+0,24261553212121x x x x x x 解:①图解法:由作图知,目标函数等值线越往右上移动,目标函数越大,故c 点为对应的最优解,最优解为直线⎩⎨⎧=+=+242615532121x x x x 的交点,解之得X=(15/4,3/4)T 。

Max z =33/4. ② 单纯形法:将上述问题化成标准形式有: Max z=2x 1+x 2+0x 3+0x 4St. ⎪⎩⎪⎨⎧≥≤++≤++0,,,242615535421421321x x x x x x x x x x其约束条件系数矩阵增广矩阵为:P 1 P 2 P 3 P 4⎥⎦⎤⎢⎣⎡241026150153 P 3,P 4为单位矩阵,构成一个基,对应变量向,x 3,x 4为基变量,令非基变量x 1,x 2为零,找到T 优解,代入目标函数得Max z=33/4.1.7 分别用单纯形法中的大M 法和两阶段法求解下列线性规划问题,并指出属哪一类。

(3)Min z=4x 1+x 2⎪⎪⎩⎪⎪⎨⎧=≥=++=-+=+)4,3,2,1(0426343342132121j xj x x x x x x x x 解:这种情况化为标准形式: Max z '=-4x 1-x 2⎪⎪⎩⎪⎪⎨⎧=≥=++=-+=+)4,3,2,1(0426343342132121j xj x x x x x x x x 添加人工变量y1,y2Max z '=-4x 1-x 2+0x 3+0x 4-My 1-My 2⎪⎪⎩⎪⎪⎨⎧≥=≥=++=+-+=++0,).4,3,2,1(04263433214112321121y y j xj x x x y x x x y x x(2) 两阶段法: Min ω=y 1+y 2St.⎪⎪⎩⎪⎪⎨⎧≥=≥=++=+-+=++0,).4,3,2,1(04263433214112321121y y j xj x x x y x x x y x x第二阶段,将表中y 1,y 2去掉,目标函数回归到Max z '=-4x 1-x 2+0x 3+0x 4第二章 线性规划的对偶理论与灵敏度分析(作业)2.7给出线性规划问题:Max z=2x 1+4x 2+x 3+x 4⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥≤++≤++≤+≤++)4,3,2,1(096628332143221421j x x x x x x x x x x x x j要求:(1)写出其对偶问题;(2)已知原问题最优解为X *=(2,2,4,0),试根据对偶理论,直接求出对偶问题的最优解。

运筹学课后习题答案

运筹学课后习题答案

第一章 线性规划1、由图可得:最优解为2、用图解法求解线性规划: Min z=2x 1+x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+-01058244212121x x x x x x解:由图可得:最优解x=1.6,y=6.4Max z=5x 1+6x 2⎪⎩⎪⎨⎧≥≤+-≥-0,23222212121x x x x x x解:由图可得:最优解Max z=5x 1+6x 2, Max z= +∞Maxz = 2x 1 +x 2⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤0,5242261552121211x x x x x x x由图可得:最大值⎪⎩⎪⎨⎧==+35121x x x , 所以⎪⎩⎪⎨⎧==2321x xmax Z = 8.1212125.max 23284164120,1,2maxZ .jZ x x x x x x x j =+⎧+≤⎪≤⎪⎨≤⎪⎪≥=⎩如图所示,在(4,2)这一点达到最大值为26将线性规划模型化成标准形式:Min z=x 1-2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≥-=++-≥+-≤++无约束321321321321,0,052327x x x x x x x x x x x x解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥0,x 3’’≥0Max z ’=-x 1+2x 2-3x 3’+3x 3’’⎪⎪⎩⎪⎪⎨⎧≥≥≥≥≥≥-=++-=--+-=+-++0,0,0'',0',0,05232'''7'''5433213215332143321x x x x x x x x x x x x x x x x x x x7将线性规划模型化为标准形式Min Z =x 1+2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≤-=--≥++-≤++无约束,321321321321,00632442392-x x x x x x x x x x x x解:令Z’ = -z ,引进松弛变量x 4≥0,引进剩余变量x 5≥0,得到一下等价的标准形式。

线性规划题及答案

线性规划题及答案

线性规划题及答案引言概述:线性规划是一种优化问题求解的方法,广泛应用于经济学、管理学、工程学等领域。

本文将介绍线性规划题的基本概念和解题方法,并给出相关题目及其答案。

正文内容:1. 线性规划的基本概念1.1 目标函数:线性规划的目标是最大化或者最小化一个线性函数,称为目标函数。

目标函数常用来表示利润、成本等经济指标。

1.2 约束条件:线性规划的解必须满足一系列线性等式或者不等式,称为约束条件。

约束条件可以表示资源限制、技术限制等。

1.3 变量:线性规划的解是一组变量的取值,这些变量表示决策变量,用来描述问题的决策方案。

2. 线性规划的解题方法2.1 图形法:对于二维线性规划问题,可以使用图形法求解。

通过绘制目标函数和约束条件的图形,找到目标函数的最优解。

2.2 单纯形法:对于多维线性规划问题,可以使用单纯形法求解。

该方法通过迭代计算,逐步逼近最优解。

2.3 整数线性规划:当决策变量需要取整数值时,可以使用整数线性规划方法求解。

这种方法在实际问题中更具实用性。

3. 线性规划题目及答案3.1 例题1:某工厂生产两种产品,产品A每单位利润为10元,产品B每单位利润为15元。

生产A产品需要2小时,B产品需要3小时。

工厂每天有8小时的生产时间。

求如何安排生产,使得利润最大化。

答案:假设生产A产品x单位,B产品y单位,则目标函数为10x + 15y,约束条件为2x + 3y ≤ 8,x ≥ 0,y ≥ 0。

通过计算可得最优解为x = 2,y = 2,最大利润为70元。

3.2 例题2:某公司有两个部门,部门A和部门B。

部门A每月产生利润10万元,部门B每月产生利润15万元。

公司规定,部门A的人数不能超过100人,部门B的人数不能超过80人。

求如何分配人力资源,使得利润最大化。

答案:假设部门A的人数为x人,部门B的人数为y人,则目标函数为10x + 15y,约束条件为x ≤ 100,y ≤ 80,x ≥ 0,y ≥ 0。

解答-运筹学-第一章-线性规划及其单纯形法习题

解答-运筹学-第一章-线性规划及其单纯形法习题

项目 X1 X2 X3 X4
X5
X4 6 (b) (c) (d) 1 0
X5 1 -1
3 (e) 0 1
Cj-ZJ
(a) -1 2
00
X1 (f) (g) 2 -1 1/2 0
X5 4 (h) (i) 1 1/2 1
Cj-ZJ
0
-7A (j) (k) (l)
25
首先由于x1、x5为基变量,故g=1, h=0, l = 0
检验数j
14M 4M-2 6M-3 2M-1 -M -M
A
0
0
18
Cj
-2 -3 -1 0 0 -M -M 比
CB XB
b x1 x2 x3 x4 x5 x6 x7 值
-M x6 8 1 4 2 -1 0 1 0 2
-M x7 6 3 2 0 0 -1 0 1 3
检验数j 14M 4M-2 6M-3 2M-1 -M -M 0 0
5 x2 15
s
t
.
6
x1 x1
2 x2 x2
24 5
x 1 , x 2 0
A
10
Cj
10 5 0 0 比
CB XB
b
x1
x2
x3
x4

0 x3
9
3
4
1
0 9/3=3
0 x4
8
5
20
1
8/5
检验数j 0 10 5 0 0
0 x3 21/5 0 14/5 1 -3/5 3/2
10 x1 8/5 1 2/5 0 1/5
4
x
2
12
x 1, x 2 0 无可行解
m ax Z x1 x2

运筹学习题精选

运筹学习题精选

运筹学习题精选第一章线性规划及单纯形法选择1.在线性规划模型中,没有非负约束的变量称为……………………………………………………( C )A.多余变量 B.松弛变量 C.自由变量 D.人工变量2.约束条件为0AX的线性规划问题的可行解集b,≥=X 是………………………………………( B )A.补集 B.凸集 C.交集 D.凹集3.线性规划问题若有最优解,则一定可以在可行域的( C)上达到。

A.内点 B.外点 C.顶点 D.几何点4.线性规划标准型中bi(i=1,2,……m)必须是…………………………………………………( B)A.正数 B.非负数 C.无约束 D.非零的5.线性规划问题的基本可行解X对应于可行域D 的………………………………………………( D)A.外点 B.所有点 C.内点 D.极点6.基本可行解中的非零变量的个数小于约束条件数时,该问题可求得……………………………( B ) A.基本解 B.退化解 C.多重解 D.无解7.满足线性规划问题全部约束条件的解称为…………………………………………………( C )A.最优解 B.基本解 C.可行解 D.多重解8.线性规划一般模型中,自由变量可以用两个非负变量的(B )代换。

A.和 B.差 C.积 D.商9.当满足最优检验,且检验数为零的变量的个数大于基变量的个数时,可求得………………………( A )A .多重解B .无解C .正则解D .退化解 10.若线性规划问题有最优解,则必定存在一个( D )是最优解。

A .无穷多解 B. 基解 C. 可行解 D. 基可行解 填空计算 1. 某厂生产甲、乙、丙三种产品,已知有关数据如下表所示,求使该厂获利最大的生产计划。

2. 目标函数为max Z =28x4+x5+2x6,约束形式为“≤”,且x1,x2,x3为松弛变量,表中的解代入目标函数中得Z=14,求出a~g 的值,并判断是否→j c 0 0 0 28 1 2B C 基 b 1x 2x 3x 4x5x 6x 2 6x A 3 0 -14/3 0 1 1 0 2x 5 6 D 2 0 5/2 0 28 4x 0 0 E F 1 0 0 j j z c - B C 0 0 -1 G3. 某工厂生产A 、B 两种产品,已知生产A 每公斤要用煤6吨、电4度、劳动力3个;生产B 每公斤要用煤4吨、电5度、劳动力10个。

规划数学(运筹学)第三版课后习题答案习题1(1)

规划数学(运筹学)第三版课后习题答案习题1(1)

规划数学(运筹学)第三版课后习题答案习题1(1)习题 11 ⽤图解法求解下列线性规划问题,并指出问题具有唯⼀最优解、⽆穷最优解、⽆界解还是⽆可⾏解。

≥≥+≥++=0x x 42x 4x 66x 4x 3x 2x minz )a (21212121, ??≥≥+≤++=0x ,x 124x 3x 2x 2x 2x 3x maxz )b (21212121≤≤≤≤≤++=8x 310x 512010x 6x x x maxz )c (212121≥≤+-≥-+=0x ,x 23x 2x 2x 2x 6x 5x maxz )d (21212121 答案: (a)唯⼀解3*,)5.0,75.0(*==z X T); (b)⽆可⾏解;(c)唯⼀解16*,)6,10(*==z X T); (d)⽆界解)2 ⽤单纯形法求解下列线性规划问题。

≥≤+≤++=0x ,x 82x 5x 94x 3x 5x 10x maxz )a (21212121≥≤+≤+≤+=0x ,x 5x x 242x 6x 155x x 2x maxz )b (212121221 答案:(a)唯⼀解5.17*,)5.1,1(*==z X T),对偶问题5.17*,)786.1,357.0(*==w Y T; (b)唯⼀解5.8*,)5.1,5.3(*==z X T),5.8*,)5.0,25.0,0(*==w Y T3 ⽤⼤M 法和两阶段法求解下列线性规划问题,并指出属于哪⼀类解。

≥≥-≥+-≥+++-=0x x x 0x 2x 2x 2x 6x x x 2x x 2x maxz )a (3,2,13231321321 ≥≥+≥++++=0x ,x ,x 62x 3x 82x 4x xx 3x 2x minz )b (32121321321答案:(a)⽆界解;(b)唯⼀解8*,)0,8.1,8.0(*==z X T),对偶问题8*,)0,1(*==w Y T4已知线性规划问题的初始单纯形表(如表1-54所⽰)和⽤单纯形法迭代后得到的表(如表1-55所⽰)如下,试求括弧中未知数a ~l 的值。

最优化方法课后习题答案

最优化方法课后习题答案

最优化方法课后习题答案最优化方法课后习题答案最优化方法是一门重要的数学学科,它旨在寻找给定问题的最佳解决方案。

在这门课程中,学生将学习各种最优化算法和技术,以解决不同类型的优化问题。

课后习题是巩固所学知识的重要方式,下面将为大家提供一些最优化方法课后习题的答案。

1. 线性规划问题的单纯形法是如何工作的?单纯形法是一种用于解决线性规划问题的常用方法。

其基本思想是通过不断迭代改进当前解决方案,直到找到最优解。

具体步骤如下:1) 初始解:选择一个可行解作为初始解,通常是通过求解一个相应的松弛问题得到。

2) 进入变量:选择一个进入变量,即使目标函数值增加最快的变量。

3) 离开变量:选择一个离开变量,即使约束条件仍然保持满足的变量。

4) 改进解:通过改变进入变量和离开变量的值,得到一个更好的解。

5) 终止条件:当无法找到更好的解时,算法终止。

2. 什么是凸优化问题?如何判断一个问题是否是凸优化问题?凸优化问题是指目标函数和约束条件都是凸函数的优化问题。

凸函数具有以下性质:1) 对于任意两个点x和y以及0≤λ≤1,有f(λx+(1-λ)y)≤λf(x)+(1-λ)f(y)。

2) 对于任意两个点x和y以及0≤λ≤1,有g(λx+(1-λ)y)≤λg(x)+(1-λ)g(y),其中g(x)表示约束函数。

要判断一个问题是否是凸优化问题,可以通过以下步骤:1) 检查目标函数和约束条件是否都是凸函数。

2) 检查约束条件是否满足凸集的定义,即对于任意两个点x和y以及0≤λ≤1,有λx+(1-λ)y满足所有约束条件。

如果以上两个条件都满足,则问题是凸优化问题。

3. 最小二乘法是如何解决无约束优化问题的?最小二乘法是一种常用的解决无约束优化问题的方法。

其基本思想是通过最小化目标函数和实际观测值之间的差距来找到最优解。

最小二乘法的步骤如下:1) 建立目标函数:根据实际观测值和模型假设,建立一个与待优化参数相关的目标函数。

2) 求解最优解:通过对目标函数求导,并令导数等于零,求解出最优解。

第一章线性规划及单纯形法习题

第一章线性规划及单纯形法习题

第一章 线性规划及单纯形法习题1.用图解法求解下列线性规划问题,并指出问题具有唯一最优解、无穷最优解还是无可行解。

(1)⎪⎩⎪⎨⎧≥≥+≥++=0,42266432min 21212121x x x x x x x x z (2) ⎪⎩⎪⎨⎧≥≥+≥++=0,12432223max 21212121x x x x x x x x(3) ⎪⎩⎪⎨⎧≤≤≤≤≤++=83105120106max 212121x x x x x x z (4)⎪⎩⎪⎨⎧≥≤+-≥-+=0,2322265max 12212121x x x x x x x x z 2.将下列线性规划问题化成标准形式。

(1)⎪⎪⎩⎪⎪⎨⎧≥≥-++-≤+-+-=-+-+-+-=无约束43214321432143214321,0,,2321422245243min x x x x x x x x x x x x x x x x x x x x z (2) ⎪⎪⎩⎪⎪⎨⎧≥≤≥-++-≤-+-=++-+-=无约束3214321321321321,0,023*******min x x x x x x x x x x x x x x x x z3.对下列线性规划问题找出所有基本解,指出哪些是基可行解,并确定最优解。

(1) ⎪⎪⎩⎪⎪⎨⎧=≥=-=+-+=+++++=)6,,1(0231024893631223min 6143214321321 j x x x x x x x x x x x x x x z j (2)⎪⎩⎪⎨⎧=≥=+++=+++++-=)4,,1(01022274322325min 432143214321 j x x x x x x x x x x x x x z j4.分别用图解发法和单纯形法求解下述问题,并对照单纯形表中的各基本可行解对应图解法中可行域的哪一顶点。

(1) ⎪⎩⎪⎨⎧≥≤+≤++=0,825943510max 12212121x x x x x x x x z (2) ⎪⎩⎪⎨⎧≥≤+≤++=0,242615532max 12212121x x x x x x x x z/5.上题(1)中,若目标函数变为21m ax dx cx z +=,讨论c,d 的值如何变化,使该问题可行域的每一顶点依次使目标函数达到最优。

《管理运筹学》第二课后习题答案

《管理运筹学》第二课后习题答案

《管理运筹学》第⼆课后习题答案《管理运筹学》(第⼆版)课后习题参考答案第1章线性规划(复习思考题)1.什么是线性规划?线性规划的三要素是什么?答:线性规划(Linear Programming, LP)是运筹学中最成熟的⼀个分⽀,并且是应⽤最⼴泛的⼀个运筹学分⽀。

线性规划属于规划论中的静态规划,是⼀种重要的优化⼯具,能够解决有限资源的最佳分配问题。

建⽴线性规划问题要具备三要素:决策变量、约束条件、⽬标函数。

决策变量是决策问题待定的量值,取值⼀般为⾮负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策⽅案的可⾏性;⽬标函数是决策者希望实现的⽬标,为决策变量的线性函数表达式,有的⽬标要实现极⼤值,有的则要求极⼩值。

2.求解线性规划问题时可能出现⼏种结果,哪种结果说明建模时有错误?答:(1)唯⼀最优解:只有⼀个最优点;(2)多重最优解:⽆穷多个最优解;(3)⽆界解:可⾏域⽆界,⽬标值⽆限增⼤;(4)没有可⾏解:线性规划问题的可⾏域是空集。

当⽆界解和没有可⾏解时,可能是建模时有错。

3.什么是线性规划的标准型?松弛变量和剩余变量的管理含义是什么?答:线性规划的标准型是:⽬标函数极⼤化,约束条件为等式,右端常数项b i 0,决策变量满⾜⾮负性。

如果加⼊的这个⾮负变量取值为⾮零的话,则说明该约束限定没有约束⼒,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为⾮零的话,则说明型约束的左边取值⼤于右边规划值,出现剩余量。

4.试述线性规划问题的可⾏解、基础解、基可⾏解、最优解的概念及其相互关系。

答:可⾏解:满⾜约束条件AX b,X 0的解,称为可⾏解。

基可⾏解:满⾜⾮负性约束的基解,称为基可⾏解可⾏基:对应于基可⾏解的基,称为可⾏基。

最优解:使⽬标函数最优的可⾏解,称为最优解。

最优基:最优解对应的基矩阵,称为最优基。

它们的相互关系如右图所⽰:5.⽤表格单纯形法求解如下线性规划。

8x 1 3X 2 x 32s. t. 6X 1 X 2 X 3 8X i , X 2,X 3 0解:标准化max Z 4X -IX 2 2x 38X 13X 2 X 3X 42s.t.6X 1X 2X 3X 5 8X 1,X 2 ,X 3,X 4,X s列出单纯形表故最优解为X* (0,0,2,0,6)T,即X i 0,X 2 0, X 3 2,此时最优值为 Z (X*)4 .6. 表1 —15中给出了求极⼤化问题的单纯形表,问表中 a 1,a 2,c 1,c 2,d 为何值及变量属于哪⼀类型时有:(1)表中解为唯⼀最优解;(2)表中解为⽆穷多最优解之⼀;(3)下⼀步迭代将以X i 代替基变量X s ;( 4)该线性规划问题具有⽆界解;(5)该线性规划问题⽆可⾏解。

运筹学教材编写组《运筹学》章节题库-线性规划与单纯形法(圣才出品)

运筹学教材编写组《运筹学》章节题库-线性规划与单纯形法(圣才出品)

约束条件应引入( )。[北京交通大学 2010 研]
A.可控变量
B.环境变量
C.人工变量
D.松弛变量
【答案】D
【解析】约束方程为“≥”不等式,则可在“≥”不等式左端减去一个非负剩余变量(也
可称松弛变量)。
2.单纯形法中,关于松弛变量和人工ห้องสมุดไป่ตู้量,以下说法正确的是( )。[中山大学 2008 研]
A.在最后的解中,松弛变量必须为 0,人工变量不必为 0 B.在最后的解中,松弛变量不必为 0,人工变量必须为 0 C.在最后的解中,松弛变量和人工变量都必须为 0 D.在最后的解中,松弛变量和人工变量都不必为 0 【答案】B 【解析】如果人工变量不为 0,则原问题无可行解。
【答案】√ 【解析】基解且可行才有可能是最优解。
6.若 X1,X2 分别是某一线性规划问题的最优解,则 X=λ1X1+λ2X2 也是该线性规划问 题的最优解,其中 λ1,λ2 为正实数。[南京航空航天大学 2011 研]
【答案】×
【解析】 1,2 不但应该是正实数,还应该满足 1+2 =1
7.如果线性规划问题有最优解,则它一定是基可行解。[东北财经大学 2008 研] 【答案】√ 【解析】基解且可行才有可能是最优解。
圣才电子书 十万种考研考证电子书、题库视频学习平台


C
m n
个。[暨南大学
2011
研]
【答案】×
【解析】其基解的个数最多是
C
m n
个,且一般情况下,基可行解的数目小于基解的个数。
5.若线性规划问题的可行解为最优解,则该可行解必定是基可行解。[南京航空航天大 学 2011 研]
【答案】C
【解析】当某些 σj>0 时,xj 增加则目标函数值还可以增大,这时要将某个非基变量 xj

运筹学 第二版 (吴祁宗 著) 课后习题答案 机械工业出版社

运筹学 第二版 (吴祁宗 著) 课后习题答案 机械工业出版社

1 3 P3 2 0 1 0 P5 2 1 2 1 P4 3 0 3 0 P5 0 1 1
(2) M inf x1 5 x2 2 x3
3x1 2 x 2 4 x3 6 2 x 3 x x 5 1 2 3 s.t : x1 x 2 x3 9 x1 0, x 2 0
令 z f , 则Maxz x1 5 x 2 2 x3
2 3
X2
2 1 0
X2
1 2 A
3 4 B
D
x1
5 B 4 3 2 1 0 1 2 3
C A Z
*
T z * 13
4 5 6 x1
4
(3)Max z= x1+ 2x2 s.t: 2x1- x2≤6 (A) 3x1+ 2x2≤12 (B) x1 ≤3 (C) x1,x2≥0 从图中可知,最优解为 0
T
T
同时为基本可行解, z 2 3 同时为基本可行解, z 1
对应 B6的基本解为0 1 0 对应 B7的基本解为0 对应 B8的基本解为0 对应 B9的基本解为0 对应 B10的基本解为0 ∴最优解为 x 14 3
5
B9 P3
共 10 个基
2 0 P5 1 1
B10 P4
1 0 P5 0 1
x1 20 3 x1 x 2 6 对应B1的基本解为:令x 3 x 4 x5 0得 2 x1 4 x 2 4 x 2 3
15 x1
1 1 2 1 0 A P1 1 4 1 0 1 B1 P1 B3 P1 B5 P2 B7 P2 1 1 P2 1 4 1 1 P4 1 0 1 2 P3 4 1 1 0 P5 4 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运筹学教程(胡运权主编,清华版)部分习题答案(第一章)1.5
记可行集4个顶点分别为O:(0,0),A:(1.6,0),B:(1,1.5),C:(0,2.25)
当c=0,d=0时,四边形OABC中的点都是最优解
当c=0,d>0时,顶点C是最优解
当c=0,d<0时,线段OA上的点都是最优解
当c>0,d/c<2/5时,顶点A是最优解
当c>0,d/c=2/5时,线段AB上的点都是最优解
当c>0,2/5<d/c<4/3时,顶点B是最优解
当c>0,d/c=4/3时,线段BC上的点都是最优解
当c>0,d/c>4/3时,顶点C是最优解
当c<0,d<0时,顶点O是最优解
当c<0,d=0时,线段OC上的点都是最优解
当c<0,d>0时,顶点C是最优解
1.8
a=3,b=2,c=4,d=-2,e=2,f=3,g=1,h=0,i=5,j=5,k=-3/2,l=0
1.15
设i=1,2,3分别表示前、中、后三舱,j=1,2,3分别表示A、B、C三种商品
设第i舱装载第j中商品的件数为x ij
max z = 100(x11+x21+x31) + 700(x12+x22+x32) + 600(x13+x23+x33)
s.t. 8x11+6x12+5x13 ≤ 2000
8x21+6x22+5x23 ≤ 3000
8x31+6x32+5x33 ≤ 1500
10x11+5x12+7x13 ≤ 4000
10x21+5x22+7x23 ≤ 5400
10x31+5x32+7x33 ≤ 1500
x11+x21+x31≤ 600
x12+x22+x32 ≤ 1000
x13+x23+x33 ≤ 800
8x11+6x12+5x13 ≤ 1.15 (8x21+6x22+5x23)
8x21+6x22+5x23 ≤ 1.15 (8x11+6x12+5x13)
8x31+6x32+5x33 ≤ 1.15 (8x21+6x22+5x23)
8x21+6x22+5x23 ≤ 1.15 (8x31+6x32+5x33)
8x11+6x12+5x13 ≤ 1.1 (8x31+6x32+5x33)
8x31+6x32+5x33 ≤ 1.1 (8x11+6x12+5x13)
x ij ≥ 0, i=1,2,3, j=1,2,3
1.16
设x i和y i分别为第i周正常工作时间内用于生产食品Ⅰ和Ⅱ的工人数;
设s i和t i分别为第i周加班时间内为食品Ⅰ和Ⅱ加工的工时;
设w i为从第i周开始抽出来培训新工人的熟练工人数;
设n i为从第i周开始接受培训的新工人数;
设u i和v i分别为第i周于生产食品Ⅰ和Ⅱ的新工人数;
设f i和g i分别为第i周末未能按期交货的食品Ⅰ和Ⅱ的数量;
设k i和l i分别为第i周末剩余的食品Ⅰ和Ⅱ的数量;
设q i和r i分别为第i周内对食品Ⅰ和Ⅱ的需求量(如表,已知)。

min z = 360[(x1 + y1 + w1) + (x2 + y2 + w1 + w2) + ... + (x7 + y7 + w6 + w7) + (x8 + y8 + w7)] + 120[(n1) + (n1 + n2) + ... + (n6 + n7)]
+ 240[(u3 + v3) + (u4 + v4) + ... + (u8 + v8)]
+ 12[(s1 + t1) + (s2 + t2) + ... + (s8 + t8)]
+ 0.5(f1 + f2 + ... + f8) + 0.8(g1 + g2 + ... + g8)
s.t. x1 + y1 + w1 = 50
x2 + y2 + w1 + w2 = 50
……
x7 + y7 + w6 + w7 = 50
x8 + y8 + w7 = 50
n i ≤ 3 w i,i=1,2,…,7
u i + v i = n3 +... +n i-2,i=3,4,…,8
n1 + n2 + ... + n7 = 50
400x i + 10s i + f i = q i + k i,i=1,2
400x i + 400u i + 10s i + f i = q i + k i,i=3,4,…,8
240y i + 6t i + g i = r i + l i,i=1,2
240y i + 240v i + 6t i + g i = r i + l i,i=3,4,…,8
x i,y i,s i,t i,f i,g i,k i,l i ≥ 0,i=1,2,…,8
w i,n i ≥ 0,i=1,2,…,7
u i,v i ≥ 0,i=3,4,…,8
1.17
设:
x i :第i 个月公司雇佣的人数 ( i =1,2,…,6); z i :第i 个月末的库存量 ( i =1,2,…,6); s i :第i 个月的短缺量 ( i =1,2,…,6); t i :第i 个月因新增和解雇工人所产生的费用 ( i =1,2,…,6); q i :第i 个月的需求量(如表,已知);
Max Z = ∑=-61i i i )s q
(30–2000∑=61i i x –5∑=61i i z –∑=61i t i s.t ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⋯=≥==⋯=≥⋯=≥⋯=+=++,6);
1,2, i ( 0,t ,s ,z ,x 0z 4x ,6)1,2, i (),x -1000(x t ,6)1,2, i (),x -1500(x t ,6)1,2, i (,q z s 100x z i i i i 0
i -1i 1-i i i
i i i i 1-i i (该条件原题中没给)
1.18
假设:每月的现金流发生在月底。

x :上一年末的借款数;
y i :第i 个月底贷款, ( i =1,2,…,11); z i :第i 个月底存款, ( i =1,2,…,12); c i :第i 个月的现金需求量(如表,已知);
max Z = z 12
s.t. z 1 – x – y 1 + 0.01x = c 1
z i – 1.004z i-1 – y i + 0.01x + 1.015y i-1 = c i , ( i =2,3,…,11) z 12 – 1.004z 11 + 0.01x + x + 1.015y i-1 = c 12 x ≥ 0
y i ≥ 0,i=1,2,…,11
z i ≥ 0,i=1,2,…,12。

相关文档
最新文档