用-全等三角形的判定(总复习)ppt课件
合集下载
三角形全等判定复习ppt课件
N 明方法与前题基本相同,只
须证明⊿ABN≌⊿BCM
A
C
B
变式4:如图,⊿ABD,⊿ACE都是正三角形, 求证CD=BE
D
A
E
B
C
分析:此题实质上是把题目中的条件B,A,C三点改为 不共线,证明方法与前题基本相同.
变式6:如图,分别以⊿ABC的边AB,AC为一边 画正方形AEDB和正方形ACFG,连结CE,BG.
求证BG=CE
E
分析:此题是把两个三
角形改成两个正方形而
D
A
G 以,证法类同
FBBiblioteka C小结:1.证明两个三角形全等,要结合题目的条件 和结论,选择恰当的判定方法
2.全等三角形,是证明两条线段或两个角相 等的重要方法之一,证明时
①要观察待证的线段或角,在哪两个可能全等的三 角形中。
②分析要证两个三角形全等,已有什么条件,还缺 什么条件。
AB=CB
A
AD=CD
BD=BD
_
=
P
∴ △ABD≌△CBD(SSS)
B
D
∴∠ABD=∠CBD
_
=
在△ABP和△CBP中
C
AB=BC
∠ABP=∠CBP
BP=BP
∴ △ABP ≌ △CBP(SAS)
∴PA=PC
例4。已知:如图AB=AE,∠B=∠E,BC=ED AF⊥CD 求证:点F是CD的中点
分析:要证CF=DF可以考虑CF 、 DF所在的两个三角形全等,为此可 添加辅助线构建三角形全等 ,如何 添加辅助线呢?
知识结构图
性质
全等三角形对应边相等 全等三角形对应角相等
全 全等 等三 形角
形
完整版-全等三角形总复习PPT教学课件
AC=BC
∠BCE=∠DCA
DC=EC
∴ △ACD≌△BCE (SAS)
∴ BE=AD
2024/3/9
29
6. 如图A、B、C在一直线上,△ABD,△BCE都是等边 三角形,AE交BD于F,DC交BE于G,求证:BF=BG。
AB
=
DB
∠ABE = ∠ DBC
BE=BC ∴△ABE≌△DBC(SAS)
D
C
2
1
A
B
思路3: 已知一边一角(边与角相邻):
找夹这个角的另一边
AD=CB (SAS)
找夹这条边的另一角
∠ACD=∠CAB(ASA)
找边的对角
∠D=∠(B AAS)
15
如图,已知∠B= ∠E,要识别△ABC≌ △AED,需 要添加的一个条件是--------------
A
D
C
E
思路4:
找夹边
AB=AE (ASA)
∴ △ADC ≌ △EDB
D
C
∴ AC = EB
在△ABE中,AE < AB+BE=AB+AC
E
即 2AD < AB+AC
∴ AD 1 (AB AC) 2
2024/3/9
35
12.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA, CD过点E,则AB与AC+BD相等吗?请说明理由。
C A
∵ QD⊥OA,QE⊥OB,QD=QE(已知). ∴点Q在∠AOB的平分线上.(到角的两边的距
离相等的点在角的平分线上)
2024/3/9
10
2.如图, △ABC的角平分线BM,CN相交于点P, 求证:点P到三边AB、BC、CA的距离相等
全等三角形判定ppt课件
若两个三角形全等,则它们的周长也 相等。
对应角相等
在全等三角形中,任意两个对应 的角都相等。
若两个三角形全等,则它们的内 角和也相等,且均为180度。
可以通过测量两个三角形的三个 内角来判断它们是否全等。
面积相等
若两个三角形全等,则它们的面积也相等。 可以通过计算两个三角形的面积来判断它们是否全等。
1 2
定义
两边和它们的夹角分别相等的两个三角形全等。
图形语言
若a=a',∠B=∠B',b=b',则⊿ABC≌⊿A'B'C'。
3
符号语言
∵a=a',∠B=∠B',b=b',∴⊿ABC≌⊿A'B'C'( SAS)。
角边角判定法(ASA)
01
02
03
定义
两角和它们的夹边分别相 等的两个三角形全等。
图形语言
实例1
证明两个三角形全等并求出未知 边长
实例2
利用全等三角形判定方法证明两个 四边形面积相等
实例3
利用全等三角形判定方法解决一个 实际问题,如测量一个不可直接测 量的距离
06
总结与展望
判定全等三角形的方法总结
三边分别相等的两个三角形全等。这是最基本的判定 方法,通过比较三角形的三边长度来确定两个三角形
证明过程
可以通过AAS(角角边)全等条件进行证明,即 如果两个三角形有两个角和其中一个角的对边分 别相等,则这两个三角形全等。这也是一种常用 的全等三角形判定方法。
实际应用举例
在实际应用中,角角边判定法常用于解决与角度 和边长有关的问题。例如,在建筑设计中,如果 需要确保两个建筑结构的角度和边长完全相等, 就可以利用角角边判定法来进行验证。
用全等三角形的判定总复习ppt课件
7.如图(5)∠CAE=∠BAD,∠B=∠D,
AC=AE,△ABC与△ADE全等吗?为什么?
B
解:∵ ∠CAE=∠BAD(已知)
E
D
∴ ∠CAE+∠BAE=∠BAD+∠BAE
C
A
(等量加等量,和相等) 即∠BAC=∠DAE
在△ABC和△ADE中,
∠B=∠D(已知)
∠BAC=∠DAE(已证)
AC=AE(已知)
典型例题:
例1 :如图,点B在AE上, ∠CAB=∠DAB,要使 ΔABC≌ΔABD,可补充的 一个条件是∠ACB=B=∠AEA=DC∠D.BEA
C
A
B E
D
分析:现在我们已知 A→∠CAB=∠DAB
S→ AB=AB(公共边) .
①用SAS,需要补充条件 AB=AC, ②用ASA,需要补充条件 ∠CBA=∠DBA, ③用AAS,需要补充条件 ∠C=∠D, ④此外,补充条件 ∠CBE=∠DBE也可以(?)
要使△ABD≌△ACD, • 根据“SAS”需要添加条件 AB=AC ; • 根据“ASA”需要添加条件∠BDA=∠CDA • 根据“AAS”需要添加条件 ∠B=∠C
D
C
; ;
友情提示:添加条件的题目.首先要 找到已具备的条件,这些条件有些是 题目已知条件 ,有些是图中隐含条件.
8
认 识 到 了 贫 困户贫 困的根 本原因 ,才能 开始对 症下药 ,然后 药到病 除。近 年来国 家对扶 贫工作 高度重 视,已 经展开 了“精 准扶贫 ”项目
12
D
E
M
N
B
C
创造条件! ? 6
认 识 到 了 贫 困户贫 困的根 本原因 ,才能 开始对 症下药 ,然后 药到病 除。近 年来国 家对扶 贫工作 高度重 视,已 经展开 了“精 准扶贫 ”项目
《三角形全等的判定》全等三角形PPT课件
好的△ ′′′剪下来,放到△ 上,它们全等吗?
画一个△ ′′′,使′′ = ,′’ =
,∠′ = ∠:
(1)画∠′ = ∠;
(2)在射线′上截取′′ = ,在
射线′上截取′′ = ;
(3)连接′′.
【结论】两边和它们的夹角分别相等的三角形全等。也就是说,三角形的两
⫽ .
∠4. 求证:∠5 = ∠6.
∵ ∠1 = ∠2,∠3 = ∠4, = ,
根据易证△ ≌△ ,
∴有 = ,
又∵ ∠3 = ∠4, = ,
则可根据判定△ ≌△ ,
故∠5 = ∠6.
知识梳理
例4:如图,、交于点,、为上两点, = , =
就全等了.如果满足斜边和一条直角边分别相等,这两个直
角三角形全等吗?
教学新知
探索5:任意画出一个△,使∠=90°.再画一个 △ ′’’,使
∠′=90°,′′=,′′=.把画好的△′′′剪下来,放
到△上,它们全等吗?
画 一 个 △ ′′′ , 使 ∠′ = 90° , ′′ =
求证 = .
∵⊥,⊥
∴∠与∠都是直角
在R △ 和Rt △ 中,
=
=
∴ △ ≌ △ ()
∴ = .
知识梳理
知识点1:“边边边”(或“SSS”)
1.三边分别相等的两个三角形全等(可以简写成“边边边”
两个三角形全等吗?上述六个条件中,有些条件是相关的.
能否在上述六个条件中选择部分条件,简捷地判定两个三角
形全等呢?
探索1:先任意画出一个△ ABC.再画一个△ A′B′C′,使△ ABC与
△ A′B′C′满足上述六个条件中的一个(一边或一角分别
相等)或两个(两边、一边一角或两角分别相等).你
画一个△ ′′′,使′′ = ,′’ =
,∠′ = ∠:
(1)画∠′ = ∠;
(2)在射线′上截取′′ = ,在
射线′上截取′′ = ;
(3)连接′′.
【结论】两边和它们的夹角分别相等的三角形全等。也就是说,三角形的两
⫽ .
∠4. 求证:∠5 = ∠6.
∵ ∠1 = ∠2,∠3 = ∠4, = ,
根据易证△ ≌△ ,
∴有 = ,
又∵ ∠3 = ∠4, = ,
则可根据判定△ ≌△ ,
故∠5 = ∠6.
知识梳理
例4:如图,、交于点,、为上两点, = , =
就全等了.如果满足斜边和一条直角边分别相等,这两个直
角三角形全等吗?
教学新知
探索5:任意画出一个△,使∠=90°.再画一个 △ ′’’,使
∠′=90°,′′=,′′=.把画好的△′′′剪下来,放
到△上,它们全等吗?
画 一 个 △ ′′′ , 使 ∠′ = 90° , ′′ =
求证 = .
∵⊥,⊥
∴∠与∠都是直角
在R △ 和Rt △ 中,
=
=
∴ △ ≌ △ ()
∴ = .
知识梳理
知识点1:“边边边”(或“SSS”)
1.三边分别相等的两个三角形全等(可以简写成“边边边”
两个三角形全等吗?上述六个条件中,有些条件是相关的.
能否在上述六个条件中选择部分条件,简捷地判定两个三角
形全等呢?
探索1:先任意画出一个△ ABC.再画一个△ A′B′C′,使△ ABC与
△ A′B′C′满足上述六个条件中的一个(一边或一角分别
相等)或两个(两边、一边一角或两角分别相等).你
全等三角形的判定ppt课件
全等三角形也是数学竞赛中常见 的考点之一,涉及到的知识点包
括边角关系、判定方法等。
02
全等三角形的判定方法
边边边定理
总结词
三边对应相等的两个三角形全等 。
详细描述
根据三角形的基本性质,如果两 个三角形的三边长度相等,则这 两个三角形必然全等。
边角边定理
总结词
两边对应相等且夹角相等的两个三角 形全等。
全等三角形的判定
• 全等三角形概述 • 全等三角形的判定方法 • 全等三角形的证明步骤 • 全等三角形在几何中的应用 • 全等三角形的实际应用案例
01
全等三角形概述
全等三角形的定义
定义
两个三角形全等,是指能够完全重合的两个三角形,即它们的形状相同,大小 也相同。
符号表示
记作△ABC≌△DEF或ABCDH≌EFGH。
全等三角形在几何中的其他应用
证明其ቤተ መጻሕፍቲ ባይዱ几何命题
通过证明两个三角形全等,可以证明一些其他几何命题,比如平 行线性质、勾股定理等。
研究三角形和多边形的性质
利用全等三角形研究三角形和多边形的性质,可以发现一些新的几 何定理和性质。
解决其他实际问题
利用全等三角形解决其他实际问题,比如面积计算、周长计算等。
THANKS
证明线段相等
总结词
全等三角形的对应边相等
详细描述
全等三角形的对应边也称为对应边。因此,全等三角形的对应边是相等的。这个性质常常被用来证明 两条线段相等。
证明线段垂直
总结词
全等三角形可以用来证明线段垂直
详细描述
在几何图形中,有时候需要证明某条线段与 另一条线段垂直。这时,可以利用全等三角 形的性质,通过证明两个三角形全等来证明 这两条线段垂直。
13.3 全等三角形的判定 - 第1课时课件(共18张PPT)
使用几何拼接条探究三个元素相等的三角形是否全等?1.用绿色、蓝色、橙色拼条为边长作2个三角形,把两个三角形比较,它们能重合吗?2.用红色、蓝色、黄色拼条为边长作2个三角形,把两个三角形比较,它们能重合吗?
三角相等:
三边相等:
基本事实一
如果两个三角形的三边对应相等,那么这两个三角形全等.
基本事实一可简记为“边边边”或“SSS”.
拓展提升
1.如图,已知AB=AE,AD=AC,BC=ED,BC,DE交于点O.求证:∠BAD=∠EAC.
证明:在△BAC和△EAD中,AB=AE,AC=AD,BC=ED.∴△BAC≌△EAD(SSS).∴∠BAC=∠EAD.∴∠BAC-∠DAC=∠EAD-∠DAC,即∠BAD=∠EAC.
归纳小结
能够完全重合的两个三角形叫做全等三角形.
全等三角形的性质:全等三角形的对应边相等,对应角相等.
探究一
新知探究
知识点1 边边边
通过作图探究一个元素相等能否判定两个三角形全等?
一条边相等:
一个角相等:
探究二
通过几何拼接条探究两个元素相等的三角形是否全等?
两条边相等:
两个角相等:
一边一角相等:
探究三
探究四
知识点2 三角形的稳定性
用拼接条制作三角形和四边形框架,并拉动它们,你发现了什么?
三角形的形状和大小是固定不变的,而四边形的会改变.
三角形所具有的这一性质叫做三角形的稳定性.四边形具有不稳定性.
在生活中,我们经常会看到应用三角形稳定性的例子.
在生活中,我们也经常会看到应用四边形不稳定性的例子.
随堂练习
1.已知:如图,AB=EF,AC=ED,BF=CD.求证:∠A=∠E.
证明:∵BF=CD,∴BF+FC=CD+FC∴BC=FD∵AB=EF,AC=ED∴△ABC≌△EFD(SSS)∴∠A=∠E.
三角相等:
三边相等:
基本事实一
如果两个三角形的三边对应相等,那么这两个三角形全等.
基本事实一可简记为“边边边”或“SSS”.
拓展提升
1.如图,已知AB=AE,AD=AC,BC=ED,BC,DE交于点O.求证:∠BAD=∠EAC.
证明:在△BAC和△EAD中,AB=AE,AC=AD,BC=ED.∴△BAC≌△EAD(SSS).∴∠BAC=∠EAD.∴∠BAC-∠DAC=∠EAD-∠DAC,即∠BAD=∠EAC.
归纳小结
能够完全重合的两个三角形叫做全等三角形.
全等三角形的性质:全等三角形的对应边相等,对应角相等.
探究一
新知探究
知识点1 边边边
通过作图探究一个元素相等能否判定两个三角形全等?
一条边相等:
一个角相等:
探究二
通过几何拼接条探究两个元素相等的三角形是否全等?
两条边相等:
两个角相等:
一边一角相等:
探究三
探究四
知识点2 三角形的稳定性
用拼接条制作三角形和四边形框架,并拉动它们,你发现了什么?
三角形的形状和大小是固定不变的,而四边形的会改变.
三角形所具有的这一性质叫做三角形的稳定性.四边形具有不稳定性.
在生活中,我们经常会看到应用三角形稳定性的例子.
在生活中,我们也经常会看到应用四边形不稳定性的例子.
随堂练习
1.已知:如图,AB=EF,AC=ED,BF=CD.求证:∠A=∠E.
证明:∵BF=CD,∴BF+FC=CD+FC∴BC=FD∵AB=EF,AC=ED∴△ABC≌△EFD(SSS)∴∠A=∠E.
三角形全等的判定ppt课件
∴△ABC≌△A1B1C1(AAS)
5.HL(H.L.) 在Rt△ABC与Rt△A1B1C1中,
AB=A1B1(已知)
BC=B1C1(已证) ∴△ABC≌△A1B1C1(HL)
例题精讲
例:已知:如图,点A,C,B,D在同一条直线上,
AC=BD,AM=CN,BM=DN 求证:AM∥CN,BM∥DN.
拓展延伸
8.如图所示,AB=AC,EB=EC,AE的延长线交BC于D,且D
为BC边的中点,那么图中的全等三角形有哪几对?并选
择一对进行证明
△ABD≌△ACD
证明:∵D为BC边的中点
A
∴BD=CD
在△ABD和△ACD中
E
AB=AC
BD=CD
AD=AD
B
D
C
∴ △ABD≌△ACD(SSS)
拓展延伸
8.如图所示,AB=AC,EB=EC,AE的延长线交BC于D,且D
证明:∵AC=BD ∴AC+CB=BD+BC 即AB=CD
M
N
在△AMB和△CND中 AM=CN
BM=DN
A
C
B
D
AB=CD
∴ △AMB≌△CND(SSS)
∴∠A=∠NCD,∠MBA=∠D ∴AM∥CN,BM∥DN
例:如图,A,E,C,F在同一条直线上,AB=FD,BC=DE,
AE=FC
求证:△ABC≌△FDE.
(2)全等三角形对应角相等
PART II 全等三角形的判定 1.SSS(S.S.S.) 在△ABC与△A1B1C1中,
AB=A1B1(已知) BC=B1C1(已知) AC=A1C1(已证)
∴△ABC≌△A1B1C1(SSS)
5.HL(H.L.) 在Rt△ABC与Rt△A1B1C1中,
AB=A1B1(已知)
BC=B1C1(已证) ∴△ABC≌△A1B1C1(HL)
例题精讲
例:已知:如图,点A,C,B,D在同一条直线上,
AC=BD,AM=CN,BM=DN 求证:AM∥CN,BM∥DN.
拓展延伸
8.如图所示,AB=AC,EB=EC,AE的延长线交BC于D,且D
为BC边的中点,那么图中的全等三角形有哪几对?并选
择一对进行证明
△ABD≌△ACD
证明:∵D为BC边的中点
A
∴BD=CD
在△ABD和△ACD中
E
AB=AC
BD=CD
AD=AD
B
D
C
∴ △ABD≌△ACD(SSS)
拓展延伸
8.如图所示,AB=AC,EB=EC,AE的延长线交BC于D,且D
证明:∵AC=BD ∴AC+CB=BD+BC 即AB=CD
M
N
在△AMB和△CND中 AM=CN
BM=DN
A
C
B
D
AB=CD
∴ △AMB≌△CND(SSS)
∴∠A=∠NCD,∠MBA=∠D ∴AM∥CN,BM∥DN
例:如图,A,E,C,F在同一条直线上,AB=FD,BC=DE,
AE=FC
求证:△ABC≌△FDE.
(2)全等三角形对应角相等
PART II 全等三角形的判定 1.SSS(S.S.S.) 在△ABC与△A1B1C1中,
AB=A1B1(已知) BC=B1C1(已知) AC=A1C1(已证)
∴△ABC≌△A1B1C1(SSS)
全等三角形的判定ppt课件完整版
注意事项
在证明过程中,需要注意两边和所夹 的角分别相等的条件必须同时满足, 且所夹的角必须是两边的夹角,否则 不能得出全等的结论。
角边角(ASA)判定定理证明
基本思路
证明方法
注意事项
如果两个三角形有两个角和它们的夹边 分别相等,则这两个三角形全等。
可以通过构造法或者余弦定理来证明。 构造法可以构造出两个三角形,然后通 过证明它们有两个角和夹边分别相等来 得出它们全等的结论。余弦定理可以通 过三角形的边角关系来证明两个三角形 有两个角和夹边分别相等,从而得出它 们全等的结论。
注意事项
在证明过程中,需要注意两个角和其 中一个角的对边分别相等的条件必须 同时满足,否则不能得出全等的结论。 同时,AAS和ASA的区别在于所给的条 件不同,但都可以用来判定两个三角 形是否全等。
04
全等三角形的应用举例
Chapter
在几何证明中的应用
证明线段相等
通过证明两个三角形全等,可以推出它们对应的边相等,从而证 明线段相等。
全等三角形的判定ppt课件完整版
目录
• 引言 • 全等三角形的判定方法 • 全等三角形判定定理的证明 • 全等三角形的应用举例 • 实验操作与探究 • 全等三角形判定的拓展与延伸
01
引言
Chapter
三角形的定义与性质回顾
三角形的定义
由不在同一直线上的三条线段首尾顺 次相接所组成的图形。
三角形的分类
在证明过程中,需要注意两个角和夹边 分别相等的条件必须同时满足,且所夹 的边必须是两个角的夹边,否则不能得 出全等的结论。
角角边(AAS)判定定理证明
基本思路
证明方法
如果两个三角形有两个角和其中一个 角的对边分别相等,则这两个三角形 全等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
如图小明线的段设A计B是方一案:个先池在塘池的塘长旁度取,一个能直 接现到在达想A测和量B处这的个点池C塘,连的结长A度C并,延在长至D点, 使连等水方A结于上法CCA较测=D,D量方,BC两用便不,点米连地方的尺结把便距测B池,C离出并塘你。D延的有E请的长长什你长至度么说,E明点测好这理,量的个由使长。B度C=就EC, 出来吗?想想看。
SSS(边边边) SAS(边角边) ASA(角边角) AAS(角角边)
有三边对应相 等的两个三角形 全等.
有两边和它们的 夹角对应相等的 两个三角形全等.
有两角和它们的夹 边对应相等的两个 三角形全等.
有两角和及其中 一个角所对的边对 应相等的两个三角 形全等.
.
3知识梳理:A来自ABC
SSA不能
A
判定全等
∴AE-FE=CF-EF(等量减等量,差相等)
即AF=CE
F
在△AFD和△CEB中,
AF=CE(已证)
∠AFD=∠CEB(已知)
B
DF=BE(已知)
∴△AFD≌△CEB (SAS)
.
D E
C
11
7.如图(5)∠CAE=∠BAD,∠B=∠D,
AC=AE,△ABC与△ADE全等吗?为什么?
B
解:∵ ∠CAE=∠BAD(已知)
为什么?
解答
C
8.“三月三,放风筝”如图(6)是小东同学自己
做的风筝,他根据AB=AD,BC=DC,不用度量,
就知道∠ABC=∠ADC。请用所学的知识给予说
明。
解答 .
D A
10
6.如图(4)AE=CF,∠AFD=∠CEB,DF=BE, △AFD与△ CEB全等吗?为什么?
A 解:∵AE=CF(已知)
∠1=∠2(已证) AC= BF(已知) ∠ADC=∠ ADB (已证) ∴ ΔACD≌ΔBDF(ASA) ∴ AD=BD(全等三角形对应 边相等) ∴ ∠ABC=45 °.选DD
.
14、已知:ΔABC和ΔBDE是等边三角
形, 点D在AE的延长线上。
学习提示:公共边,公共角,
O B 图(3)C
对顶角这些都是隐含的边,角相等的条件!
.
8
二.添条件判全等
B
4、如图,已知AD平分∠BAC,A
要使△ABD≌△ACD, • 根据“SAS”需要添加条件 AB=AC ; • 根据“ASA”需要添加条件∠BDA=∠CDA • 根据“AAS”需要添加条件 ∠B=∠C
.
实际运用
9. 测量如图河的宽度,某人在河的对岸找到一参照物 树木A,视线 AB与河岸垂直,然后该人沿河岸 步行10步(每步约0.75M)到O处,进行标记, 再向前步行10步到D处,最后背对河岸向前步行20 步,此时树木A,标记O,恰好在同一视线上,则
河的宽度为 15 米。
A
B
O
D
.
14
C
如图是用两根长度相等的拉线固定电线杆的 示意图.其中一根拉到B,另一根拉到C。那么C、 B两端点到D的距离DC和DB的大小有何关系?说明 理由。
例、如图,已知AB=AC,AD=AE,AB、DC相交
于点M,AC、BE相交于点N,∠1=∠2,试说明:
(1) △ABE ≌ △ACD (2)AM=AN A
12
D
E
M
N
B
C
创造条件! ?
.
7
一、挖掘“隐含条件”判全等
AD
1.如图(1),AB=CD,AC=BD,则
△ABC≌△DCB吗?说说理由
B 图(1) C
2.如图(2),点D在AB上,点E在AC上, B
D
CD与BE相交于点O,且AD=AE,AB=AC.若 O
A
∠B=20°,CD=5cm,则 ∠C= 20°,BE= 5.说cm说理由.
E C 图(2)
3.如图(3),AC与BD相交于O,若
A
D
OB=OD,∠A=∠C,若AB=3cm3c,m 则
CD=
. 说说理由.
B
C
D
B D
.
.
典型例题:
例1 :如图,点B在AE上, ∠CAB=∠DAB,要使 ΔABC≌ΔABD,可补充的 一个条件是∠ACB=B=∠AEA=DC∠D.BEA
C
A
B E
D
.
分析:现在我们已知 A→∠CAB=∠DAB
S→ AB=AB(公共边) .
①用SAS,需要补充条件 AB=AC, ②用ASA,需要补充条件 ∠CBA=∠DBA, ③用AAS,需要补充条件 ∠C=∠D, ④此外,补充条件 ∠CBE=∠DBE也可以(?)
第4讲 全等三角形的判定
.
1
知识点
定义:能够
的两个三角形
全 等
对应元素:对应_____、对应
、对应
。
三 性质:全等三角形的对应边
角 形
全等三角形的
、
、
。
也对应相等。
判定: 、
、
、
。
全等三角形的画图:
利用直尺和圆规,根据 、 、 的 方法都可画出与已知三角形全等的三角形。
.
三角形全等的4个种判定公理:
D
C
; ;
友情提示:添加条件的题目.首先要 找到已具备的条件,这些条件有些是 题目已知条件 ,有些是图中隐含条件.
.
9
三、熟练转化“间接条件”判全等 A
D
6如图,AE=CF,∠AFD=∠CEB,DF=BE, △AFD与△ CEB全等吗?为什么?
解答
FE
B
C
B
7.如图(5)∠CAE=∠BAD,∠B=∠D, E AC=AE,△ABC与△ADE全等吗?
AC=DC
A
B
∠ACB=∠DCE
BC=EC
C
△ACB≌△DCE(SAS)
E
D
. AB=DE
典型例题:
例8 :如图在 ΔABC中, AD⊥BC于D,BE⊥AC 于E,AD交BE于F, 若BF=AC,那么∠ABC 的大小是( )
A.40° B.50° C.60° D.45°B
A
1 FE 2 DC
解: ∵AD⊥BC,BE⊥AC ∴∠ADB=∠ ADC= ∠BEC= 90°∴ ∠1=∠2在ΔACD和 ΔBDF中
E
D
∴ ∠CAE+∠BAE=∠BAD+∠BAE
C
A
(等量加等量,和相等) 即∠BAC=∠DAE
在△ABC和△ADE中, ∠B=∠D(已知) ∠BAC=∠DAE(已证)
AC=AE(已知)
∴△ABC≌ △ADE .
(AAS)
12
典型例题:
例6 :如图,已知,AB=CD, CE=DF,AE=BF, 则AE∥DF吗?为什么?
A
B
C
E
D
F
证明: AE∥DF,理由是: ∵AB=CD(已知) ∴ AB+BC=CD+BC, 即 AC=BD.
在ΔACE和ΔBDF中 AC=BD(已证) CE=DF (已知) AE=BF (已知)
∴ ΔACE≌ΔBDF(SSS)
∴∠E=∠F(全等三角形的对 应角相等) ∴ AE∥DF(内错角相等,两 直线平行)
如图小明线的段设A计B是方一案:个先池在塘池的塘长旁度取,一个能直 接现到在达想A测和量B处这的个点池C塘,连的结长A度C并,延在长至D点, 使连等水方A结于上法CCA较测=D,D量方,BC两用便不,点米连地方的尺结把便距测B池,C离出并塘你。D延的有E请的长长什你长至度么说,E明点测好这理,量的个由使长。B度C=就EC, 出来吗?想想看。
SSS(边边边) SAS(边角边) ASA(角边角) AAS(角角边)
有三边对应相 等的两个三角形 全等.
有两边和它们的 夹角对应相等的 两个三角形全等.
有两角和它们的夹 边对应相等的两个 三角形全等.
有两角和及其中 一个角所对的边对 应相等的两个三角 形全等.
.
3知识梳理:A来自ABC
SSA不能
A
判定全等
∴AE-FE=CF-EF(等量减等量,差相等)
即AF=CE
F
在△AFD和△CEB中,
AF=CE(已证)
∠AFD=∠CEB(已知)
B
DF=BE(已知)
∴△AFD≌△CEB (SAS)
.
D E
C
11
7.如图(5)∠CAE=∠BAD,∠B=∠D,
AC=AE,△ABC与△ADE全等吗?为什么?
B
解:∵ ∠CAE=∠BAD(已知)
为什么?
解答
C
8.“三月三,放风筝”如图(6)是小东同学自己
做的风筝,他根据AB=AD,BC=DC,不用度量,
就知道∠ABC=∠ADC。请用所学的知识给予说
明。
解答 .
D A
10
6.如图(4)AE=CF,∠AFD=∠CEB,DF=BE, △AFD与△ CEB全等吗?为什么?
A 解:∵AE=CF(已知)
∠1=∠2(已证) AC= BF(已知) ∠ADC=∠ ADB (已证) ∴ ΔACD≌ΔBDF(ASA) ∴ AD=BD(全等三角形对应 边相等) ∴ ∠ABC=45 °.选DD
.
14、已知:ΔABC和ΔBDE是等边三角
形, 点D在AE的延长线上。
学习提示:公共边,公共角,
O B 图(3)C
对顶角这些都是隐含的边,角相等的条件!
.
8
二.添条件判全等
B
4、如图,已知AD平分∠BAC,A
要使△ABD≌△ACD, • 根据“SAS”需要添加条件 AB=AC ; • 根据“ASA”需要添加条件∠BDA=∠CDA • 根据“AAS”需要添加条件 ∠B=∠C
.
实际运用
9. 测量如图河的宽度,某人在河的对岸找到一参照物 树木A,视线 AB与河岸垂直,然后该人沿河岸 步行10步(每步约0.75M)到O处,进行标记, 再向前步行10步到D处,最后背对河岸向前步行20 步,此时树木A,标记O,恰好在同一视线上,则
河的宽度为 15 米。
A
B
O
D
.
14
C
如图是用两根长度相等的拉线固定电线杆的 示意图.其中一根拉到B,另一根拉到C。那么C、 B两端点到D的距离DC和DB的大小有何关系?说明 理由。
例、如图,已知AB=AC,AD=AE,AB、DC相交
于点M,AC、BE相交于点N,∠1=∠2,试说明:
(1) △ABE ≌ △ACD (2)AM=AN A
12
D
E
M
N
B
C
创造条件! ?
.
7
一、挖掘“隐含条件”判全等
AD
1.如图(1),AB=CD,AC=BD,则
△ABC≌△DCB吗?说说理由
B 图(1) C
2.如图(2),点D在AB上,点E在AC上, B
D
CD与BE相交于点O,且AD=AE,AB=AC.若 O
A
∠B=20°,CD=5cm,则 ∠C= 20°,BE= 5.说cm说理由.
E C 图(2)
3.如图(3),AC与BD相交于O,若
A
D
OB=OD,∠A=∠C,若AB=3cm3c,m 则
CD=
. 说说理由.
B
C
D
B D
.
.
典型例题:
例1 :如图,点B在AE上, ∠CAB=∠DAB,要使 ΔABC≌ΔABD,可补充的 一个条件是∠ACB=B=∠AEA=DC∠D.BEA
C
A
B E
D
.
分析:现在我们已知 A→∠CAB=∠DAB
S→ AB=AB(公共边) .
①用SAS,需要补充条件 AB=AC, ②用ASA,需要补充条件 ∠CBA=∠DBA, ③用AAS,需要补充条件 ∠C=∠D, ④此外,补充条件 ∠CBE=∠DBE也可以(?)
第4讲 全等三角形的判定
.
1
知识点
定义:能够
的两个三角形
全 等
对应元素:对应_____、对应
、对应
。
三 性质:全等三角形的对应边
角 形
全等三角形的
、
、
。
也对应相等。
判定: 、
、
、
。
全等三角形的画图:
利用直尺和圆规,根据 、 、 的 方法都可画出与已知三角形全等的三角形。
.
三角形全等的4个种判定公理:
D
C
; ;
友情提示:添加条件的题目.首先要 找到已具备的条件,这些条件有些是 题目已知条件 ,有些是图中隐含条件.
.
9
三、熟练转化“间接条件”判全等 A
D
6如图,AE=CF,∠AFD=∠CEB,DF=BE, △AFD与△ CEB全等吗?为什么?
解答
FE
B
C
B
7.如图(5)∠CAE=∠BAD,∠B=∠D, E AC=AE,△ABC与△ADE全等吗?
AC=DC
A
B
∠ACB=∠DCE
BC=EC
C
△ACB≌△DCE(SAS)
E
D
. AB=DE
典型例题:
例8 :如图在 ΔABC中, AD⊥BC于D,BE⊥AC 于E,AD交BE于F, 若BF=AC,那么∠ABC 的大小是( )
A.40° B.50° C.60° D.45°B
A
1 FE 2 DC
解: ∵AD⊥BC,BE⊥AC ∴∠ADB=∠ ADC= ∠BEC= 90°∴ ∠1=∠2在ΔACD和 ΔBDF中
E
D
∴ ∠CAE+∠BAE=∠BAD+∠BAE
C
A
(等量加等量,和相等) 即∠BAC=∠DAE
在△ABC和△ADE中, ∠B=∠D(已知) ∠BAC=∠DAE(已证)
AC=AE(已知)
∴△ABC≌ △ADE .
(AAS)
12
典型例题:
例6 :如图,已知,AB=CD, CE=DF,AE=BF, 则AE∥DF吗?为什么?
A
B
C
E
D
F
证明: AE∥DF,理由是: ∵AB=CD(已知) ∴ AB+BC=CD+BC, 即 AC=BD.
在ΔACE和ΔBDF中 AC=BD(已证) CE=DF (已知) AE=BF (已知)
∴ ΔACE≌ΔBDF(SSS)
∴∠E=∠F(全等三角形的对 应角相等) ∴ AE∥DF(内错角相等,两 直线平行)