平行线的性质(7)
数学中的平行线
数学中的平行线在数学中,平行线是一种重要的几何概念,它在几何学的研究和实际应用中起着重要的作用。
平行线的性质和应用广泛存在于各个领域,包括几何学、物理学、工程学等等。
本文将对数学中的平行线进行详细的介绍和探讨。
一、平行线的定义和性质在欧氏几何中,平行线的定义是指在同一个平面内,永远不相交的直线。
两条平行线之间的距离保持恒定,并且它们的夹角为零度。
平行线有以下的性质:1. 平行线的夹角为零度。
这是平行线最基本的性质,也是平行线和其他类型线段的主要区别。
2. 平行线之间的距离保持恒定。
当两条平行线之间的距离相等时,它们被称为等间距平行线。
3. 平行线的任意直线上的对应角相等。
当一条直线与两条平行线相交时,交线上的对应角相等。
4. 平行线具有传递性。
如果有一条直线与两条平行线相交,那么这两条平行线之间也是平行的。
二、平行线的应用1. 制图与设计平行线在制图和设计中起着至关重要的作用。
在建筑设计中,平行线的使用可以确保建筑物的结构稳定和美观。
在制图中,使用平行线可以使图形更加整齐和准确。
2. 相似三角形平行线与相似三角形的关系密切相关。
当两条平行线与一条与之平行的横线相交时,所形成的三角形具有相似的性质。
这种性质在几何学中的应用非常广泛,用于计算距离、测量和几何建模等方面。
3. 物理学中的力学平行线的概念在物理学中的力学研究中也有广泛的应用。
在力学中,平行线可以描述物体受力的平衡状态。
例如,当两个平行线受到相等大小的力作用时,它们保持平衡。
4. 地理学中的经纬度地理学中的经纬度系统使用了平行线的概念。
纬度线是一种平行于赤道的线,用来测量地球表面的位置。
经度线则是连接北极和南极的线,用来测量地球表面的方位。
三、平行线的证明在数学中,平行线的证明是一种重要的思维训练。
通过证明平行线的性质,可以锻炼我们的逻辑思维和推理能力。
常见的平行线证明方法包括:1. 通过线段的夹角证明平行线。
若两条直线上的对应角相等,则这两条直线平行。
初中数学平行线与平行四边形的性质
初中数学平行线与平行四边形的性质在初中数学中,平行线和平行四边形是重要的概念和形状。
平行线是指在同一个平面内永远不会相交的两条直线,而平行四边形是具有两对平行边的四边形。
本文将探讨平行线和平行四边形的性质,以及它们之间的关系。
一、平行线的性质1. 直线平行定理直线平行定理指出,如果一条直线与两条平行线相交,那么这两条平行线之间的对应角是相等的。
这意味着当两条直线被一条截断时,形成的对应角是相等的。
2. 平行线之间的夹角关系平行线之间的夹角关系有三种情况:- 对顶角:对顶角是指两条平行线被一条截线所形成的对应角。
对顶角是相等的。
- 内错角:当两条平行线被一条截线所形成的内角对顶角相加等于180度。
- 同旁内角:同旁内角是指两条平行线被一条截线所形成的同旁两个内角,这两个角是相等的。
3. 平行线与转角定理转角定理说明了通过两条平行线和一条截线形成的转角规律。
当两直线被截线交叉形成数个转角时,这些转角之和等于180度。
二、平行四边形的性质1. 对边关系平行四边形的两对对边是平行的。
也就是说,平行四边形的两条相对边互相平行。
2. 对角线关系平行四边形的对角线互相平分。
对角线相交的交点称为对角线的中点。
3. 内角和平行四边形的内角和为360度。
也就是说,平行四边形的四个内角的度数之和等于360度。
4. 其他性质平行四边形的两组相邻角互补,也就是说,互为补角的两个角是相邻角。
三、平行线与平行四边形之间的关系1. 平行四边形的性质可推导出平行线的性质通过平行四边形的性质,可以推导出平行线之间的夹角关系。
例如,通过平行四边形的对角线关系,可以得到平行线的转角定理。
2. 平行线的性质可应用于平行四边形的证明通过平行线的性质,可以证明一个四边形是平行四边形。
例如,可以通过观察四边形的对边是否平行来判断它是否为平行四边形。
四、例题演练接下来,我们通过几个例题来加深对平行线和平行四边形性质的理解:1. 已知直线AB和CD平行,且∠BCD = 110度,求∠CAB的度数。
平行线和角的性质
平行线和角的性质平行线和角是几何学中的重要概念,它们具有一些独特的性质和关系。
在本文中,我们将探讨平行线和角的性质,并分析它们在几何学中的应用。
一、平行线的性质平行线是指在同一个平面上永远不会相交的直线。
平行线具有以下性质:1. 平行线的夹角: 当两条平行线被一条横截线相交时,所形成的夹角是相等的。
这被称为同位角性质。
例如,在下图中,AB和CD是两条平行线,EF是横截线,∠AEF等于∠DEF,并且∠BEF等于∠CEF。
2. 平行线的内错角和外错角: 当两条平行线被一条横截线相交时,所形成的内错角和外错角互补(和为180°)。
例如,在下图中,AB和CD是两条平行线,EF是横截线,∠AED和∠DEC是内错角,它们之和等于180°;∠AEF和∠DCE是外错角,它们之和也等于180°。
3. 平行线的同位旁内角和同位旁外角: 当两条平行线被一条横截线相交时,所形成的同位旁内角和同位旁外角相等。
例如,在下图中,AB和CD是两条平行线,EF是横截线,∠AEG等于∠DEH,∠BFI等于∠CGJ。
二、角的性质角是由两条射线共享一个公共端点而形成的图形。
角具有以下性质:1. 角的度量: 角用度来表示,圆周的360°被定义为一周。
例如,直角的度量是90°,平角的度量是180°。
2. 角的类型: 根据角的度量,角可以分为锐角(度量小于90°)、直角(度量等于90°)、钝角(度量大于90°)和平角(度量等于180°)四种类型。
3. 补角和余角: 补角是指两个角的度量之和等于90°,而余角是指两个角的度量之和等于180°。
例如,给定一个角∠ABC,如果∠ABC的补角是∠CBD,那么∠ABC和∠CBD的度量之和等于90°。
三、平行线和角的应用平行线和角的性质在几何学中有广泛应用。
以下是一些常见的应用情境:1. 证明两条线段平行: 通过利用平行线和角的性质,我们可以证明两条线段是平行的。
平行线与垂直线的性质
平行线与垂直线的性质【正文】平行线与垂直线的性质直线在我们的日常生活和数学中都占据了重要的地位,而其中最基本的两种线性关系就是平行线和垂直线。
在本文中,我们将探讨平行线和垂直线的性质以及它们在几何学中的应用。
一、平行线的性质平行线是指在同一平面内永不相交的两条直线。
它们有以下几个重要的性质:1. 平行线在任意两个点上的切线相等如果两条平行线l和m被一条截线n相交,那么对于截线n上的任意一点A,通过A点可以作一条与l垂直的线段AB,同时也可以作一条与m垂直的线段AC。
根据垂直线性质,线段AB和线段AC之间的长度是相等的。
2. 平行线的内角和外角当两条平行线l和m被一条截线n相交时,由截线n和两条直线l、m围成的四个内角之和等于180度。
而由l和m所形成的四个外角也是相等的。
3. 平行线的性质可以用来证明等边三角形的存在利用平行线的性质,可以证明等边三角形的存在。
当两条平行线和一条截线所围成的角都是等边角时,我们可以得到一个等边三角形。
二、垂直线的性质垂直线是指在同一平面内与另一条直线相交时,形成90度角的直线。
垂直线的性质有以下几点:1. 垂直线与水平线之间的关系水平线是一种特殊的垂直线,它与垂直线之间的夹角为90度。
在实际生活中,我们可以利用垂直线和水平线来确定建筑物的垂直性和水平性。
2. 垂直线和平行线之间的关系当两条直线互相垂直时,可以得出它们之间不会相交。
与此同时,如果两条平行线中的一条与第三条直线垂直相交,那么另一条平行线也与第三条直线垂直相交。
3. 垂直线的性质可以用来证明直角三角形的存在根据垂直线的性质,我们可以通过构造垂直线来证明直角三角形的存在。
如果一个三角形的两边与第三条边垂直相交,那么这个三角形就是直角三角形。
三、平行线和垂直线的应用平行线和垂直线的性质在几何学中有着广泛的应用。
以下是一些常见的应用场景:1. 地理测量在地理测量中,我们常常使用平行线和垂直线来测量房屋、土地等物体的垂直性和水平性。
初中数学知识归纳平行线与垂直线的性质
初中数学知识归纳平行线与垂直线的性质初中数学知识归纳——平行线与垂直线的性质在初中数学中,平行线与垂直线是非常重要的概念。
本文将对平行线与垂直线的性质进行归纳和总结。
一、平行线的性质平行线是指在同一个平面上永不相交的两条直线。
对于平行线,我们可以总结出以下的性质:1. 平行线上的任意一对对应角相等。
证明:设有两条平行线l1和l2,分别与横线m相交于A、B和C、D两个点。
即l1∥l2,我们需要证明∠ABC = ∠BAD。
由于l1∥l2,所以∠BAD与∠ABC是同位角,所以它们相等。
2. 平行线上的任意一对内错角互补。
证明:设有两条平行线l1和l2,分别与横线m相交于A、B和C、D两个点。
即l1∥l2,我们需要证明∠ABC + ∠BCD = 180°。
由于l1∥l2,所以∠ABC与∠BCD是内错角,根据内错角互补定理,它们的和等于180°。
二、垂直线的性质垂直线是指两条直线交于一点,且彼此互相垂直的线段。
对于垂直线,我们可以总结出以下的性质:1. 垂直线上的任意一对对应角相等。
证明:设有两条垂直线l1和l2,交于点O。
直线l1上的一条线段与直线l2连线,形成∠AOC和∠BOC两个角。
我们需要证明∠AOC = ∠BOC。
由于l1和l2是垂直线,所以∠AOC和∠BOC是对应角,它们相等。
2. 垂直线上的任意一对补角互补。
证明:设有两条垂直线l1和l2,交于点O。
直线l1上的一条线段与直线l2连线,形成∠AOC和∠BOD两个角。
我们需要证明∠AOC + ∠BOD = 180°。
由于l1和l2是垂直线,所以∠AOC和∠BOD是补角,根据补角定义,它们的和等于180°。
三、平行线和垂直线的性质平行线和垂直线之间也存在一些重要的性质:1. 平行线与横线的夹角等于其对应角。
证明:设有两条平行线l1和l2,与横线m相交于A、B和C、D两个点。
即l1∥l2,我们需要证明∠CAB = ∠CDA。
平行线的性质
平行线的性质引言平行线是平面几何中重要的概念之一。
在几何学中,平行线是指在同一平面中没有交点的直线。
平行线具有一系列独特的性质和特点,对于解决几何问题以及实际生活中的测量和建造等方面都有着重要的应用。
本文将介绍平行线的性质,包括平行线的定义、判定方法、平行线与平面的关系,以及平行线的一些重要应用。
平行线的定义平行线的定义是指在同一平面内没有交点的直线。
当两条直线在同一平面内并且没有交点时,我们可以说这两条直线互相平行。
平行线的判定方法判定两条直线是否平行有多种方法,下面介绍几种常见的判定方法。
方法一:同位角相等法如果两条直线被一条横截线所截,那么同位角相等的两条直线是平行线。
同位角是指两条直线由横截线所形成的两组相对对应的内角或外角。
如果这两组角对应相等,则可以判定这两条直线平行。
方法二:转换判定法两条直线平行的充要条件是,在这两条直线上分别取一点,并连结这两点,所与直线交点连结起来得到的四边形,它的对边互相平行。
方法三:斜率判定法两条直线平行的另一个重要条件是它们的斜率相等。
如果两条直线的斜率相等,则这两条直线是平行线。
斜率可以通过直线的倾斜角度来计算。
平行线与平面的关系平行线与平面的关系是平面几何中的一个重要概念。
以下为平行线与平面的几个关系:平行线与同一平面内的直线在同一平面内,一条直线与另一条直线平行,则这两条直线分别与此平面内的任一平行于它的直线平行。
平行线与垂直于同一平面的直线如果两条平行线在同一平面外有垂直于此平面的直线,那么这两条平行线在这个垂线引起的两平面上也是平行的。
平行线与平面的截线如果两条平行线在平面上与一条直线相交,那么它们与这条直线在平面外射线上的距离相等。
平行线的应用平行线的应用十分广泛,下面介绍几个常见的应用。
三角形内的平行线在三角形中,经过一个顶点与另外两边上的点画出两条平行线,这两条平行线与两边的比值相等。
平行线的测量在实际测量中,常常使用平行线进行测量。
例如,在测量地面上两个点的距离时,可以使用两根平行线的方法进行测量。
平行线的概念定义性质
平行线的概念定义性质平行线是指在同一个平面上,永远不相交的线段。
平行线的概念在几何学中具有重要的地位,它有着以下的定义和性质。
一、平行线的定义:定义一:如果两条直线在同一个平面上,且它们没有公共点,并且在平面内没有任何一条直线与这两条直线同时相交,那么这两条直线就是平行线。
定义二:如果两条直线在同一个平面内,它们互相垂直于第三条直线,那么这两条直线是平行线。
二、平行线的性质:性质一:平行线上的任意一对直线之间的所有夹角都相等。
也就是说,如果有两条直线与一条平行线相交,它们的夹角都相等。
性质二:如果一条直线与平行线相交,那么与这条直线垂直的平行线也与平行线相交,并且它们的交点在同一直线上。
性质三:如果一条直线与两条平行线相交,那么与这条直线垂直的直线也与这两条平行线相交,并且它们的交点分别在同一直线上。
性质四:如果两条直线分别与平行线相交,那么它们的交点所在的两条直线互相平行。
性质五:平行线的外一侧的点到直线的距离等于平行线上的任意一点到直线的距离。
三、平行线的判定方法:方法一:任意两条互相平行线上,都只需取其中的一对夹角,如果夹角相等,则这两条直线是平行线。
方法二:如果两条直线上的任意一对相应的内角或外角互相相等,那么这两条直线是平行线。
方法三:如果两条直线与第三条直线的对应角互相相等,那么这两条直线是平行线。
方法四:如果直线与平行线的任意一条直线垂直,并且与平行线的另一条直线不垂直,则这两条直线是平行线。
以上是关于平行线的定义和性质,平行线作为几何学中非常基础且重要的概念,广泛应用于证明和解决直线和平面的几何问题中。
在实际生活和工程中,平行线的概念也有着广泛的应用,如在设计建筑和道路时,平行线的概念能够保证结构的牢固和施工的准确性。
同时,在数学和物理学等学科中,平行线的概念也是处理问题的基础,对于理解和应用其他几何学知识起到了重要的作用。
因此,理解和掌握平行线的定义和性质对于学习和应用几何学具有重要的意义。
平行线的性质及应用
平行线的性质及应用平行线是几何学中的重要概念,具有许多特殊的性质和应用。
在本文中,我将为您详细介绍平行线的性质以及其在实际生活中的应用。
一、平行线的定义在欧几里得几何中,平行线是指在同一个平面内永远不会相交的直线。
简而言之,两条平行线之间不存在任何交点。
二、平行线的性质1. 互换性质:如果有一条直线和另外一条直线平行,那么可以互换它们位置,结果仍然是平行的。
2. 对偶性质:如果有两个直角相互垂直,那么它们与一条平行线的交线也是相互垂直的。
3. 唯一性质:通过一个给定点可以作一条且仅一条直线与已知的直线平行。
4. 平行线之间的距离是恒定的,在同一平面内,两条平行线的距离始终相等。
三、平行线的应用1. 地理测量:在地理测量中,平行线的概念被广泛应用。
例如,在制图和测绘中,通过绘制平行线可以准确地表示不同地区的经纬度。
2. 建筑设计:平行线在建筑设计中起着重要作用。
建筑师使用平行线概念来确定建筑物的平面布局和立面设计。
平行线的使用可以使结构更加稳定和美观。
3. 交通规划:在交通规划中,平行线可以用于道路设计、车道划分和交叉口设计。
通过保持道路与车道之间的平行关系,交通流动更加顺畅。
4. 电路设计:在电路设计中,平行线被用于电缆的布线。
通过保持电缆之间的平行关系,可以减少信号干扰和电流的损失。
5. 数学推理:平行线的性质在数学推理中被广泛应用。
例如,在证明中,我们可以利用平行线的性质来推导出新的定理和结论。
四、平行线的相关定理除了前文提到的平行线性质外,还有一些相关定理需要了解:1. 同位角定理:当两条直线被一条截线切割时,同位角相等。
2. 内错角定理:当两条平行线被一条截线切割时,内错角相等。
3. 别错角定理:当两条平行线被一条截线切割时,别错角之和为180度。
综上所述,平行线是几何学中的重要概念,具有许多特殊的性质和应用。
我们可以利用平行线的性质来解决实际问题,同时也可以通过平行线的性质进行数学推理。
平行线的性质和几何定理
平行线的性质和几何定理平行线是几何学中非常重要的一个概念,它们有着特殊的性质和几何定理。
本文将介绍平行线的性质以及与之相关的几何定理,帮助读者更好地理解和应用平行线的知识。
1. 平行线的定义在平面几何中,如果两条直线在同一平面内,且不相交,那么它们被称为平行线。
用符号表示为:AB∥CD。
2. 平行线的性质平行线具有以下基本性质:(1) 平行线上的任意两点到另一条平行线的距离相等。
(2) 平行线上的任意两个角的对应角相等。
(3) 平行线与第三条相交线的对应角相等。
3. 平行线的几何定理(1) 互补定理:如果一条直线与两条平行线相交,那么所得到的内角互补。
证明:设直线l与平行线AB∥CD相交于点E,证明∠AEB与∠CDE互补。
由平行线性质可知∠AEB与∠BED对应角相等,∠BED 与∠CDE对应角相等,因此∠AEB与∠CDE互补。
(2) 平行线定理:如果一条直线与两条平行线相交,那么所得到的同旁内角相等。
证明:设直线l与平行线AB∥CD相交于点E,证明∠AEB与∠BEC同旁内角相等。
由平行线性质可知∠AEB与∠BED对应角相等,∠BED与∠BEC对应角相等,因此∠AEB与∠BEC同旁内角相等。
(3) 平行线夹角定理:如果两条直线被一条平行于它们的第三条直线相交,那么所得到的对应角相等。
证明:设直线m与平行线AB∥CD相交,其中点E在CD上,证明∠AEB与∠CEB对应角相等。
由平行线性质可知∠AEB与∠BED对应角相等,∠CEB与∠DEB对应角相等,∠BED与∠DEB对应角相等,因此∠AEB与∠CEB对应角相等。
4. 平行线的应用平行线的性质和定理在几何学中有着广泛的应用。
在解决几何问题时,经常需要利用平行线的性质进行推理和证明。
例如,在证明两个三角形相似时,可以利用平行线的定理来判断两组对应角是否相等。
此外,平行线也在实际生活中有着重要的应用,如建筑设计、道路规划等。
在建筑设计中,为了保持建筑物的美观和稳定,常常需要运用平行线的知识来确定各个部分的位置关系。
平行线及其性质
平行线及其性质平面几何是高中数学中一个重要的分支,其中平行线是不可避免的重要概念。
平行线有着很多独特的性质,这些性质不仅仅是数学研究中的重要结果,也是人们生活中必须要遵守的一些规则。
一、平行线的定义平行线是在同一个平面上且不相交的两条直线。
两条平行线可以被认为是无限接近的,但永远不会相交。
平行线有时也被称为“理想的直线”,因为它们的性质是在正式几何中被定义出来的。
二、平行线的性质1.同向平行线同向平行线是指在同一个平面上的两条直线,它们的方向相同。
同向平行线间夹角的度数相等。
2.异向平行线异向平行线也是指在同一个平面上的两条直线,但是它们的方向不同。
异向平行线间夹角的度数相等,并且它们之间的距离也相等。
3.平行线的传递性对于任意三条直线a、b、c,如果a与b平行,b与c平行,则a与c平行。
这个性质被称为平行线的传递性。
4.平行线投影定理平行线投影定理是指,如果两条平行线分别与第三条直线相交,那么这两个交点的连线与任意一条直线平行。
5.平行线的夹角和两条平行线间的夹角和为180度。
三、平行线的应用平行线的应用非常广泛。
其中,最常见的应用是建筑学和工程学中测量和绘制平面图形。
平行线的性质可以帮助设计师和工程师在工作中遵循一些规则和准则。
此外,在地理学和天文学中,平行线也有着重要的应用。
例如,在地理学术语中,纬度线就是一组平行线。
纬度线帮助我们在地球表面可以更容易地定位和标识位置。
总之,平行线是数学研究中重要的概念之一,它具有独特的性质和应用。
对于从事建筑、工程、地理等领域的人们来说,理解和掌握平行线的性质是至关重要的。
平行线与垂直线的性质
平行线与垂直线的性质平行线和垂直线是几何学中重要的概念,它们具有不同的性质和特点。
本文将探讨平行线和垂直线的定义、性质以及它们在几何学中的应用。
一、平行线的性质1. 定义:平行线指在同一个平面内永不相交的两条直线。
2. 平行线的判定:a. 同位角相等判定:当两条直线被一条横截线所交,同位角相等时,这两条直线是平行线。
b. 内错角相等判定:当两条直线被一条横截线所交,在同侧的两个内角相等时,这两条直线是平行线。
c. 外错角相等判定:当两条直线被一条横截线所交,在同侧的两个外角相等时,这两条直线是平行线。
d. 平行线定理:如果一条直线与两条平行线相交,那么这两条平行线的斜率相等。
3. 平行线的性质:a. 平行线之间的距离是恒定的,任意两条平行线之间的距离相等。
b. 平行线具有传递性:若直线a平行于直线b,直线b平行于直线c,则直线a平行于直线c。
二、垂直线的性质1. 定义:垂直线指与另一条直线相交时,相交角度为90度的直线。
2. 垂直线的判定:a. 垂直线定理:如果两条直线的斜率的乘积为-1,那么这两条直线是垂直线。
b. 互补垂直线定理:如果一条直线与两条互相垂直的直线相交,那么这两条互相垂直的直线也互相垂直。
3. 垂直线的性质:a. 垂直线之间的交点形成的四个角互为垂直角,垂直角的度数为90度。
b. 垂直线与平行线之间的夹角为90度。
三、平行线和垂直线的应用1. 平行线和垂直线在平面几何中的运用:a. 平行线和垂直线的性质可以用于证明几何问题,如证明线段垂直、平行四边形等。
b. 平行线和垂直线可应用于建筑工程、道路规划等领域,确保建筑物和道路的平直度。
2. 平行线和垂直线在数学中的应用:a. 平行线和垂直线是解决几何题目中常用的工具,对于证明和推导几何定理具有重要作用。
b. 平行线和垂直线的概念也在解析几何中被广泛应用,用于求解方程组和直线的交点等问题。
总结:平行线和垂直线在几何学中具有不可替代的地位。
北师大出版社初中八年级数学上册第七章平行线的性质
探究新知
7.4 平行线的性质/
一般地,平行线具有如下性质:
性质1:两条平行线被第三条直线所截,同位角相等.
简单说成:两直线平行,同位角相等.
几何语言:
∵a∥b(已知),
a
1
b
2
∴∠1=∠2 (两直线平行,同位角相等). c
探究新知
7.4 平行线的性质/
素养考点 利用“两直线平行,同位角相等”求角的度数
连接中考
7.4 平行线的性质/
如图,将一块三角尺的直角顶点放在直尺的一边上,当∠1=35° 时,∠2的度数为( C )
3
A.35° B.45° C.55° D.65°
课堂检测
7.4 平行线的性质/
基础巩固题 1.如图所示,直线a∥b,直线c与直线a,b相交,若 ∠1=56°,则∠2等于 ( C ) A. 24° B. 34° C. 56° D. 124°
证明:假设∠1 ≠ ∠2,那么我们可 以过点M作直线GH,使∠EMH= ∠2,如图所示.
根据“同位角相等,两直线平行”,
可知GH ∥ CD. 又因为AB ∥ CD,这样经过点M
存在两条直线AB和GH都与直线 CD平行.这与基本事实“过直线外
一点有且只有一条直线与这条直线
平行”相矛盾. 这说明∠1 ≠ ∠2的假设不成立,所 以∠1 =∠2.
北师大版 数学 八年级 上册
7.4 平行线的性质/
7.4 平行线的性质
a
21
34
b
65
78
c
导入新知
7.4 平行线的性质/
思考 根据同位角相等可以判定两直线平行,反过 来如果两直线平行,同位角之间有什么关系呢?内 错角、同旁内角之间又有什么关系呢?
平行线与等腰三角形的性质
平行线与等腰三角形的性质平行线和等腰三角形是几何学中常见的概念。
通过研究平行线和等腰三角形的性质,我们可以进一步认识它们之间的关系。
本文将从不同的角度探讨平行线和等腰三角形的性质,让我们一起来看看吧!一、平行线的性质1. 平行线的定义平行线是指在同一个平面上,永不相交的两条线。
记作AB ∥CD,即线段AB与CD平行。
2. 平行线的判定两条直线平行的判定有多种方法,其中一种是使用同位角定理。
当两条直线被一直线交叉切分时,如果同位角相等,那么这两条直线是平行的。
3. 平行线的性质(1)平行线之间的距离相等。
即若AB ∥ CD,则直线AB到直线CD的距离与直线EF到直线CD的距离相等。
(2)平行线之间的夹角相等。
即若AB ∥ CD,则∠BAD = ∠CDE。
(3)平行线与直线之间的夹角是对应角,对应角相等。
即若AB∥ CD,则∠BAD = ∠BCD。
二、等腰三角形的性质1. 等腰三角形的定义等腰三角形是指两边边长相等的三角形。
等腰三角形的两条边叫做腰,未与腰相对的边叫做底边。
2. 等腰三角形的性质(1)等腰三角形的底角相等。
即若△ABC是等腰三角形,且AB = AC,则∠B = ∠C。
(2)等腰三角形的腰上的高相等。
即若△ABC是等腰三角形,且AB = AC,则BD = CD。
(3)等腰三角形的底边上,离底边等距离的两个点连线与腰垂直且相等。
即若△ABC是等腰三角形,且AB = AC,则DE = DF,并且∠EDF = 90°。
三、平行线与等腰三角形的关系1. 平行线与等腰三角形全等的关系若两条平行线分别截取等腰三角形的两个边,则这两个等腰三角形全等。
2. 平行线与等腰三角形的一些性质(1)平行线与等腰三角形的腰之间的距离相等。
即若AB ∥ CD,且△ABC是等腰三角形,则直线AB到直线CD的距离等于直线BC上的高。
(2)平行线与等腰三角形的顶角相等。
即若AB ∥ CD,且△ABC 是等腰三角形,则∠B = ∠C。
平行线的性质知识点总结
平行线的性质知识点总结平行线是我们在几何学中经常遇到的概念,它具有一些独特的性质和特点。
本文将对平行线的性质进行总结,帮助读者更好地理解和运用这些知识点。
一、定义和标记方式平行线是在同一个平面上,永不相交的两条直线。
我们通常用符号"//"来表示两条平行线,例如AB//CD。
二、判断平行线的方法平行线的判断方法有以下几种:1. 同位角相等法则:如果两条直线被一条横截线所截,且同位角相等,则这两条直线平行。
2. 内错角相等法则:如果两条直线被一条横截线所截,且内错角相等,则这两条直线平行。
3. 外错角相等法则:如果两条直线被一条横截线所截,且外错角相等,则这两条直线平行。
4. 平行线特性法则:如果两条直线的斜率相等或两条直线的倾斜角相等,则这两条直线平行。
三、平行线的性质1. 平行线与转角线的夹角关系:当两条直线被一条横截线所截,且转角线与一个平行线垂直,那么它与另一条平行线也垂直。
2. 平行线与同位角的关系:同位角是指两条直线被一条横截线所截,且位于同一侧的内角。
对于平行线来说,同位角相等。
3. 平行线与内错角的关系:内错角是指两条直线被一条横截线所截,且位于同一侧的相对角。
对于平行线来说,内错角相等。
4. 平行线与外错角的关系:外错角是指两条直线被一条横截线所截,且位于不同侧的相对角。
对于平行线来说,外错角相等。
5. 平行线向平面的投影:如果一条直线与一个平面平行,那么这条直线在这个平面上的投影与原直线平行。
6. 平行线间的距离关系:平行线间的距离是沿垂直于这两条平行线的线段的长度。
四、平行线的应用平行线的性质在几何学中有着广泛的应用,特别是在解决角度、线段关系和图形相似性等问题时。
以下是一些典型的应用场景:1. 平行线用于证明两条线段相等或不相等。
2. 平行线用于证明某个角是直角或等角。
3. 平行线用于证明图形的相似性。
4. 平行线用于推导和证明其他几何性质和定理。
总结起来,平行线是在同一个平面上永不相交的两条直线,具有一系列独特的性质。
平行线与垂直线的性质
平行线与垂直线的性质平行线与垂直线是几何学中常见的概念,它们在我们的日常生活中随处可见。
它们具有一系列独特的性质,这些性质不仅在几何学中有重要的应用,而且在许多实际问题的解决中也起着关键的作用。
首先,我们先来了解平行线的性质。
平行线是指在同一个平面上永远不会相交的两条直线。
根据平行线的定义,我们可以得出以下几个重要的性质。
第一,平行线具有等夹角性质。
当一条直线与两条平行线相交时,所形成的对顶角是相等的。
这个性质在我们日常生活中很常见,比如两条平行的铁轨,在我们站在其中一条铁轨上观察另一条铁轨时,它们看起来是平行的,而且我们可以清楚地看到它们之间的夹角是相等的。
第二,平行线具有平行四边形性质。
当四条线段两两平行时,它们所围成的四边形是平行四边形。
平行四边形具有许多独特的性质,比如对角线互相平分,相邻角互补等。
这些性质在解决几何问题时非常有用,比如在设计建筑物时,我们常常需要利用平行四边形的性质来确定各个部分的位置和大小。
接下来,我们来探讨垂直线的性质。
垂直线是指两条直线相交时,所形成的四个角中,相邻的两个角互为直角。
垂直线的性质在我们的日常生活中也非常常见,比如墙壁与地面的交界处就是垂直线。
垂直线的性质可以帮助我们解决许多实际问题。
比如在建筑设计中,我们需要确保墙壁与地面垂直,以保证建筑物的结构稳定。
另外,在测量中,我们经常使用垂直线来确定垂直方向,比如使用测水平仪来调整家具的水平度。
除了以上的性质,平行线与垂直线还有一些其他的重要性质。
例如,平行线具有平行传递性,即如果一条直线与一组平行线相交,那么它与另一条平行线也相交,并且所形成的对顶角相等。
这个性质在解决一些复杂的几何问题时非常有用。
另外,垂直线的性质还包括垂直传递性。
如果一条直线与一组垂直线相交,那么它与另一条垂直线也相交,并且所形成的对顶角互为直角。
这个性质在解决垂直方向上的问题时非常有用,比如在建筑设计中,我们需要确保某个部分与地面垂直。
平行线的性质
平行线的性质平行线是几何学中的重要概念,具有许多特殊的性质和规律。
本文将详细介绍平行线的性质,并探讨其在几何学中的应用。
一、平行线的定义平行线是指在同一个平面上,永不相交的两条直线。
根据几何学的定义,平行线具有以下重要性质。
1. 平行线的方向相同当两条直线平行时,它们的方向相同,即它们在同一平面上以相同的方向延伸。
2. 平行线的距离相等平行线之间的距离是恒定的,无论延长多长,始终保持相等的间隔。
3. 平行线不会相交平行线永远不会相交,无论两条线延长多长,它们始终保持相互平行的关系。
二、1. 夹角性质当一条直线与另外两条平行线相交时,形成的对应角、内错角、同旁内角等具有特殊的关系。
- 对应角:对应角相等,即对应的内角或外角大小相等。
- 内错角:内错角互补,即内接平行线上的内错角之和等于180度。
- 同旁内角:同旁内角互补,即相邻的内错角之和等于180度。
2. 平行线与垂直线的关系当一条直线与另外两条平行线相交时,形成的垂直线与平行线之间也有特殊的关系。
- 垂直线性质:垂直线与平行线形成的内角互补,即内接垂直线与平行线上的内角之和为180度。
- 垂直角:当两条垂直线相交时,形成的角称为垂直角,垂直角的大小为90度。
3. 平行线的延长性平行线可以无限延长,延长后的平行线与原线具有相同的性质。
这意味着无论平行线延长多长,它们仍然保持着互相平行的关系。
三、平行线的应用平行线的性质和规律在几何学中有着广泛的应用。
1. 三角形的判定平行线可以用来判定三角形是否相似。
当一条直线与两条平行线相交时,对应的对角线之间的比例相等,表明两个三角形相似。
2. 平行四边形的性质平行线的性质还可以用来研究平行四边形。
平行四边形的对角线相互平分,且对角线之间的比例相等。
3. 镜像对称平行线的延长线可以用于镜像对称的构造。
通过平行线的延长,可以找到与原线对称的另一条线,从而构造出完美的镜像对称。
四、总结平行线是几何学中的重要概念,具有许多独特的性质和规律。
平行线的判定条件和性质
平行线的判定条件和性质平行线是指在同一个平面内永不相交的两条直线。
平行线具有一些独特的判定条件和性质,本文将探讨这些条件和性质,帮助读者更好地理解和应用平行线的概念。
一、判定条件1.等角定理判定:如果两条直线与第三条直线交叉时,所夹的角对应相等或互补,则这两条直线是平行线。
即如果一对对应角相等或互补,则直线是平行的。
2.同位角定理判定:如果两条直线被一条横截线交叉时,同位角相等,则这两条直线是平行线。
同位角是指在两条直线上,分别位于两条横截线的同一侧且对应的角度。
3.转角定理判定:如果两条直线与第三条直线交叉时,其中一对内转角相等,则这两条直线是平行线。
内转角是指位于两条直线之间的角。
以上三种判定条件都是通过角度的性质来判断直线是否平行,通过角度的相等或特殊关系来推断直线的平行性。
二、性质1.同一平面内的平行线永不相交,并且在平面上的任一点,只有一条与给定直线平行的直线。
2.通过同一个点外一条直线上的垂线与该直线平行,则这两条直线互相平行。
3.平行线具有相同的斜率。
设有两条直线L1和L2,斜率分别为k1和k2,若k1 = k2,则直线L1与L2是平行线。
4.两条平行线被一条横截线所截时,对应角、同位角、内角均相等。
5.平行线间的距离在平面上始终保持不变。
即两条平行线的任意两个对应点的距离都相等。
6.平行线夹在两条直线上的外角是对应角的互补角,内角是对应角的同位角。
以上列举的是平行线的一些常见性质,这些性质在几何学和实际生活中都有广泛的应用。
对于判定两条直线是否平行,可以通过以上提到的判定条件来进行推演。
而了解平行线的性质,可以帮助我们理解形状和图形的关系,进而应用到建筑、工程和设计等领域中。
总结:平行线是几何学中重要的概念之一,判断两条直线是否平行可以通过等角定理、同位角定理和转角定理等几何学定理来确定。
平行线具有一些独特的性质,比如不相交、斜率相等、距离相等等,这些性质在实际生活中有广泛的应用。
平行线的性质(知识讲解)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)
专题5.12平行线的性质(知识讲解)【学习目标】1.掌握平行线的性质,并能依据平行线的性质进行简单的推理;2.了解平行线的判定与性质的区别和联系,理解两条平行线的距离的概念;【要点梳理】要点一、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.特别说明:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点二、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.特别说明:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2)两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.【典型例题】类型一、平行线的性质➽➼同位(内错)相等✮✮同旁内角互补➻➸两直线平行1.阅读下列推理过程,在括号中填写理由.如图,已知AD BC ⊥,EF BC ⊥,12∠=∠,试证明:∥DG BA .解:AD BC ⊥ ,EF BC ⊥(已知),90EFB ADB ∴∠=∠=︒(______)∴______∥______(______)1BAD ∴∠=∠(______)又12∠=∠ (已知),∴______(______)∴∥DG BA (______)【答案】垂直的定义;EF AD ;;同位角相等,两直线平行;两直线平行,同位角相等;2BAD ∠=∠;等量代换;内错角相等,两直线平行【分析】根据平行线的判定定理与性质定理求解即可.解:AD BC ⊥ ,EF BC ⊥(已知),∴90EFB ADB ∠=∠=︒(垂直的定义),∴EF AD ∥(同位角相等,两直线平行),∴1BAD ∠=∠(两直线平行,同位角相等),又12∠=∠ (已知),∴2BAD ∠=∠(等量代换),∴∥DG BA (内错角相等,两直线平行),故答案为:垂直的定义;EF ;AD ;同位角相等,两直线平行;两直线平行,同位角相等;2BAD ∠=∠;等量代换;内错角相等,两直线平行.【点拨】此题考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.举一反三:【变式1】将下列证明过程及依据补充完整.如图,在ABC 中,CD 平分ACB ∠交AB 于点D ,E ,F 分别为BC ,AB 上的点,且AC DE ∥,CD EF ∥,求证:EF 平分DEB∠证明:∵CD 平分ACB ∠(已知),∴DCA DCE ∠=∠(角平分线的定义).∵AC DE ∥(已知),∴DCA CDE ∠=∠()∴DCE CDE ∠=∠(等量代换),∵CD EF ∥(已知),∠=∠()∴DEF CDE∠=∠()DCE BEF∴_____=______(等量代换),∴EF平分DEB∠()【答案】两直线平行,内错角相等;两直线平行,内错角相等;两直线平行,同位角相等;DEF∠;BEF∠;角平分线的定义.【分析】根据平行线的性质和角平分线的概念求解即可.∠(已知),证明:∵CD平分ACB∠=∠(角平分线的定义).∴DCA DCE∥(已知),∵AC DE∴DCA CDE∠=∠(两直线平行,内错角相等)∠=∠(等量代换),∴DCE CDE∵CD EF∥(已知),∠=∠(两直线平行,内错角相等)∴DEF CDEDCE BEF∠=∠(两直线平行,同位角相等)∴DEF∠=BEF∠(等量代换),∴EF平分DEB∠(角平分线的定义)故答案为:两直线平行,内错角相等;两直线平行,内错角相等;两直线平行,同位角相等;DEF∠;BEF∠;角平分线的定义.【点拨】本题考查了平行线的性质和平行线的判定在几何证明中的应用,明确相关性质及定理是解题的关键.【变式2】填空,将本题补充完整.如图,已知EF AD,∠1=∠2,∠BAC=65°.将求∠AGD的过程填写完整.解:∵EF AD (已知)∴∠2=()又∵∠1=∠2(已知)∴∠1=(等量代换)∴AB GD ()∴∠BAC +=180°()∵∠BAC =65°(已知)∴∠AGD =°【答案】∠3;两直线平行,同位角相等;∠3;内错角相等,两直线平行;∠AGD ;两直线平行,同旁内角互补;115°【分析】由EF AD ,可得∠2=∠3,由等量代换可得∠1=∠3,从而得到DG BA ,根据平行线的性质可得∠BAC +∠AGD =180°,即可求解.解:∵EF AD (已知)∴∠2=∠3(两直线平行,同位角相等)又∵∠1=∠2(已知)∴∠1=∠3(等量代换)∴AB GD (内错角相等,两直线平行)∴∠BAC +∠AGD =180°(两直线平行,同旁内角互补)∵∠BAC =65°(已知)∴∠AGD =115°.【点拨】本题考查了平行线的性质与判定,此题比较简单,解题的关键是注意掌握两直线平行,同位角相等;两直线平行,同旁内角互补定理;内错角相等,两直线平行的应用.2.如图,已知AD BC ⊥,EF BC ⊥,12∠=∠.(1)求证:EF AD ∥;(2)求证:180BAC AGD ∠+∠=︒.【分析】(1)根据垂直得出90EFB ADB ∠=∠=︒,根据平行线的判定得出EF AD ∥;(2)根据平行线的性质得出1BAD ∠=∠,由12∠=∠得出2BAD ∠=∠,根据平行线的判定得出DG BA ∥,再根据平行线的性质即可得解.(1)证明:∵AD BC ⊥,EF BC ⊥,∴90EFB ∠=︒,90ADB ∠=︒(垂直的定义),∴∠=∠EFB ADB (等量代换),∴EF AD ∥(同位角相等,两直线平行);(2)证明:∵EF AD ∥,∴1BAD ∠=∠(两直线平行,同位角相等),又12∠=∠ (已知),∴2BAD ∠=∠(等量代换),∴DG BA ∥(内错角相等,两直线平行),∴180BAC AGD ∠+∠=︒(两直线平行,同旁内角互补).【点拨】本题主要考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.举一反三:【变式1】如图,已知AB ∥CD ,BC 平分∠ABD 交AD 于点E .(1)证明:∠1=∠3;(2)若AD ⊥BD 于点D ,∠CDA =34°,求∠3的度数.【答案】(1)见解析;(2)∠3=28°.,根据等量代【变式2】P是∠BAC内一点,射线PD//AB,射线PE//AC,连接BC,当点D在线段BC上,点E在射线AB上时,(1)补全图形;(2)猜想∠DPE与∠A的数量关系,并证明.【答案】(1)补全图形见解析;(2)∠DPE +∠A =180°,证明见解析【分析】(1)根据题中的要求直接补全图形即可;(2)根据平行线的性质得到BEP A ∠=∠,180BEP DPE ∠+∠=︒,等量代换即可证得结论.(1)解:补全图形,如下图所示:(2)解:180DPE A ∠+∠=︒.理由如下:PE AC ∥ ,BEP A ∴∠=∠,PD AB ∥ ,180BEP DPE ∴∠+∠=︒,即180DPE A ∠+∠=︒.【点拨】本题主要考查了平行线的性质的运用,解题的关键是熟练掌握平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补.类型二、平行线的性质➽➼由平行线性质探索角的关系3.如图:(1)若AB EF ∥,猜想图①中,B ∠、BDF ∠与F ∠之间的数量关系并加以证明;(2)若AB EF ∥,如图②,直接写出B ∠、BDF ∠与F ∠之间的数量关系:.(3)学以致用:一个小区大门栏杆的平面示意图如图所示,BA 垂直地面AE 于A ,CD 平行于地面AE ,若150BCD ∠=︒,则ABC ∠=.【答案】(1)BDF B F ∠=∠+∠,证明见解析;(2)360B BDF F ∠+∠+∠=︒;(3)120︒【分析】(1)过点D 作CD AB ∥;通过平行线的性质倒角即可;(2)过点D 作CD AB ∥;根据两直线平行同旁内角互补列出等式求解;(3)由(2)中的结论计算即可;(1)解:BDF B F ∠=∠+∠;理由如下:如图,过点D 作CD AB ∥;∴B BDC∠=∠∵AB EF∥∴CD EF∥∴CDF F∠=∠∵BDF BDC CDF∠=∠+∠∴BDF B F∠=∠+∠(2)解:360B BDF F ∠+∠+∠=︒;理由如下:如图,过点D 作CD AB ∥;∵AB EF∥∴AB CD EF∥∥∴180B BDC =∠+∠︒,180CDF F ∠+∠=︒∴360B BDF F B BDC CDF F ∠+∠+∠=∠+∠+∠+∠=︒(3)解:由(2)可知:BCD ABC BAE ∠+∠+∠=︒360∴90BAE ∠=︒∴ABC BAE BCD ∠=︒-∠-∠=︒360120【点拨】本题考查了平行线的性质以及传递性;熟练运用平行线的性质转化角是解题的关键.举一反三:【变式1】如图,已知三角形EFG 的顶点E ,F 分别在直线AB 和CD 上,且AB CD .若90EFG ∠=︒,30FEG ∠=︒.(1)当221∠=∠时,求1∠的度数.(2)设AEG α∠=,CFG β∠=,求α和β的数量关系(用含α,β的等式表示).∴180AEG EGM ∠+∠=︒,∴∥GM CD ,∴180MGF CFG ∠+∠=︒,∴360AEG EGM MGF CFG ∠+∠+∠+∠=︒,即360AEG EGF CFG ∠+∠+∠=︒,∵在Rt EGF 中,90EFG ∠=︒,30FEG ∠=︒,∴60EGF ∠=︒,∴36036060300AEG CFG EGF ∠+∠=︒-∠=︒-︒=︒,∵AEG α∠=,CFG β∠=,∴300αβ+=︒.【点拨】本题主要考查平行线与三角形的综合运用,掌握平行线的性质,三角形内角和定理是解题的关键.【变式2】请阅读小明同学在学习平行线这章知识点时的一段笔记,然后解决问题.小明:老师说在解决有关平行线的问题时,如果无法直接得到角的关系,就需要借助辅助线来帮助解答,今天老师介绍了一个“美味”的模型一“猪蹄模型”.即已知:如图1,AB CD ∥,E 为AB 、CD 之间一点,连接AE ,CE 得到AEC ∠.求证:AEC A C ∠=∠+∠,小明笔记上写出的证明过程如下:证明:过点E 作EF AB ∥,∴1B ∠=∠,∵AB CD ∥,EF AB ∥,∴EF CD∥∴2C ∠=∠,∵12AEC ∠=∠+∠,∴AEC A C ∠=∠+∠,请你利用“猪蹄模型”得到的结论或解题方法,完成下面的两个问题.(1)如图2,若AB CD ∥,60E ∠=︒,求B C F ∠+∠+∠的度数;(2)灵活应用:如图3,一条河流的两岸AB CD ∥当小船行驶到河中E 点时,与两岸码头B 、D 所形成的夹角为64︒(即64BED ∠=︒),当小船行驶到河中点F 时,恰好满足ABF EBF =∠∠,EDF CDF ∠=∠,请你直接写出此时点F 与码头B 、D 所形成的夹角BFD ∠=_________.∵EN AB ∥,FM AB ∥,DC ∥∴EN CD ∥,FM CD ∥,EN ∴∠B =∠BEN ,∠NEF =∠EFM ∵∠BEN +∠NEF =∠BEF ,∠EFM类型三、平行线的性质➽➼由平行线性质求角度4.(1)如图AD 平分CAB ∠,DE AC ∥,28CAD ∠=︒.求1∠的度数.(2)如图已知1180C ∠+∠=︒,CF BE ∥.求证:B C ∠=∠.【答案】(1)1∠的度数为56︒;(2)见解析【分析】(1)根据角平分线的定义得到256CAB CAD ∠=∠=︒,由平行线的性质即可得到结论.(2)先证明AB CD ∥,再利用平行线的性质证明B CHE ∠=∠,C CHE ∠=∠,即可证明B C ∠=∠.解:(1)∵AD 平分CAB ∠,28CAD ∠=︒,∴256CAB CAD ∠=∠=︒,∵DE AC ∥,∴156CAB ∠=∠=︒;(2)证明:∵1180C ∠+∠=︒,1180AGC ∠+∠=︒,∴AGC C ∠=∠,∴AB CD ∥,∴B CHE ∠=∠,∵CF BE ∥,∴C CHE ∠=∠,∴B C ∠=∠.【点拨】本题考查了平行线的判定与性质,熟练掌握“同旁内角互补,两直线平行”、“内错角相等,两直线平行”及“两直线平行,内错角相等”是解答此题的关键.举一反三:【变式1】如图,已知点B 、C 在线段AD 的异侧,连接、AB CD ,点E 、F 分别是线段、AB CD 上的点,连接CE BF 、,分别与AD 交于点G ,H ,且AEG AGE ∠=∠,C DGC ∠=∠.(1)求证:AB CD ∥;(2)若180AGE AHF ︒∠+∠=,求证:B C ∠=∠;(3)在(2)的条件下,若117BFC C ∠=∠,求AHB ∠的度数.【答案】(1)证明见解析;(2)证明见解析;(3)70︒【分析】(1)只需要证明AEG C ∠=∠即可证明AB CD ∥;(2)先证明HGE AHF =∠∠得到BF CE 则B AEG =∠∠,再由AEG C ∠=∠即可证明B C ∠=∠;(3)根据平行线的性质得到180BFC C ∠+∠=︒,AHB DGC ∠=∠,再结合已知条件求出C ∠的度数即可得到答案.(1)证明:∵AEG AGE ∠=∠,C DGC ∠=∠,AGE DGC ∠=∠,∴AEG C ∠=∠,【变式2】类型四、平行线的性质➽➼平行线性质的应用5.如图,一条公路修在湖边,需拐弯绕道而过,如果第一次向右拐75°,第二次拐弯形成的拐角∠B =135°,第三次拐弯后道路恰好和第一次拐弯前的道路平行,那么第三次是如何拐弯的?【答案】向左拐30°【分析】过点B 作BM OA ∥,延长BC 到点P .可得BM CN ∥.从而得到∠ABM =∠A =105°.再由∠ABC =135°,可得∠MBC =30°即可求解.解:过点B 作BM OA ∥,延长BC 到点P .∵BM OA ∥,OA CN ∥,∴BM CN ∥.∵第一次向右拐75°,即∠A =105°,∴∠ABM =∠A =105°.∵∠ABC =135°,∴∠MBC =30°又∵BM CN ∥,∴∠NCP =∠MBC =30°.答:第三次应向左拐30°.【点拨】本题主要考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.举一反三:【变式1】ABC ∠和BCD ∠,量得63ABC ∠=︒,要保持两次拐弯前后的路线平行,BCD ∠的度数应为多少?为什么?【答案】117°,理由:同旁内角互补,两直线平行【分析】根据两直线平行同旁内角互补即可得出∠BCD 的度数.【详解】解:根据题意得,AB ∥CD ,∠ABC =63°∴∠BCD =180°-∠ABC =117°,∴要保持两次拐弯前后的路线平行,∠BCD 为117°,理由是同旁内角互补,两直线平行.【点拨】题目主要考查平行线的性质,理解题意是解题的关键.【变式2】潜望镜中的两面镜子是互相平行放置的,如图1,光线经过镜子反射时,12∠=∠,3=4∠∠,那么2∠和3∠有什么关系?为什么进入潜望镜的光线和离开潜望镜的光线是平行的?先画几何图形,如图2,再写已知未知.如图,//,12,34AB CD ∠=∠∠=∠,(1)猜想2∠和3∠有什么关系,并进行证明;(2)求证://PM NQ .【答案】(1)23∠∠=,证明见解析;(2)见解析【分析】(1)根据两面镜子是互相平行放置的可知//AB CD ,再根据平行线的性质(两直线平行,内错角相等)即可直接证明23∠∠=.(2)结合题意可证明1234∠=∠=∠=∠,再由125180∠+∠+∠=︒,346180∠+∠+∠=︒,即可证明56∠=∠,最后由平行线的判定定理(内错角相等,两直线平行),即可证明//P M N Q .解:(1)根据题意可知//AB CD ,∴23∠∠=(两直线平行,内错角相等).(2)∵23∠∠=,∴1234∠=∠=∠=∠;∵125180∠+∠+∠=︒,346180∠+∠+∠=︒,∴56∠=∠,∴//P M N Q (内错角相等,两直线平行).【点拨】本题考查平行线的判定与性质在生活中的应用.掌握平行线的性质与判定是解答本题的关键.类型五、平行线的性质➽➼平行线间的距离✮✮应用6.探究规律:我们有可以直接应用的结论:若两条直线平行,那么在一条直线上任取一点,无论这点在直线的什么位置,这点到另一条直线的距离均相等.例如:如图1,两直线//m n ,两点H 、T 在m 上,HE n ⊥于E ,TF n ⊥于F ,则HE TF =.如图2,已知直线//m n ,A 、B 为直线n 上的两点,C 、D 为直线m 上的两点.(1)请写出图中面积相等的各对三角形:__________.(2)如果A 、B 、C 为三个定点,点D 在m 上移动,那么无论D 点移动到任何位置总有:_______与ABC 的面积相等;理由是:___________.【答案】(1)ABC 和ABD △,DCA △和DCB △,ACO △和DBO ;(2)ABD △,同底等高的两个三角形的面积相等【分析】(1)写出面积相等的各对三角形,我们拿ABC 与ABD △为例:两个三角形用公共边AB 为底,再由图1的结论知道高相等,由三角形面积公式知两个三角形面积相等,其它对分析类似;(2)根据同底等高的两个三角形的面积相等,可以得出结论.解:(1)有三对分别是:ABC 和ABD △,DCA △和DCB △,ACO △和DBO ,分析如下:ABC 和ABD △,两个三角形用公共边AB 为底,再由图1的结论知道高相等,由三角形面积公式知两个三角形面积相等;DCA △和DCB △,两个三角形以CD 为底,高相等,即面积相等;ACO △和DBO ,根据DCA △和DCB △面积相等,两个三角形同时减去CDO ,得ACO △和DBO 面积相等.故答案为:ABC 和ABD △,DCA △和DCB △,ACO △和DBO ,(2)如果A 、B 、C 为三个定点,点D 在m 上移动,那么无论D 点移动到任何位置总有:ABD △与ABC 的面积相等,分析如下:ABD △与ABC 同底,点D 在m 上移动,那么无论D 点移动到任何位置,点D 到另一条直线的距离相等,使得这两个三角形是:同底等高的两个三角形,即面积相等.故答案为:同底等高的两个三角形的面积相等【点拨】本题考查了两条平行直线间的距离和两个三角形面积相等问题,解题的关键是:理解两直线平行距离为定值及同底等高的两个三角形面积相等.举一反三:【变式1】如图,已知直线m//n ,A ,B 为直线m 上的两点,C ,P 为直线n 上的两点.(1)请写出图中面积相等的各对三角形:;(2)如果A ,B ,C 为三个定点,点P 在直线n 上移动,那么,无论P 点移动到任何位置,总有.理由是:.【答案】(1)ACP △与BCP 、ABC 与ABP 、AOC 与BOP △;(2)题(1)中三对面积相等的三角形,理由见解析.【分析】(1)根据两平行线之间的距离处处相等、三角形的面积公式即可得;(2)根据两平行线之间的距离处处相等即可得.【详解】(1)设平行线m 与n 之间的距离为h则ACP △和BCP 的边CP 上高均为h ,ABC 和ABP 的边AB 上高均为h由同底等高得:ACP △与BCP 的面积相等,ABC 与ABP 的面积相等又AOC ACP COP S S S =- ,BOP BCP COPS S S =- AOC BOPS S ∴= 即AOC 与BOP △的面积相等故答案为:ACP △与BCP 、ABC 与ABP 、AOC 与BOP △;(2)总有题(1)中三对面积相等的三角形理由:两平行线之间的距离相等、同底等高的三角形的面积相等、面积相等两个三角形都减去公共部分得到的两个三角形的面积也相等.【点拨】本题考查了平行线之间的距离,掌握平行线之间的距离是解题关键.【变式2】作图并写出结论:如图,直线CD与直线AB相交于C,根据下列语句画图.(1)过点P作PR⊥CD,垂足为R.(2)过点P作PQ∥CD,交AB于点Q.(3)若∠DCB=135°,则∠PQC度.(4)点Q到直线PR的距离是线段的长度.)∵PQ∥CD(已作),)∴∠DCB+∠PQC=180°,∵∠DCB=135)因为PR⊥CD,所以点Q到直线【点拨】本题的关键是掌握基本作图,并能运用平行线的性质知识解决问题类型六、平行线的性质➽➼平行线性质与判定综合➽➼证明✮✮计算7.如图,点B,C在线段AD的异侧,点E,F分别是线段AB,CD上的点,∠=∠.已知12∠=∠,3C(1)求证:AB CD ∥;(2)若24180∠+∠=︒,求证:180BFC C ∠+∠=︒;(3)在(2)的条件下,若3021BFC ∠-︒=∠,求B ∠的度数.【答案】(1)见解析;(2)见解析;(3)50B ∠=︒【分析】(1)已知12∠=∠,所以32∠=∠,又因为3C ∠=∠,可以得出1C ∠=∠即可判定AB CD ∥;(2)已知23∠∠=,24180∠+∠=︒,可以得出//BF EC ,即可得出180BFC C ∠+∠=︒;(3)由(1)(2)可知AB CD ∥,//BF EC ,可以得出1C ∠=∠,180BFC C ∠+∠=︒;可以得出30212BFC C ∠-︒=∠=∠,可以得出C ∠,又因为1C B ∠=∠=∠,即可求出B ∠的度数.(1)证明:12∠=∠ ,3C ∠=∠,23∠∠=,1C ∴∠=∠,//AB CD ∴;(2)证明:24180∠+∠=︒ ,23∠∠=,34180∴∠+∠=︒,//BF EC ∴,180BFC C ∴∠+∠=︒;(3)180BFC C ∠+∠=︒ ,30212BFC C ∠-︒=∠=∠ ,230BFC C ∴∠=∠+︒,230180C C ∴∠+︒+∠=︒,50C ∴∠=︒,130BFC ∴∠=︒,//AB CD ,180B BFC ∴∠+∠=︒,50B ∴∠=︒.【点拨】本题考查了对顶角相等,平行线的性质与判定,掌握平行线的性质与判定是解题的关键.举一反三:【变式1】如图,已知点E ,F 在直线上AB 上,点G 在线段CD 上,ED 与FG 交于点H ,180C EFG CED GHE ︒∠=∠∠+∠=,.(1)试判断AED ∠与D ∠之间的数量关系,并说明理由.(2)若7030EHF D ∠︒=︒∠=,,求AEM ∠的度数.【答案】(1)180AED D ∠+∠=︒,理由见解析;(2)100︒.【分析】(1)根据同旁内角互补,两直线平行可得CE ∥GF ,根据平行线的性质等量代换可得∠FGD =∠EFG ,进而判定AB ∥CD ,即可得出∠AED +∠D =180°;(2)根据平行线的性质可得∠CED =70EHF ∠=︒,∠DEF =∠D =30°,求出∠CEF ,依据对顶角相等即可得到∠AEM 的度数.(1)解:∠AED +∠D =180°;理由:∵180CED GHE ∠+∠=︒,∴CE ∥GF ,∴∠C =∠FGD ,∵∠C =∠EFG ,∴∠FGD =∠EFG ,∴AB ∥CD ,∴∠AED +∠D =180°;(2)解:∵CE ∥GF ,70EHF ∠=︒,∴∠CED =70EHF ∠=︒,∵∠D =30°,AB ∥CD ,∴∠DEF =∠D =30°,∴∠CEF =∠CED +∠DEF =70°+30°=100°,∴∠AEM =∠CEF =100°.【点拨】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.如图,1245EF BD BAC ∠=∠∠=︒,,∥.求ADG ∠的度数.【答案】135ADG ∠=︒【分析】根据两直线平行,同位角相等,得出23∠∠=,,再根据等量代换,得出13∠=∠,再根据内错角相等,两直线平行,得到DG AB ∥,最后再根据两直线平行,同旁内角互补,计算即可得出答案.解:∵EF BD ∥,∴23∠∠=,∵12∠=∠,∴13∠=∠,∴DG AB ∥,∴180ADG BAC ∠+∠=︒,∵45BAC ∠=︒,∴18045135AGD ∠=︒-︒=︒.【点拨】本题主要考查了平行线的判定与性质,掌握平行线的判定与性质是解本题的关键.【变式2】完成下面的证明:如图,点B 在AG 上,AG CD ∥,连接BC ,CF 平分BCD ∠,ABE FCB ∠=∠,BE AF ⊥于点E .求证:90F ∠=︒.证明:∵AG CD ∥,∴ABC BCD ∠=∠(_____________________).∵ABE FCB ∠=∠,∴ABC ABE BCD FCB ∠-∠=∠-∠,即EBC FCD ∠=∠.∵CF 平分BCD ∠,∴FCB ∠=______(__________________).∴EBC FCB ∠=∠,∴BE CF ∥(________________________)∴__________________F =∠(________________________).∵BE AF ⊥,∴BEF ∠=______︒(______________________).∴90F ∠=︒.∴90BEF ∠=︒(垂直的定义).∴90F ∠=︒.故答案为:两直线平行,内错角相等;FCD ∠;角平分线的定义;内错角相等,两直线平行;BEF ∠;两直线平行,内错角相等;90;垂直的定义.【点拨】本题主要考查了平行线的性质与判定,角平分线的定义,垂直的定义,熟知相关知识是解题的关键.中考真题专练一、单选题1.(2022·山东东营·中考真题)如图,直线a b ,一个三角板的直角顶点在直线a 上,两直角边均与直线b 相交,140∠=︒,则2∠=()A .40︒B .50︒C .60︒D .65︒【点拨】本题主要考查了几何图形中角度的计算,平行线的性质,三角板中角度的计算,熟知平行线的性质是解题的关键.2.(2022·湖北襄阳·中考真题)已知直线m∥n,将一块含30°角的直角三角板ABC(∠ABC =30°,∠BAC=60°)按如图方式放置,点A,B分别落在直线m,n上.若∠1=70°.则∠2的度数为()A.30°B.40°C.60°D.70°故选:B.【点拨】本题主要考查了平行线的性质,关键是熟练掌握平行线的性质.∥,将一个等腰直角三角板放置到如图所示位置.若3.(2022·贵州安顺·中考真题)如图,a b∠=︒,则2∠的大小是()115A.20︒B.25︒C.30︒D.45︒【答案】C∥,根据平行线的性质,可得【分析】如图,过等腰直角三角板的一个顶点作直线c a23,14∠=∠∠=∠,根据三角板可知3445∠+∠=︒,进而等量代换结合已知条件即可求解.∥解:如图,过等腰直角三角板的一个顶点作直线c a∵a∥b,∴∥∥,a b c∴∠=∠∠=∠,23,14,∠+∠=︒3445\Ð+Ð=°,1245Q,Ð=°115∴∠=︒.230故选:C.【点拨】本题考查了平行线的性质与判定,掌握平行线的性质是解题的关键.二、填空题,则α∠的度数是______.4.(2022·辽宁阜新·中考真题)一副三角板如图摆放,直线AB CD【答案】15︒##15度【分析】根据题意可得:90EBD ∠=︒,45BDE ∠=︒,30EDC ∠=︒,然后利用平行线的性质可得180ABD BDC ∠∠+=︒,从而进行计算即可解答.解:如图:由题意得:90EBD ∠=︒,45BDE ∠=︒,30EDC ∠=︒,//AB CD ,180ABD BDC ∠∠∴+=︒,180EBD BDE EDC∠α∠∠∠∴=︒---180904530=︒-︒-︒-︒15=︒,故答案为:15︒.【点拨】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.5.(2022·湖北宜昌·中考真题)如图,C 岛在A 岛的北偏东50︒方向,C 岛在B 岛的北偏西35︒方向,则ACB ∠的大小是_____.【答案】85︒##85度【分析】过C 作CF DA ∥交AB 于F ,根据方位角的定义,结合平行线性质即可求解.解: C 岛在A 岛的北偏东50︒方向,50DAC ∴∠=︒,C 岛在B 岛的北偏西35︒方向,35CBE ∴∠=︒,过C 作CF DA ∥交AB 于F ,如图所示:DA CF EB ∴∥∥,50,35FCA DAC FCB CBE ∴∠=∠=︒∠=∠=︒,85ACB FCA FCB ∴∠=∠+∠=︒,故答案为:85︒.【点拨】本题考查方位角的概念与平行线的性质求角度,理解方位角的定义,并熟练掌握平行线的性质是解决问题的关键.三、解答题6.(2022·湖北武汉·中考真题)如图,在四边形ABCD 中,AD BC ∥,80B ∠=︒.(1)求BAD ∠的度数;(2)AE 平分BAD ∠交BC 于点E ,50BCD ∠=︒.求证:AE DC ∥.【答案】(1)100BAD ∠=︒;(2)详见解析【分析】(1)根据两直线平行,同旁内角互补,即可求解;(2)根据AE 平分BAD ∠,可得50DAE ∠=︒.再由AD BC ∥,可得50AEB DAE ∠=∠=︒.即可求证.(1)解:∵AD BC ∥,∴180B BAD ∠+∠=°,∵80B ∠=︒,∴100BAD ∠=︒.(2)证明:∵AE 平分BAD ∠,∴50DAE ∠=︒.∵AD BC ∥,∴50AEB DAE ∠=∠=︒.∵50BCD ∠=︒,∴BCD AEB ∠=∠.∴AE DC ∥.【点拨】本题主要考查了平行线的判定和性质,熟练掌握平行线的判定和性质定理是解题的关键。
平行线的判定和性质知识点详解
平行线的判定和性质知识点详解平行线是在同一个平面上,永不相交的两条直线。
在平行线的判定和性质中,我们会涉及到直线和角的相关概念以及它们之间的关系。
1.同位角平行线判定:如果两条直线与一条横截线相交,且同位角相等,则这两条直线是平行线。
同位角是指两条直线被横截线所形成的内外两对相似角。
2.顶角平行线判定:如果两条直线被一条直线所截断,使得内侧的两个顶角互补,则这两条直线是平行线。
顶角是指两条直线被截断所形成的内外两个相交角。
3.对顶角平行线判定:如果两条直线被一条直线所截断,使得对顶角互补,则这两条直线是平行线。
对顶角是指两条直线被截断所形成的相对两侧的相交角。
平行线的性质如下:1.同位角性质:同位角是两条平行线被横截线所形成的内外两对相似角。
性质有:同位角相等;同位角的对应角相等;同位角的内外两个对顶角互补。
2.内错角性质:内部错位的两个角,分别在两对同位角之间,互为补角。
3.外错角性质:外部错位的两个角,分别在两对同位角之间,互为补角。
4.顶角性质:顶角是两条平行线被一条截断线所形成的内外两个相交角。
性质有:顶角相等;顶角的对应角相等;顶角的内外两个对位角互为补角。
5.对顶角性质:对顶角是两条平行线被一条截断线所形成的相对两侧的相交角。
性质有:对顶角互为补角。
6.互补角性质:互补角是指两个角的和为90度。
在平行线中,同位角和对位角都是互补角。
7.直角性质:如果一条直线垂直于一条平行线,则它与这条平行线的对位角都是直角。
8.平行线之间的距离性质:平行线之间的距离在任意两点之间是相等的。
总结起来,平行线的判定方法包括同位角平行线判定、顶角平行线判定和对顶角平行线判定。
而平行线的性质包括同位角性质、内错角性质、外错角性质、顶角性质、对顶角性质、互补角性质、直角性质以及平行线之间的距离性质等。
这些性质可以帮助我们在解决平行线相关问题时更加便捷地推导和证明结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.3 平行线的性质(第一课时)【教学目标】知识与技能:理解平行线的性质的推导;掌握平行线的性质情感态度价值观:初步感受原命题与逆命题,从而了解平行线的性质公理与判定公理的区别,能在推理过程正确使用【教学重点】平行线的性质以及应用.【教学难点】平行线的性质公理与判定公理的区别.【教学过程】一、梳理旧知,引出新课平行线的判定判定方法1 同位角相等,两直线平行.判定方法2 内错角相等,两直线平行.判定方法3 同旁内角互补,两直线平行.问题:反过来也成立吗过去我们学过:如果两个数的和为0,这两个数互为相反数.反过来,如果两个数互为相反数,那么这两个数的和为0.这两个句子都是正确的.现在换一个例子:如果两个角是对顶角,那么这两个角相等.它是对的.反过来,如果两个角相等,这两个角是对顶角.对吗?再看下面的例子:如果一个整数个位上的数字是5,那么它一定能够被5整除.对吗?这句话反过来怎么说?对不对?〖结论〗如果一个句子是正确的,反过来说(因果对调),就未必正确.二、动手操作,归纳性质上一节课,我们学过:同位角相等,两直线平行.反过来怎么说?它还是对的吗?请同学们完成课本P18的探究,写出你的猜想.(板书)性质1两直线平行,同位角相等。
如果把平行线性质1---"两直线平行,同位角相等"看作是基本事实(公理),我们可以利用这个公理证明平行线性质2:"两直线平行,内错角相等".〖例〗如图,已知:直线a 、b 被直线c 所截,且a ∥b , 求证:∠1=∠2. 证明:∵a ∥b ,∴∠1=∠3(__________________). ∵∠3=∠2(对顶角相等), ∴∠1=∠2(等量代换).(板书)性质2 两直线平行,内错角相等〖变式〗下面我们来证明平行线的性质3:两直线平行,同旁内角互补.请模仿范例写出证明. 如图,已知: 直线a 、b 被直线c 所截,且a ∥b , 求证:∠1+∠2=180º. 证明:(略)(板书)性质 两直线平行,同旁内角互补三、巩固新知,深化理解例1 如图,平行线AB ,CD 被直线AE 所截.(1)从∠1=110º.可以知道∠2是多少度吗?为什么? (2)从∠1=110º可以知道∠3是多少度吗?为什么? (3)从∠1=110º可以知道∠4是多少度吗?为什么?例2 如图,已知AB ∥CD ,AE ∥CF ,∠A = 39°,∠C 是多少度?为什么? 方法一解:∵AB ∥CD , ∴ ∠C=∠1.∵ AE ∥CF ,∴ ∠A=∠1. ∴ ∠C=∠A . ∵∠A = 39º,∴∠C = 39º. 方法二解:∵AB ∥CD , ∴ ∠C=∠2.∵ AE ∥CF ,∴ ∠A=∠2. ∴ ∠C=∠A . ∵∠A = 39º,∴∠C = 39º.练习1 如图,已知直线a 、b 被直线c 所截,在括号内为下面各小题的推理填上适当的根据:ab 1 2 3cab 123 cEDCB A 1234GFEDCB A(1)∵a ∥b ,∴∠1=∠3(___________________); (2)∵∠1=∠3,∴a ∥b (_________________). (3)∵a ∥b ,∴∠1=∠2(__________________); (4)∴a ∥b ,∴∠1+∠4=180º(_____________________________________) (5)∵∠1=∠2,∴a ∥b (___________________); (6)∵∠1+∠4=180º,∴a ∥b (_______________). 练习2 教材第20页 练习四、盘点收获,布置作业 1、(1)平行线的性质是什么?(2)你能用自己的语言叙述研究平行线性质的过程吗?(3)性质2和性质3是通过简单推理得到的,在推理论证中需要注意哪些问题? 2、作业5.3 平行线的性质(第二课时)【教学目标】知识与技能:掌握平行线的性质与判定的应用,掌握两条平行线的距离的概念 过程与方法:经历例题的分析过程,从中体会转化的思想和分析问题的方法情感态度价值观:通过本节内容的学习,进一步培养推理能力,体会数学在实际生活中的应用.【教学重难点】综合应用平行线的性质与判定解决问题. 【教学过程】 一、复习引入问题 (1)平行线的性质是什么? (2)结合图形回答问题:①如果AB ∥CD ,∠1与∠2相等吗?为什么?ab 1 23c4321F ED C BA②如果DE ∥FB ,能得到∠1与∠3的关系吗?为什么?③根据哪两条直线平行可以得到∠A +∠ ABC=180º ?为什么?(3)对比平行线的性质和判定方法,你能说出它们的区别吗?条件 结论判定同位角相等两直线平行内错角相等 同旁内角互补性质两直线平行同位角相等内错角相等 同旁内角互补二、引导探究 如图,AB ∥CD ,(1)在AB 上任取一点E ,向CD 画垂线段EF ; (2)EF 是否也垂直于AB 呢?(3)在AB 上另取一点G ,向CD 画垂线段GH ;(4)在CD 上,点F 、H 外,任取一点I ,向AB 画垂线段IJ ; (5)量出EF 、GH 、IJ 的长,说说你的发现.问题:同时垂直于两条平行线,并且夹在这两条平行间的线段之间....有什么性质?你能举出实际的例子吗?(板书)同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线间的距离. 三、举例应用例 一块梯形铁片的残余部分如图,量得∠A=75º,∠B=72º,梯形的另外两个角分别是多少度?例 已知,如图,∠1=∠2,CE ∥BF ,试说明: AB ∥CD .四、巩固深化ABDC FEDCB A 21练习1如图,AB∥CD,BE平分∠ABC,CF平分∠BCD,你能发现BE与CF的位置关系吗?说明理由.答:BE∥CF.理由如下:∵BE平分∠ABC,∴2ABC.∠=∠11同理22BCD.∠=∠1∵AB∥CD,∴∠ABC=∠BCD.∴∠1=∠2.∵∠1和∠2是内错角,∴BE∥CF(内错角相等,两直线平行).练习2已知:如图,∠AGD=∠ACB,∠1=∠2,CD与EF平行吗?为什么?答:CD∥EF五、盘点收获(1)平行线的性质与判定的区别是什么?(2)在解决具体问题过程中,你能区别什么时候需要使用平行线的性质,什么时候需要使用平行线的判定吗?六、布置作业思考题:如图,潜望镜中的两面镜子是互相平行放置的,光线经过镜子反射时,∠1=∠2,∠3=∠4,∠2和∠3有什么关系?为什么进入潜望镜的光线和离开潜望镜的光线是平行的?已知条件:如图,AB∥CD,∠1=∠2,∠3=∠4.猜想:∠2和∠3有什么关系,并说明理由;试说明:PM∥NQ.FEDCBA21GFEDC BA5.3.2 命题、定理、证明【教学目标】知识与技能:了解命题的概念以及命题的构成(如果……那么……的形式);理解真命题和假命题的定义过程与方法:情感态度价值观:【教学重难点】对命题结构的认识【教学过程】一、创设情境〖读一读〗请同学读出下列语句(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两条平行线被第三条直线所截,同旁内角互补;(3)对顶角相等;(4)等式两边都加同一个数,结果仍是等式.二、新知讲授像这样判断一件事情的语句,叫做命题.〖试一试〗判断下列语句是不是命题?(1)两点之间,线段最短;()(2)请画出两条互相平行的直线;()(3)过直线外一点作已知直线的垂线;()(4)如果两个角的和是90º,那么这两个角互余.()(5)若|a|=-a,则a≤0.〖想一想〗你能举出一些命题的例子吗?命题的结构:许多命题都由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.命题常写成"如果……那么……"的形式,这时,"如果"后接的部分是题设,"那么"后接的部分是结论.〖做一做〗1、下列语句是命题吗?如果是,请将它们改写成“如果……,那么……”的形式.(1)两条直线被第三条直线所截,同旁内角互补;(2)等式两边都加同一个数,结果仍是等式;(3)互为相反数的两个数相加得0;(4)同旁内角互补;(5)对顶角相等.2、判断上题中哪些命题是正确的,哪些命题是错误的?命题的真假真命题:如果题设成立,那么结论一定成立,这样的命题叫做真命题.假命题:如果题设成立时,不能保证结论一定成立,这样的命题叫做假命题.〖练一练〗请同学们判断下列命题哪些是真命题?哪些是假命题?(1)在同一平面内,如果一条直线垂直于两条平行线中的一条,那么也垂直于另一条;(2)如果两个角互补,那么它们是邻补角;,那么a=b;(3)如果a b(4)经过直线外一点有且只有一条直线与这条直线平行;(5)两点确定一条直线.定理如上题中(1)(4)(5)它们的正确性是经过推理证实的,这样得到的真命题叫做定理(theorem).三、举例应用例请同学们判断下列命题的真假,并思考如何判断命题的真假.命题:在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条.(1)命题1是真命题还是假命题?(2)你能将命题1所叙述的内容用图形语言来表达吗?(3)这个命题的题设和结论分别是什么呢?(4)你能结合图形用几何语言表述命题的题设和结论吗?(5)请同学们思考如何利用已经学过的定义定理来证明这个结论呢?已知:b∥c,a⊥b.求证:a⊥c.练习填空已知:如图1,∠1=∠2,∠3=∠4,求证:EG∥FH.证明:∵∠1=∠2(已知)∠AEF=∠1 ();∴∠AEF=∠2 ().∴AB∥CD().∴∠BEF=∠CFE ().∵∠3=∠4(已知);∴∠BEF-∠4=∠CFE-∠3.即∠GEF=∠HFE().∴EG∥FH().四、盘点收获1.什么叫做命题?你能举出一些例子吗?2.命题是由哪两部分组成的?3.举例说明什么是真命题,什么是假命题.4.如何判断一个命题的真假?5.谈谈你对证明的理解。
五、课后作业。