2020全国大学生数学建模竞赛试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A题炉温曲线

在集成电路板等电子产品生产中,需要将安装有各种电子元件的印刷电路板放置在回焊炉中,通过加热,将电子元件自动焊接到电路板上。在这个生产过程中,让回焊炉的各部分保持工艺要求的温度,对产品质量至关重要。目前,这方面的许多工作是通过实验测试来进行控制和调整的。本题旨在通过机理模型来进行分析研究。

回焊炉内部设置若干个小温区,它们从功能上可分成4个大温区:预热区、恒温区、回流区、冷却区(如图1所示)。电路板两侧搭在传送带上匀速进入炉内进行加热焊接。

图1 回焊炉截面示意图

某回焊炉内有11个小温区及炉前区域和炉后区域(如图1),每个小温区长度为30.5 cm,相邻小温区之间有5 cm的间隙,炉前区域和炉后区域长度均为25 cm。

回焊炉启动后,炉内空气温度会在短时间内达到稳定,此后,回焊炉方可进行焊接工作。炉前区域、炉后区域以及小温区之间的间隙不做特殊的温度控制,其温度与相邻温区的温度有关,各温区边界附近的温度也可能受到相邻温区温度的影响。另外,生产车间的温度保持在25ºC。

在设定各温区的温度和传送带的过炉速度后,可以通过温度传感器测试某些位置上焊接区域中心的温度,称之为炉温曲线(即焊接区域中心温度曲线)。附件是某次实验中炉温曲线的数据,各温区设定的温度分别为175ºC(小温区1~5)、195ºC(小温区6)、235ºC(小温区7)、255ºC(小温区8~9)及25ºC(小温区10~11);传送带的过炉速度为70 cm/min;焊接区域的厚度为0.15 mm。温度传感器在焊接区域中心的温度达到30ºC时开始工作,电路板进入回焊炉开始计时。

实际生产时可以通过调节各温区的设定温度和传送带的过炉速度来控制产品质量。在上述实验设定温度的基础上,各小温区设定温度可以进行ºC范围内的调整。调整时要求小温区1~5中的温度保持一致,小温区8~9中的温度保持一致,小温区10~11中的温度保持25ºC。传送带的过炉速度调节范围为65~100 cm/min。

在回焊炉电路板焊接生产中,炉温曲线应满足一定的要求,称为制程界限(见表1)。

表1 制程界限

界限名称

最低值

最高值

单位

温度上升斜率

ºC/s

温度下降斜率

ºC/s

温度上升过程中在150ºC~190ºC的时间

s

温度大于217ºC的时间

s

峰值温度

ºC

请你们团队回答下列问题:

问题1 请对焊接区域的温度变化规律建立数学模型。假设传送带过炉速度为78 cm/min,各温区温度的设定值分别为173ºC(小温区1~5)、198ºC(小温区6)、230ºC(小温区7)和257ºC(小温区8~9),请给出焊接区域中心的温度变化情况,列出小温区3、6、7中点及小温区8结束处焊接区域中心的温度,画出相应的炉温曲线,并将每隔0.5 s焊接区域中心的温度存放在提供的result.csv中。

问题2 假设各温区温度的设定值分别为182ºC(小温区1~5)、203ºC(小温区6)、237ºC(小温区7)、254ºC(小温区8~9),请确定允许的最大传送带过炉速度。

问题3 在焊接过程中,焊接区域中心的温度超过217ºC的时间不宜过长,峰值温度也不宜过高。理想的炉温曲线应使超过217ºC到峰值温度所覆盖的面积(图2中阴影部分)最小。请确定在此要求下的最优炉温曲线,以及各温区的设定温度和传送带的过炉速度,并给出相应的面积。

图2 炉温曲线示意图

问题4 在焊接过程中,除满足制程界限外,还希望以峰值温度为中心线的两侧超过217ºC的炉温曲线应尽量对称(参见图2)。请结合问题3,进一步给出最优炉温曲线,以及各温区设定的温度及传送带过炉速度,并给出相应的指标值。

2020年高教社杯全国大学生数学建模竞赛题目

(请先阅读“全国大学生数学建模竞赛论文格式规范”)

B题穿越沙漠

考虑如下的小游戏:玩家凭借一张地图,利用初始资金购买一定数量的水和食物(包括食品和其他日常用品),从起点出发,在沙漠中行走。途中会遇到不同的天气,也可在矿山、村庄补充资金或资源,目标是在规定时间内到达终点,并保留尽可能多的资金。

游戏的基本规则如下:

(1)以天为基本时间单位,游戏的开始时间为第0天,玩家位于起点。玩家必须在截止日期或之前到达终点,到达终点后该玩家的游戏结束。

(2)穿越沙漠需水和食物两种资源,它们的最小计量单位均为箱。每天玩家拥有的水和食物质量之和不能超过负重上限。若未到达终点而水或食物已耗尽,视为游戏失败。

(3)每天的天气为“晴朗”、“高温”、“沙暴”三种状况之一,沙漠中所有区域的天气相同。

(4)每天玩家可从地图中的某个区域到达与之相邻的另一个区域,也可在原地停留。沙暴日必须在原地停留。

(5)玩家在原地停留一天消耗的资源数量称为基础消耗量,行走一天消耗的资源数量为基础消耗量的倍。

(6)玩家第0天可在起点处用初始资金以基准价格购买水和食物。玩家可在起点停留或回到起点,但不能多次在起点购买资源。玩家到达终点后可退回剩余的水和食物,每箱退回价格为基准价格的一半。

(7)玩家在矿山停留时,可通过挖矿获得资金,挖矿一天获得的资金量称为基础收益。如果挖矿,消耗的资源数量为基础消耗量的倍;如果不挖矿,消耗的资源数量为基础消耗量。到达矿山当天不能挖矿。沙暴日也可挖矿。

(8)玩家经过或在村庄停留时可用剩余的初始资金或挖矿获得的资金随时购买水和食物,每箱价格为基准价格的2倍。

请根据游戏的不同设定,建立数学模型,解决以下问题。

1. 假设只有一名玩家,在整个游戏时段内每天天气状况事先全部已知,试给出一般情况下玩家的最优策略。求解附件中的“第一关”和“第二关”,并将相应结果分别填入Result.xlsx。

2. 假设只有一名玩家,玩家仅知道当天的天气状况,可据此决定当天的行动方案,试给出一般情况下玩家的最佳策略,并对附件中的“第三关”和“第四关”进行具体讨论。

3. 现有名玩家,他们有相同的初始资金,且同时从起点出发。若某天其中的任意名玩家均从区域A行走到区域B(),则他们中的任一位消耗的资源数量均为基础消耗量的倍;若某天其中的任意名玩家在同一矿山挖矿,则他们中的任一位消耗的资源数量均为基础消耗量的倍,且每名玩家一天可通过挖矿获得的资金是基础收益的;若某天其中的任意名玩家在同一村庄购买资源,每箱价格均为基准价格的倍。其他情况下消耗资源数量与资源价格与单人游戏相同。

(1)假设在整个游戏时段内每天天气状况事先全部已知,每名玩家的行动方案需在第天确定且此后不能更改。试给出一般情况下玩家应采取的策略,并对附件中的“第五关”进行具体讨论。

(2)假设所有玩家仅知道当天的天气状况,从第天起,每名玩家在当天行动结束后均知道其余玩家当天的行动方案和剩余的资源数量,随后确定各自第二天的行动方案。试给出一般情况下玩家应采取的策略,并对附件中的“第六关”进行具体讨论。

注1:附件所给地图中,有公共边界的两个区域称为相邻,仅有公共顶点而没有公共边界的两个区域不视作相邻。

注2:Result.xlsx中剩余资金数(剩余水量、剩余食物量)指当日所需资源全部消耗完毕后的资金数(水量、食物量)。若当日还有购买行为,则指完成购买后的资金数(水量、食物量)。

2020年高教社杯全国大学生数学建模竞赛题目

(请先阅读“全国大学生数学建模竞赛论文格式规范”)

C题中小微企业的信贷决策

相关文档
最新文档