初中数学重点梳理:函数及其图像

合集下载

初中高中数学七大函数的性质 图像

初中高中数学七大函数的性质 图像

初中高中数学七大函数的性质图像1.一次函数(包括正比例函数)最简单最常见的函数,在平面直角坐标系上的图象为直线。

定义域(下面没有说明的话,都是在无特殊要求情况下的定义域):R值域:R奇偶性:无周期性:无平面直角坐标系解析式(下简称解析式):①ax+by+c=0[一般式]②y=kx+b[斜截式](k为直线斜率,b为直线纵截距,正比例函数b=0)③y-y1=k(x-x1)[点斜式](k为直线斜率,(x1,y1)为该直线所过的一个点)④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]((x1,y1)与(x2,y2)为直线上的两点)⑤x/a-y/b=0[截距式](a、b分别为直线在x、y轴上的截距)解析式表达局限性:①所需条件较多(3个);②、③不能表达没有斜率的直线(平行于x轴的直线);④参数较多,计算过于烦琐;⑤不能表达平行于坐标轴的直线和过圆点的直线。

倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜角。

设一直线的倾斜角为a,则该直线的斜率k=tg(a)。

2.二次函数:题目中常见的函数,在平面直角坐标系上的图象是一条对称轴与y轴平行的抛物线。

定义域:R值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)奇偶性:偶函数周期性:无解析式:①y=ax^2+bx+c[一般式]⑴a≠0⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;⑶极值点:(-b/2a,(4ac-b^2)/4a);⑷Δ=b^2-4ac,Δ>0,图象与x轴交于两点:([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0);Δ=0,图象与x轴交于一点:(-b/2a,0);Δ<0,图象与x轴无交点;②y=a(x-h)^2+t[配方式]此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a);3.反比例函数在平面直角坐标系上的图象为双曲线。

九年级数学函数及其图像

九年级数学函数及其图像

第九讲函数及其图像(一)一、考点链接函数的本质特征是变化与对应,它是表示、处理数量关系以及变化规律的有效工具.作为刻画变量变化规律的工具,函数的各种形式体现了“函数知识”与“函数思想”的统一.“函数”除了包括函数的概念、正比例函数、一次函数、反比例函数及二次函数等具体知识外,其自身还蕴含着方程与不等式的知识.函数是初中数学的核心内容、重要的基础知识.它与数学其它知识有着更为广泛的联系,不仅有着极为广泛的应用,而且也是发展同学们符号感的有效载体.在历年的学业考试中,函数一直是命题的“重头戏”,所考题型无所不包,同时不断与其它数学知识相互渗透,题量不一定是最多的,但综合程度一定是最高的.1.正比例函数的定义一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数.2.正比例函数的图像正比例函数y=kx(k是常数且k≠0)的图像是一条经过原点(0,0)和点(1,k)•的直线,我们称它为直线y=kx;当k>0时,直线y=kx经过第一,三象限,y随着x的增大而增大,当k<0时,直线y=kx 经过第二,四象限,y随着x的增大而减少.3.一次函数的定义如果y=kx+b(k,b为常数,且k≠0),那么y叫做x的一次函数.一次函数的标准形式为y=kx+b,是关于x的一次二项式,其中一次项系数k必须是不为零的常数,b可以为任何常数.当b=0而k≠0时,它是正比例函数,由此可知正比例函数是一次函数的特殊情况.当k=0而b≠0时,它不是一次函数.4.一次函数的图像一次函数y=kx+b(k≠0)的图像是一条直线,通常也称直线y=kx+b,由于两点确定一条直线,故画一次函数的图像时,通常取图像与坐标轴的两个交点(0,b),(-bk,0)就行了.5.一次函数的图像与性质直线y=kx+b(k≠0)中,k和b决定着直线的位置及增减性,当k>0时,y随x的增大而增大,此时若b>0,则直线y=kx+b经过第一,二,三象限;若b<0,则直线y=kx+b经过第一,三,四象限,当k<0时,y随x的增大而减小,此时当b>0时,直线y=kx+b经过第一,二,四象限;当b<0时,直线y=kx+b 经过第二,三,四象限.6.一次函数图像的平移与图像和坐标轴围成的三角形的面积一次函数y=kx+b沿着y轴向上(“+”)、下(“-”)平移m(m>0)•个单位得到一次函数y=kx+b±m;一次函数y=kx+b沿着x轴向左(“+”)、•右(“-”)平移n(n>0)个单位得到一次函数y=k(x±n)+b;一次函数沿着y轴平移与沿着x轴平移往往是同步进行的.只不过是一种情况,两种表示罢了;直线y=kx+b与x轴交点为(-bk,0),与y轴交点为(0,b),且这两个交点与坐标原点构成的三角形面积为S△=12·│-bk│·│b│.OSt OSt OSt OStA P BA.B.C.D.(第1题)①一般地,函数y=kx(k是常数,k≠0)叫做反比例函数,x的取值范围是x≠0,y的取值范围是y≠0.②反比例函数的图像是双曲线,故也称双曲线y=kx(k≠0),当k>0时⇔函数图像的两个分支分别在第一,三象限内⇔在每一象限内,y随x的增大而减小;当k<0时⇔函数图像的两个分支分别在第二,四象限内⇔在每一象限内,y随x的增大而增大.• ③反比例函数的解析式y=kx中,只有一个待定系数k,所以通常只需知道图像上的一个点的坐标,就可以确定k的值.从而确定反比例函数的解析式.(因为k=xy)二、归类探究1. 函数概念和函数图像例1、如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度大小不变,则以点A为圆心,线段AP长为半径的圆的面积S与点P的运动时间t之间的函数图象大致为()例2、20011年6月3日中央新闻报道,为鼓励居民节约用水,北京市将出台新的居民用水收费标准:①若每月每户居民用水不超过4立方米,则按每立方米2元计算;②若每月每户居民用水超过4立方米,则超过部分按每立方米4.5元计算(不超过部分仍按每立方米2元计算).现假设该市某户居民某月用水x立方米,水费为y 元,则y与x的函数关系用图象表示正确的是()2.求函数解析式例3、如图所示,已知反比例函数y1=mx(m≠0)•的图像经过点A(-2,1),一次函数y2=kx+b(k≠0)的图象经过点C(0,3)与点A,且与反比例函数的图像相交于另一点B.(1)分别求出反比例函数与一次函数的解析式;(2)求点B的坐标.yB 1-1- 1 2 3 3 12 A (1,3)3. 函数与方程、不等式例4、如图,已知一次函数1y x m =+(m 为常数)的图象与反比例函数 2ky x=(k 为常数, 0k ≠)的图象相交于点 A (1,3).(1)求这两个函数的解析式及其图象的另一交点B 的坐标; (2)观察图象,写出使函数值12y y ≥的自变量x 的取值范围.例5、如图所示,一次函数y=ax+b 的图像与反比例函数y=kx的图像交于A ,B 两点,与x 轴交于点C ,与y 轴交于点D .已知5tan ∠AOC=12,点B 的坐标为(12,m ).(1) 求反比例函数和一次函数的解析式;(2)求△AOB 的面积.4. 利用函数进行方案选择例6、铜仁某水果销售公司准备从外地购买西瓜31t ,柚子12t ,现计划租甲,乙两种货车共10辆,将这批水果运到铜仁,已知甲种货车可装西瓜4t 和柚子1t ,乙种货车可装西瓜,柚子各2t . (1)该公司安排甲,乙两种货车时有几种方案?(2)若甲种货车每辆要付运输费1800元,乙种货车每辆要付运输费1200元,•则该公司选择哪种方案运费最少?最少运费是多少元?【点评】本例需要考生构建一元一次不等式和一次函数来解决实际问题,以考查学生运用综合知识,分析、解决问题的能力.OAyxB第6题图5.利用函数解决实际问题例7、某产品每件成本10元,试销阶段每件产品的销售价x (元)•与产品的日销售量y (件)之间的关系如下表:x (元) 15 20 30 … y (件)252010…若日销售量y 是销售价x 的一次函数.(1)求出日销售量y (件)与销售价x (元)的函数关系式.(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?•此时每日销售利润是多少元?三、挑战中考1、(2011长沙)反比例函数ky x=的图象经过点A(2-,3),则k 的值为____________。

函数性质图像知识点总结

函数性质图像知识点总结

函数性质图像知识点总结一、函数的定义在数学上,函数可以定义为一种特殊的关系,它将输入(自变量)映射到输出(因变量)。

具体来说,如果对于每一个自变量值,函数都有唯一的对应因变量值,那么这个关系就是一个函数。

形式上,我们可以用f(x)来表示函数,其中x是自变量,f(x)是对应的因变量。

例如,y = 2x + 3就是一个函数,其中y是因变量,x是自变量。

二、函数的性质1.定义域和值域函数的定义域是指所有可能的自变量值的集合,而值域是所有可能的因变量值的集合。

在图像上,定义域通常表示为x轴上的取值范围,而值域则表示为y轴上的取值范围。

例如,对于函数f(x) = x²,其定义域为所有实数,而值域为非负实数集合。

2.奇函数与偶函数奇函数与偶函数是函数的对称性质。

如果对于任意的x,有f(-x) = -f(x),那么函数f(x)就是奇函数;如果对于任意的x,有f(-x) = f(x),那么函数f(x)就是偶函数。

奇函数在原点对称,而偶函数在y轴对称。

3.单调性函数的单调性是指在定义域上,函数值的增减关系。

如果对于任意的x₁和x₂,当x₁< x₂时有f(x₁)≤f(x₂),那么函数f(x)就是递增的;如果对于任意的x₁和x₂,当x₁< x₂时有f(x₁)≥f(x₂),那么函数f(x)就是递减的。

4.周期性如果存在一个正数T,使得对于所有的x,有f(x+T) = f(x),那么函数f(x)就是周期函数。

其中最小的T称为函数的周期,通常用P来表示。

常见的周期函数有sin(x)和cos(x)。

5.有界性函数的有界性是指函数值的范围限制。

如果存在两个实数M和N,使得对于任意的x,有|f(x)| ≤ M,那么函数f(x)就是有界的。

如果函数在定义域上有上界和下界,则称为有界函数。

6.反函数若对于一个函数f(x),存在一个函数g(x),使得f(g(x)) = x且g(f(x)) = x,那么函数g(x)就是函数f(x)的反函数。

初中中函数解析以及解题技巧

初中中函数解析以及解题技巧

函数知识点总结(掌握函数的定义、性质和图像)(一)平面直角坐标系1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系2、各个象限内点的特征:第一象限:(+,+) 点P (x,y ),则x >0,y >0;第二象限:(-,+) 点P (x,y ),则x <0,y >0;第三象限:(-,-) 点P (x,y ),则x <0,y <0;第四象限:(+,-) 点P (x,y ),则x >0,y <0;3、坐标轴上点的坐标特征:x 轴上的点,纵坐标为零;y 轴上的点,横坐标为零;原点的坐标为(0 , 0)。

两坐标轴的点不属于任何象限。

4、点的对称特征:已知点P(m,n),关于x 轴的对称点坐标是(m,-n), 横坐标相同,纵坐标反号关于y 轴的对称点坐标是(-m,n) 纵坐标相同,横坐标反号关于原点的对称点坐标是(-m,-n) 横,纵坐标都反号5、平行于坐标轴的直线上的点的坐标特征:平行于x 轴的直线上的任意两点:纵坐标相等;平行于y 轴的直线上的任意两点:横坐标相等。

6、各象限角平分线上的点的坐标特征:第一、三象限角平分线上的点横、纵坐标相等。

第二、四象限角平分线上的点横、纵坐标互为相反数。

7、点P (x,y )的几何意义:点P (x,y )到x 轴的距离为 |y|,点P (x,y )到y 轴的距离为 |x|。

点P (x,y )到坐标原点的距离为22y x +8、两点之间的距离:X 轴上两点为A )0,(1x 、B )0,(2x |AB|||12x x -=Y 轴上两点为C ),0(1y 、D ),0(2y |CD|||12y y -=已知A ),(11y x 、B ),(22y x AB|=212212)()(y y x x -+-9、中点坐标公式:已知A ),(11y x 、B ),(22y x M 为AB 的中点则:M=(212x x + , 212y y +) 10、点的平移特征: 在平面直角坐标系中,将点(x,y )向右平移a 个单位长度,可以得到对应点( x-a ,y );将点(x,y )向左平移a 个单位长度,可以得到对应点(x+a ,y );将点(x,y )向上平移b 个单位长度,可以得到对应点(x ,y +b );将点(x,y )向下平移b 个单位长度,可以得到对应点(x ,y -b )。

初中知识点归纳——函数图像篇

初中知识点归纳——函数图像篇

初中知识点归纳——函数图像篇函数图像是初中数学中的重要内容之一。

通过函数图像的形状、特点以及变化规律,可以深入理解函数的性质和作用。

本文将从函数图像的基本形状与分类、常见函数图像的特点及其变化规律等方面进行归纳与总结。

一、函数图像的基本形状与分类函数图像的形状可以分为线性函数、二次函数、指数函数和对数函数等几种常见类型。

1. 线性函数图像线性函数的特点是图像为一条直线。

直线的斜率表示了函数的增减趋势,当斜率为正时,函数图像呈上升趋势;当斜率为负时,函数图像呈下降趋势;斜率为0时,函数图像为水平直线。

2. 二次函数图像二次函数的图像通常为抛物线形状。

抛物线的开口方向由二次项的系数决定,当二次项的系数为正时,抛物线开口向上;当二次项的系数为负时,抛物线开口向下。

二次函数的图像还受到常数项的影响,常数项决定了抛物线的位置。

3. 指数函数图像指数函数的图像为指数曲线,呈现上升或下降的趋势。

指数函数的底数决定了曲线在坐标系中的位置和形状。

当底数大于1时,指数曲线呈现上升趋势;当底数小于1但大于0时,指数曲线呈现下降趋势。

4. 对数函数图像对数函数的图像为对数曲线,也呈现上升或下降的趋势。

对数函数的底数决定了曲线在坐标系中的位置和形状。

当底数大于1时,对数曲线呈现上升趋势;当底数小于1但大于0时,对数曲线呈现下降趋势。

二、常见函数图像的特点与变化规律1. 线性函数的特点与变化规律线性函数的图像为一条直线,具有以下特点和变化规律:(1)斜率决定了线性函数图像的倾斜程度和方向,斜率越大图像越陡峭,斜率为正表示函数图像上升,斜率为负表示函数图像下降。

(2)截距决定了线性函数图像与纵轴的交点位置,截距为正表示交点在纵轴上方,截距为负表示交点在纵轴下方。

2. 二次函数的特点与变化规律二次函数的图像为抛物线,具有以下特点和变化规律:(1)开口方向由二次项的系数决定,正系数表示抛物线开口向上,负系数表示抛物线开口向下。

(2)顶点是抛物线的最高点或最低点,在坐标系中的横坐标为顶点的x坐标,纵坐标为顶点的y坐标。

数学函数图像知识点总结

数学函数图像知识点总结

数学函数图像知识点总结函数是数学中的一个重要概念,通过函数可以描述各种现象和规律。

函数图像是函数的图形表示,通过函数图像可以直观地理解函数的性质和行为。

在学习数学函数图像时,我们需要掌握一些重要的知识点,包括函数的定义、基本函数图像、函数的性质、函数图像的变换等内容。

本文将围绕这些知识点展开详细的介绍。

一、函数的定义1.1 函数的定义在数学中,函数是一种特殊的关系,它将一个集合中的每一个元素都对应到另一个集合中的唯一元素。

通俗的讲,函数就是一种映射关系,将自变量映射到因变量。

函数的定义可以用一个公式、图形或者文字描述。

函数通常用f(x)或者y来表示,其中x是自变量,y是因变量。

函数的一般表示形式为y=f(x),其中f表示函数名,x表示自变量,y表示因变量。

1.2 函数的性质函数有许多重要的性质,包括定义域、值域、奇偶性、周期性等。

在图像中,这些性质通常能够直观地表现出来。

- 定义域:函数的自变量的取值范围称为函数的定义域。

在函数图像上,定义域通常可以通过图形的横坐标范围来表示。

- 值域:函数的因变量的取值范围称为函数的值域。

在函数图像上,值域通常可以通过图形的纵坐标范围来表示。

- 奇偶性:函数的奇偶性是指函数图像关于y轴对称还是关于原点对称。

奇函数的图像关于原点对称,偶函数的图像关于y轴对称。

- 周期性:具有周期性的函数在一定的距离内重复出现相似的图像。

周期函数的图像通常具有明显的重复性特征。

1.3 常见的基本函数在函数图像中,一些基本函数的图像具有重要的参考意义,这些函数包括线性函数、二次函数、指数函数、对数函数、三角函数等。

- 线性函数:线性函数的图像是一条直线,具有固定的斜率和截距。

- 二次函数:二次函数的图像是一个抛物线,具有一个顶点。

- 指数函数:指数函数的图像是以底数为底的指数幂函数,具有快速增长或者快速衰减的特点。

- 对数函数:对数函数的图像是以底数为底的对数函数,具有反映增长速度缓慢的特点。

初中所有函数知识点归纳

初中所有函数知识点归纳

初中所有函数知识点归纳函数是数学中的一种基本概念,也是初中数学中非常重要的内容。

在初中阶段,学生主要学习了一次函数、二次函数和分段函数等几种常见类型的函数,下面对这些内容进行归纳。

一、一次函数:1. 函数的定义:一次函数是指函数表达式为 y = kx + b 的函数,其中 k 和 b 是常数,且k ≠ 0。

2.函数图像:一次函数的图像是一条直线,通过其中两个点就能确定这条直线。

3.函数性质:一次函数是一个线性函数,特点是斜率恒定,即直线的倾斜度保持一致。

4.斜率:斜率是一次函数的重要特征,用来描述函数图像的倾斜程度。

二、二次函数:1. 函数的定义:二次函数是指函数表达式为 y = ax^2 + bx + c 的函数,其中 a、b 和 c 是常数,且a ≠ 0。

2.函数图像:二次函数的图像是一个抛物线,开口方向由a的正负确定。

3.函数性质:二次函数的最高次项是二次的,代表抛物线的弯曲程度。

4.零点和顶点:二次函数的零点即方程的根,顶点是抛物线的顶点,二次函数的顶点坐标为(-b/2a,f(-b/2a))。

三、分段函数:1.函数的定义:分段函数是指在不同的区间采用不同的函数表达式来定义的函数。

2.函数图像:分段函数的图像是由不同的线段或抛物线拼接而成。

3.区间和定义域:分段函数的定义域是所有给定函数的定义域的并集,区间是定义域的数据范围。

四、函数的运算:1.函数的加减法:两个函数的加减法运算规则是将对应的x值代入函数表达式后进行运算得到对应的y值,即(f+g)(x)=f(x)±g(x)。

2.函数的乘法:两个函数的乘法运算是将对应的x值代入函数表达式后进行运算得到对应的y值,即(f*g)(x)=f(x)*g(x)。

3.函数的除法:两个函数的除法运算是将对应的x值代入函数表达式后进行运算得到对应的y值,即(f/g)(x)=f(x)/g(x)。

五、函数的应用:1.函数的问题解决:函数在数学中有很多实际应用,如利用函数关系解决实际问题,通过函数图像分析问题等。

经典数学函数图像(大全)

经典数学函数图像(大全)

经典数学函数图像(大全)1. 一次函数图像一次函数图像是一条直线,其一般形式为 y = mx + b,其中 m是斜率,b 是 y 轴截距。

当 m > 0 时,直线向上倾斜;当 m < 0 时,直线向下倾斜。

2. 二次函数图像二次函数图像是一个抛物线,其一般形式为 y = ax^2 + bx + c,其中 a、b、c 是常数。

当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。

3. 三角函数图像三角函数图像包括正弦函数、余弦函数和正切函数。

正弦函数图像是一条波动曲线,余弦函数图像与正弦函数图像相似,但相位差为π/2。

正切函数图像是一条周期性振荡的曲线。

4. 指数函数图像指数函数图像是一条上升或下降的曲线,其一般形式为 y = a^x,其中 a 是底数,x 是指数。

当 a > 1 时,曲线上升;当 0 < a < 1 时,曲线下降。

5. 对数函数图像对数函数图像是一条上升或下降的曲线,其一般形式为 y =log_a(x),其中 a 是底数,x 是真数。

当 a > 1 时,曲线上升;当0 < a < 1 时,曲线下降。

6. 双曲函数图像双曲函数图像包括双曲正弦函数、双曲余弦函数和双曲正切函数。

双曲正弦函数和双曲余弦函数图像都是上升或下降的曲线,而双曲正切函数图像是一条周期性振荡的曲线。

7. 幂函数图像幂函数图像是一条上升或下降的曲线,其一般形式为 y = x^n,其中 n 是指数。

当 n > 0 时,曲线上升;当 n < 0 时,曲线下降。

8. 反比例函数图像反比例函数图像是一条双曲线,其一般形式为 y = k/x,其中 k是常数。

当 k > 0 时,曲线位于第一和第三象限;当 k < 0 时,曲线位于第二和第四象限。

经典数学函数图像(大全)3. 反三角函数图像反三角函数是三角函数的反函数,包括反正弦函数、反余弦函数和反正切函数。

八年级函数图像知识点

八年级函数图像知识点

八年级函数图像知识点函数图像是初中数学中一个非常重要的知识点,学好函数图像的知识不仅可以为学生将来学习高中数学和大学数学打下坚实的基础,而且还可以为学生成为优秀的一个数学家打下基础。

在这篇文章中,我将会涉及到八年级函数图像的几个重要知识点。

一、一次函数一次函数是最简单的线性函数,可以用y=kx+b 的方式来表达,其中 k 是斜率, b 是截距。

一次函数的图像是一条直线,斜率为正的直线向右上方倾斜,斜率为负的则向右下方倾斜。

当斜率k=0 时,直线是水平的;当 b=0 时,直线经过原点,称为原点通过的直线。

二、二次函数二次函数是常见的非线性函数之一,可以用 y=ax²+bx+c 的方式来表达,其中 a 不等于0。

a 的正负决定了二次函数开口朝上或朝下,当 a>0 时,二次函数开口朝上,当 a<0 时,二次函数开口朝下。

b 的正负决定了二次函数的对称轴位置,对称轴的方程为 x=-b/2a。

c 影响了二次函数的 y 坐标截距。

当 a=1,b=c=0 时,二次函数变为 y=x²,这是一个基础的二次函数,成为抛物线。

三、指数函数指数函数是 y=a^x 的函数形式,其中 a 是正数,且不等于 1。

当a>1 时,指数函数增长迅速;当0<a<1 时,指数函数衰减迅速。

指数函数的图像随着指数 x 不断增加而上升或下降,与 x 轴永不相交。

指数函数有一个特殊的基础函数 y=2^x,这个函数的图像是一条向上的曲线,与 x 轴相交于 x 轴上方的一点。

指数函数是一种常用的模型,可以描述很多实际现象,如细菌数量增长、放射性衰变等。

四、对数函数对数函数是 y=loga(x) 的函数形式,其中 a 是正数,不等于 1。

这个函数的反函数是指数函数。

当 a>1 时,对数函数单调增加,当 0<a<1 时,对数函数单调减少。

对数函数的图像有一个特殊点(1,0),这是因为 loga(a^x)=x,所以当 x=0 时,a^x=1,对数函数得到最小值 0。

函数及其图像总结知识点

函数及其图像总结知识点

函数及其图像总结知识点函数的图像是函数表示的一种形式,它是函数在坐标系中的图形表示。

函数的图像可以帮助我们更直观地理解函数的特点和性质。

在学习函数的过程中,函数的图像是一个非常重要的知识点。

本文将总结函数的相关知识点,以帮助读者更好地掌握这一重要的数学概念。

一、函数的定义在数学中,函数是一种特殊的关系。

如果存在一种依赖关系,使得除了x以外,对每个x都只有唯一的y和y唯一对应某个x,那么就称这种依赖关系为函数。

函数的符号表示通常是f(x)或者y=f(x),其中x为自变量,y为因变量。

函数的定义域是自变量的取值范围,值域是函数的输出范围。

二、常见函数1. 线性函数:y=ax+b,其中a和b为常数。

线性函数的图像是一条直线,斜率a决定了直线的斜率,常数b决定了直线的截距。

线性函数是最简单的函数之一,它们在数学建模中有着广泛的应用。

2. 二次函数:y=ax^2+bx+c,其中a、b和c为常数且a不等于0。

二次函数的图像是一条抛物线,开口向上或向下取决于a的正负。

二次函数在物理学、工程学等领域有着重要的应用。

3. 指数函数:y=a^x,其中a为正实数且不等于1。

指数函数的图像是一条逐渐增长或逐渐减小的曲线。

指数函数在自然科学和经济学中有着广泛的应用。

4. 对数函数:y=loga(x),其中a为正实数且不等于1。

对数函数的图像是一条渐进线,对数函数能够将指数函数的性质转化为更容易理解的形式。

5. 三角函数:包括正弦函数、余弦函数、正切函数等。

三角函数在物理学、工程学和天文学中有着重要应用。

以上函数是常见的、在数学教育中重点研究的函数。

这些函数具有各自的特点和性质,通过学习这些函数,我们可以更好地理解数学中的各种问题,并且为进一步学习高等数学课程打下扎实的基础。

三、函数的性质1. 奇函数和偶函数:奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。

通过奇偶函数的性质,我们可以推导出一系列关于函数图像的对称性质,以及某些函数值的简化表示。

初中函数图像分析知识总结

初中函数图像分析知识总结

初中函数图像分析知识总结函数图像是初中数学中的重要内容,通过对函数图像的分析,我们可以了解函数的性质和特点,进而解决与函数相关的各种问题。

本文将对初中函数图像分析的知识进行总结。

1. 函数图像的基本概念函数图像是指将函数的定义域内的各个点对应到平面上的点,形成的图形。

函数图像的横坐标表示自变量的取值,纵坐标表示函数值。

通常用直角坐标系绘制函数图像。

2. 函数图像的分类根据函数的性质,函数图像可以分为线性函数图像、二次函数图像、指数函数图像、对数函数图像等多种分类。

不同类型的函数图像具有不同的特点和规律。

3. 函数图像的基本特点函数图像的基本特点包括零点、极值点、奇偶性、单调性、对称性等。

零点是指函数图像与x轴交点的横坐标值,可以通过函数值为0的方程求解得到。

极值点是指函数图像在某一区间内取得最大值或最小值的点,可以通过求导推导得到。

奇偶性是指函数图像关于y轴或原点的对称性,可以通过函数的定义域和值域的奇偶性进行判断。

单调性是指函数图像在某一区间内的上升或下降趋势,可以通过函数的导数进行判断。

对称性是指函数图像关于某一直线的对称性,可以通过函数的定义式进行判断。

4. 函数图像的分析方法函数图像的分析方法包括观察法、数学方法和图形法。

观察法是通过观察函数式的变化来获取函数图像的大致形状和特点。

数学方法是通过数学计算和推导来获取函数图像的准确形状和特点。

图形法是通过利用计算机或绘图工具来绘制函数图像,并进行分析和判断。

5. 函数图像的应用函数图像的分析不仅仅是数学学科的一部分,也是许多其他学科的基础和重要工具。

在物理学中,通过对函数图像的分析可以描述和解决运动问题;在经济学中,通过对函数图像的分析可以描述和解决供求关系和效益问题;在计算机科学中,通过对函数图像的分析可以描述和解决算法和数据结构的问题。

综上所述,初中函数图像分析是数学学科中的重要内容,通过对函数图像的分析,我们可以了解函数的性质和特点,进而解决与函数相关的各种问题。

函数及其图像知识点归纳总结

函数及其图像知识点归纳总结

华师大版八年级数学下《函数及其图像》知识点归纳一.变量与函数1 .函数的定义:一般的,在某个变化过程中有两个变量x和y,对于x的每一个数值y都有唯一的值与之对应,我们说x叫做自变量,y叫做因变量,y叫做x的函数。

2.自变量的取值范围:(1)能够使函数有意义的自变量的取值全体。

(2)确定函数自变量的取值范围要注意以下两点:一是使自变量所在的代数式有意义;二是使函数在实际问题中有实际意义。

(3)不同函数关系式自变量取值范围的确定:①函数关系式为整式时自变量的取值范围是全体实数。

②函数关系式为分式时自变量的取值范围是使分母不为零的全体实数。

③函数关系式为二次根式时自变量的取值范围是使被开方数大于或等于零的全体实数。

3 .函数值:当自变量取某一数值时对应的函数值。

这里有三种类型的问题:(1)当已知自变量的值求函数值就是求代数式的值。

(2)当已知函数值求自变量的值就是解方程。

(3)当给定函数值的一个取值范围,欲求自变量的取值范围时实质上就是解不等式或不等式组。

二.平面直角坐标系:1.各象限内点的坐标的特征:(1)点p(x,y)在第一象限→x>0,y>0.(2)点p(x,y)在第二象限→x<0,y>0.(3)点p(x,y)在第三象限→x<0,y<0(4)点p(x,y)在第四象限→x>0,y<0.2 .坐标轴上的点的坐标的特征:(1)点p (x,y )在x 轴上→x 为任意实数,y=0(2)点p (x,y )在y 轴上→x=0,y 为任意实数3 .关于x 轴,y 轴,原点对称的点的坐标的特征:(1)点p (x,y )关于x 轴对称的点的坐标为(x,-y ).(2)点p (x,y )关于y 轴对称的点的坐标为(-x,y ).(3)点p (x,y )关于原点对称的点的坐标为(-x,-y )4 .两条坐标轴夹角平分在线的点的坐标的特征:(1)点p (x,y )在第一、三象限夹角平分在线→x=y .(2)点p (x,y )在第二,四象限夹角平分在线→x+y=05.与坐标轴平行的直线上的点的坐标的特征:(1)位于平行于x 轴的直线上的所有点的纵坐标相同。

初中数学函数与图像知识点整理

初中数学函数与图像知识点整理

初中数学函数与图像知识点整理函数是数学中一个非常重要的概念,它在初中数学中被广泛研究和应用。

函数可以描述两个变量之间的关系,通过给定一个自变量的值,就可以求得相应的因变量的值。

函数的图像可以帮助我们更直观地理解函数的性质和特点。

下面将整理初中数学中与函数与图像相关的知识点。

1. 坐标系和平面直角坐标系坐标系是描述一个点或一组点在平面上的位置的方法。

平面直角坐标系由两条互相垂直的坐标轴组成,通常表示为x轴和y轴。

坐标轴的交点称为原点,用O表示。

x轴和y轴将平面分成四个象限。

2. 函数的定义函数表示一个自变量和因变量之间的依赖关系。

数学上用f(x)表示函数,其中x为自变量,f(x)为因变量。

函数的定义域是所有自变量的取值范围,值域是所有因变量的取值范围。

3. 函数的图像函数的图像是函数在平面上的表示形式,通常由一组点连成的曲线或折线表示。

横坐标表示自变量的值,纵坐标表示因变量的值。

函数的图像可以帮助我们更直观地理解函数的特性,如增减性、奇偶性、周期性等。

4. 一次函数一次函数又称为线性函数,是最简单的函数形式。

一次函数的一般形式为f(x) = kx + b,其中k为斜率,b为截距。

一次函数的图像是一条直线,斜率决定了直线的倾斜程度,截距决定了直线与y轴的交点。

5. 二次函数二次函数是函数的一种形式,其一般形式为f(x) = ax^2 + bx + c,其中a、b和c为常数,且a不等于0。

二次函数的图像为抛物线,开口方向由a的正负决定。

a 和b的值可以影响抛物线的开口程度和位置,c决定了抛物线与y轴的交点。

6. 指数函数指数函数的一般形式为f(x) = a^x,其中a为底数,x为指数。

指数函数的图像与底数a的大小相关,当0 < a < 1时,图像在x轴右侧逐渐逼近,当a > 1时,图像在x轴左侧逐渐逼近。

指数函数的特点是增长速度非常快。

7. 对数函数对数函数的一般形式为f(x) = logₐx,其中a为底数,x为真数。

初中数学函数知识点归纳

初中数学函数知识点归纳

初中数学函数知识点归纳一、函数的概念和性质1.函数的定义:函数是一个由一个或多个自变量和一个因变量组成的数学关系。

对于每一个自变量的取值,函数都有一个确定的因变量值与之对应。

2.函数的表示:函数可以用函数表、函数图、函数解析式等形式来表示。

3.函数的自变量和因变量:自变量是输入值,因变量是对应的输出值。

4.定义域:函数可以接受的自变量的取值范围称为函数的定义域。

5.值域:函数所有可能的因变量值的集合称为函数的值域。

二、常见函数的性质和图像1.奇偶性:奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。

2.单调性:增函数在定义域内满足f(x1)<f(x2)当x1<x2,减函数在定义域内满足f(x1)>f(x2)当x1<x23.分段函数:定义域被分为不同区间,每个区间内可以使用不同的函数关系来表达。

三、常见的数学函数1. 线性函数:f(x)=ax+b,其中a和b为常数,表示一条直线的函数关系。

2. 幂函数:f(x)=ax^n,其中a和n为常数,表示自变量的n次幂关系。

3.反比例函数:f(x)=a/x,其中a为常数,表示自变量和因变量之间的反比例关系。

4.指数函数:f(x)=a^x,其中a为常数且大于0且不等于1,表示指数和对数之间的关系。

5. 对数函数:f(x)=log_a(x),其中a为常数且大于0且不等于1,表示指数和对数之间的关系。

6.三角函数:如正弦函数、余弦函数、正切函数等,主要描述角度和边长之间的关系。

7.复合函数:由多个函数通过代数运算组合而成的函数。

四、函数的性质和运算1.函数的相等:两个函数f(x)和g(x)在其定义域内的每个点上的值都相等时,称这两个函数相等。

2.函数的复合:将一个函数的输出作为另一个函数的输入,得到的新函数称为复合函数。

3.函数的逆函数:若一个函数f(x)的定义域和值域互换,且满足f(f^(-1)(x))=x和f^(-1)(f(x))=x,则f(x)的逆函数为f^(-1)(x)。

函数及图像的知识点总结

函数及图像的知识点总结

函数及图像的知识点总结函数是数学中的一个重要概念,也是数学分析和高等代数的基础内容。

在数学中,函数是一种对应关系,可以简单的理解为一种特殊的映射关系,将一个变量的取值映射到另一个变量的取值。

在数学中,通常用f(x)来表示一个函数,其中x是自变量,f(x)是函数的因变量。

函数的定义:在数学中,函数是一个对应关系,它将一个或多个输入值映射到一个输出值。

函数通常用一个算式或图形来表示。

函数可以用以下的方式表示:f:A→B其中,A是函数的定义域,B是函数的值域。

定义域表示函数的输入值的集合,值域表示函数的输出值的集合。

函数的定义域和值域决定了函数的有效输入和输出的范围。

函数的图像:函数的图像是函数在平面直角坐标系中的图形,通常用函数的定义域和值域的点来表示。

函数的图像可以用直线、曲线或点来表示。

通过函数的图像可以直观地看出函数的性质和特点。

常见的函数类型:1. 线性函数:线性函数是指函数的图像是一条直线。

线性函数的一般形式为f(x) = ax + b,其中a和b为常数,a称为斜率,b称为截距。

线性函数的图像是一条斜率为a,截距为b的直线。

2. 二次函数:二次函数是指函数的图像是一条抛物线。

二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b和c为常数。

二次函数的图像是一条开口的抛物线,开口的方向由二次项的系数a的正负决定。

3. 指数函数:指数函数是指函数的自变量为指数的函数。

指数函数的一般形式为f(x) =a^x,其中a为常数且a>0,a不等于1。

指数函数的图像是一条递增或递减的曲线,曲线的斜率由底数a的大小和正负决定。

4. 对数函数:对数函数是指函数的自变量为对数的函数。

对数函数的一般形式为f(x) =log_a(x),其中a为常数且a>0,a不等于1。

对数函数的图像是一条递增或递减的曲线,曲线的斜率由底数a的大小和正负决定。

函数的性质:1. 定义域和值域:函数的定义域和值域决定了函数的有效输入和输出的范围。

初中数学函数知识点总结(定义、性质和图像)

初中数学函数知识点总结(定义、性质和图像)

函数知识点总结(掌握函数的定义、性质和图像)平面直角坐标系1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系2、各个象限内点的特征:第一象限:(+,+) 第二象限:(-,+) 第三象限:(-,-) 第四象限:(+,-)3、坐标轴上点的坐标特征:x 轴上的点,y 为零;y 轴上的点,x 为零;原点的坐标为(0 , 0)。

4、点的对称特征:已知点P(m,n),关于x 轴的对称点坐标是(m,-n), 横坐标相同,纵坐标反号 关于y 轴的对称点坐标是(-m,n) 纵坐标相同,横坐标反号 关于原点的对称点坐标是(-m,-n) 横,纵坐标都反号 5、平行于坐标轴的直线上的点的坐标特征:平行于x 轴的直线上的任意两点:纵坐标相等; 平行于y 轴的直线上的任意两点:横坐标相等。

6、各象限角平分线上的点的坐标特征:第一、三象限角平分线上的点横、纵坐标相等。

第二、四象限角平分线上的点横、纵坐标互为相反数。

7、点P (x,y )的几何意义:点P (x,y )到x 轴的距离为 |y|,点P (x,y )到y 轴的距离为 |x|。

点P (x,y )到坐标原点的距离为22y x +8、两点之间的距离:X 轴上两点为A )0,(1x 、B )0,(2x |AB|||12x x -= Y 轴上两点为C ),0(1y 、D ),0(2y |CD|||12y y -=已知A ),(11y x 、B ),(22y x AB|=212212)()(y y x x -+-9、中点坐标公式:已知A ),(11y x 、B ),(22y x M 为AB 的中点,则:M=(212x x + , 212y y +) 10、点的平移特征: 在平面直角坐标系中,将点(x,y )向右平移a 个单位长度,可以得到对应点( x-a ,y ); 将点(x,y )向左平移a 个单位长度,可以得到对应点(x+a ,y ); 将点(x,y )向上平移b 个单位长度,可以得到对应点(x ,y +b ); 将点(x,y )向下平移b 个单位长度,可以得到对应点(x ,y -b )。

(完整版)初中数学中考复习函数知识点总结,推荐文档

(完整版)初中数学中考复习函数知识点总结,推荐文档

初中数学中考复习函数知识点总结(掌握函数的定义、性质和图像)函数的基本知识:基本概念1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

*判断A是否为B的函数,只要看B取值确定的时候,A是否有唯一确定的值与之对应3、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

4、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.5.函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。

6、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

7、函数的表示方法:列表法、解析式法、图象法一次函数图象和性质【知识梳理】一、一次函数的基础知识1、定义:一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数当b=0时,y=kx +b 即y=kx ,称为正比倒函数,所以说正比例函数是一种特殊的一次函数.一次函数的一般形式: y=kx+b (k≠0)说明: ① k 不为零 ②x 指数为1 ③ b 取任意实数2、解析式:y=kx+b(k 、b 是常数,k 0)≠3、图像:一次函数y=kx+b 的图象是经过(0,b )和(-,0)两点的一条直线,我们称它为直线y=kx+b, kb4、增减性(单调性): k>0,y 随x 的增大而增大(单调增);k<0,y 随x 而增大而减小(单调减)5、必过点:(0,b )和(-,0):理由如下:y=kx+b 中,kb⑴当x=o,时,y=?? 所以,该函数经过( , )点⑵当y=o,时,x=??所以,该函数经过( ,)点所以,一次函数的图象是必经过(,0)和(0,b )两点的一条直线.,注:两点y kx b =+kb-确定一条直线。

初中数学函数与图像知识点汇总

初中数学函数与图像知识点汇总

初中数学函数与图像知识点汇总在初中数学中,函数与图像是一个重要的学习内容。

了解函数与图像的知识点,对于学习其它数学知识,如代数、几何等都具有重要的意义。

下面是关于初中数学函数与图像的一些基础知识点的汇总。

一、函数的定义和表示函数是一种数学关系,其中每一个输入值(自变量)都有一个输出值(因变量)。

函数可以用各种表示方法来表达,如表格、公式和图像等。

1. 函数的表格表示方法:将自变量和因变量的对应关系写成一张表格,其中自变量写在一列,因变量写在另一列。

函数的表格可以帮助我们更直观地理解函数的变化规律。

2. 函数的公式表示方法:将函数的输入值和输出值之间的关系用一个公式来表示。

常见的函数公式包括一次函数、二次函数、指数函数、对数函数等。

3. 函数的图像表示方法:函数的图像是函数的输入值和输出值之间的关系在坐标平面上的表现。

我们可以将自变量作为X轴的值,因变量作为Y轴的值,然后将每一个点连接起来,就得到了函数的图像。

二、常见的函数类型及其图像在初中数学中,我们会学习到一些常见的函数类型,下面是其中的几类及其图像。

1. 一次函数:一次函数的定义是 f(x) = ax + b,其中a和b是常数。

一次函数的图像是一条直线,斜率决定了直线的倾斜方向和程度,截距决定了直线与Y轴的交点。

2. 二次函数:二次函数的定义是 f(x) = ax² + bx + c,其中a、b、c是常数且a不等于0。

二次函数的图像是一个抛物线,a的正负决定了抛物线的开口方向,抛物线的顶点对称轴和对称中心与X轴和Y轴的交点也可以通过公式得到。

3. 指数函数:指数函数的定义是 f(x) = a^x,其中a是大于0且不等于1的常数。

指数函数的图像是一条递增或递减的曲线,曲线在特定点上具有指数增长或指数衰减的性质。

4. 对数函数:对数函数的定义是 f(x) = loga(x),其中a是大于0且不等于1的常数。

对数函数的图像是一条递增或递减的曲线,曲线与指数函数的图像是关于Y=X对称的。

初中数学公式定理之函数与图像解析

初中数学公式定理之函数与图像解析

初中数学公式定理之函数与图像解析初中数学公式定理集锦之函数与图像解析1数轴11 有向直线在科学技术和日常生活中,为了区别一条直线的两个不同方向,可以规定其中一方向为正向,另一方向为负相规定了正方向的直线,叫做有向直线,读作有向直线l12 数轴我们把数轴上任意一点所对应的实数称为点的坐标对于每一个坐标(实数),在数周上可以找到唯一的点与之对应这就是直线的坐标化数轴上任意一条有向线段的数量等于它的终点坐标与起点坐标的差任意一条有向线段的长度等于它两个断电坐标差的绝对值2 平面直角坐标系21 平面的直角坐标化在平面内任取一点o为作为原点(基准点),过o引两条互相垂直的,以o为公共原点的数轴,一般地,两个数轴选取相同的单位长度这样就构成了一个平面直角坐标系x轴叫横轴,y轴叫纵轴,它们都叫直角坐标系的坐标轴;公共原点o称为直角坐标系的原点;我们把建立了直角坐标系的平面叫直角坐标平面简称坐标平面两坐标轴把坐标平面分成四个部分,它们叫做四个象限22 两点间的距离23 中点公式3 函数31 常量,变量和函数在某一过程中可以去不同数值的量,叫做变量在整个过程中保持统一数值的量或数,叫做常量或常数一般地,设在变活过程中有两个互相关联的变量x,y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与之对应,那么就称y是x的函数,x叫做自变量1. 函数的定义域2. 对应法则(1) 解析法就是用等式来表示一个变量是另一个变量的函数,这个等式叫做函数的解析表达式(函数关系式)(2) 列表法(3) 图像法3 函数的值域一般的,当函数f(x)的自变量x去定义域D中的一个确定的值a,函数有唯一确定的对应值这个对应值,称为x=a时的函数值,简称函数值,记作:f(a)32 函数的图像若把自变量x的一个值和函数y的对应值分别作为点的横坐标和纵坐标,可以在直角坐标平面上描出一个点(x,f(x))的集合构成一个图形F,而集F成为函数y=f(x)的图像知道函数的解析式,要画函数的图像,一般分为列表,描点,连线三个步骤4 正比例函数41 正比例函数一般地,函数y=kx(k是不等于零的常数)叫做正比例函数,其中常数k叫做变量y与x之间的比例函数确定了比例函数k,就可以确定一个正比例函数正比例函数y=kx有下列性质:(3) 当k>0时,它的图像经过第一,三象限,y随着x的值增大而增大;当k<0时,他的图像经过第二,四象限,y随着x的增大而减小(2)随着比例函数的绝对值的.增加,函数图像渐渐离开x轴而接近于y轴,因此,比例系数k和直线y=kx与x轴正方向所成的角有关据此,k 叫做直线y=kx的斜率42 反比例函数一般地,函数y=k/x(k是不等于0的常数)叫做反比例函数反比例函数y=k/x有下列性质:(7) 当k>0时,他的图像的两个分支分别位于第一,三象限内,在每一个象限内,y随x的值增大而减小;当k<0时,它的图像的两个分支分别位于第二、四象限内,在每一个象限内,y随x的增大而增大(8) 它的图像的两个分支都无限接近但永远不能达到x轴和y轴5 一次函数及其图像51 一次函数及其图像如果k=0时,函数变形为y=b,无论x在其定义域内取何值,y都有唯一确定的值b与之对应,这样的函数我们称它为常函数直线y=kx+b与y轴交与点(0,b),b叫做直线y=kx+b在y轴上的截距,简称纵截距52 一次函数的性质函数y=f(小),在a〈x〈b上,如果函数值随着自变量x的值增加而增加,那么我们说函数f(x)在a〈x如果分别画出两个二元一次方程所对应的一次函数图像,交点的坐标就是这个方程组的解,这种求二元一次方程组的解法叫图像法初中数学正方形定理公式关于正方形定理公式的内容精讲知识,希望同学们很好的掌握下面的内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数及其图像知识定位函数是初中数学的重要内容,由于它题材丰富,又易成为多种数学思想方法的载体,因此,深受各级各类竞赛命题者的亲睐,成为近几年各地竞赛的热点问题之一.另外,函数中尤其以二次函数最为重要,综合性最强,对学生思维要求更高。

本文拟对函数的竞赛题型及其解题策略作粗略概括,仅供大家参考.知识梳理知识梳理1:正反比例函数及一次函数反比例函数和一次函数在竞赛中的考查通常会把函数图像和性质跟整数解问题、图形面积问题、动点构成的等腰三角形、直角三角形相结合,往往综合性较强,难度较大。

需要我们对函数图像,常见典型问题进行总结,对它们有比较深的认识,才能游刃有余地解决各类问题。

知识梳理2:二次函数1、二次函数的系数a 、b 、c 及相关代数式的取值问题抛物线y=ax 2+bx+c 中二次项系数a 描述抛物线的开口,a>0向上,a<0向下;常数项c 描述抛物线与y 轴的交点(0,c),c>0时交点处x 轴上方,c<0时交点处x 轴的下方,c=0时时处原点;由对称轴公式x=-ab2知b 与a 一起来描述抛物线的对称轴;b 2-4ac 大于0,等于0或小于0,决定抛物线和x 轴交点的个数,等等.上面性质反之亦成立.我们还可以通过考察如x=±1时y 的值的情况,来确定a±b+c 等的符号问题.2、二次函数与整数问题二次函数与整数问题的联姻主要表现在系数a 、b 、c 为整数、整点以及某范围内的参数的整数值等.解题时往往要用到一些整数的分析方法.3、二次函数的最值问题定义域是闭区间时,二次函数存在两个最值(最大值和最小值).如果顶点横坐标在区间内,则在顶点处与距顶点较远的端点处各取一个最值;如果顶点横坐标不在区间内,则在区间两端点处各取一个最值.定义域是开区间时,二次函数只有其顶点横坐标在区间内的才在顶点处取得一个最值,否则不存在最值.4、二次函数的图象与面积问题求抛物线的顶点、两坐标轴的交点以及抛物线与其它图象的交点等点所构成的面积,关键是用含系数a、b、c的代数式表示出点的坐标或线段长,使面积问题与系数a、b、c建立联系.5、二次函数及其图像的应用.有些方程及不等式等有关问题,直接求解十分困难,若能构造二次函数关系,借助函数图像使之形象化,直观化,以形助数,会简化求解过程.例题精讲【试题来源】【题目】已知一次函数y= kx + b,kb<0,则这样的一次函数的图像必经过的公共象限有_____ 个,即第________象限。

【答案】2,一,四【解析】【知识点】函数及其图像【适用场合】当堂例题【难度系数】3【试题来源】【题目】在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()个(A)1个(B)2个(C)3个(D)4个【答案】D【解析】【知识点】函数及其图像【适用场合】当堂例题【难度系数】3【试题来源】【题目】无论k为何值,一次函数(2k-1)x-(k-3)y-(k-11)=0的图像必经过定点()A.(0,0)B.(0,11)C.(2,3)D.无法确定【答案】C【解析】【知识点】函数及其图像【适用场合】当堂例题【难度系数】3【试题来源】【题目】在直角坐标系中,横坐标都是整数的点称为整点,设k为整数,当直线y=x-3与y=kx+k的交点为整数时,k的值可以取()(A)2个(B)4个(C)6个(D)8个【答案】C【解析】共6个,故选C【知识点】函数及其图像【适用场合】当堂例题【难度系数】3【试题来源】【题目】一个一次函数图象与直线59544y x=+平行,•与x轴、y轴的交点分别为A、B,并且过点(-1,-25),则在线段AB上(包括端点A、B),横、纵坐标都是整数的点有().(A)4个(B)5个(C)6个(D)7个【答案】B【解析】【知识点】函数及其图像【适用场合】当堂例题【难度系数】3【试题来源】【题目】设直线y=kx+k-1和直线y=(k+1)x+k(k是正整数)与x轴围成的三角形面积为Sk,则S1+S2+S3+…+S2014的值是_______.【答案】【解析】【知识点】函数及其图像【适用场合】当堂例题【难度系数】3【试题来源】【题目】甲、乙二人在如图所示的斜坡AB 上作往返跑训练. 已知:甲上山的速度是a 米/分,下山的速度是b 米/分,(a <b ;乙上、山的速度是12a 米/分,下山的速度是2b 米/分.如果甲、乙二人同时从点A 出发,时间为t(分),离开点A 的路程为S (米).那么下面图象中,大致表示甲、乙二人从点A 出发后的时间t (分)与离开点A 的路程S (米)之间的函数关系的是( )【答案】C【解析】【知识点】函数及其图像 【适用场合】当堂例题 【难度系数】3【试题来源】(A ) t (分) S (米)O (B ) t (分) S (米)O(C )t (分)S (米)O(D )t (分)S (米)O【题目】由方程│x-1│+│y-1│=1确定的曲线围成的图形是什么图形,其面积是多少?【答案】正方形 2【解析】【知识点】函数及其图像【适用场合】当堂例题【难度系数】4【试题来源】【题目】如图,反比例函数的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.若四边形ODBE的面积为6,则k的值为()A、1B、2C、3D、4【答案】B【解析】【知识点】函数及其图像【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图所示,点A是双曲线y=(x>0)上的一动点,过A作AC⊥y轴,垂足为点C,作AC的垂直平分线双曲线于点B,交x轴于点D.当点A在双曲线上从左到右运动时,四边形ABCD的面积()A、逐渐变小B、由大变小再由小变大C、由小变大再有大变小D、不变【答案】D【解析】【知识点】函数及其图像【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图,在x轴的正半轴上依次截取OA1=A1A2=A2A3=A3A4=A4A5,过点A1、A2、A3、A4、A5分别作x轴的垂线与反比例函数(x≠0)的图象相交于点P1、P2、P3、P4、P5,得直角三角形OP1A1、A1P2A2、A2P3A3、A3P3A4、A4P5A5,并设其面积分别为S1、S2、S3、S4、S5,则S1+S2+S3+S4+S5的值为()A、2B、C、3D、【答案】B【解析】【知识点】函数及其图像【适用场合】当堂例题【难度系数】4【试题来源】【题目】正方形的A1B1P1P2顶点P1、P2在反比例函数y=(x>0)的图象上,顶点A1、B1分别在x轴、y轴的正半轴上,再在其右侧作正方形P2P3A2B2,顶点P3在反比例函数y=(x>0)的图象上,顶点A2在x轴的正半轴上,则点P3的坐标为_________.【答案】【解析】【知识点】函数及其图像【适用场合】当堂例题【难度系数】4【试题来源】【题目】如图,将一块直角三角板OAB放在平面直角坐标系中,B(2,0),∠AOB=60°,点A在第一象限,过点A的双曲线为.在x轴上取一点P,过点P作直线OA的垂线l,以直线l为对称轴,线段OB经轴对称变换后的像是O´B´.(1)当点O´与点A重合时,点P的坐标是_________;(2)设P(t,0),当O´B´与双曲线有交点时,t的取值范围是_________.【答案】(1)(4,0)(2)【解析】【知识点】函数及其图像【适用场合】当堂例题【难度系数】4【试题来源】【题目】如图所示,点A1,A2,A3在x轴上,且OA1=A1A2=A2A3,分别过点A1,A2,A3作y轴的平行线,与反比例函数y=(x>0)的图象分别交于点B1,B2,B3,分别过点B1,B2,B3作x轴的平行线,分别于y轴交于点C1,C2,C3,连接OB1,OB2,OB3,那么图中阴影部分的面积之和为_________.【答案】【解析】【知识点】函数及其图像【适用场合】阶段测验【难度系数】3【试题来源】【题目】在反比例函数y=(x>0)的图象上,有一系列点A1、A2、A3、…、An、An+1,若A1的横坐标为2,且以后每点的横坐标与它前一个点的横坐标的差都为2.现分别过点A1、A2、A3、…、An、An+1作x轴与y轴的垂线段,构成若干个矩形如图所示,将图中阴影部分的面积从左到右依次记为S1,S2,S3,…,Sn,则S1=_________,S1+S2+S3+…+Sn=_________.(用n的代数式表示).【答案】【解析】【知识点】函数及其图像【适用场合】阶段测验【难度系数】4【试题来源】【题目】将x1=代入反比例函y=﹣中,所得的函数值记y1,x2=y1+1代入反比例函y=﹣中,所得的函数值记y2,x3=y2+1代入反比例函y=﹣中,所得的函数值记y3,…,xn=yn﹣1+1代入反比例函数y=﹣中,所得的函数值记为yn(其中n≥2,且n是自然数),如此继续下去.则在2005个函数值y1,y2,y3,…,y2005中,值为2的情况共出现了_________次.【答案】668【解析】【知识点】函数及其图像【适用场合】当堂例题【难度系数】3【试题来源】【题目】两个反比例函数y=,y=在第一象限内的图象如图所示,点P1,P2,P3,…,P2005在反比例函数y=图象上,它们的横坐标分别是x1,x2,x3,…,x2005,纵坐标分别是1,3,5,…,共2005个连续奇数,过点P1,P2,P3,…,P2005分别作y轴的平行线,与y=的图象交点依次是Q1(x1,y1),Q2(x2,y2),Q3(x3,y3),…,Q2005(x2005,y2005),则y2005=_________.【答案】2004.5【解析】【知识点】函数及其图像【适用场合】当堂例题【难度系数】3【试题来源】【题目】对22ab,a b≠≠,二次函数()()y x a x b=--的最小值为()A. B. C. D. 【答案】D【解析】【知识点】函数及其图像【适用场合】当堂例题【难度系数】3【试题来源】【题目】已知二次函数2y ax bx c=++图象如图6-2所示,则下列式子:ab,ac,a+b+c,a-b+c,2a+b,2a-b中,其值为正的式子共有个. 【答案】2【解析】【知识点】函数及其图像【适用场合】当堂例题【难度系数】3【试题来源】【题目】函数2241yx x=+-的最小值是.【答案】-1【解析】【知识点】函数及其图像【适用场合】当堂例题【难度系数】3【试题来源】【题目】设x为实数,则函数22365112x xyx x++=++的最小值是【答案】4【解析】【知识点】函数及其图像【适用场合】当堂例题【难度系数】4【试题来源】【题目】如图,抛物线C1:y=x2-4x的对称轴为直线x=a,将抛物线C1向上平移5个单位长度得到抛物线C2,则图中的两条抛物线、直线x=a与y轴所围成的图形(图中阴影部分)的面积为。

相关文档
最新文档