2018年高考理科数学全国3卷(附答案)

合集下载

2018年江苏高考数学真题及解析

2018年江苏高考数学真题及解析

绝密★启用前2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:锥体的体积,其中是锥体的底面积,是锥体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上..1. 已知集合,,那么________.【答案】{1,8}【解析】分析:根据交集定义求结果.详解:由题设和交集的定义可知:.点睛:本题考查交集及其运算,考查基础知识,难度较小.2. 若复数满足,其中i是虚数单位,则的实部为________.【答案】2【解析】分析:先根据复数的除法运算进行化简,再根据复数实部概念求结果.详解:因为,则,则的实部为.点睛:本题重点考查复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.3. 已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.点睛:的平均数为.4. 一个算法的伪代码如图所示,执行此算法,最后输出的S的值为________.【答案】8【解析】分析:先判断是否成立,若成立,再计算,若不成立,结束循环,输出结果.详解:由伪代码可得,因为,所以结束循环,输出点睛:本题考查伪代码,考查考生的读图能力,难度较小.5. 函数的定义域为________.【答案】[2,+∞)【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数有意义,则,解得,即函数的定义域为.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.6. 某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.7. 已知函数的图象关于直线对称,则的值是________.【答案】【解析】分析:由对称轴得,再根据限制范围求结果.详解:由题意可得,所以,因为,所以点睛:函数(A>0,ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间; 由求减区间.8. 在平面直角坐标系中,若双曲线的右焦点到一条渐近线的距离为,则其离心率的值是________.【答案】2【解析】分析:先确定双曲线的焦点到渐近线的距离,再根据条件求离心率.点睛:双曲线的焦点到渐近线的距离为b,焦点在渐近线上的射影到坐标原点的距离为a.9. 函数满足,且在区间上,则的值为________.【答案】【解析】分析:先根据函数周期将自变量转化到已知区间,代入对应函数解析式求值,再代入对应函数解析式求结果.详解:由得函数的周期为4,所以因此点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.10. 如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】【解析】分析:先分析组合体的构成,再确定锥体的高,最后利用锥体体积公式求结果.详解:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于,所以该多面体的体积为点睛:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.11. 若函数在内有且只有一个零点,则在上的最大值与最小值的和为________.【答案】–3【解析】分析:先结合三次函数图象确定在上有且仅有一个零点的条件,求出参数a,再根据单调性确定函数最值,即得结果.详解:由得,因为函数在上有且仅有一个零点且,所以,因此从而函数在上单调递增,在上单调递减,所以,点睛:对于函数零点个数问题,可利用函数的单调性、草图确定其中参数取值条件.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.12. 在平面直角坐标系中,A为直线上在第一象限内的点,,以AB为直径的圆C与直线l交于另一点D.若,则点A的横坐标为________.【答案】3【解析】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果.详解:设,则由圆心为中点得易得,与联立解得点D的横坐标所以.所以,由得或,因为,所以点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.13. 在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为________.【答案】9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.14. 已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________.【答案】27【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值.详解:设,则由得所以只需研究是否有满足条件的解,此时,,为等差数列项数,且.由得满足条件的最小值为.点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期型(如).二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15. 在平行六面体中,.求证:(1);(2).【答案】答案见解析【解析】分析:(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB1A1,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.详解:证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB平面A1B1C,A1B1平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B平面A1BC,BC平面A1BC,所以AB1⊥平面A1BC.因为AB1平面ABB1A1,所以平面ABB1A1⊥平面A1BC.点睛:本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明.16. 已知为锐角,,.(1)求的值;(2)求的值.【答案】(1)(2)【解析】分析:先根据同角三角函数关系得,再根据二倍角余弦公式得结果;(2)先根据二倍角正切公式得,再利用两角差的正切公式得结果.详解:解:(1)因为,,所以.因为,所以,因此,.(2)因为为锐角,所以.又因为,所以,因此.因为,所以,因此,.点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等. 17. 某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为,要求均在线段上,均在圆弧上.设OC与MN所成的角为.(1)用分别表示矩形和的面积,并确定的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)当θ=时,能使甲、乙两种蔬菜的年总产值最大【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.详解:解:(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ0=,θ0∈(0,).当θ∈[θ0,)时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是[,1).答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ)=8000k(sinθcosθ+cosθ),θ∈[θ0,).设f(θ)= sinθcosθ+cosθ,θ∈[θ0,),则.令,得θ=,当θ∈(θ0,)时,,所以f(θ)为增函数;当θ∈(,)时,,所以f(θ)为减函数,因此,当θ=时,f(θ)取到最大值.答:当θ=时,能使甲、乙两种蔬菜的年总产值最大.点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.18. 如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于两点.若的面积为,求直线l的方程.【答案】(1)椭圆C的方程为;圆O的方程为(2)①点P的坐标为;②直线l的方程为【解析】分析:(1)根据条件易得圆的半径,即得圆的标准方程,再根据点在椭圆上,解方程组可得a,b,即得椭圆方程;(2)第一问先根据直线与圆相切得一方程,再根据直线与椭圆相切得另一方程,解方程组可得切点坐标.第二问先根据三角形面积得三角形底边边长,再结合①中方程组,利用求根公式以及两点间距离公式,列方程,解得切点坐标,即得直线方程.详解:解:(1)因为椭圆C的焦点为,可设椭圆C的方程为.又点在椭圆C上,所以,解得因此,椭圆C的方程为.因为圆O的直径为,所以其方程为.(2)①设直线l与圆O相切于,则,所以直线l的方程为,即.由,消去y,得.(*)因为直线l与椭圆C有且只有一个公共点,所以.因为,所以.因此,点P的坐标为.②因为三角形OAB的面积为,所以,从而.设,由(*)得,所以.因为,所以,即,解得舍去),则,因此P的坐标为.综上,直线l的方程为.点睛:直线与椭圆的交点问题的处理一般有两种处理方法:一是设出点的坐标,运用“设而不求”思想求解;二是设出直线方程,与椭圆方程联立,利用韦达定理求出交点坐标,适用于已知直线与椭圆的一个交点的情况.19. 记分别为函数的导函数.若存在,满足且,则称为函数与的一个“S点”.(1)证明:函数与不存在“S点”;(2)若函数与存在“S点”,求实数a的值;(3)已知函数,.对任意,判断是否存在,使函数与在区间内存在“S点”,并说明理由.【答案】(1)证明见解析(2)a的值为(3)对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.【解析】分析:(1)根据题中“S点”的定义列两个方程,根据方程组无解证得结论;(2)同(1)根据“S点”的定义列两个方程,解方程组可得a的值;(3)通过构造函数以及结合“S 点”的定义列两个方程,再判断方程组是否有解即可证得结论.详解:解:(1)函数f(x)=x,g(x)=x2+2x-2,则f′(x)=1,g′(x)=2x+2.由f(x)=g(x)且f′(x)= g′(x),得,此方程组无解,因此,f(x)与g(x)不存在“S”点.(2)函数,,则.设x0为f(x)与g(x)的“S”点,由f(x0)与g(x0)且f′(x0)与g′(x0),得,即,(*)得,即,则.当时,满足方程组(*),即为f(x)与g(x)的“S”点.因此,a的值为.(3)对任意a>0,设.因为,且h(x)的图象是不间断的,所以存在∈(0,1),使得,令,则b>0.函数,则.由f(x)与g(x)且f′(x)与g′(x),得,即(**)此时,满足方程组(**),即是函数f(x)与g(x)在区间(0,1)内的一个“S点”.因此,对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.点睛:涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.20. 设是首项为,公差为d的等差数列,是首项为,公比为q的等比数列.(1)设,若对均成立,求d的取值范围;(2)若,证明:存在,使得对均成立,并求的取值范围(用表示).【答案】(1)d的取值范围为.(2)d的取值范围为,证明见解析。

2018年高考理科数学江苏卷含答案

2018年高考理科数学江苏卷含答案

立的 n 的最小值为
.
二、解答题:本大题共 6 小题,共计 90 分,解答时应写出文字说明、证明过程或演算步 骤.
15.(本小题满分 14 分) 在平行六面体 ABCD A1B1C1D1 中, AA1 AB , AB1 B1C1 . 求证:(Ⅰ) AB ∥平面 A1B1C ; (Ⅱ)平面 ABB1 A1 平面 A1BC .
4.【答案】8
【解析】代入程序前
I S
1 符合
1
I

6

第一次代入后
I S

3 2
,符合
I

6
,继续代入;
第二次代入后
I S

5 4
,符合
I

6
,继续代入,
第三次代入后

I S

7 8
,不符合
I

6
,输出结果
S

8

故最后输出 S 的值为 8 .
数学试卷第 11页(共 24页)数学试卷第 12页(共 24页)
.

2.若复数 z 满足 i z 1 2i ,其中 i 是虚数单位,则 z 的实部为
.
3.已知 5 位裁判给某运动员打出的分数的茎叶图如图所示,那么这 5 位裁判打出的分数
的平均数为
.

4.一个算法的伪代码如图所示,执行此算法,最后输出的 S 的值为
.


5.函数 f (x) log2 x 1 的定义域为
上的最大值与最小值的和为
.
12.在平面直角坐标系 AB 为 直 径 的 圆 C
xOy 中, 与直线
A l

2018年高考理科数学全国卷3(含答案与解析)

2018年高考理科数学全国卷3(含答案与解析)

2018年高考理科数学全国卷3(含答案与解析) 数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前2018年普通高等学校招生全国统一考试(课标全国卷Ⅲ)理科数学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{10}A x x =-∣≥,{0,1,2}B =,则A B = ( )A .{0}B .{1}C .{1,2}D .{0,1,2} 2.()(1i 2i)+-=( )A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )ABC D 4.若1sin 3α=,则cos2α=( )A .89B .79C .79-D .89-5.252()x x+的展开式中4x 的系数为( )A .10B .20C .40D .806.直线2=0x y ++分别与x 轴,y 交于A ,B 两点,点P 在圆22(2)=2x y -+上,则ABP △面积的取值范围是( )A .[2,6 ]B .[4,8]C .[2,3 2 ]D [ 22,32] 7.函数422y x x =-++的图象大致为( )ABCD8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数, 2.4DX =,()6(4)P X P X ==<,则p =( )A .0.7B .0.6C .0.4D .0.39.ABC △的内角A ,B ,C 的对边分别为a ,b ,c .若ABC △的面积为2224,则C = ( )A .π2B .π3C .π4D .π6毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)10.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为( )A .123B .183C .243D .54311.设1F ,2F 是双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1||6||PF OP =,则C 的离心率为 ( )A .5B .2C .3D .2 12.设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .ab a b +<<0C .0a b ab +<<D .0ab a b +<<第Ⅱ卷(非选择题 共90分)二、填空题:本题共4小题,每小题5分,共20分.13.已知向量2)(1,=a ,)2(2,=-b ,),(1λ=c .若2()+∥c a b ,则=λ . 14.曲线)e (1xy ax =+在点(0,1)处的切线的斜率为2-,则a = .15函数π()cos(3)6f x x =+在[0,π]的零点个数为 .16.已知点1()1,M -和抛物线C :²4y x =,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB ∠=,则k = .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.) (一)必考题:共60分. 17.(12分)等比数列{}n a 中,11a =,534a a =. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高,并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过超过m不超过m第一种生产方式 第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:22()(a b)(c d)(a c)(b d)n ad bc K -=++++,2()P K k ≥0.050 0.010 0.001k3.841 6.635 10.82819.(12分)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------2018年高考理科数学全国卷3(含答案与解析)数学试卷 第5页(共20页) 数学试卷 第6页(共20页)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.20.(12分)已知斜率为k 的直线l 与椭圆C :22143x y +=交于A ,B 两点,线段AB 的中点为(1,)()M m m >0.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA ,FP ,FB成等差数列,并求该数列的公差. 21.(12分)已知函数22()()ln(1)2f x a x x x x +=-++.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若=0x 是()f x 的极大值点,求a .(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,O 的参数方程为cos ,sin x y θθ=⎧⎨=⎩(θ为参数),过点(0,2)且倾斜角为α的直线l 与O 交于A ,B 两点. (1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.23.[选修4—5:不等式选讲](10分) 设函数()211f x x x =++-. (1)画出() y f x =的图象;(2)当[ 0),x ∈+∞,()b x f ax +≤,求a b +的最小值.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共20页) 数学试卷 第8页(共20页)2018年普通高等学校招生全国统一考试(课标全国卷Ⅲ)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】∵={1}A x x |≥,{0,1,2}B =,∴={1,2}A B ,故选C .2.【答案】D【解析】21i 2i)(2i 2i i 3i )(+-=-+-=+,故选D . 3.【答案】A【解析】两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为A .故选A . 4.【答案】B 【解析】由1sin 3α=,得22127cos212sin 12()=1=399αα=-=-⨯-.故选B .5.【答案】C【解析】252()x x+的展开式的通项251103155()(2)2r r r r r r r T C x x C x ---+==,令1034r -=,得2r =,所以4x 的系数为225240C ⨯=.故选C . 6.【答案】A【解析】由圆22(2)=2x y -+可得圆心坐标(2,0),半径r =ABP △的面积记为S ,点P 到直线AB 的距离记为d ,则有12S AB d =.易知AB =maxd ==min d =所以26S ≤≤,故选A .7.【答案】D【解析】∵42()2f x x x =-++,∴3()42f x x x '=-+,令()0f x '>,解得x <或x 0<此时,()f x 递增;令()0f x '<,解得x <0或x ,此时,()f x 递减.由此可得()f x 的大致图象.故选D . 8.【答案】B【解析】由题知~1()0,X B p ,则(101 2.4)DX p p =⨯⨯-=,解得0.4p =或0.6.又∵()6(4)P X P X ==<,即446664221010(1)(1)(1)0.5C P p C P p p p p --⇒-⇒<<>,∴0.6p =,故选B .9.【答案】C【解析】根据余弦定理得2222cos a b c ab C +-=,因为2224ABCa Sbc +-=△,所以c 42os ABC ab C S =△,又1sin 2ABC S ab C =△,所以tan 1C =,因为π()0,C ∈,所以4C π=.故选C .10.【答案】B【解析】设ABC △的边长为a ,则1sin60=932ABC S a a =△,解得6a =(负值舍去).ABC △的外接圆半径r 满足62sin60r=,得r =球心到平面ABC 的距离为2=.所以点D 到平面ABC 的最大距离为246+=,所以三棱锥DABC -体积的最大值为163⨯=故选B .11.【答案】C【解析】点2(,0)F c 到渐近线b y x a =的距离2(0)PF b b ==>,而2OF c =,所以在2Rt OPF △中,由勾股定理可得OP a ,所以1PF ==.在2Rt OPF △中,222cos PF b PF O OF c∠==,在12F F P△中,2222222121221246cos 22PF F F PF b c a PF O PF F F b c+-+-∠==⋅⋅2,所以222222463464b b c a b c a c bc +-=⇒=-,则有22223()46c a c a -=-值舍去),即e =.故选C .2018年高考理科数学全国卷3(含答案与解析)数学试卷 第9页(共20页) 数学试卷 第10页(共20页)12.【答案】B【解析】解法一:∵0.20.2log 0.3log 1=0a =>,22log 0.3log 1=0b =<,∴0ab <,排除C . ∵0.20.20log 0.3log 0.2=1<<,22log 0.3log 0.5=1-<,即01a <<,1b <-,∴0a b +<,排除D .∵220.2log 0.3lg0.2log 0.2log 0.3lg 2b a ===,∴2223log 0.3log 0.2log 12b b a -=-=<,∴1bb ab a b a+⇒+<<,排除A .故选B . 解法二:易知01a <<,1b -<,∴0ab <,0a b +<, ∵0.30.30.311log 0.2log 2log 0.41a b +=+=<, 即1a bab+<,∴a b ab +>, ∴0ab a b +<<.故选B .第Ⅱ卷二、填空题13.【答案】12【解析】由已知得2(4,2)+=a b .又,()1c λ=,2()+∥c a b ,所以42=0λ-,解得12λ=. 14.【答案】3-【解析】设(e ))1(x f x ax =+,则()()1e x f x ax a '=++,所以曲线在点(0,1)处的切线的斜率(0)12k f a '==+=-,解得3a =-. 15.【答案】3【解析】令()0f x =,得πcos(3)6x +,解得ππ+()39k x k =∈Z .当0k =时,π9x =;当1k =时,4π9x =;当2k =时,7π9x =,又[ 0,π]x ∈,所以满足要求的零点有3个.16.【答案】2【解析】解法一:由题意可知C 的焦点坐标为(1,0),所以过焦点(1,0),斜率为k 的直线方程为1y x k =+,设111,y A y k ⎛⎫+ ⎪⎝⎭,221,y B y k ⎛⎫+ ⎪⎝⎭,将直线方程与抛物线方程联立得21,4,y x k y x ⎧=+⎪⎨⎪=⎩整理得2440y y k --=,从而得124y y k +=,124y y =-.∵1()1,M -,90AMB ∠=,∴0MA MB =,即1212(2)(2)(1)(1)0y yy y k k+++--=,即2440k k -+=,解得2k =.解法二:设11A(,)x y ,22(),B x y ,则2112224,4,y x y x ⎧=⎨=⎩①②②-①得2221214()y y x x -=-,从而2121124y y x x k y y --+==.设AB 的中点为M ',连接MM '.∵直线AB 过抛物线24y x =的焦点,∴以线段AB 为直径的M '⊙与准线:1l x =-相切.∵1()1,M -,90AMB ∠=,∴点M 在准线:1l x =-上,同时在M '⊙上,∴准线l 是M '⊙的切线,切点M ,且MM l '⊥,即MM '与x 轴平行,∴点M '的纵坐标为1,即1212221y y y y =⇒++=,故124422y y k =+==. 故答案为:2. 三、解答题17.【答案】(1)解:设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去)或2q =-或2q =. 故1(2)n n a -=-或12n n a -=. (2)若1(2)n n a -=-,则1(2)3nn S --=.数学试卷 第11页(共20页) 数学试卷 第12页(共20页)由63m S =得(2)188m -=-.此方程没有正整数解.若12n n a -=,则21n n S =-.由63m S =得264m =,解得6m =. 综上,6m =.【解析】(1)解:设{}n a 的公比为q ,由题设得1n n a q-=.由已知得424q q =,解得0q =(舍去)或2q =-或2q =. 故1(2)n n a -=-或12n n a -=.(2)若1(2)n n a -=-,则1(2)3n n S --=.由63m S =得(2)188m -=-。

2018年高考真题全国Ⅲ卷(含答案)

2018年高考真题全国Ⅲ卷(含答案)

2018年普通高等学校招生全国统一考试3理科综合能力测试可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 Mg 24 Al 27 S 32 Cr 52 Zn 65 I 127一、选择题:7.化学与生活密切相关。

下列说法错误的是A .泡沫灭火器可用于一般的起火,也适用于电器起火B .疫苗一般应冷藏存放,以避免蛋白质变性C .家庭装修时用水性漆替代传统的油性漆,有利于健康及环境D .电热水器用镁棒防止内胆腐蚀,原理是牺牲阳极的阴极保护法8.下列叙述正确的是A .24 g 镁与27 g 铝中,含有相同的质子数B .同等质量的氧气和臭氧中,电子数相同C .1 mol 重水与1 mol 水中,中子数比为2∶1D .1 mol 乙烷和1 mol 乙烯中,化学键数相同9.苯乙烯是重要的化工原料。

下列有关苯乙烯的说法错误的是A .与液溴混合后加入铁粉可发生取代反应B .能使酸性高锰酸钾溶液褪色C .与氯化氢反应可以生成氯代苯乙烯D .在催化剂存在下可以制得聚苯乙烯10.下列实验操作不当的是A .用稀硫酸和锌粒制取H 2时,加几滴CuSO 4溶液以加快反应速率B .用标准HCl 溶液滴定NaHCO 3溶液来测定其浓度,选择酚酞为指示剂C .用铂丝蘸取某碱金属的盐溶液灼烧,火焰呈黄色,证明其中含有Na +D .常压蒸馏时,加入液体的体积不超过圆底烧瓶容积的三分之二11.一种可充电锂-空气电池如图所示。

当电池放电时,O 2与Li +在多孔碳材料电极处生成Li 2O 2-x (x =0或1)。

下列说法正确的是A .放电时,多孔碳材料电极为负极B .放电时,外电路电子由多孔碳材料电极流向锂电极C .充电时,电解质溶液中Li +向多孔碳材料区迁移D .充电时,电池总反应为Li 2O 2-x =2Li+(1-2x)O 212.用0.100 mol·L-1 AgNO3滴定50.0 mL 0.0500 mol·L-1 Cl-溶液的滴定曲线如图所示。

(完整版)【精校版】2018年高考全国Ⅲ卷理综高考试题(word版含答案)

(完整版)【精校版】2018年高考全国Ⅲ卷理综高考试题(word版含答案)

2018年暑假教师业务提升试题(3 )理科综合能力测试可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 Mg 24 Al 27 S 32 Cr 52 Zn 65 I 127一、选择题:本题共13个小题,每小题6分,共78分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1 •下列研究工作中由我国科学家完成的是A •以豌豆为材料发现性状遗传规律的实验B •用小球藻发现光合作用暗反应途径的实验C .证明DNA是遗传物质的肺炎双球菌转化实验D •首例具有生物活性的结晶牛胰岛素的人工合成2.下列关于细胞的结构和生命活动的叙述,错误的是A •成熟个体中的细胞增殖过程不需要消耗能量B •细胞的核膜、内质网膜和细胞膜中都含有磷元素C •两个相邻细胞的细胞膜接触可实现细胞间的信息传递D •哺乳动物造血干细胞分化为成熟红细胞的过程不可逆3•神经细胞处于静息状态时,细胞内外K+和Na+的分布特征是A .细胞外《+和Na+浓度均高于细胞内B •细胞外K+和Na+浓度均低于细胞内C.细胞外K+浓度高于细胞内,Na+相反D •细胞外K+浓度低于细胞内,Na+相反4 •关于某二倍体哺乳动物细胞有丝分裂和减数分裂的叙述,错误的是A •有丝分裂后期与减数第二次分裂后期都发生染色单体分离B •有丝分裂中期与减数第一次分裂中期都发生同源染色体联会C •一次有丝分裂与一次减数分裂过程中染色体的复制次数相同D .有丝分裂中期和减数第二次分裂中期染色体都排列在赤道板上5•下列关于生物体中细胞呼吸的叙述,错误的是A •植物在黑暗中可进行有氧呼吸也可进行无氧呼吸B •食物链上传递的能量有一部分通过细胞呼吸散失C •有氧呼吸和无氧呼吸的产物分别是葡萄糖和乳酸D .植物光合作用和呼吸作用过程中都可以合成ATP 6•某同学运用黑光灯诱捕的方法对农田中具有趋光性的昆虫进行调查,下列叙述错误的是A •趋光性昆虫是该农田生态系统的消费者B •黑光灯传递给趋光性昆虫的信息属于化学信息C •黑光灯诱捕的方法可用于调查某种趋光性昆虫的种群密度D .黑光灯诱捕的方法可用于探究该农田趋光性昆虫的物种数目7 •化学与生活密切相关。

2018年高考数学全国卷三理科试题(附答案)

2018年高考数学全国卷三理科试题(附答案)

2018年高考数学全国卷三理科试题(附答案) 2018年高考数学全国卷三理科考试已经落下帷幕,本试卷为考生带来了挑战,让大家从中更加深入的了解数学知识,本试卷的答案让大家从中收获了成长。

2018年高考数学全国卷三理科试题2018年高考数学全国卷三理科试题出炉,考生们做好了准备,及时解决遇到的问题,取得优异的成绩。

本次全国卷三包括4个部分组成,分别是选择题、填空题、解答题和分析题。

如下:一、选择题1. 若集合A={x|-2≤x≤2},集合B={x|x2<4},则A∩B= (A) {-2,2} (B) {-2,0,2} (C) {-1,1} (D) {0,2}2. 若平面上的两个点的坐标分别A(2,3),B(4,-3),那么它们之间的距离是(A)2(B)5(C)7(D)63. 若复数z1=1-i,z2=1+i,则z1、z2的共轭复数分别为(A)1-i,1+i(B)1+i,1-i(C)-1+i,-1-i(D)-1-i,-1+i4. 若函数y=3x3-6x2+9x+3在x=2处取得极值,则极大值为(A)-12(B)-9(C)15(D)185. 若两个圆O1,O2的半径分别是6,9,则O1, O2相切的条件是(A)r1=r2(B)r1+r2=15(C)r1-r2=3(D)r1+r2=3二、填空题1. 下列各式中,(1+√5)5次方的展开式中,常数项为a_1r_1+a_3r_3+a_5r_5,其中a_1,a_3,a_5分别为______,_______,_______。

答案:a_1=5 ; a_3=-5 ; a_5=12.函数f (x)=2x2+8x+9,x≤1时的最大值为_________。

答案:13三、解答题1.求实数a,b满足等式|a-3|-|b+3|=4的解。

答:解得a=-1、b=-72.曲线y=x3+3x2+3x+c的图象经过点(1,1),求参数c的值。

答:设y=x3+3x2+3x+c设点P(1,1)在曲线上,即1=1+3+3+cc=0四、分析题1.已知实数x,y满足约束条件2x+y≤12,x,y≥0,求此约束条件下的最大值。

2018年全国新课标Ⅲ卷全国3卷高考理科数学试卷及参考答案与试题解析

2018年全国新课标Ⅲ卷全国3卷高考理科数学试卷及参考答案与试题解析

2018年全国新课标Ⅲ卷全国3卷高考理科数学试卷及参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5.00分)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}2.(5.00分)(1+i)(2-i)=( )A.-3-iB.-3+iC.3-iD.3+i3.(5.00分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )A. B. C. D.4.(5.00分)若sinα=,则cos2α=( )A. B. C.- D.-5.(5.00分)(x2+)5的展开式中x4的系数为( )A.10B.20C.40D.806.(5.00分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则△ABP面积的取值范围是( )A.[2,6]B.[4,8]C.[,3]D.[2,3]7.(5.00分)函数y=-x4+x2+2的图象大致为( )A. B. C.D.8.(5.00分)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=( ) A.0.7 B.0.6 C.0.4 D.0.39.(5.00分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=( )A. B. C. D.10.(5.00分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D-ABC体积的最大值为( )A.12B.18C.24D.5411.(5.00分)设F1,F2是双曲线C:-=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为( )A. B.2 C. D.12.(5.00分)设a=log0.20.3,b=log20.3,则( )A.a+b<ab<0B.ab<a+b<0C.a+b<0<abD.ab<0<a+b二、填空题:本题共4小题,每小题5分,共20分。

2018年全国统一高考数学试卷理科新课标Ⅰ

2018年全国统一高考数学试卷理科新课标Ⅰ

2018年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案一、选择题:1.C2.B3.A4.B5.D6.A7.B8.D9.C10.A11.B12.A二、填空题:13.614.-6315.1616.三、解答题:17.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.18.【解答】(1)证明:由题意,点E、F分别是AD、BC的中点,则,,由于四边形ABCD为正方形,所以EF⊥BC.由于PF⊥BF,EF∩PF=F,则BF⊥平面PEF.又因为BF⊂平面ABFD,所以:平面PEF⊥平面ABFD.(2)在平面DEF中,过P作PH⊥EF于点H,连接DH,由于EF为面ABCD和面PEF的交线,PH⊥EF,则PH⊥面ABFD,故PH⊥DH.在三棱锥P﹣DEF中,可以利用等体积法求PH,因为DE∥BF且PF⊥BF,所以PF⊥DE,又因为△PDF≌△CDF,所以∠FPD=∠FCD=90°,所以PF⊥PD,由于DE∩PD=D,则PF⊥平面PDE,=,故V F﹣PDE因为BF∥DA且BF⊥面PEF,所以DA⊥面PEF,所以DE⊥EP.设正方形边长为2a,则PD=2a,DE=a在△PDE中,,所以,=,故V F﹣PDE又因为,所以PH==,所以在△PHD中,sin∠PDH==,即∠PDH为DP与平面ABFD所成角的正弦值为:.19.【解答】解:(1)c==1,∴F(1,0),∵l与x轴垂直,∴x=1,由,解得或,∴A(1.),或(1,﹣),∴直线AM的方程为y=﹣x+,y=x﹣,证明:(2)当l与x轴重合时,∠OMA=∠OMB=0°,当l与x轴垂直时,OM为AB的垂直平分线,∴∠OMA=∠OMB,当l与x轴不重合也不垂直时,设l的方程为y=k(x﹣1),k≠0,A(x1,y1),B(x2,y2),则x1<,x2<,直线MA,MB的斜率之和为k MA,k MB之和为k MA+k MB=+,由y1=kx1﹣k,y2=kx2﹣k得k MA+k MB=,将y=k(x﹣1)代入+y2=1可得(2k2+1)x2﹣4k2x+2k2﹣2=0,∴x1+x2=,x1x2=,∴2kx1x2﹣3k(x1+x2)+4k=(4k3﹣4k﹣12k3+8k3+4k)=0从而k MA+k MB=0,故MA,MB的倾斜角互补,∴∠OMA=∠OMB,综上∠OMA=∠OMB.20.【解答】解:(1)记20件产品中恰有2件不合格品的概率为f(p),则f(p)=,∴=,令f′(p)=0,得p=0.1,当p∈(0,0.1)时,f′(p)>0,当p∈(0.1,1)时,f′(p)<0,∴f (p)的最大值点p0=0.1.(2)(i)由(1)知p=0.1,令Y表示余下的180件产品中的不合格品数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y,∴E(X)=E(40+25Y)=40+25E(Y)=40+25×180×0.1=490.(ii)如果对余下的产品作检验,由这一箱产品所需要的检验费为400元,∵E(X)=490>400,∴应该对余下的产品进行检验.21.【解答】解:(1)函数的定义域为(0,+∞),函数的导数f′(x)=﹣﹣1+=﹣,设g(x)=x2﹣ax+1,当a≤0时,g(x)>0恒成立,即f′(x)<0恒成立,此时函数f(x)在(0,+∞)上是减函数,当a>0时,判别式△=a2﹣4,①当0<a≤2时,△≤0,即g(x)>0,即f′(x)<0恒成立,此时函数f(x)在(0,+∞)上是减函数,②当a>2时,x,f′(x),f(x)的变化如下表:x(0,)(,)(,+∞)f′(x)﹣0+0﹣f(x)递减递增递减综上当a≤2时,f(x)在(0,+∞)上是减函数,当a>2时,在(0,),和(,+∞)上是减函数,则(,)上是增函数.(2)由(1)知a>2,0<x1<1<x2,x1x2=1,则f(x1)﹣f(x2)=(x2﹣x1)(1+)+a(lnx1﹣lnx2)=2(x2﹣x1)+a(lnx1﹣lnx2),则=﹣2+,则问题转为证明<1即可,即证明lnx1﹣lnx2>x1﹣x2,则lnx1﹣ln>x1﹣,即lnx1+lnx1>x1﹣,即证2lnx1>x1﹣在(0,1)上恒成立,设h(x)=2lnx﹣x+,(0<x<1),其中h(1)=0,求导得h′(x)=﹣1﹣=﹣=﹣<0,则h(x)在(0,1)上单调递减,∴h(x)>h(1),即2lnx﹣x+>0,故2lnx>x﹣,则<a﹣2成立.(2)另解:注意到f()=x﹣﹣alnx=﹣f(x),即f(x)+f()=0,由韦达定理得x1x2=1,x1+x2=a>2,得0<x1<1<x2,x1=,可得f(x2)+f()=0,即f(x1)+f(x2)=0,要证<a﹣2,只要证<a﹣2,即证2alnx2﹣ax2+<0,(x2>1),构造函数h(x)=2alnx﹣ax+,(x>1),h′(x)=≤0,∴h(x)在(1,+∞)上单调递减,∴h(x)<h(1)=0,∴2alnx﹣ax+<0成立,即2alnx2﹣ax2+<0,(x2>1)成立.即<a﹣2成立.选考题:22.【解答】解:(1)曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.转换为直角坐标方程为:x2+y2+2x﹣3=0,转换为标准式为:(x+1)2+y2=4.(2)由于曲线C1的方程为y=k|x|+2,则:该射线关于y轴对称,且恒过定点(0,2).由于该射线与曲线C2的极坐标有且仅有三个公共点.所以:必有一直线相切,一直线相交.则:圆心到直线y=kx+2的距离等于半径2.故:,或解得:k=或0,(0舍去)或k=或0经检验,直线与曲线C2没有公共点.故C1的方程为:.23.【解答】解:(1)当a=1时,f(x)=|x+1|﹣|x﹣1|=,由f(x)>1,∴或,解得x>,故不等式f(x)>1的解集为(,+∞),(2)当x∈(0,1)时不等式f(x)>x成立,∴|x+1|﹣|ax﹣1|﹣x>0,即x+1﹣|ax﹣1|﹣x>0,即|ax﹣1|<1,∴﹣1<ax﹣1<1,∴0<ax<2,∵x∈(0,1),∴a>0,∴0<x<,∴a<∵>2,∴0<a≤2,故a的取值范围为(0,2].更多内容请您关注101教育高考网:https:///。

2018年山东省高考理科数学试卷及答案

2018年山东省高考理科数学试卷及答案

2018年高考山东卷理科数学真题及参考答案一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,选择符合题目要求的选项。

1.已知i R b a ,,∈是虚数单位,若i a -与bi +2互为共轭复数,则=+2)(bi a (A )i 45- (B) i 45+ (C) i 43- (D) i 43+答案:D2.设集合},]2,0[,2{},21{∈==<-=x y y B x x A x 则=B A(A) [0,2] (B) (1,3) (C) [1,3) (D) (1,4)答案:C3.函数1)(log 1)(22-=x x f 的定义域为 (A))210(, (B) )2(∞+, (C) ),2()210(+∞ , (D) )2[]210(∞+,, 答案:C4. 用反证法证明命题“设,,R b a ∈则方程02=++b ax x 至少有一个实根”时要做的假设是(A)方程02=++b ax x 没有实根 (B)方程02=++b ax x 至多有一个实根(C)方程02=++b ax x 至多有两个实根 (D)方程02=++b ax x 恰好有两个实根 答案:A5.已知实数y x ,满足)10(<<<a a a y x ,则下列关系式恒成立的是 (A)111122+>+y x (B) )1ln()1ln(22+>+y x (C) y x sin sin > (D) 33y x > 答案:D6.直线x y 4=与曲线2x y =在第一象限内围成的封闭图形的面积为 (A )22(B )24(C )2(D )4答案:D7.为了研究某药厂的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分。

2018-2016三年高考真题理科数学分类汇编:集合(解析附后)

2018-2016三年高考真题理科数学分类汇编:集合(解析附后)

2018-2016三年高考真题理科数学分类汇编:集合(解析附后)2018-2016三年高考真题分类汇编:集合(解析附后)考纲解读明方向考点内容解读要求常考题型预测热度1.集合的含义与表示了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。

理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义。

理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用XXX(Venn)图表达集合间的基本关系及集合的基本运算。

选择题★★☆2.集合间的基本关系选择题★★☆3.集合间的基本运算选择题★★★分析解读1.掌握集合的表示方法,能判断元素与集合的“属于”关系、集合与集合之间的包含关系。

2.深刻理解、掌握集合的元素、子、交、并、补集的概念。

熟练掌握集合的交、并、补的运算和性质。

能用XXX(Venn)图表示集合的关系及运算。

3.本部分内容在高考试题中多以选择题或填空题的形式出现,以函数、不等式等知识为载体,以集合语言和符号语言表示为表现形式,考查数学思想方法。

4.本节内容在高考中分值约为5分,属中低档题。

命题探究练扩展2018年高考全景展示1.【2018年理北京卷】已知集合A={x|x<2},B={-2,1,2},则AB=()A。

{0,1} B。

{-1,1} C。

{-2,1,2} D。

{-1,1,2}2.【2018年理新课标I卷】已知集合A={x|x²-4x+3=0},B={x|x²-2x-3=0},则AB中元素的个数为()A。

2 B。

3 C。

4 D。

53.【2018年全国卷III理】已知集合A={x|x²-5x+6>0},B={x|x-2>0},C={x|x<3},则A∩B∩C=()A。

{x|x2} D。

2018年浙江高考理科数学试题含答案(Word版)

2018年浙江高考理科数学试题含答案(Word版)

2018年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分、 在每小题给出得四个选项中,只有一项就是符合题目要求得、(1)设全集,集合,则( )A. B 、 C 、 D 、(2)已知就是虚数单位,,则“”就是“”得( )A 、 充分不必要条件B 、 必要不充分条件C 、 充分必要条件D 、 既不充分也不必要条件(3)某几何体得三视图(单位:cm)如图所示,则此几何体得表面积就是A 、 90B 、 129C 、 132D 、 1384.为了得到函数得图像,可以将函数得图像( )A.向右平移个单位 B 、向左平移个单位C 、向右平移个单位D 、向左平移个单位5.在得展开式中,记项得系数为,则 ( )A 、45B 、60C 、120D 、 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A. B 、 C 、 D 、7.在同意直角坐标系中,函数得图像可能就是( )8.记,,设为平面向量,则( )A 、B 、C 、D 、9、已知甲盒中仅有1个球且为红球,乙盒中有个红球与个篮球,从乙盒中随机抽取个球放入甲盒中、(a)放入个球后,甲盒中含有红球得个数记为;(b)放入个球后,从甲盒中取1个球就是红球得概率记为、则A. B 、C 、D 、10.设函数,,,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-=Λ,则A 、B 、C 、D 、二、填空题:本大题共7小题,每小题4分,共28分、11.若某程序框图如图所示,当输入50时,则该程序运算后输出得结果就是________、12.随机变量得取值为0,1,2,若,,则________、13.当实数,满足时,恒成立,则实数得取值范围就是________、14.、在8张奖券中有一、二、三等奖各1张,其余5张无奖、将这8张奖券分配给4个人,每人2张,不同得获奖情况有_____种(用数字作答)、15.设函数若,则实数得取值范围就是______16.设直线与双曲线(0a b>>)两条渐近线分别交于点,若点满足,则该双曲线得离心率就是__________17、如图,某人在垂直于水平地面得墙面前得点处进行射击训练、已知点到墙面得距离为,某目标点沿墙面得射击线移动,此人为了准确瞄准目标点,需计算由点观察点得仰角得大小、若则得最大值19(本题满分14分)已知数列与满足、若为等比数列,且(1)求与;(2)设。

2018年全国卷3高考理科数学试题解析版

2018年全国卷3高考理科数学试题解析版

C. 40
D. 80
【解析】分析:写出
,然后可得结果
详解:由题可得

,则
所以
故选 C.ຫໍສະໝຸດ 拓展:本题主要考查二项式定理,属于基础题。
6. 直线
分别与轴,轴交于,两点,点在圆
范围是
A.
B.
C.
D.
【答案】A
上,则
面积的取值
【解析】分析:先求出 A,B 两点坐标得到 再计算圆心到直线距离,得到点 P 到直线距
详解:由题可得
,即
故答案为
拓展:本题主要考查向量的坐标运算,以及两向量共线的坐标关系,属于基础题。
14. 曲线
在点
处的切线的斜率为 ,则 ________.
【答案】
【解析】分析:求导,利用导数的几何意义计算即可。
详解:

所以
故答案为-3.
拓展:本题主要考查导数的计算和导数的几何意义,属于基础题。
15. 函数
【答案】2
【解析】分析:利用点差法进行计算即可。
详解:设

所以
所以
取 AB 中点 因为
,分别过点 A,B 作准线 ,
的垂线,垂足分别为
因为 M’为 AB 中点,
所以 MM’平行于 x 轴
因为 M(-1,1)
所以 ,则

故答案为 2.
拓展:本题主要考查直线与抛物线的位置关系,考查了抛物线的性质,设
,利
详解:当 时, ,排除 A,B.
,当
时, ,排除 C
故正确答案选 D.
拓展:本题考查函数的图像,考查了特殊值排除法,导数与函数图像的关系,属于中档题。
8. 某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体

2018年高考全国3卷理科数学试题及答案解析

2018年高考全国3卷理科数学试题及答案解析
22则a32a2a6,即a12d2a1d a15d又∵a11,代入上式可得d22d 0又∵d 0,则d 2
6 5 6 5∴S66a12d 1 622 24,故选A.
22
10.已知椭圆C:x2y21(a b 0)的左、右顶点分别为A1,A2,且以线段A1A2为直ab
径的圆与直线bx ay 2ab 0相切,则C的离心率为()
A.πB.3πC.πD.π
424【答案】B
【解析】由题可知球心在圆柱体中心,圆柱体上下底面圆半径r12 1 3,
22
23π则圆柱体体积Vπr2hπ,故选B.
4
9.等差数列an的首项为1,公差不为0.若a2,a3,a6成等比数列,则an前6项的和为()
A.24B.3C.3D.8
【答案】A
【解析】∵an为等差数列,且a2,a3,a6成等比数列,设公差为d.
A.
【答案】
【解析】
B.
)
C.40
D.80
C
由二项式定理可得,原式展开中含
2 2 3 3 3 2
x C522xyy C532x y
33
x y的项为
3 33 3
40x3y3,则x3y3的系数为40,故选C.
22
5.已知双曲线C:x2y21
a2b2
a 0,b 0)
的一条渐近线方程为
y5x,
y x,
2
且与椭圆
3
D.
x8π对称
3
7.执行右图的程序框图,为使输出
的最小值为()
A.
B.
C.
D.2
答案】D
解析】程序运行过程如下表所示:
S
M
t
初始状态
0
100

2018年高考理科数学试题及答案详细解析(全国卷1、2、3卷)

2018年高考理科数学试题及答案详细解析(全国卷1、2、3卷)

2018年普通高等学校招生全国统一考试全国卷1 理科数学本试题卷共6页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

注意事项:1、本试卷分为第Ⅰ卷(选择题)和第II 卷(非选择题)两部分.第Ⅰ卷1至3页,第II卷3至5页.2、答题前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置.3、全部答案在答题卡上完成,答在本试题上无效.4、考试结束后,将本试题和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设121iz i i-=++,则z = A. 0 B. 12C. 1D.解析:2(1)22i z i i -=+=,所以|z |1=,故答案为C.2. 已知集合{}220A x x x =-->,则R C A = A. {}12x x -<<B. {}12x x -≤≤ C.}{}{2|1|>⋃-<x x x xD.}{}{2|1|≥⋃-≤x x x x解析:由220x x -->得(1)(2)0x x +->,所以2x >或1x <-,所以R C A ={}12x x -≤≤,故答案为B.3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下列结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半解析:由已知条件经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,37%274%⨯=,所以尽管种植收入所占的比例小了,但比以往的收入却是增加了.故答案为A.4. 设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a A. 12- B. 10- C. 10 D. 12解析:由323s s s =+得3221433(32=2242222d d d ⨯⨯⨯⨯+⨯++⨯+)即3(63)127d d +=+,所以3d =-,52410a d =+=- 52410a d =+=-,故答案为B.5. 设函数()()321f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点()0,0处的切线方程为A. 2y x =-B. y x =-C. 2y x =D. y x =解析:由()f x 为奇函数得1a =,2()31,f x x '=+所以切线的方程为y x =.故答案为D. 6. 在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则=A.AC AB 4143- B. AC AB 4341- C.AC AB 4143+ D.AC AB 4341+ 解析:11131()22244EB AB AE AB AD AB AB AC AB AC=-=-=-⋅+=-故答案为A.7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A. 172B.52C. 3D. 2解析:如图画出圆柱的侧面展开图,在展开图中线段MN 的长度52即为最短长度,故答案为B.8.设抛物线x y C 4:2=的焦点为F ,过点()0,2-且斜率为32的直线与C 交于N M ,两点,则=⋅A. 5B.6C. 7D. 8解析:联立直线与抛物线的方程得M(1,2),N(4,4),所以=⋅FN FM 8,故答案为D.9.已知函数(),0,ln ,0,x e x f x x x ⎧≤=⎨>⎩,()()g x f x x a =++.若()g x 存在2个零点,则a 的取值范围是 A.[)1,0-B.[)0,+∞C.[)1,-+∞D.[)1,+∞解析:∵()()g x f x x a =++存在2个零点,即()y f x =与y x a =--有两个交点,)(x f 的图象如图,要使得y x a =--与)(x f 有两个交点,则有1a -≤即1a ≥-,故答案为 C.10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AC AB ,.ABC ∆的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为321,,p p p ,则 A. 21p p = B.31p p = C. 32p p = D. 321p p p +=解析:取2AB AC ==,则BC =∴区域Ⅰ的面积为112222S =⨯⨯=,区域Ⅲ的面积为231222S ππ=⋅-=-, 区域Ⅱ的面积为22312S S π=⋅-=,故12p p =.故答案为A.11.已知双曲线13:22=-y x C ,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为N M ,.若OMN ∆为直角三角形,则=MN A.23B. 3C. 32D. 4解析:渐近线方程为:2203x y -=,即y x =,∵OMN ∆为直角三角形,假设2ONM π∠=,如图,∴NM k =,直线MN方程为2)y x =-.联立32)y x y x ⎧=-⎪⎨⎪=-⎩∴3(,)22N -,即ON =,∴3M O N π∠=,∴3MN =,故答案为B.12. 已知正方体的棱长为1,每条棱所在的直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A.433 B.332 C.423 D. 23解析:由于截面与每条棱所成的角都相等,所以平面α中存在平面与平面11AB D 平行(如图),而在与平面11AB D 平行的所有平面中,面积最大的为由各棱的中点构成的截面EFGHMN ,而平面EFGHMN的面积162S =⨯.故答案为A.第II 卷本卷包括必考题和选考题两部分.第(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(23)题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13.若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_______________.解析:画出可行域如图所示,可知目标函数过点(2,0)时取得最大值,max 32206z =⨯+⨯=.故答案为6.14.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_______________.解析:由已知得1121,21,n n n n S a S a ++=+⎧⎨=+⎩作差得12n n a a +=,所以{}n a 为公比为2的等比数列,又因为11121a S a ==+,所以11a =-,所以12n n a -=-,所以661(12)6312S -⋅-==--,故答案为-63.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有__________种。

专题3.1 年全国3卷第11题-刷百题不如解透一题之高考真题数学小题大做

专题3.1 年全国3卷第11题-刷百题不如解透一题之高考真题数学小题大做

一、典例分析,融合贯通典例1.【2018年全国高考课标3第11题】设12,F F 是双曲线2222:1(0,0)x y C a b a b 的左,右焦点,O是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16F P OP ,则C 的离心率为A .5B .2C .3D .2解法一: 【答案】C【解析】如图,不妨设1a =,则渐近线方程 :l y bx =,作2PF l ⊥,yxl b caPOF 2F 1点评:运用直线2PF 的方程为与渐近线方程,求出交点P 的坐标,由两点间的距离公式表示出1PF ,再结合条件16F P OP ,建立方程,可求出e 。

坐标搭台,方程高歌。

解法二:双曲线C :22221(0,0)x y a b a b 的一条渐近线方程为byx a, ∴点2F 到渐近线的距离d b ==,即2PF b =,∴OP a ===,2cos b PF O c∠=, ∵1PF OP =,∴1PF =,12F PF ∆中,由余弦定理可得2212211212cos PF PF F F PF F F PF O =+-⋅∠,∴2222222264224343()ba b c b c c b c c a c =+-⨯⨯⨯=-=--, 即223a c =c =,∴c e a==,故选:C .点评:中规中矩,顺藤摸瓜。

解法三:点评:由条件2PF l ⊥,构造直角12F QF ,运用勾股定理建立方程,找到222a b =,从而求出e 。

巧妙构图,多思少算。

解法四:yxl MPOF 2F 1点评:巧妙构图,多思少算。

二.方法总结,胸有成竹圆锥曲线的离心率是近年高考的一个热点,有关离心率的试题综合性较强,灵活多变,能较好反映考生对知识的熟练掌握和灵活运用的能力,能有效地考查考生对数学思想和方法的掌握程度;1. 圆锥曲线离心率的求值与范围问题求解的基本思路:一是:求出,,a b c三个量中的任何两个,然后利用离心率的计算公式求解;二是:求出,a c或,a b或,c b之间关系,然后利用离心率的计算公式求解;三是:构造出关于离心率e的方程(不等式、函数)来求解.此题中关键是灵活的应用椭圆和双曲线的定义构造出方程即可求解.2. 基本方法方法1 定义法解题模板:第一步根据题目条件求出,a c的值第二步代入公式cea=,求出离心率e.方法2 方程法解题模板:第一步设出相关未知量;第二步根据题目条件列出关于,,a b c的方程;第三步化简,求解方程,得到离心率.方法3 借助平面几何图形中的不等关系解题模板:第一步根据平面图形的关系,如三角形两边之和大于第三边、折线段大于或等于直线段、对称的性质中的最值等得到不等关系,第二步将这些量结合曲线的几何性质用,,a b c进行表示,进而得到不等式,第三步解不等式,确定离心率的范围.方法4 借助题目中给出的不等信息解题模板:第一步找出试题本身给出的不等条件,如已知某些量的范围,存在点或直线使方程成立,∆的范围等;第二步列出不等式,化简得到离心率的不等关系式,从而求解.方法5 借助函数的值域求解范围解题模板:第一步根据题设条件,如曲线的定义、等量关系等条件建立离心率和其他一个变量的函数关系式;第二步通过确定函数的定义域;第三步利用函数求值域的方法求解离心率的范围.三.精选试题,能力升级1.【2018年全国高考课标3文科4】已知椭圆222:14x y C a +=的一个焦点为(2,0),则C 的离心率为A.13 B. 12 C. 22 D. 223【答案】C【解析】根据题意,2c =,因为24b =,所以2228a b c =+=,即22a =, 所以椭圆C 的离心率为2222e ==,故选C. 2.【2018年全国高考课标2第11题】已知12,F F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且02160PF F ∠=,则C 的离心率为A. 312-B. 23-C. 312- D. 31- 【答案】D3.【2018衡水金卷】设椭圆的两个焦点分别为12F F 、,过2F 作椭圆长轴的垂线交椭圆与点若12F PF ∆为等腰直角三角形,则椭圆的离心率为 A.22 B. 21 2- C. 2 2 - D. 21- 【答案】D【解析】解法一:由于12F PF ∆为等腰直角三角形,故有122F F PF =,而122F F c =,22b PF a=所以22b c a=,整理得2222ac b a c ==-等式两边同时除以2a ,得221e e =-,即2210e e +-=,解得2812e -±==-±,舍去12e =-- 因此12e =-+,选D解法二:(采用离心率的定义以及椭圆的定义求解)如右图所示,有1222 212||||22221c c c e a a PF PF c c ======-+++4.【2018全国高考课标2第12题】已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A 是C 的左顶点,点P 在过A 3的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A.23B .12C .13D .14【答案】 4 613113- 【解析】由题意可知:A (﹣a ,0),F 1(﹣c ,0),F 2(c ,0), 直线AP 的方程为:3()6yx a , 由012120F F P ∠=,1222c F F PF ==,则(2,3)P c c , 代入直线AP :33(2)6cc a ,整理得:4c a ,∴离心率14c e a .故选:D . 5.【2018年江苏高考第8题】在平面直角坐标系中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c到一条渐近线的距离为32,则其离心率的值是________. 【答案】2【解析】因为双曲线的焦点(,0)F c 到渐近线byx a ,即0bx ay 220bc bc b c a b±==+, 所以32bc ,因而222222311,,2442a cbc c c a c e 6.【2018年全国高考北京卷理14题】已知椭圆M :22221(0)x y a b a b +=>>, 双曲线N :22221x y m n-=若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为 ;双曲线N 的离心率为 . 【答案】31 27.【2018西安交大附中模拟】已知抛物线24y x =的准线与双曲线22214x y a -=交于,A B 两点,点F 为抛物线的交点,若FAB ∆为正三角形,则双曲线的离心率是 . 【答案】571x =-.32112322468yxK OFAB8.【2018届江西省南昌市联考】已知双曲线2222:1(0,0)x y C a b a b-=>> 的左右焦点分别为12,F F , P 为双曲线C 上第二象限内一点,若直线by x a=恰为线段2PF 的垂直平分线,则双曲线C 的离心率为 5【解析】设()2,0F c ,渐近线方程为b y x a =,对称点为(),P m n ,即有n am c b=--,且()1122b m c n a +⋅=⋅,解得222,a b abm n c c -==,将222,a b ab P c c ⎛⎫- ⎪⎝⎭,即2222,a c ab c c ⎛⎫- ⎪⎝⎭,代入双曲线的方程可得()222222222241aca b a c c b--=,化简可得2241c a -=,即有e 2=5,解得5e =.9.【2018苏州模拟】如图所示,在平面直角坐标系xOy 中,F 是椭圆22221x y a b+=()0a b >>的右焦点,直线2by =与椭圆交于,B C 两点,且90BFC ∠=,则该椭圆的离心率是 . 【答案】63点评:另外也可以结合23CF BF a BC a+=⎧⎪⎨=⎪⎩,得22224CF CF BF BF a +⋅+=,212CF BF a ⋅=,21124BCF S CF BF a =⋅=△113222b CB h a =⋅=⨯,解得3a b =,进而6e =.设BC 与y 轴的交点为A ,则经典转化90BFC ∠=︒⇔以BC 为直径的圆过点F ⇔0BF CF ⋅=⇔12AF BC =. 10.【2018届黑龙江省海林市质检】已知双曲线22221(0,0)x y a b a b-=>>,若存在过右焦点F 的直线与双曲线交于A , B 两点,且3AF BF =,则双曲线离心率的最小值为 【答案】2【解析】因为过右焦点的直线与双曲线C 相交于A 、B 两点,且3AF BF =,故直线与双曲线相交只能交于左右两只,即A 在左支,B 在右支,设()11,A x y , ()22,B x y ,右焦点(),0F c ,因为3AF BF =,所以()123c x c x -=- , 2132x x c -= ,由于12,x a x a ≤-≥,所以12,33x a x a -≥≥ ,故2134x x a -≥,即24,2,cc a a≥≥ 即2e ≥. 11.【2018银川一中模拟】已知M (00,x y )是双曲线C :2212x y -=上的一点,12,F F 是C 上的两个焦点,高考资源网( ),您身边的高考专家欢迎广大教师踊跃来稿,稿酬丰厚。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学校:____________________ _______年_______班 姓名:____________________ 学号:________- - - - - - - - - 密封线 - - - - - - - - - 密封线 - - - - - - - - -绝密★启用前2018年普通高等学校招生全国统一考试全国III 卷 理科数学(全卷共10页)(适用地区:云南、广西、贵州、四川、西藏)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答案卡一并交回。

一、 选择题:本题共12小题,每小题5分,共60分。

在每个小题给出的四个选项中, 只有一项是符合题目要求的。

1.已知集合{}|10A x x =-≥,{}012B =,,,则A B =A .{}0B .{}1C .{}12,D .{}012,, 2.()()1i 2i +-= A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若1sin 3α=,则cos2α=A .89B .79C .79-D .89-5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10B .20C .40D .806.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值范围是 A .[]26,B .[]48,C .232⎡⎣D .2232⎡⎤⎣⎦7.函数422y x x =-++的图像大致为8.某群体中的每位成品使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =A .0.7B .0.6C .0.4D .0.39.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC ∆的面积为2224a b c +-,则C = A .π2B .π3C .π4D .π610.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为D ABC -体积的最大值为A.B. C.D. 11.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P.若1PF =,则C 的离心率为 AB .2CD12.设0.2log 0.3a =,2log 0.3b =,则 A .0a b ab +<< B .0ab a b <+< C .0a b ab +<<D .0ab a b <<+二、填空题:本题共4小题,每小题5分,共20分。

13.已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________.14.曲线()1x y ax e =+在点()01,处的切线的斜率为2-,则a =________. 15.函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.16.已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB =︒∠,则k =________.三、解答题:共70分。

解答题应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一) 必考题:共60分。

17.(12分)等比数列{}n a 中,15314a a a ==,.(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:超过m不超过m第一种生产方式第二种生产方式(3)根据(2)中的列表,能否有99%的把握认为两种生产方式的效率有差异?附:()()()()()22n ad bcKa b c d a c b d-=++++,()20.0500.0100.0013.8416.63510.828P K kk≥.19.(12分)如图,边长为2的正方形ABCD所在平面与半圆弧CD所在平面垂直,M是CD上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)当三棱锥M ABC-体积最大时,求面MAB与面MCD所成二面角的正弦值.20.(12分)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为()()10M m m >,. (1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA ,FP ,FB 成等差数列,并求该数列的公差.21.(12分)已知函数()()()22ln 12f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求a .(二)选考题:共10分。

请考生在第22、23题中任选一题作答。

如果多做,则按所做的第一题计分。

22.[选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,O ⊙的参数方程为cos sin x y θθ=⎧⎨=⎩,(θ为参数),过点()02-,且倾斜角为α的直线l 与O ⊙交于A B ,两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.23.[选修4—5:不等式选讲](10分)设函数()211f x x x =++-. (1)画出()y f x =的图像;(2)当[)0x +∞∈,, ()f x ax b +≤,求a b +的最小值.绝密★启用前2018年普通高等学校招生全国统一考试理科数学试题参考答案一、选择题二、填空题13. 14. 15. 16.217.解:(1)设的公比为,由题设得.由已知得,解得(舍去),或.故或.(2)若,则.由得,此方程没有正整数解.若,则.由得,解得.综上,. 18.解:(1)第二种生产方式的效率更高. 理由如下:(i )由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii )由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分. (2)由茎叶图知. 列联表如下:123-3{}n a q 1n n a q -=424q q =0q =2q =-2q =1(2)n n a -=-12n n a -=1(2)n n a -=-1(2)3n n S --=63m S =(2)188m-=-12n n a -=21n n S =-63m S =264m=6m =6m =7981802m +==(3)由于,所以有99%的把握认为两种生产方式的效率有差异. 19.解:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为上异于C ,D 的点,且DC 为直径,所以 DM ⊥CM . 又 BCCM =C ,所以DM ⊥平面BMC .而DM 平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz .当三棱锥M −ABC 体积最大时,M 为的中点.由题设得,设是平面MAB 的法向量,则即 可取.是平面MCD 的法向量,因此,, 所以面MAB 与面MCD 所成二面角的正弦值是. 20.解:(1)设,则. 两式相减,并由得. 由题设知,于是 .① 2240(151555)10 6.63520202020K ⨯-⨯==>⨯⨯⨯⊂CD ⊂DA CD (0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,1,1)D A B C M (2,1,1),(0,2,0),(2,0,0)AM AB DA =-==(,,)x y z =n 0,0.AM AB ⎧⋅=⎪⎨⋅=⎪⎩n n 20,20.x y z y -++=⎧⎨=⎩(1,0,2)=n DA 5cos ,5||||DA DA DA ⋅==n nn 2sin ,5DA =n 51221(,),(,)A y x y x B 222212121,14343y x y x +=+=1221y x y k x -=-1122043y x y k x +++⋅=12121,22x y x y m ++==34k m=-由题设得,故. (2)由题意得,设,则.由(1)及题设得.又点P 在C 上,所以,从而,.于是.同理.所以. 故,即成等差数列. 设该数列的公差为d ,则将代入①得. 所以l 的方程为,代入C 的方程,并整理得. 故,代入②解得.所以该数列的公差为或. 21.解:(1)当时,,. 设函数,则. 当时,;当时,.故当时,,且仅当时,,从而,且仅当时,.所以在单调递增.又,故当时,;当时,.(2)(i )若,由(1)知,当时,,这与是的极大值点矛盾.(ii )若,设函数.302m <<12k <-(1,0)F 33(,)P x y 331122(1,)(1,)(1,)(0,0)y x x y x y -+-+-=3321213()1,()20y y x x y x m =-+==-+=-<34m =3(1,)2P -3||2FP =1||(22xFA x ===-2||22xFB =-121||||4()32FA FB x x +=-+=2||||||FP FA FB =+||,||,||FA FP FB 1212||||||||||2FB FA x x d =-=-=34m =1k =-74y x =-+2171404x x -+=121212,28x x x x +==||28d =2828-0a =()(2)ln(1)2f x x x x =++-()ln(1)1xf x x x'=+-+()()ln(1)1x g x f x x x '==+-+2()(1)x g x x '=+10x -<<()0g x '<0x >()0g x '>1x >-()(0)0g x g ≥=0x =()0g x =()0f x '≥0x =()0f x '=()f x (1,)-+∞(0)0f =10x -<<()0f x <0x >()0f x >0a ≥0x >()(2)ln(1)20(0)f x x x x f ≥++->=0x =()f x 0a <22()2()ln(1)22f x xh x x x ax x ax ==+-++++由于当时,,故与符号相同.又,故是的极大值点当且仅当是的极大值点..如果,则当,且时,,故不是的极大值点.如果,则存在根,故当,且时,,所以不是的极大值点.如果,则.则当时,;当时,.所以是的极大值点,从而是的极大值点综上,.22.解:(1)的直角坐标方程为.当时,与交于两点.当时,记,则的方程为与交于两点当且仅当,解得或,即或.综上,的取值范围是.(2)的参数方程为为参数,.设,,对应的参数分别为,,,则,且,满足.于是,.又点的坐标满足所以点的轨迹的参数方程是为参数,.23.解:||min{x<220x ax++>()h x()f x(0)(0)0h f==0x=()f x0x=()h x2222222212(2)2(12)(461)()1(2)(1)(2)x ax x ax x a x ax ah xx x ax x ax x++-++++'=-=++++++610a+>614axa+<<-||min{x<()0h x'>0x=()h x610a+<224610a x ax a+++=1x<1(,0)x x∈||min{x<()0h x'<0x=()h x610a+=322(24)()(1)(612)x xh xx x x-'=+--(1,0)x∈-()0h x'>(0,1)x∈()0h x'<0x=()h xx=()f x16a=-O221x y+=2απ=l O2απ≠tan kα=l y kx=l O1<1k<-1k>(,)42αππ∈(,)24απ3π∈α(,)44π3πlcos,(sinx tty tαα=⎧⎪⎨=⎪⎩44απ3π<<)A B P A t B t P t2A BPt tt+=AtBt2sin10tα-+=A Bt tα+=PtαP(,)x ycos,sin.PPx ty tαα=⎧⎪⎨=⎪⎩P2,2xyαα⎧=⎪⎪⎨⎪=⎪⎩(α44απ3π<<)(1)的图像如图所示.(2)由(1)知,的图像与轴交点的纵坐标为,且各部分所在直线斜率的最大值为,故当且仅当且时,在成立,因此的最小值为.13,,21()2,1,23, 1.x x f x x x x x ⎧-<-⎪⎪⎪=+-≤<⎨⎪≥⎪⎪⎩()y f x=()y f x =y 233a ≥2b ≥()f x ax b ≤+[0,)+∞a b +5。

相关文档
最新文档