自动控制原理 第三章 控制系统时域分析讲解
合集下载
自动控制原理 第三章 控制系统的时域分析—5稳态误差

2020年9月6日6时59分
2
一、稳态误差的定义
系统的误差e(t)一般定义为输出量的希望值与 实际值之差。系统误差的定义有两种形式: (1)系统误差(从输出端定义) (s) Cr (s) C(s)
Cr(s)为系统输出量的希望值,其定义为E(s)=0时系 统的输出,C(s)为输出量的实际值。
(2)作用误差(从输入端定义)E(s) R(s) B(s) 作用误差就是给定输入R(s)与主反馈信号B(s)之差。
§ 3-6 控制系统的稳态误差
系统的稳态分量反映系统跟踪输入信号的准 确度或抑制扰动信号的能力,用稳态误差描述。在 系统的分析、设计中,稳态误差是一项重要的性能 指标,它与系统本身的结构、参数及外作用的形式 有关,也与元件的不灵敏、零点漂移、老化及各种 传动机械的间隙、摩擦等因素有关。
本章只讨论由于系统结构、参数及外作用等因 素所引起的稳态误差。 ➢ 给定稳态误差(由给定输入引起的稳态误差) ➢ 扰动稳态误差(由扰动输入引起的稳态误差)
式中
1 er (s) 1 G(s)H (s)
称为给定输入作用下系统的误差传递函数。
应用拉氏变换的终值定理可以方便地求出系 统的稳态误差。
2020年9月6日6时59分
9
ess
lim
t
e(t)
lim
s0
sE(s)
lim
s0
s
1
1 G(s)H(s)
R(s)
1
lim s
R(s)
s0 1 G开 (s)
稳态误差可表示为ess1 1 Kp因此,在单位阶跃输入下,给定稳态误差取决于
系统的稳态位置误差系数。
2020年9月6日6时59分
12
对于0型系统,v=0
自动控制原理第3章

拉氏变换式
A R(s) s2
当A=1时,称为单位斜坡信号
3、抛物线信号 数学表达式
拉氏变换式
r(t) 1 At2 2
A R(s) s3
r(t) t
1 R(s) s2
当A=1时,称为单位抛物线信号
4
典型的输入信号
单位抛物线信号拉氏变换式
r(t) 1 t 2 2
R(s)
1 s3
4、脉冲信号 数学表达式
y(s) R(s)(s) 1
2 n
s (s2 2ns n2 )
阶跃响应为
y(t) L1y(s) L1R(s)(s)
L1
1 s
(s2
2 n
2 ns
n2
)
二阶系统响应特性取决于阻尼系数 和无阻尼振荡频率 两个参数!
18
二阶系统分析
1、无阻尼 ( =0)的情况
特征根及分布情况: p1,2 jn
1 2
1 2nt
y(t)
ξ=0.3
1
ξ=0.5
20
0
t
二阶系统分析
3、临界阻尼( =1 )
特征根
p1,2 n
阶跃响应:
yt 1 ent 1 nt
y(t)
响应曲线
1
0
t
21
二阶系统分析
4、过阻尼( >1)的情况
特征根及分布情况: 阶跃响应:
p1 2 1 n
p2 2 1 n
11
一阶系统分析
2、单位斜坡响应
t
y(t) (t T ) Te T t 0
y(t)的特点: (1)由动态分量和稳态分量两部分组成。 (2)输入与输出之间存在跟踪误差,且误差 值等于系统时
《自动控制原理》第三章自动控制系统的时域分析和性能指标

i1 n
]
epjt
j
(spj)
j1
j1
limc(t) 0的充要条件是 p j具有负实部
t
二.劳斯(Routh)稳定判据
闭环特征方程
a nsn a n 1 sn 1 a 1 s a 0 0
必要条件
ai0. ai0
劳斯表
sn s n1 s n2
| | |
a a n
n2
a a n 1
n3
b1 b2
或:系统的全部闭环极点都在复数平面的虚轴上左半部。
m
设闭环的传递函数:
(s)
c(s) R(s)
k (s zi )
i 1 n
(s p j )
P j 称为闭环特征方程的根或极点 j1
n
(s pj ) 0 称为闭环特征方程
j1
若R(s)=1,则C(s)= s m
k (szi)
n
c(t)L1[c(s)]L1[
t 3、峰值时间 p
误差带
4 、最大超调量
%
C C ( )
% max
100 %
C ( )
ts
5 、调节时间
ts
(
0 . 05
0
.
02
)
6、振荡次N数
e e 7、稳态误差 ss
1C()(对单位阶跃) 输入
ss
第三节 一阶系统的动态性能指标
一.一阶系统的瞬态响应
R(s) -
K0 T 0S 1
s5 | 1 3 2
s4 | 1 3 2
s3 | 4 6
s2
|
3 2
2
s1
|
2 3
s0 | 2
自动控制原理-第3章-时域分析法

系统响应达到峰值所需要的时间。
调节时间
系统响应从峰值回到稳态值所需的时间。
振荡频率
系统阻尼振荡的频率,反映系统的动态性能。
系统的阶跃响应与脉冲响应
阶跃响应
系统对阶跃输入信号的响应,反映系 统的动态性能和稳态性能。
脉冲响应
系统对脉冲输入信号的响应,用于衡 量系统的冲激响应能力和动态性能。
03
一阶系统时域分析
01
单位阶跃响应是指系统在单位阶跃函数作为输入时的
输出响应。
计算方法
02 通过将单位阶跃函数作为输入,代入一阶系统的传递
函数中,求出系统的输出。
特点
03
一阶系统的单位阶跃响应是等值振荡的,其最大值为1,
达到最大值的时间为T,且在时间T后逐渐趋于0。
一阶系统的单位脉冲响应
定义
单位脉冲响应是指系统在单 位脉冲函数作为输入时的输
无法揭示系统结构特性
时域分析法主要关注系统的动态行为和响应,难以揭示系统的结构特 性和稳定性。
对初值条件敏感
时域分析法的结果对系统的初值条件较为敏感,初值条件的微小变化 可能导致计算结果的较大偏差。
感谢您的观看
THANKS
计算简便
时域分析法通常采用数值积分方法进 行计算,计算过程相对简单,易于实 现。
时域分析法的缺点
数值稳定性问题
对于某些系统,时域分析法可能存在数值稳定性问题,例如数值积分 方法的误差累积可能导致计算结果失真。
计算量大
对于高阶系统和复杂系统,时域分析法需要进行大量的数值积分计算, 计算量较大,效率较低。
自动控制原理-第3章-时域 分析法
目录
• 时域分析法概述 • 时域分析的基本概念 • 一阶系统时域分析 • 二阶系统时域分析 • 高阶系统时域分析 • 时域分析法的优缺点
调节时间
系统响应从峰值回到稳态值所需的时间。
振荡频率
系统阻尼振荡的频率,反映系统的动态性能。
系统的阶跃响应与脉冲响应
阶跃响应
系统对阶跃输入信号的响应,反映系 统的动态性能和稳态性能。
脉冲响应
系统对脉冲输入信号的响应,用于衡 量系统的冲激响应能力和动态性能。
03
一阶系统时域分析
01
单位阶跃响应是指系统在单位阶跃函数作为输入时的
输出响应。
计算方法
02 通过将单位阶跃函数作为输入,代入一阶系统的传递
函数中,求出系统的输出。
特点
03
一阶系统的单位阶跃响应是等值振荡的,其最大值为1,
达到最大值的时间为T,且在时间T后逐渐趋于0。
一阶系统的单位脉冲响应
定义
单位脉冲响应是指系统在单 位脉冲函数作为输入时的输
无法揭示系统结构特性
时域分析法主要关注系统的动态行为和响应,难以揭示系统的结构特 性和稳定性。
对初值条件敏感
时域分析法的结果对系统的初值条件较为敏感,初值条件的微小变化 可能导致计算结果的较大偏差。
感谢您的观看
THANKS
计算简便
时域分析法通常采用数值积分方法进 行计算,计算过程相对简单,易于实 现。
时域分析法的缺点
数值稳定性问题
对于某些系统,时域分析法可能存在数值稳定性问题,例如数值积分 方法的误差累积可能导致计算结果失真。
计算量大
对于高阶系统和复杂系统,时域分析法需要进行大量的数值积分计算, 计算量较大,效率较低。
自动控制原理-第3章-时域 分析法
目录
• 时域分析法概述 • 时域分析的基本概念 • 一阶系统时域分析 • 二阶系统时域分析 • 高阶系统时域分析 • 时域分析法的优缺点
自动控制原理第3章

arctan 9 3
1.25rad
则响应为 y(t) 1 2 e 3t 0.95e j1.25e (1 j)t 0.95e j1.25e (1 j)t 5
1 2 e 3t 0.95e t e j(t1.25) e j(t1.25) 5 1 2 e 3t 1.9e t cos(t 1.25)
平衡位置:力学系统中,当系统外的作 D
用力为零时,位移保持不变的位置。
此时位移对时间的各阶导数为零。 A点和D点是平衡位置, B点和C点不是平衡位置。
O
B
C
A
稳定的平衡位置:若在外力作用下,系统偏离了平衡位置,但 当外力去掉后,系统仍能回到原来的平衡位置,则称这一个平 衡位置是稳定的平衡位置。
所以A点是稳定的平衡位置,而D点不是稳定的平衡位置。
注意:输入信号为非单位阶跃信号时,依齐次性,响应 只是沿纵轴拉伸或压缩,基本形状不变。所以ts 、 tr、 tp 、 σ并不发生变化。
当t < ts时,称系统处于动态;当t > ts时,称系统处于稳态。
3.2 一阶系统的单位阶跃响应
一阶系统(惯性环节)
G(s) 1 Ts 1
单位阶跃响应为
t
y(t) 1 e T
设零初始状态,y(0)=0 r (t)=1(t)时,y(t)的响应曲线为
y(t)
1.05 y(∞)
ym
y(∞)
0.95 y(∞)
tr tp
ts
ym:单位阶跃响应的最大偏离量。 y(∞):单位阶跃响应的稳态值。并非期望值。 ts:调节时间。y(t)进入0.5*y(∞)或0.2* y(∞)构成的误差带 后不再超出的时间。 tr:上升时间。 y(t) 第一次达到 y(∞)的时间。
自动控制原理-第3章

响应曲线如图3-2所示。图中
为输出的稳态值。
第三章 线性系统的时域分析 法
图 3-2 动态性能指标
第三章 线性系统的时域分析 法
动态性能指标通常有以下几种:
延迟时间td: 指响应曲线第一次达到稳态值的一半所需的时间
上升时间tr: 若阶跃响应不超过稳态值, 上升时间指响应曲线从 稳态值的10%上升到90%所需的时间; 对于有振荡的系统, 上升时 间定义为响应从零第一次上升到稳态值所需的时间。上升时间越 短, 响应速度越快。
可由下式确定: (3.8)
振荡次数N: 在0≤t≤ts内, 阶跃响应曲线穿越稳态值c(∞)次 一半称为振荡次数。
上述动态性能指标中, 常用的指标有tr、ts和σp。上升时间tr 价系统的响应速度; σp评价系统的运行平稳性或阻尼程度; ts是同
时反映响应速度和阻尼程度的综合性指标。 应当指出, 除简单的一 、二阶系统外, 要精确给出这些指标的解析表达式是很困难的。
中可以看出, 随着阻尼比ζ的减小, 阶跃响应的振荡程度加剧。 ζ =0时是等幅振荡, ζ≥1时是无振荡的单调上升曲线, 其中临界阻尼 对应的过渡过程时间最短。 在欠阻尼的状态下, 当0.4<ζ<0.8时过
渡过程时间比临界阻尼时更短, 而且振荡也不严重。 因此在 控制工程中, 除了那些不允许产生超调和振荡的情况外, 通常都希
第三章 线性系统的时域分析法 4. 脉冲函数 脉冲函数(见图3-1(d))的时域表达式为
(3.4)
式中,h称为脉冲宽度, 脉冲的面积为1。若对脉冲的宽度取趋于 零的极限, 则有
(3.5) 及
(3.6)
称此函数为理想脉冲函数, 又称δ函数(见图3-1(e))。
第三章 线性系统的时域分析 法
自动控制原理(3)

# 3—3 一阶系统分析 四、一阶系统的单位脉冲响应 R(s)=1 C(s)=[1/(Ts+1)]*1 -1 Ct(t)=L [1/(Ts+1)] --t/T K(t)=(1/T)*e (t > 0) 响应初始斜率: 响应初始斜率: 1/T dk(t)/dt|t=0 --t/T 2 = --(1/T )*e 1/2T 2 = --1/T
# 3—3 一阶系统分析 3— 3、性能指标 、 1)暂态性能 ) 由于一阶系统的阶跃响应没有超调量, 由于一阶系统的阶跃响应没有超调量, 所以性能指标主要 是调节时间ts,它表征 系统过渡过程的快慢。由于t=3T时,输 系统过渡过程的快慢。由于 时 出响应可达稳定值的95%;t=4T时,输 出响应可达稳定值的 ; 时 出响应可达稳定值的98%,故一般取: 出响应可达稳定值的 ,故一般取: ts=3T(s)(对应误差带为 ) )(对应误差带为 ( )(对应误差带为5%) ts=4T(s)(对应误差带为 ) )(对应误差带为 ( )(对应误差带为2%) 显然,系统的时间常数T越小,调节 显然,系统的时间常数 越小, 越小 就越小,响应过程的快速性也好。 时间ts就越小,响应过程的快速性也好。
0 T 2T 3T 4T 3/2T
# 3—3 一阶系统分析 五、三种响应之间的关系 Ct(t) = ∫ = ∫ (1-e )dt (t > 0 ) 0 --t/T = t – T+Te
超调 量 0.9 0.5 0.1 tr 峰值 tp ts td
误差带
# 3—3 一阶系统分析 3—
由一阶微分方程描述的系统即 为一阶系统,一些控制元、 为一阶系统,一些控制元、部件 及简单系统如R——C网络,发 网络, 及简单系统如 网络 电机,空气加热器, 电机,空气加热器,液面控制系 统等。 统等。
自动控制原理第三章

对方程两边求拉氏变换:
若
Td Tm Td
s2n(s 0,
)则有Tm:n(s)
n(s)
U
d
(s)
/
Ce
n(s) 1/ Ce
U d (s) 1 Tms
(5)转角的转换环节
设 传动比为 ,电动机转角为m
m , c
c
1
m
又 n dm (t)
dt
n(s) sm (s) c(s) m / 1
1- 2
具体步骤如下:
求阶跃输入下的暂态响应
查表: F (s) s a0
(s a)2 2
则
f (t) L1[F (s)] 1
(a0 a)2 2
1
2 eat sin( t )
arctg
a0 a
由
s2
s 2n 2ns n2
s 2n (s n )2 (n
1 )2
2
1.8
1.6
1.4
1.2
1
0.8
0.6 0.4 0.2
0 0
246
nt
8 10 12
⒊ 当 1时,特征方程有一对相等的负实根,称为临界阻尼
系统,系统的阶跃响应为非振荡过程。
➢当 1 时,
阶跃响应曲线为:
xc
(s)
1 s
s2
n2 2n s
n2
n2 s(s n )2
1 1 n s s n (s n )2
1 )( s
T1
1 T2
)
式中
T1
1 a
n (
1
2
1)
T2
1 b
n (
1
2
1)
第三章 自动控制系统的时域分析(1)《自动控制原理与系统》

第二节 一阶系统的动态响应
凡是以一阶微分方程作为运动方程的控制系统,成为一阶系统
一、一阶系统的数学模型
一阶系统的时域微分方程为
T dc (t ) c(t ) r (t ) dt
式中c(t)和r(t)分别为系统的输出、输入量;T为时间 常数,具有时间“秒”的量纲,此外时间常数T也是表征系 统惯性的一个主要参数,所以一阶系统也称为惯性环节 在初始条件为零时两边取拉氏变换,可得其闭环传递函数为
)] T
这里,输入信号t是输出量的期望值。上式还表明,一阶系统在 跟踪单位斜波输入信号时,输出量与输入量存在跟踪误差,其 稳态误差值与系统的“T”的值相等。一阶系统在跟踪斜波输入 信号,所带来的原理上的位置误差,只能通过减小时间常数T来 降低,而不能最终消除它
第三章 自动控制系统的时域分析
4.单位冲激响应 单位脉冲函数是单位阶跃函数的一阶 导数。因此其单位脉冲响应是单位阶 跃响应的一阶导数
r(t)=A sinωt
周期性输入信号
第三章 自动控制系统的时域分析
二、动态过程与稳态过程
在典型输入信号作用下,任何一个控制系统的时间响应都是由 动态过程和稳态过程组成 1.动态过程
又称为过渡过程或暂态过程,是指系统从初始状态到接近最终 状态的响应过程。 2.稳态过程
稳态过程是指时间t趋于无穷时的系统输出状态。
第三章 自动控制系统的时域分析
第三节 二阶系统的动态响应
凡是由二阶微分方程描述的系统,称为二阶系统。在控制工程 中的许多系统都是二阶系统,如电学系统、力学系统等。即使 是高阶系统,在简化系统分析的情况下有许多也可以近似成二 阶系统。因此,二阶系统的性能分析在自动控制系统分析中有 非常重要的地位。
一、二阶系统的数学模型
自动控制原理第3章

例1. 系统特征方程式为
s 6 s 12 s 11 s 6 0
4 3 2
例2. 系统特征方程式为
s 3 s 2 s s 5s 6 0
5 4 3 2
特殊情况:
1) 劳斯行列表中某一行左边第一个数为零,其余 不为零或没有. 例: 例:
s 4 3s 3 s 2 3S 1 0
-
1/s
k/(s+5)(s+1)
例:系统特征方程式:
2 s 3 T s 2 10 s 100 0 s
4
按稳定要求确定T的临界值.
六.系统的相对稳定性
§3-3 控制系统的稳态误差
一.误差及稳态误差的定义 系统的误差为 e(t)=被控量的希望值-被控量的实际值 常用的误差定义有两种
二.线性定常系统稳定的充分必要条件
线性定常系统微分方程为:
a0
d dt
n 1
n
n
c (t )
d a dt
1
n 1
c (t ) n 1
d a dt
2
n2 n2
c (t )
d a dt
3
n3 n3
c ( t ) ........
a
d dt
m m
c (t )
a
n
c (t )
第三章 控制系统的时域分析法
§3-1 引言
一. 典型输入信号 1、阶跃函数
r(t)
r (t ) {
0 A
t0 t0
A
t
2、斜坡函数
r(t) {
r(t)
0 At
t0 t0
斜率=A
朱玉华自动控制原理第3章 时域分析3-1,2,3

1
1
ቤተ መጻሕፍቲ ባይዱ
s4 3s3 s2 3s 1 0 s3 3 3
试判别该系统的稳定性。 s2 0 1
当 0时,3 3 0,
s1 3 3 0
s0
1
有2个特征根在s平面第右3章边控. 制系系统统的是时域不分析稳定的
10 0 0
(2) 劳斯表中某一行的元素全为零。
——这时系统在s平面上存在一些大小相等符号相反的
61
s0 6
劳斯表中第一列元素大于零,所以该系统是稳定的。 这时,系统所有的特征根均处于s平面的左半平面。
第3章 控制系统的时域分析
课程回顾(1)
1、 稳态性能指标 2、 动态性能指标
ess
lim[r(t)
t
cr (t)]
(1)延迟时间td (2)上升时间tr
(3)峰值时间tp
(4)调整时间ts
负可化为全为正) (2)劳斯表中第一列所有元素均大于零。
第3章 控制系统的时域分析
例3-1 已知三阶系统特征方程为 a0s3 a1s2 a2s a3 0
试写出系统稳定的充要条件
解:列写劳斯表 s3
a0
a2
0
s2
a1
a3
0
s1 a1a2 a0a3 0
a1
s0
a3
0
故得出三阶系统稳定的充要条件为:
0
9
s0 5
s1 32
0
s0 5
所得结论不变
第3章 控制系统的时域分析
2、劳斯稳定判据的特殊情况
(1) 劳斯表中某一行的第一个元素(系数)为零,而该 行其它元不为零。
——计算下一行第一个元素时将出现无穷大,以至劳斯 表的计算无法进行。
自动控制原理 第三章时域分析方法

位脉冲响应,由此可以求得系统的传递函数。
总结与分析:
一阶系统对典型试验信号的响应 输入信号x(t) 输出响应y(t)
1 2 3
t
1() δ(t)
t T Te t / T
1 et /T
1 T
et /T
l 线性定常系统对输入信号导数的响应,可以通过 把系统对输入信号的响应进行微分求得; l 系统对输入信号积分的响应,可以通过把系统对原 输入信号的响应进行积分求得,而积分常数则由初 始条件决定。
3.1.1 控制系统的输入信号
● 在分析和设计控制系统时,需要有一个对各种
系统性能进行比较的基础。
● 从实际应用中抽象出一些典型的输入信号,它
们具有广泛的代表性和实际意义。
● 通过比较各类系统对这些典型试验信号的响
应来分析它们的性能。
常用的典型试验信号:
r(t) A t (a) 阶跃信号
r(t)
1 E
实验方法求取一阶系统的传递函数:
63.2% T
1 Ts 1
对一阶系统的单位阶跃响应曲线, 1、直接从达到稳态值的63.2%对应的时间求出一阶 系统的时间常数;
2、从t=0处的切线斜率求得系统的时间常数。 思考题:
若系统增益K不等于1,系统的稳态值应是多少?如何用实
验方法从响应曲线中求取K值?
3.2.2单位斜坡响应
2、系统的稳态响应为y(∞)=t-T,是一个与输入斜 坡函数斜率相同但时间迟后T的斜坡函数。
3、输出总是小于输入,误差逐步从零增大到时间 常数T并保持不变,因此T也是稳态误差。系统 的时间常数T越愈小,系统跟踪输入信号的稳态 误差也越小。
3.2.3 单位脉冲响应
1 R( s) L[ ( t )] 1 Y ( s) G ( s) R( s) G (s ) Ts 1 系统输出量的拉氏变换式就是系统的传递函数
总结与分析:
一阶系统对典型试验信号的响应 输入信号x(t) 输出响应y(t)
1 2 3
t
1() δ(t)
t T Te t / T
1 et /T
1 T
et /T
l 线性定常系统对输入信号导数的响应,可以通过 把系统对输入信号的响应进行微分求得; l 系统对输入信号积分的响应,可以通过把系统对原 输入信号的响应进行积分求得,而积分常数则由初 始条件决定。
3.1.1 控制系统的输入信号
● 在分析和设计控制系统时,需要有一个对各种
系统性能进行比较的基础。
● 从实际应用中抽象出一些典型的输入信号,它
们具有广泛的代表性和实际意义。
● 通过比较各类系统对这些典型试验信号的响
应来分析它们的性能。
常用的典型试验信号:
r(t) A t (a) 阶跃信号
r(t)
1 E
实验方法求取一阶系统的传递函数:
63.2% T
1 Ts 1
对一阶系统的单位阶跃响应曲线, 1、直接从达到稳态值的63.2%对应的时间求出一阶 系统的时间常数;
2、从t=0处的切线斜率求得系统的时间常数。 思考题:
若系统增益K不等于1,系统的稳态值应是多少?如何用实
验方法从响应曲线中求取K值?
3.2.2单位斜坡响应
2、系统的稳态响应为y(∞)=t-T,是一个与输入斜 坡函数斜率相同但时间迟后T的斜坡函数。
3、输出总是小于输入,误差逐步从零增大到时间 常数T并保持不变,因此T也是稳态误差。系统 的时间常数T越愈小,系统跟踪输入信号的稳态 误差也越小。
3.2.3 单位脉冲响应
1 R( s) L[ ( t )] 1 Y ( s) G ( s) R( s) G (s ) Ts 1 系统输出量的拉氏变换式就是系统的传递函数
控制系统的时域分析

L-1
1 s3
其中:A
-
[
T +T2 s2 s
1 s3( Ts
- T3 Ts + 1
1 ) s3 ]s=0
1
1 2
t2
- Tt + T 2 - T 2e -t/T
d
1
B ds [ s3(Ts 1 )
s3
]s=0
T
s1,2,3 0
C
1 {
( 3 1 )
d 31 ds 31
[
1 s3( Ts 1 )
=- 1 T
s(Ts
+
1)
(Ts
+
1)
p2
=
-
1 T
=
1
= -T
红河学院自动化系
T
自动控制原理
单位阶跃
慣性
拉氏反变换:
c(t) = L-1 C(s)
=
L-1
1 s
-
s
1 + 1/T
=
1
-
-t
eT
一阶系统没有超调,
c(t)
系统的动态性能指标为 调节时间:
ts = 3T (±5%)
单位阶跃响应曲线
一、时域分析法及其特点
时域分析法——控制系统在一定输入作用下,根 据输出量的时域表达式,分析系统的稳定性、瞬 态过程性能和稳态误差。 特点:
(1) 直接在时间域中对系统进行分析校正,直观、 准确; (2) 可以提供系统时间响应的全部信息; (3) 基于求解系统输出的解析解,比较烦琐。
红河学院自动化系
自动控制原理
二、常用的典型输入信号
红河学院自动化系
自动控制原理 三、线性系统时域性能指标 总要求
自动控制原理(第3章new)讲解

g(t) 25 e3t sin 4t 4
h(t) 11.25e3t sin(4t 53.1o )
% 9.48%
t p 0.785(s) ts 1.167(s)
四.二阶系统性能的改善
1. 比例—微分控制(PD)
R(s) E(s)
1
+
-
+
Td s
2 n
C(s)
s(s 2n )
h(t) 1
ent
1 2
sin(n
1 2t ),
其中: arctg(
1 2
)
或
1 0, t 0
h(t) 1
e( 2 1)nt
e( 2 1)nt
, 1, t 0
2 2 1( 2 1) 2 2 1( 2 1)
te
nt
当t=0时,响应过程的变化率为零;当t>0时,响
应过程的变化率为正,响应过程单调上升;当 t
时,响应过程的变化率趋于零,响应过程趋于常值1。
单位阶跃响应是非周期地趋于稳态输出,此时,系统处于 临界阻尼情况。
5.当 1时,则特征方程 有两个不相等的负实根 , 对应于s平面上的两个不 相等的实极点。
Td ——微分器时间常数
系统的开环传递函数为:
G(s)
2 n
(1
Td
s)
K (1 Td s)
s(s 2n ) s( s 1)
2n
其中: K n 2
——开环增益
令 z 1
Td
G(s) K(s z) zs( s 1)
h(t) 11.25e3t sin(4t 53.1o )
% 9.48%
t p 0.785(s) ts 1.167(s)
四.二阶系统性能的改善
1. 比例—微分控制(PD)
R(s) E(s)
1
+
-
+
Td s
2 n
C(s)
s(s 2n )
h(t) 1
ent
1 2
sin(n
1 2t ),
其中: arctg(
1 2
)
或
1 0, t 0
h(t) 1
e( 2 1)nt
e( 2 1)nt
, 1, t 0
2 2 1( 2 1) 2 2 1( 2 1)
te
nt
当t=0时,响应过程的变化率为零;当t>0时,响
应过程的变化率为正,响应过程单调上升;当 t
时,响应过程的变化率趋于零,响应过程趋于常值1。
单位阶跃响应是非周期地趋于稳态输出,此时,系统处于 临界阻尼情况。
5.当 1时,则特征方程 有两个不相等的负实根 , 对应于s平面上的两个不 相等的实极点。
Td ——微分器时间常数
系统的开环传递函数为:
G(s)
2 n
(1
Td
s)
K (1 Td s)
s(s 2n ) s( s 1)
2n
其中: K n 2
——开环增益
令 z 1
Td
G(s) K(s z) zs( s 1)
自动控制原理与系统第3章 自动控制系统的时域分析法

【例3-2】 求典型一阶系统的单位斜坡响应。 典型一阶系统惯性环节的微分方程为
T dc(T) c(t) r(t) dt
上式的拉氏式为 TsC(s) C(s) R(s)
由于为单位斜坡输入,即r(t)=t,因此,R(s) 1 , s2
代入上式有
TsC(s)
C(s)
1 s2
由上式有
【例3-1】 设典型一阶系统的微分方程为:
T dc(t(t) 为输入信号;c(t) 为输出信号;T称为间
常数,其初始条件为零。 解 1) 对微分方程两边进行拉氏变换有:
TsC(s)+C(s)=R(s)
由题意可知,系统的输入信号为单位阶跃信号,
即r(t)=1(t),则 R(s) 1 ,代入上式有:
(3 9)
由式(3-9)可画出如图3-3中ξ =1所示的曲线。此曲
4) 当ξ >1(过阻尼)时:
特征方程的根 s1,2 n n 2 1
是两个不相等的负实根。 过阻尼时的阶跃响应也为单调上升曲线。不过其上 升的斜率较临界阻尼更慢。 由以上的分析可见,典型二阶系统在不同的阻尼比 的情况下,它们的阶跃响应输出特性的差异是很大 的。若阻尼比过小,则系统的振荡加剧,超调量大 幅度增加;若阻尼比过大,则系统的响应过慢,又 大大增加了调整时间。因此,怎样选择适中的阻尼 比,以兼顾系统的稳定性和快速性,便成了研究自 动控制系统的一个重要的课题。
由上式可知,响应曲线在起点的斜率m为时间常数T
的倒数,T愈大,m愈小,上升过程愈慢。
② 过渡过程时间。由图2-3可见,在t经历T、2T、3T、 4T和5T的时间后,其响应的输出分别为稳态值的 63.2%、86.5%、95%、98.2%和99.3%。由此可见,对 典型一阶系统,它的过渡过程时间大约为(3~5)T, 到达稳态值的95%~99.3%。
自动控制原理 第3章时域分析

该曲线的特点是:在t=0处曲线的斜率最大,其值为 1/T。若系统保持初始响应的变化率不变,则当t=T时输出 就能达到稳态值,而实际上只上升到稳态值的63.2%,经过 4T的时间,响应达到稳态值的98%。显然,时间常数T反映 了系统的响应速度。
16
1)暂态性能指标 tr=2.2T (按第二种定义) ts=4T (Δ=±2%) 2)稳态性能指标
ess
lim[r(t)
t
c(t)]
0
17
3.2.3 单位脉冲响应
对于单位脉冲输入r(t)=δ(t),R(s)=1,于是
C(s)
1 Ts 1
1 T
s
1 1
T
因此
(3-7)
g(t)
c(t)
1
t
eT
(t 0)
(3-8)
T
18
响应曲线如图3-5所示。该曲线在t=0时等于1/T,正好 与单位阶跃响应在t=0时的变化率相等,这表明单位脉冲响 应是单位阶跃响应的导数,而单位阶跃响应是单位脉冲响
3
3.1 控制系统的时域性能指标
评价一个系统的优劣,总是用一定的性能指标来衡量。
系统的时域性能指标是根据系统的时间响应来定义的。
控制系统的时间响应通常分为两部分:稳态响应和暂
态响应。如果以c(t)表示时间响应,那么其一般形式可写为
c(t)=css(t)+ct(t)
式中:css(t)为稳态响应;ct(t)为暂态响应。
(3-1)
4
稳态响应由稳态性能描述,而暂态响应由暂态性能描 述。因此,系统的性能指标由稳态性能指标和暂态性能指 标两部分组成。
5
3.1.1 暂态性能指标
控制系统常用的输入信号有脉冲函数、阶跃函数、斜 坡函数、抛物线函数以及正弦函数等。通常,系统的暂态 性能指标是根据阶跃响应曲线来定义的,如图3-1所示。
16
1)暂态性能指标 tr=2.2T (按第二种定义) ts=4T (Δ=±2%) 2)稳态性能指标
ess
lim[r(t)
t
c(t)]
0
17
3.2.3 单位脉冲响应
对于单位脉冲输入r(t)=δ(t),R(s)=1,于是
C(s)
1 Ts 1
1 T
s
1 1
T
因此
(3-7)
g(t)
c(t)
1
t
eT
(t 0)
(3-8)
T
18
响应曲线如图3-5所示。该曲线在t=0时等于1/T,正好 与单位阶跃响应在t=0时的变化率相等,这表明单位脉冲响 应是单位阶跃响应的导数,而单位阶跃响应是单位脉冲响
3
3.1 控制系统的时域性能指标
评价一个系统的优劣,总是用一定的性能指标来衡量。
系统的时域性能指标是根据系统的时间响应来定义的。
控制系统的时间响应通常分为两部分:稳态响应和暂
态响应。如果以c(t)表示时间响应,那么其一般形式可写为
c(t)=css(t)+ct(t)
式中:css(t)为稳态响应;ct(t)为暂态响应。
(3-1)
4
稳态响应由稳态性能描述,而暂态响应由暂态性能描 述。因此,系统的性能指标由稳态性能指标和暂态性能指 标两部分组成。
5
3.1.1 暂态性能指标
控制系统常用的输入信号有脉冲函数、阶跃函数、斜 坡函数、抛物线函数以及正弦函数等。通常,系统的暂态 性能指标是根据阶跃响应曲线来定义的,如图3-1所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3.4 二阶系统
§3.3 二阶系统的时间响应及动态性能
§3.4.2 x 1 (临界/过 阻尼)系统动态性能指标的计算 (2)
举例
课程小结
§3 时域分析法
§3.1 引言
时域法的作用和特点 时域法常用的典型输入信号 系统的时域性能指标
§3.3 一阶系统
一阶系统传递函数标准形式及单位阶跃响应 一阶系统动态性能指标计算 典型输入下一阶系统的响应
第二章小结
本课程的任务
自动控制工程
§3
(第 12 讲)
时域分析法
§3.1 §3.2 §3.3 §3.4 §3.5 §3.6 §3.7
引言 脉冲响应函数 一阶系统 二阶系统 高阶系统及性能估计 系统稳定性分析 稳态误差分析
自动控制工程
(第 12 讲)
§3 时域分析法
§3.1 引言 §3.3 一阶系统
§3.4 二阶系统
二阶系统传递函数标准形式及分类 过阻尼二阶系统动态性能指标计算
课程回顾
§3 时域分析法
§3.1 引言
时域分析法的特点
时域分析法常用的典型输入信号
动态性能指标定义 (σ%, tp, ts)
§3.3 一阶系统
(s) K Ts 1
ts 3T
(第 14 讲)
§3 时域分析法
动态性能指标定义 (σ%, tp, ts)
§3.3 一阶系统
(s) K Ts 1
ts 3T
自动控制工程
§3
(第 13 讲)
时域分析法
§3.1 §3.2 §3.3 §3.4 §3.5 §3.6 §3.7
引言 脉冲响应函数 一阶系统 二阶系统 高阶系统及性能估计 系统稳定性分析 稳态误差分析
解. 依题意
G(s) 10 0.2s 1
T 0.2
K
10
闭环系统应满足
T * 0.1T 0.02
K*
K
10
10KO
10KO
(s) KOG(S) 0.2s 1
10KO
1 10K H
1 K HG(s) 1 10K H 0.2s 1 10K H
准: ( 稳态要求 )稳态输出与理想输出间的误差(稳态误差)要小 快: ( 动态要求 ) 过渡过程要平稳,迅速
延迟时间 t d — 阶跃响应第一次达到终值的50%所需的时间 上升时间 t r — 阶跃响应从终值的10%上升到终值的90%所需的时间
有振荡时,可定义为从 0 到第一次达到终值所需的时间
峰值时间 t p — 阶跃响应越过终值达到第一个峰值所需的时间 调节时间 t s — 阶跃响应到达并保持在终值 5%误差带内所需的最短时间
§3
时域分析法
§3.1 引言
时域法的特点
时域法是最基本的分析方法, 是学习复域法、频域法的基础。
(1) 直接在时间域中分析系统,直观,准确; (2) 可以提供系统时间响应的全部信息; (3) 基于求解系统输出的解析解,比较烦琐。
时域分析法常用的典型输入信号
线性系统的时域性能指标
稳:( 基本要求 ) 系统受脉冲扰动后能回到原来的平衡位置
§3.4 二阶系统 (0 x 1)
§3.4.1 二阶系统传递函数标准形式及分类
二阶系统单位阶跃响应
Φ(s)=
ωn2 s2+2ξωns+ωn2
ξ>ξ>1 1
- S1,2=
ξω ω√ ±j 1
1
n T2
T1
n ξ2
-
1ξ=1
0
jj 00
= - hξ=(t)1
1+
t
t
e = +ξωe = -ω TTS211,过21T1阻尼
(s) G(s) 1 G(s)
(s)[1 G(s)] G(s)
[ 1 (s) ]G(s) (s) G(s) (s)
1 (s)
a
G(s)
(s) 1 (s)
s 1ຫໍສະໝຸດ a aa ssa
课程小结
§3 时域分析法
§3.1 引言
时域分析法的特点
时域分析法常用的典型输入信号
0.2 s 1
0.2
1 10K H 10KO
T* 0.02 K* 10
0.2s 1
1 10K H
KH KO
0.9 10
1 10K H
一阶系统的典型响应
r(t§) 3R.(2s).3C一(s)阶= 系(s) 统R(s的) 典型响c(应t)
s
T
1
1 T
11 1 1
C(s) (s) R(s)
Ts 1 s s s 1 T
h(t )
L1C(s)
1
t
eT
§3.3 一阶系统
(2)一阶系统动态性能指标计算
1t
h(t ) 1 e T
h(0) 0
h(t)
1
1t
eT
T
h() 1
超 调 量 δ% — 峰值超出终值的百分比
动态性能指标定义
h(t)
A
超调量σ% =
A B
100%
峰值时间tp B
上升 时间tr
延迟 时间td
调节时间ts
t
§3.3 一阶系统
(1) 一阶系统 Ф(s) 标准形式及 h(s)
G(s) K s
(s)
K s
K T 1 K
1 T
1
1 K s K s 1 Ts 1
T1 T2
n
T2
1
n
h(t)= 1 -(1临+ω界n阻t)尼0je-ωnt
0<0<ξ<ξ<1 1 S1,2= -ξ ωn ±jj ωn√1-ξξ2 =0
jj 0
0
0
h(t)=
e ξ=1 0√1-ξ12 二-阶ξω欠Sn阻t欠1s,尼2i阻n=动(态尼ω±性dt能j+ω(β1n))
h(t)= 1-零c阻os尼0ωj nt
§3.4.2 0 x 1(欠/零阻尼)系统动态性能指标的计算
h(0) 1 T
ts
h(ts ) 1 e T 0.95
ts
e T 1 0.95 0.05
ts T ln 0.05 3T
一阶系统动态性能与系统极点分布的关系
§3.3 一阶系统
例1 系统如图所示,现采用负反馈方式,欲将系统调节时间减小到原来
的0.1倍,且保证原放大倍数不变,试确定参数 Ko 和 KH 的取值。
一阶系统典型响应
d(t) 1
1(t)
t
§3.3 一阶系统
例2 已知单位反馈系统的单位阶跃响应 h(t ) 1 eat
试求 (s) , k(s) , G(s) 。
解. k(t ) h(t ) [1 eat ] aeat
(s) L[ k(t) ] a sa