2.3.1直线与平面垂直的判定学案

合集下载

2019-2020学年新导学案同步人教A版数学必修2_第2章 点_直线_平面之2.3.1

2019-2020学年新导学案同步人教A版数学必修2_第2章  点_直线_平面之2.3.1
数 学 必 修 ② 人 教 版
返回导航
·
第二章 点、直线、平面之间的位置关系
3.直线和平面所成的角
(1)定义:一条直线和一个平面相交,但不和这个平面__垂__直____,这条直线
叫做这个平面的斜线,斜线和平面的___交__点___叫做斜足.过斜线上斜足以外的
一点向平面引垂线,过___垂__足___和__斜__足____的直线叫做斜线在这个平面上的射
一点,且SA=SB=SC.

(1)求证:SD⊥平面ABC;

必 修
(2)若AB=BC,求证:BD⊥平面SAC.

人 教

返回导航
·
·
第二章 点、直线、平面之间的位置关系
[解析] (1)因为SA=SC,D是AC的中点,
所以SD⊥AC.在Rt△ABC中,AD=BD,
由已知SA=SB,所以△ADS≌△BDS,
人 教

返回导航
·
第二章 点、直线、平面之间的位置关系
1.直线l⊥平面α,直线m⊂α,则l与m不可能
(A)
A.平行
B.相交
C.异面
D.垂直
[解析] ∵直线l⊥平面α,∴l与α相交,
又∵m⊂α,∴l与m相交或异面,由直线与平面垂直的定义,可知l⊥m.故l与
数 学
m不可能平行.



人 教

返回导航
·
②连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角
即为所求的角;③把该角归结在某个三角形中,通过解三角形,求出该角.
(2)求线面角的技巧:在上述步骤中,其中作角是关键,而确定斜线在平面
内的射影是作角的关键,几何图形的特征是找射影的依据,射影一般都是一些

直线与平面垂直的判定教学设计

直线与平面垂直的判定教学设计

“直线与平面垂直的判定〃教学设计一、内容和内容解析直线与平面垂直是直线和平面相交中的一种特殊情况,它是空间中直线与直线垂直位置关系的拓展,又是平面与平面垂直的根底,是空间中垂直位置关系间转化的重心,同时它又是直线和平面所成的角、直线与平面、平面与平面距离等内容的根底,因而它是空间点、直线、平面间位置关系中的核心概念之一。

直线与平面垂直的定义:如果一条直线与一个平面内的任意一条直线都垂直,就称这条直线与这个平面互相垂直。

定义中的“任意一条直线〃就是“所有直线〃。

定义本身也说明了直线与平面垂直的意义,即如果一条直线垂直于一个平面,那么这条直线就垂直于这个平面内的所有直线。

直线与平面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直。

该定理把原来定义中要求与任意一条(无限)直线垂直转化为只要与两条(有限)相交直线垂直就行了,使直线与平面垂直的判定简捷而又具有可操作性。

对直线与平面垂直的定义的研究遵循“直观感知、抽象概括〃的认知过程展开,而对直线与平面垂直的判定的研究那么遵循“直观感知、操作确认、归纳总结、初步运用〃的认知过程展开,通过该内容的学习,进一步培养学生空间想象能力和几何直观能力,开展学生的合情推理能力、一定的推理论证能力和运用图形语言进行交流的能力。

同时体验和感悟转化的数学思想,即“空间问题转化为平面问题〃,“无限问题转化为有限问题〃,“直线与直线垂直和直线与平面垂直的相互转化〃。

教学重点:直观感知、操作确认,概括出直线与平面垂直的定义和判定定理。

二、目标和目标解析目标:理解直线与平面垂直的意义,掌握直线与平面垂直的判定定理。

目标解析:1、借助对图片、实例的观察,抽象概括出直线与平面垂直的定义。

2、通过直观感知、操作确认,归纳出直线与平面垂直的判定定理。

3、能运用直线与平面垂直的判定定理,证明与直线和平面垂直有关的简单命题:在平面内选择两条相交直线,证明它们与平面外的直线垂直。

学案 线面垂直的判定与性质

学案 线面垂直的判定与性质

§学案线面垂直的判定与性质题型1线面垂直的判定与性质题型2面面垂直的判定与性质题型3垂直关系的综合应用(线线角、线面角、长度、体积问题)要点一、直线和平面垂直的定义与判定1.直线和平面垂直的定义如果直线l 和平面α内的任意一条直线都垂直,我们就说直线l 与平面α互相垂直,记作l α⊥.直线l 叫平面α的垂线;平面α叫直线l 的垂面;垂线和平面的交点叫垂足.2.直线和平面垂直的判定定理文字语言:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.符号语言:,,,m n m n B l l m l n ααα⊂⊂=⎫⇒⊥⎬⊥⊥⎭I 特征:线线垂直⇒线面垂直要点诠释:①过一点与已知直线垂直的平面有且只有一个;过一点与已知平面垂直的直线有且只有一条.②如果两条平行线中的一条与一个平面垂直,那么另一条也与这个平面垂直.③如果两个平行平面中的一个与一条直线垂直,那么另一个也与这条直线垂直.要点二、平面与平面垂直的定义与判定1.平面与平面垂直定义定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面垂直.表示方法:平面α与β垂直,αβ⊥记作.画法:两个互相垂直的平面通常把直立平面的竖边画成与水平平面的横边垂直.如图:2.平面与平面垂直的判定定理文字语言:一个平面过另一个平面的垂线,则这两个平面垂直.符号语言:,l l αβαβ⊥⊂⇒⊥图形语言:要点三、直线与平面垂直的性质1.基本性质文字语言:一条直线垂直于一个平面,那么这条直线垂直于这个平面内的所有直线.符号语言:,l m l mαα⊥⊂⇒⊥图形语言:2.性质定理文字语言:垂直于同一个平面的两条直线平行.符号语言:,//l m l mαα⊥⊥⇒图形语言:3.直线与平面垂直的其他性质(1)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(2)若l α⊥于A ,AP l ⊥,则AP α⊂.(3)垂直于同一条直线的两个平面平行.(4)如果一条直线垂直于两个平行平面中的一个,则它必垂直于另一个平面.要点诠释:线面垂直关系是线线垂直、面面垂直关系的枢纽,通过线面垂直可以实现线线垂直和面面垂直关系的相互转化.要点四、平面与平面垂直的性质1.性质定理文字语言:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.符号语言:,,,m l l m l αβαββα⊥=⊂⊥⇒⊥ 要点五、垂直证明方法总结1、直线和平面垂直的证明证明线面垂直的基本思路:证明线垂直面内的两条相交直线。

“直线与平面垂直的判定”教学设计

“直线与平面垂直的判定”教学设计

究出判定定理,但是在缺少逻辑推理的情况下,学生
可能会质疑这个学习过程的严谨性 .
基于以上分析,确定本节课的教学策略如下 .
首先,在定义的教学中,教师可以先通过实例引 导学生用自己的话说一说判断直线与平面垂直的方 法,再一步步归结到线线的位置关系,体会平面化、 降维的思想 .
其次,在判定定理的教学中,可以引导学生类比 线面平行的判定定理,构造“直线垂直于平面内的一 条直线就判定线面垂直”的反例,并思考其根源,从 而找到猜想的方向. 然后通过旋转折纸实验,结合线 面垂直的定义进行验证. 最后结合平面向量基本定理 进行思辨论证 .
进行动画演示. 教师引导学生分析,线在面内、线面 平行已经学过,接下来要研究线面相交. 而在线面相 交的情形中,最特殊的是线面垂直 .
追问:你还能举出线面垂直的例子吗? 学生举例,可能举出生活中的例子,也可能举出 几何中的例子. 教师引导学生分析,线面垂直不仅是 最特殊的线面相交,也是最常见的线面相交的情形 . 【设计意图】 从学生熟悉的生活时事和学生已有的 认知结构入手,引入要学习的新知识,从“特殊”和 “常见”两个角度说明研究线面垂直关系的必要性 . 2. 建构定义 问题 2:如图 2,路由器的天线与路由器的表面垂 直吗?你是如何判断的?
学生学习中的困难:一是虽然学生能够直观地感 受到直线与平面的垂直关系,但是由于他们将空间问 题转化为平面问题的意识还相对较弱,所以难以将这 种直观的感觉转化为定义;二是虽然学生已经学习了 线面平行、面面平行的判定方法,但是将已有的研究 经验迁移到对线面垂直关系的研究,可能还会出现困 难;三是虽然通过直观感知和操作确认,学生能够探
变化 . 学生容易得出木杆所在直线与其影子所在直线 面内的任意一条直线都与平面垂直,比较麻烦,自然

【平煤高中学案必修二】16 直线与平面垂直的判定

【平煤高中学案必修二】16 直线与平面垂直的判定

2.3.1 直线与平面垂直的判定学习目标:通过本节课的学习,同学们要能够理解直线与平面垂直的定义、直线与平面所成的角的概念,能够掌握直线与平面垂直的判断定理及其应用,会求直线与平面所成的角.一、课前准备:预习教材64~67P P的内容.广场上的旗杆给我们垂直于广场平面的形象,如何从数学的角度来判断旗杆与广场的垂直?二、新课导学:(一)探究活动:探究1、直线与平面垂直的定义:.直线与平面垂直的画法:探究2:直线与平面垂直的判定定理:动动手:同学们准备一块三角形纸片,过顶点A随意翻折纸片得到折痕AD,将翻折后的纸片竖起放置在桌面上(要求BD、DC与桌面接触),折痕AD与桌面垂直吗?如何翻折才能使得AD 与桌面垂直?直线与平面垂直的判定定理:一条直线与一个平面内的两条相交直线都,则该直线与此平面.符号语言:.探究3:直线与平面所成的角:1. 斜线:.2. 斜线在平面内的射影:.3.斜线与平面所成的角:.(二)典型例题:【例1】已知,,//α⊥aba求证:α⊥b【例2】如图,一块正方体木料的上底面有一点E,经过点E在上底面上画一条直线与CE垂直,怎样画?说明理由.【例3】如图,在正方体1111ABCD A BC D-中,求直线1A B和平面11A B CD所成的角.ED1C1B1A1D CBAMD1C1B1A1D CBA三、自我检测:1.若三条直线OA OB OC ,,两两垂直,则直线OA 垂直于 ( )A .平面 OAB B .平面 OAC C .平面 OBCD .平面ABC2.在正方形123SG G G 中,E F 、分别是1223G G G G 、的中点,现沿S S E F 、、EF 把这个正方形折成一个四面体,使123G G G 、、重合于点G ,则有 ( ) A .SG ⊥平面 EFG B .EG ⊥平面SEF C .GF ⊥平面SEF D .SG ⊥平面SEF3.把正方形ABCD 沿对角线AC 折起,当以A 、B 、C 、D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为 ( )A . 90°B . 60°C . 45°D . 30°4.若平面内的一条直线与该平面的一条斜线垂直,那么它与这条斜线在平面内的射影 ; 若平面内的一条直线与该平面的一条斜线的射影垂直,那么它与这条斜线的位置关系是 .5.在三棱锥V ABC -中,VA VC =,AB BC =,求证:AC VB ⊥6.如图,在正方体1111ABCD A BC D -中,(1)求证:111B D AC ⊥, (2)111B D AC B ⊥平面;D 1C 1B 1A 1D CBAG 3G 2G 1FESVDABC。

高中数学必修2《直线与平面垂直判定》教案

高中数学必修2《直线与平面垂直判定》教案

高中数学必修2《直线与平面垂直判定》教案Teaching plan of high school mathematics compulsory course 2 "vertical judgment of straight line and plane"高中数学必修2《直线与平面垂直判定》教案前言:数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种,在人类历史发展和社会生活中,数学发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具。

本教案根据数学课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划、并以启迪发展学生智力为根本目的。

便于学习和使用,本文档下载后内容可按需编辑修改及打印。

一、教学内容分析《直线与平面垂直的判定》共2课时,本课是第1课时,本节课的内容包括直线与平面垂直的定义和判定定理两部分,均为概念性知识.本节内容以“垂直”的判定为主线展开,“垂直”在定义和描述直线和平面位置关系中起着重要的作用,集中体现在:空间中垂直关系的相互转化。

其中核心内容为——直线与平面垂直的定义和判定定理。

本节具有承上启下的作用,在已有“直线与平面位置关系,直线与直线垂直定义与判定”的基础上,引出直线与平面垂直,为学习“平面与平面的位置关系,平面与平面的垂直” 做准备,其中直线与直线垂直,直线与平面垂直,平面与平面垂直,这三类垂直问题的研究主线是类似的,都是以定义——判定——性质为主线.判定定理的教学,尽管新课标在必修课程中不要求证明,但通过定理的探索过程,培养和发展学生的几何直觉以及运用图形语言进行交流的能力,并体会“平面化”以及“降维”的转化思想,是本节课的重要任务.二、教学目标的确定1.课程目标(1)对空间几何体整体观察,认识空间图形;(2)以长方体为载体,直观认识和理解空间点、线、面的位置关系;(3)能用数学语言表述有关平行、垂直的性质与判定;(4)了解一些简单几何体的表面积与体积的计算方法。

直线与平面垂直教案

直线与平面垂直教案

直线与平面垂直的判定(一)教材:人教版《普通高中课程标准实验教科书·数学(A版)》必修2课题:2.3.1直线与平面垂直的判定(一)一、教学目标1.知识与技能:借助对图片、实例的观察,抽象概括出直线与平面垂直的定义,并能正确理解直线与平面垂直的定义。

2.过程与方法:通过直观感知,操作确认,归纳直线与平面垂直判定的定理,并能运用判定定理证明一些空间位置关系的简单命题,进一步培养学生的空间观念。

3.情感态度与价值观:让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣,从问题解决过程中认识事物发展,变化规律,多角度分析,思考问题,培养学生的创新精神。

二、教学重点、难点1.教学重点:操作确认并概括出直线与平面垂直的定义和判定定理。

2.教学难点:操作确认并概括出直线与平面垂直的判定定理及初步运用。

三、课前准备1.教师准备:教学课件2.学生自备:三角形纸片、铁丝(代表直线)、纸板(代表平面)、三角板四、教学过程设计1.直线与平面垂直定义的建构(1)创设情境①请同学们观察图片,说出旗杆与地面、高楼的侧棱与地面的位置有什么关系?②请把自己的数学书打开直立在桌面上,观察书脊与桌面的位置有什么关系?③请将①中旗杆与地面的位置关系画出相应的几何图形。

(2)观察归纳①思考:一条直线与平面垂直时,这条直线与平面内的直线有什么样的位置关系? ②多媒体演示:旗杆与它在地面上影子的位置变化。

③归纳出直线与平面垂直的定义及相关概念。

定义:如果直线l 与平面α内的任意一条直线都垂直, 我们就说直线l 与平面α互相垂直,记作:l ⊥α.直线 l 叫做平面α的垂线,平面α叫做直线l 的垂面.直线与平面垂直时,它们唯一的公共点P 叫做垂足。

用符号语言表示为:(3)辨析(完成下列练习):①如果一条直线垂直于一个平面内的无数条直线,那么这条直线就与这个平面垂直。

②若a ⊥α,b ⊂α,则a ⊥b 。

在创设情境中,学生练习本上画图,教师针对学生出现的问题,如不直观、不标字母等加以强调,并指出这就叫直线与平面垂直,引出课题。

高二数学 直线与平面垂直的判定学案

高二数学 直线与平面垂直的判定学案

四川省富顺县第三中学高二学案:2直线与平面垂直的判定【学习目标】1.理解直线与平面垂直的定义,2.掌握直线与平面垂直的判定定理及其应用;3.理解直线与平面所成角的概念,会求直线与平面所成的角。

【重点难点】重点直线与平面垂直的判定定理和直线与平面所成角的概念,难点求直线与平面所成的角和直线与平面判定定理的应用。

【导学过程】一、自主学习(预习64-65页)二、小组合作班级小组姓名三、知识整合四、课堂训练评价五、课外拓展练习富顺三中“三五”问题式课堂教学模式2.3.1平面与平面垂直的判定高2015届数学备课组主备课人:熊正富【学习目标】1.理解二面角、二面角的平面角的概念;2.掌握两个平面垂直的定义、画法、记法;3.掌握面面垂直的判定定理及其应用。

4.会求二面角的大小【重点难点】重点面面垂直的判定定理,难点面面垂直的判定定理的应用和求二面角【导学过程】一、自主学习(预习67-69页)1、线面垂直的判定定理符号语言:2、直线与平面所成角:及其取值范围二、小组合作文字语言:符号语言:图形语言:三、知识整合四、训练评价五、课外拓展练习 1.教材69页练习富顺三中“三五”问题式课堂教学模式 2.3.3 直线与平面垂直的性质高2015届数学备课组 主备课人:熊正富 【学习目标】:明确直线与平面垂直的性质定理。

【重点难点】:重点:直线和平面垂直的性质定理和推论的内容和简单应用。

难点:直线和平面垂直的性质定理和推论的证明,等价转化思想的渗透。

【导学过程】一、自主学习(预习教材70页)1、直线与平面垂直的判定方法有哪些?2、在空间,过一点有几条直线与已知平面垂直?过一点有几个平面与已知直线垂直?3、判断题(1)、在平面中,垂直于同一直线的两条直线互相平行。

( ) (2)、在空间中,垂直于同一直线的两条直线互相平行。

( ) (3)、垂直于同一平面的两直线互相平行。

( ) (4)、垂直于同一直线的两平面互相平行。

( ) 二、小组合作探究一、直线与平面垂直的性质1、 如图,长方体ABCD —A ′B ′C ′D ′中,棱A A ′、B B ′、C C ′、D D ′所在直线都垂直于平面ABCD ,它们之间具有什么位置关系?2、 已知:a α⊥,b α⊥。

直线与平面垂直的判定—教学设计【教学参考】

直线与平面垂直的判定—教学设计【教学参考】

直线与平面垂直的判定 (1)—教学设计【教学参考】
2.3.1直线与平面垂直的判定
教学目标
1. 知识目标
(1)掌握直线与平面垂直的定义
(2)理解并掌握直线与平面垂直的判定定理
(3)会判断一条直线与一个平面是否垂直
2.能力目标
(1)培养学生的空间想象能力和对新知识的探索能力
(2)加强学生空间与平面之间的转化意识,训练学生的思维灵活性
3.情感目标
(1)培养学生的探索精神
(2)加强学生对数学的学习兴趣
二、重点难点
1.教学重点:直线与平面垂直的定义及其判定定理
2.教学难点:直线与平面垂直判定定理的理解
三、。

直线与平面垂直的判定--新授课教案

直线与平面垂直的判定--新授课教案

2.3.1 直线与平面垂直的判定高一数学组教材分析本节内容是人教A版教材高一年级必修2第二章第三节第一部分的内容,是在学习了线面平行关系的知识后,对线面关系的再学习,可以看作是对前面学习过的内容的扩展,要求通过观察图形来提高学生对线面垂直关系的感知能力.此外,本节对后续内容的学习起着奠基的作用,本节的重点是线面垂直的定义和线面垂直的判定定理,难点是对线面垂直定义和线面垂直判定定理应用的引导与指导,以及如何发现证明思路.通过探究定义与判定定理的由来过程,可以很好地培养学生分析问题、解决问题的能力,要求学生有意识地运用特殊与一般思想、数形结合思想、分类讨论思想,在解决新问题的过程中,又要自觉的运用化归与转化思想,体现解决数学问题的一般思路与方法.课时分配本节内容用1课时的时间完成,主要讲解应用线面垂直的定义及其判定定理解决简单的数学问题.教学目标重点: 线面垂直的定义及其判定定理的讲解.难点:线面垂直的定义及其判定定理的应用,以及如何发现证明思路.知识点:线面垂直的定义及其判定定理.能力点:如何通过探究,总结线面垂直的定义及其判定定理,提高空间现象能力.教育点:经历由特殊到一般的研究数学问题的过程,体会探究的乐趣,激发学生的学习热情.自主探究点:如何通过探究实验归纳线面垂直的判定定理.考试点:用线面垂直的定义及其判定定理解决简单的数学问题.易错易混点:正用应用线面垂直的判定定理的条件,学生一般在证明步骤上容易出错.教具准备多媒体课件和多功能直尺课堂模式学案导学一、引入新课日常生活中,我们对直线与平面垂直有很多感性认识,比如,旗杆与地面的位置关系,大桥的桥柱与水面的位置关系等,都给我们以直线与平面垂直的印象.在阳光下观察直立于地面的旗杆及它在地面的影子. 随着时间的变化,尽管影子BC的位置在移动,但是旗杆AB所在直线始终与BC所在直线垂直. 也就是说,旗杆AB所在直线与地面内任意一条不过点B的直线B′C′也是垂直的.【设计意图】从实际背景出发,直观感知直线与平面垂直的位置关系.将一本书打开直立在桌面上,观察书脊(想象成一条直线)与桌面的位置关系呈什么状态?此时书脊与每页书和桌面的交线的位置关系如何?【设计意图】 感知直线与平面垂直,并观察直线与平面内直线的位置关系.【师生活动】 教师通过结合旗杆与地面的位置关系,大桥的桥柱与水面的位置关系,让学生感知线面 垂直这种位置关系,提出问题:现实生活中,我们经常看到一条直线与一个平面垂直的形象,但一条直线与一个平面垂直的确切意义到底是什么?并组织学生思考、讨论.注意引导学生从实际背景“观察直立于地面的旗杆及它在地面的影子”出发来分析、归纳直线与平面垂直的定义.二、探究新知(一)归纳直线与平面平行的定义如果直线l 与平面α内的任意一条直线都垂直,我们说直线l 与平面α互相垂直.师:如果直线l 与平面α内的所有直线都垂直,我们说直线l 与平面α互相垂直.这句话对吗? 生:对.师:如果直线l 与平面α内的无数条直线都垂直,我们说直线l 与平面α互相垂直.这句话对吗? 生:不对.师:为什么?请举出反例.学生通过自己手中的课本和笔等物品的摆设给出反例.【设计意图】 学生通过对错误命题的思考,并自己动手找出反例来加深对定义的理解. (二)总结直线与平面平行的判定定理探究:如图,准备一块三角形的纸片,做一个试验:过 ABC 的顶点A 翻折纸片,得到折痕AD ,将翻折后的纸片竖起放置在桌面上(BD ,DC 与桌面接触).(1)折痕AD 与桌面垂直吗?(2)如何翻折才能使折痕AD 与桌面所在平面α垂直.α⊥l 记为 A B C D A B C D α当且仅当折痕AD 是BC 边上的高时,AD 所在直线与桌面所在平面α垂直.【设计意图】 通过操作确认,引导独立发现直线与平面垂直的条件.思考:(1)有人说,折痕AD 所在直线与桌面所在平面上的一条直线垂直,就可以判断AD 垂直平面 ,你同意他的说法吗?(2)如图,由折痕BC AD ⊥,翻折之后垂直关系不变,即CD AD ⊥,BD AD ⊥ .由此你能得到什么结论?【设计意图】通过操作确认,引导学生归纳总结直线与平面垂直的判定定理.判定定理 一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.图形表示:符号语言:例1. 如图,已知 b a // ,α⊥a ,求证:α⊥b . 证明:在平面 内作两条相交直线m ,n .因为α⊥a , 所以m a ⊥,n a ⊥因为b a //所以m b ⊥,n b ⊥又因为α⊂m ,α⊂n所以α⊥b .三、课堂练习练习1. 判断下列命题是否正确?若不正确请举出反例.A B C a l ⊥b l ⊥α⊂a α⊂b A b a = α⊥⇒⎪⎪⎭⎪⎪⎬⎫l b a lαA b a n m α ABC D α1. 若一条直线与一个三角形的两条边垂直,则这条直线垂直于三角形所在的平面. ( )2. 若一条直线与一个平行四边形的两条边垂直,则这条直线垂直于平行四边形所在的平面. ( )3. 若一条直线与一个梯形的两腰垂直,则这条直线垂直于梯形所在的平面. ( )4.若一条直线与一个平面内的无数条直线都垂直,则这条直线与这个平面垂直. ( )练习2. 如图,已知点P为平面ABC外一点,PA⊥BC,PC⊥AB. 求证:PB⊥AC.证明:过P作PO⊥平面ABC于O,连接OA、OB、OC.∵PO⊥平面ABC,BC⊂平面ABC,∴PO⊥BC.又∵PA⊥BC,∴BC⊥平面PAO.又∵OA⊂平面PAO,∴BC⊥OA.同理,可证AB⊥OC.∴O是△ABC的垂心.∴OB⊥AC.可证PO⊥AC.∴AC⊥平面PBO.又PB⊂平面PBO,∴PB⊥AC.点评:欲证线面垂直需要转化为证明线线垂直,欲证线线垂直往往转化为线面垂直.用符号语言证明问题显得清晰、简洁.【设计意图】让学生通过练习巩固所学知识点,并在做题中找出自己的不足,及时补充.四、课堂小结1.直线与平面垂直的概念(可用来证明线线垂直)2.判定直线与平面垂直的方法:(1)利用定义;(2)利用判定定理。

《直线,平面垂直的判定及其性质》教案(新人教必修)

《直线,平面垂直的判定及其性质》教案(新人教必修)

§2.3.1直线与平面垂直的判定一、教案目标1、知识与技能(1)使学生掌握直线和平面垂直的定义及判定定理;(2)使学生掌握判定直线和平面垂直的方法;(3)培养学生的几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论。

2、过程与方法(1)通过教案活动,使学生了解,感受直线和平面垂直的定义的形成过程;(2)探究判定直线与平面垂直的方法。

3、情态与价值培养学生学会从“感性认识”到“理性认识”过程中获取新知。

二、教案重点、难点直线与平面垂直的定义和判定定理的探究。

三、教案设计(一)创设情景,揭示课题1、教师首先提出问题:在现实生活中,我们经常看到一些直线与平面垂直的现象,例如:“旗杆与地面,大桥的桥柱和水面等的位置关系”,你能举出一些类似的例子吗?然后让学生回忆、思考、讨论、教师对学生的活动给予评价。

2、接着教师指出:一条直线与一个平面垂直的意义是什么?并通过分析旗杆与它在地面上的射影的位置关系引出课题内容。

(二)研探新知1、为使学生学会从“感性认识”到“理性认识”过程中获取新知,可再借助长方体模型让学生感知直线与平面的垂直关系。

然后教师引导学生用“平面化”的思想来思考问题:从直线与直线垂直、直线与平面平行等的定义过程得到启发,能否用一条直线垂直于一个平面内的直线来定义这条直线与这个平面垂直呢?并组织学生交流讨论,概括其定义。

如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。

如图2.3-1,直线与平面垂直时,它们唯一公共点P叫做垂足。

并对画示表示进行说明。

Lpα图2-3-12、老师提出问题,让学生思考:(1)问题:虽然可以根据定义判定直线与平面垂直,但这种方法实际上难以实施。

有没有比较方便可行的方法来判断直线和平面垂直呢?(2)师生活动:请同学们准备一块三角形的纸片,我们一起来做如图2.3-2实验:过△ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触),问如何翻折才能保证折痕AD与桌面所在平面垂直?AB D C图2.3-2(3)归纳结论:引导学生根据直观感知及已有经验(两条相交直线确定一个平面),进行合情推理,获得判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

《直线与平面垂直、平面与平面垂直的性质》教学设计(优质课)

《直线与平面垂直、平面与平面垂直的性质》教学设计(优质课)

直线与平面垂直、平面与平面垂直的性质(一)教学目标1.知识与技能(1)使学生掌握直线与平面垂直,平面与平面垂直的性质定理;(2)能运用性质定理解决一些简单问题;(3)了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互关系.2.过程与方法(1)让学生在观察物体模型的基础上,进行操作确认,获得对性质定理正确性的认识;3.情感、态度与价值观通过“直观感知、操作确认、推理证明” ,培养学生空间概念、空间想象能力以及逻辑推理能力.(二)教学重点、难点两个性质定理的证明.(三)教学方法学生依据已有知识和方法,在教师指导下,自主地完成定理的证明、问题的转化.1.问题:已知直线a、b 和平面,如果a ,b ,那么直线a、b 一定平行吗?已知 a ,b 求证:b∥a.证明:假定b 不平行于a,设b =0 b′是经过O与直线a 平行的直线∵a∥b′,a∴b′⊥a即经过同一点O 的两线b、b′都与垂直这是不可能的,因此b∥a.2.直线与平面垂直的性质定理垂直于同一个平面的两条直线平行简化为:线面垂直线线平行AA′、BB′、CC′、DD′ 所在直线都垂直于平面ABCD,它们之间相互平行,所以结论成立.师:怎么证明呢?由于无法把两条直线a、b 归入到一个平面内,故无法应用平行直线的判定知识,也无法应用公理4,有这种情况下,我们采用“反证法” 师生边分析边板书.学,培养几何直观能力. ,反证法证题是一个难点,采用以教师为主,能起到一个示范作用,并提高上课效率.探索新知二、平面与平面平行的性质定理1.问题黑板所在平面与地面所在平面垂直,你能否在黑板上画一条直线与地面垂直?2.例1 设,=CD,AB ,教师投影问题,学生思考、观察、讨论,然后回答问题生:借助长方体模型,在长方体ABCD–A′B′C′D′中,面A′ADD′⊥面本例题的难点是构造辅助线,采用分析综合法能较好地解决这个问题.2.平面和平面垂直的性质补充完善 .归纳知识提高3.面面垂直 线面垂直 线线垂直自我整合知识的能力. 课后作业2.3 第三课时 习案 学生独立完成固化知识提升能力备选例题例 1 把直角三角板 ABC 的直角边 BC 放置桌面,另一条直 桌面所在的平面 垂直,a 是 内一条直线,若斜边 AB 与 a 垂 是否与 a 垂直?a AC 解析】 ACa AB aAC AB A评析】若 BC 与 垂直,同理可得 AB 与 也垂直,其实质是三垂线定理及逆定理,证明过程体现了一种重要的数学转化思想方法: “线线垂直→线面垂直→线线垂直”例 2 求证:如果两个平面都垂直于第三个平面,则它们的交线垂直于第三个平面.已 知 ⊥r , ⊥r , ∩ = l ,求证: l ⊥r .【分析】根据直线和平面垂直的判定定理可在 r 内构造两相交直线分别与平面 、 垂 直.或由面面垂直的性质易在 、 内作出平面 r 的垂线,再设法证明 l 与其平行即可.【证明】法一:如图,设 ∩r = a , ∩r = b ,在 r P .过点 P 在r 内作直线 m ⊥ a ,n ⊥b .∵ ⊥r , ⊥r ,∴ m ⊥ a ,n ⊥ (面面垂直的性质) 又 ∩ = l ,a 平面 ABC BC 平面 ABCa BC角边 AC 与 直,则 BC内任取一点∴ l ⊥ m ,l ⊥n .又 m ∩n = P ,m ,n r ∴l ⊥r .法二:如图,设 ∩r = a , ∩r ∵ ⊥r , ⊥r , ∴m ⊥r ,n ⊥r . ∴ m ∥ n ,又 n ,m , ∴ m ∥ ,又 ∩ = l ,m ,b ,在 内作 m ⊥a ,在 内作 n ⊥ b .∴ m ∥ l , 又 m ⊥r ,∴l ⊥r .【评析】充分利用面面垂直的性质构造线面垂直是解决本题的关键.证法 面垂直、线面垂直、线线垂直相互转化;证法二涉及垂直关系与平行关系之间的转化.此题是线线、面面垂直转化的典型题,通过一题多解,对沟通知识和方法,开拓解题思路是有益 的.充分利用面。

高中数学_直线与平面垂直的判定教学设计学情分析教材分析课后反思

高中数学_直线与平面垂直的判定教学设计学情分析教材分析课后反思

“直线与平面垂直的判定”教学设计【教学目标】1.通过对实例的观察,抽象概括出直线与平面垂直的定义.2.通过类比联想、直观感知、操作确认,归纳出直线与平面垂直的判定定理.3.渗透空间问题平面化、无限转化为有限、线线垂直与线面垂直互相转化等数学思想,培养学生的数学抽象、数学建模、直观想象、逻辑推理能力和探索新知识的能力.4.融入数学文化,让学生经历与数学家相似的探究过程,激发学生的学习兴趣,提升学习信心.【重点难点】重点:直线与平面垂直的定义和判定定理的探究.难点:归纳出直线与平面垂直的判定定理.【教学过程】一、情境引入展示青岛海军节的图片.问题1:从图片中可以抽象出直线与平面的位置关系吗?前面两种(线在面内、线面平行)我们已经学过,所以接下来要研究线面相交.如果先研究最特殊的线面相交情况,是什么情况?(垂直)这就是本节课的主题:直线与平面垂直的判定.问题2:你还能举出线面垂直的例子吗?设计意图:从学生熟悉的实际生活和学生已有的认知(直线与平面的位置关系)引入要研究的新知识,让学生体会数学来源于生活,服务于生活,培养数学抽象的能力,同时将新知纳入旧知的体系中,激发认知需求.二、提炼定义通过信息技术手段,展示可操作的三维立体模型:路由器、木杆、圆锥.问题3:路由器的天线与路由器表面垂直吗?初始界面两根天线都垂直于路由器表面.调整其中的一根天线,呈现斜交的情况:为什么这样感觉不垂直?(歪了)所以,线面垂直应该要求直线不向平面的任何一面倾斜.数学家也是这么说的(展示18世纪法国数学家克莱罗《几何基础》的话“一条直线不向平面的任何一面倾斜”).问题4:直立于地面的木杆与它在地面的影子垂直吗?调整光源的位置,随着光源的移动,界面中出现不同位置的影子,可观察到木杆与影子始终垂直.引导学生:如果线面垂直,则线线应该要垂直.问题5:观察圆锥的形成过程,圆锥的底面是如何形成的?圆锥的轴与底面垂直吗?在旋转过程中,直角三角形的两条直角边的垂直关系始终没有改变,所以圆锥的轴垂直于每一条半径,即直线垂直于平面内所有与它相交的直线,所以从任何一个方向上看,直线都是不倾斜的,从而导致线面垂直.引导学生尝试给线面垂直下一个定义.展示数学史:欧几里得《几何原本》中线面垂直的定义“若一条直线垂直于平面上与该直线相交的所有直线,则该直线与平面垂直”.引导学生,用线线垂直去定义线面垂直,体现了“平面化”、“降维”的数学思想.那么,平面内不与该直线相交的直线,与该直线是什么位置关系?(异面垂直)所以,定义中“与该直线相交”可以去掉.另外,“所以”也可以说成“任意一条”.让学生在学案上用文字语言、符号语言、图形语言来表达直线与平面垂直的定义,并思考定义的作用.将学生填写的内容拍照传到大屏幕上,梳理有关概念、记法、画法,强调定义既是判定,又是性质,体现了线线垂直与线面垂直的相互转化.设计意图:让学生像数学家一样经历探索定义的过程,从最初的直观感受“不歪”,一步步归结到线线的位置关系,体会空间问题平面化、降维、转化的数学思想,体会定义的双向性.三、探索定理问题6:用定义判定线面垂直,方便吗?问题7:你认为可以如何判定?引导学生,定义是“无限验证”,可否转化为“有限验证”?类比线面平行的判定定理,提出猜想.针对直线垂直于平面内的“一条”直线即判定线面垂直的猜想,引导学生举出反例,让学生用教学用具大三角板或大圆规上台操作演示.PPT上呈现三角板的长直角边垂直于短直角边(在平面内),而长直角边所在直线与平面不垂直的反例,在此基础上,推翻“两条”、“三条”至“无数条”的猜想.引导学生,无数条平行线其实等效于同一个方向,显然直线垂直于这一个方向的直线保证不了垂直于平面,所以需要增加方向(变平行为相交).用PPT演示:增加一个方向后,三角板的长直角边与平面的关系从斜交变为垂直.从而提出猜想:如果一条直线垂直于平面内的两条相交直线,则该直线与此平面垂直.下面同学们来做一个实验,亲自验证一下我们的猜想.问题8:(操作实验)过的顶点翻折纸片,得到折痕,将翻折后的纸片竖起放置在桌面(、与桌面接触).如何翻折才能使折痕与桌面所在的平面垂直?学生展示自己的模型(折痕与桌面垂直的和不垂直的两种).引导学生分析,为什么不沿着高线折的那种,折痕与桌面不垂直?(不符合定义)那么,沿着高线折的那种就符合定义了吗?(定义是任意一条,这里才两条啊!)问题9:如何操作能够验证与平面内的所有直线都垂直? 先让学生操作演示,然后通过信息技术手段,展示可操作的三维立体模型:折纸.将、在平面内绕点旋转,显示转过的痕迹.引导学生,每一条转过的痕迹就代表了平面内的一条直线,无论痕迹在哪里,转动过程中始终没有发生改变的量或者关系是什么? 始终没动,说明垂直于桌面,可见猜想是正确的.引导学生,两条直线相交即可,至于过不过线面的交点是无关紧要的.让学生在学案上用文字语言、符号语言、图形语言来表达直线与平面垂直的判定定理,并思考定理的作用.将学生填写的内容拍照传到大屏幕上,强调五个条件缺一不可.问题10:定义与判定定理的联系和区别?二者都体现了线线垂直与线面垂直的转化,区别在于,定义中的“线”是任意一条,而定理中的“线”的相交的两条.问题11:为什么两条相交直线可以“代表”平面内的所有直线?引导学生回忆平面向量基底的概念,并且指出由此可以给出判定定理的严格的数学证明,课后学生可以观看微课(向量法证明线面垂直的判定定理).设计意图:通过对用定义判定线面垂直的思考,引发“无限验证”向“有限验证”的转化.通过类比线面平行的判定定理,提出猜想,并最终归结到两条相交直线的猜想上.通过折纸试验,对猜想进行直观的验证.通过旋转,将静态的试验动态化,直观地验证了符合定义.通过对定义和定理的比较,引导学生思考为什么两条相交直线可以“代表”平面内的所有直线,从而引出定理的严格证明(课后探究).四、应用巩固通过信息技术手段,展示可操作的三维立体模型:门.问题12:门轴与地面垂直吗?(定义或判定定理的简单运用)问题13:与门轴平行的另一条边与地面垂直吗?由此你可以得出什么猜想?(如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面).让学生写出已知、求证(符号语言),画出图形(图形语言),并给出证明.将学生的解答过程拍照传到大屏幕上,引导学生注意步骤的严谨性,以及线线垂直与线面垂直互相转化的数学思想.设计意图:通过展示门的模型,既对刚刚学习的线面垂直的定义和判定定理进行了一个简单的应用,又引出了推论.在证明过程中,让学生练习将文字语言转化为符号语言和图形语言,注意证明过程的规范性,体会转化的数学思想.五、自我评价问题14:通过本节课的学习,你有哪些收获?问题15:你认为本节课你的学习目标完成的(A.很好 B.一般 C.不好)设计意图:通过让学生总结收获,检验教学的效果.六、课后作业1.课本67页第1题.2.查阅资料,了解欧几里得与《几何原本》.设计意图:第一项作业为巩固性作业,让学生体会用线面垂直的判定定理和定义去解决问题的一般方法.第二项作业为研究性作业,呼应课堂上呈现的数学史,渗透数学文化.“直线与平面垂直的判定”学情分析授课对象为青岛实验高中普通行政班的学生,学生的数学基础一般,但学习态度较好。

线面垂直的判定公开课教案

线面垂直的判定公开课教案

教学过程设计猜想:是不是一条直线垂直于平面内的两条相交直线,此直线就垂直于该平面呢?2.动手操作——确认定理(学生实验)请同学们拿出一块三角形纸片,我们一起做一个试验:过三角形的顶点A翻折纸片,得到折痕AD(如图1),将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触)问题1:(1)折痕AD与桌面垂直吗?(2)如何翻折才能使折痕AD与桌面所在的平面垂直?问题2:在你翻折纸片的过程中,纸片的形状发生了变化,这是变的一面,那么不变的一面是什么呢?(可从线与线的关系考虑)如果我们把折痕抽象为直线,把BD、CD抽象为直线,把桌面抽象为平面(如图3),那么你认为保证直线与平面垂直的条件是什么?问题3:根据上面的试验,结合两条相交直线确定一个平面的事实,你能给出直线与平面垂直的方法吗?(学生总结归纳)定理:(1)文字语言:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直(2)图形语言:(3)符号语言:,,,a b a b Oll a l bααα⊂⊂=⎫⇒⊥⎬⊥⊥⎭3.质疑反思——深化定理辨一辨:如果一条直线①与三角形的两边垂直;②与梯形两边垂直;那么直线是否与上述图形所在平面垂直?通过试验,引导学生独立发现直线与平面垂直的条件,培养学生的动手操作能力和几何直观能力,让学生在观察、对比和反思中,较快地对数学定理有一个感性认识。

引导学生根据直观感知及已有知识经验,进行合情推理,获得线面垂直判定定理。

通过辨析,强化定理中“两条相交直线”的条件。

教学过程设计(四)初步应用线面垂直的判定例1如图5,在长方体ABCD-A1B1C1D1中(1)请列举与平面ABCD垂直的直线;(2)请列举与直线A1A垂直的平面;(3)你还能找出一条与平面D1DBB1垂直的直线吗?思考:如图6,已知,则吗?请说明理由.师生活动:学生思考讨论,教师适时引导(五)练习巩固与升华1、下列命题正确的是()①如果直线l与平面α内的无数条直线垂直,则l⊥α ;②如果直线l 与平面α内的一条直线垂直,则l⊥α;③如果直线不垂直于α,则α内没有直线与l垂直;④如果平面α内有一条直线与l 不垂直,则直线l 不垂直于平面α;⑤如果直线l 不垂直于α ,则α内也可以有无数条直线与l 垂直。

高中数学第八章直线与平面垂直(第1课时)直线与直线垂直、直线与平面垂直的定义及判定学案新人教A版

高中数学第八章直线与平面垂直(第1课时)直线与直线垂直、直线与平面垂直的定义及判定学案新人教A版

第1课时 直线与直线垂直、直线与平面垂直的定义及判定问题导学预习教材P146-P150的内容,思考以下问题: 1.异面直线所成的角的定义是什么? 2.异面直线所成的角的范围是什么? 3.异面直线垂直的定理是什么? 4.直线与平面垂直的定义是什么? 5.直线与平面垂直的判定定理是什么?1.异面直线所成的角(1)定义:已知两条异面直线a ,b ,经过空间任一点O 分别作直线a ′∥a ,b ′∥b ,把直线a ′与b ′所成的角叫做异面直线a 与b 所成的角(或夹角).(2)垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.直线a 与直线b 垂直,记作a ⊥b .(3)范围:设θ为异面直线a 与b 所成的角,则0°<θ≤90°.■[名师点拨] 当两条直线a ,b 相互平行时,规定它们所成的角为0°.所以空间两条直线所成角α的取值范围是0°≤α≤90°.注意与异面直线所成的角的范围的区别.2.直线与平面垂直画直线与平面垂直时,通常把直线画成与表示平面的平行四边形(1)直线与平面垂直是直线与平面相交的特殊情形.(2)注意定义中“任意一条直线”与“所有直线”等同但不可说成“无数条直线”.3.直线与平面垂直的判定定理判定定理条件中的“两条相交直线”是关键性词语,此处强调“相交”,若两条直线平行,则直线与平面不一定垂直.判断(正确的打“√”,错误的打“×”)(1)异面直线a,b所成角的范围为[0°,90°].( )(2)如果一条直线与一个平面内无数条直线都垂直,那么这条直线与这个平面垂直.( )(3)如果一条直线与一个平面内所有直线都垂直,那么这条直线与这个平面垂直.( )答案:(1)×(2)×(3)√直线l与平面α内的两条直线都垂直,则直线l与平面α的位置关系是( )A.平行.垂直C.在平面α内.无法确定答案:D已知直线a∥直线b,b⊥平面α,则( )A.a∥α.a⊂αC.a⊥α.a是α的斜线答案:C在正方体ABCD­A1B1C1D1中,AC与BD相交于点O,则直线OB1与A1C1所成角的度数为________.解析:连接AB1,B1C,因为AC∥A1C1,所以∠B1OC(或其补角)是异面直线OB1与A1C1所成的角.又因为AB1=B1C,O为AC的中点,所以B1O⊥AC,故∠B1OC=90°,所以OB1与A1C1所成的角的大小为90°.答案:90°异面直线所成的角如图,在正方体ABCD­EFGH中,O为侧面ADHE的中心.求:(1)BE与CG所成的角;(2)FO与BD所成的角.【解】(1)如图,因为CG∥BF.所以∠EBF(或其补角)为异面直线BE与CG所成的角,又在△BEF中,∠EBF=45°,所以BE与CG所成的角为45°.(2)连接FH,因为HD∥EA,EA∥FB,所以HD∥FB,又HD=FB,所以四边形HFBD为平行四边形.所以HF∥BD,所以∠HFO(或其补角)为异面直线FO与BD所成的角.连接HA,AF,易得FH=HA=AF,所以△AFH为等边三角形,又知O为AH的中点,所以∠HFO=30°,即FO与BD所成的角为30°.1.[变条件]在本例正方体中,若P是平面EFGH的中心,其他条件不变,求OP和CD所成的角.解:连接EG,HF,则P为HF的中点,连接AF,AH,OP∥AF,又CD∥AB,所以∠BAF(或其补角)为异面直线OP与CD所成的角,由于△ABF是等腰直角三角形,所以∠BAF=45°,故OP与CD所成的角为45°.2.[变条件]在本例正方体中,若M,N分别是BF,CG的中点,且AG和BN所成的角为39.2°,求AM和BN所成的角.∥CG,因为M,N分别是解:连接MG,因为BCGF是正方形,所以BFBF,CG的中点,所以BM═∥NG,所以四边形BNGM是平行四边形,所以BN∥MG,所以∠AGM(或其补角)是异面直线AG和BN所成的角,∠AMG(或其补角)是异面直线AM和BN所成的角,因为AM=MG,所以∠AGM=∠MAG=39.2°,所以∠AMG=101.6°,所以AM和BN所成的角为78.4°.求异面直线所成的角的步骤(1)找出(或作出)适合题设的角——用平移法,遇题设中有中点,常考虑中位线;若异面直线依附于某几何体,且对异面直线平移有困难时,可利用该几何体的特殊点,使异面直线转化为相交直线.(2)求——转化为求一个三角形的内角,通过解三角形,求出所找的角.(3)结论——设由(2)所求得的角的大小为θ.若0°<θ≤90°,则θ为所求;若90°<θ<180°,则180°-θ为所求.[提醒] 求异面直线所成的角,通常把异面直线平移到同一个三角形中去,通过解三角形求得,但要注意异面直线所成的角θ的范围是0°<θ≤90°.如图所示,在三棱锥A­BCD中,AB=CD,AB⊥CD,E,F分别为BC,AD的中点,求EF与AB所成的角.解:如图所示,取BD的中点G,连接EG,FG.因为E ,F 分别为BC ,AD 的中点,AB =CD , 所以EG ∥CD ,GF ∥AB , 且EG =12CD ,GF =12AB .所以∠GFE (或其补角)就是异面直线EF 与AB 所成的角,EG =GF . 因为AB ⊥CD ,所以EG ⊥GF . 所以∠EGF =90°.所以△EFG 为等腰直角三角形. 所以∠GFE =45°,即EF 与AB 所成的角为45°.直线与平面垂直的定义(1)直线l ⊥平面α,直线m ⊂α,则l 与m 不可能( ) A .平行 .相交 C .异面.垂直(2)设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( ) A .若l ⊥m ,m ⊂α,则l ⊥α B .若l ⊥α,l ∥m ,则m ⊥α C .若l ∥α,m ⊂α,则l ∥m D .若l ∥α,m ∥α,则l ∥m 【解析】 (1)因为直线l ⊥平面α,所以l 与α相交. 又因为m ⊂α,所以l 与m 相交或异面. 由直线与平面垂直的定义,可知l ⊥m . 故l 与m 不可能平行.(2)对于A ,直线l ⊥m ,m 并不代表平面α内任意一条直线,所以不能判定线面垂直;对于B ,因为l ⊥α,则l 垂直于α内任意一条直线,又l ∥m ,由异面直线所成角的定义知,m 与平面α内任意一条直线所成的角都是90°,即m ⊥α,故B 正确;对于C ,也有可能是l ,m 异面;对于D ,l ,m 还可能相交或异面.【答案】 (1)A (2)B对线面垂直定义的理解(1)直线和平面垂直的定义是描述性定义,对直线的任意性要注意理解.实际上,“任何一条”与“所有”表达相同的含义.当直线与平面垂直时,该直线就垂直于这个平面内的任何直线.由此可知,如果一条直线与一个平面内的一条直线不垂直,那么这条直线就一定不与这个平面垂直.(2)由定义可得线面垂直⇒线线垂直,即若a ⊥α,b ⊂α,则a ⊥b .下列命题中,正确的序号是________.①若直线l与平面α内的一条直线垂直,则l⊥α;②若直线l不垂直于平面α,则α内没有与l垂直的直线;③若直线l不垂直于平面α,则α内也可以有无数条直线与l垂直;④若平面α内有一条直线与直线l不垂直,则直线l与平面α不垂直.解析:当l与α内的一条直线垂直时,不能保证l与平面α垂直,所以①不正确;当l 与α不垂直时,l可能与α内的无数条平行直线垂直,所以②不正确,③正确.根据线面垂直的定义,若l⊥α,则l与α内的所有直线都垂直,所以④正确.答案:③④直线与平面垂直的判定如图,PA⊥平面ABCD,底面ABCD为矩形,AE⊥PB于点E,AF⊥PC于点F.(1)求证:PC⊥平面AEF;(2)设平面AEF交PD于点G,求证:AG⊥PD.【证明】(1)因为PA⊥平面ABCD,BC⊂平面ABCD,所以PA⊥BC.又AB⊥BC,PA∩AB=A,所以BC⊥平面PAB,AE⊂平面PAB,所以AE⊥BC.又AE⊥PB,PB∩BC=B,所以AE⊥平面PBC,PC⊂平面PBC,所以AE⊥PC.又因为PC⊥AF,AE∩AF=A,所以PC⊥平面AEF.(2)由(1)知PC⊥平面AEF,又AG⊂平面AEF,所以PC⊥AG,同理CD⊥平面PAD,AG⊂平面PAD,所以CD⊥AG,又PC∩CD=C,所以AG⊥平面PCD,PD⊂平面PCD,所以AG⊥PD.1.[变条件]在本例中,底面ABCD是菱形,H是线段AC上任意一点,其他条件不变,求证:BD⊥FH.证明:因为四边形ABCD是菱形,所以BD⊥AC,又PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥PA , 因为PA ∩AC =A ,所以BD ⊥平面PAC ,又FH ⊂平面PAC , 所以BD ⊥FH .2.[变条件]若本例中PA =AD ,G 是PD 的中点,其他条件不变,求证:PC ⊥平面AFG . 证明:因为PA ⊥平面ABCD ,DC ⊂平面ABCD ,所以DC ⊥PA , 又因为ABCD 是矩形,所以DC ⊥AD ,又PA ∩AD =A , 所以DC ⊥平面PAD ,又AG ⊂平面PAD , 所以AG ⊥DC ,因为PA =AD ,G 是PD 的中点, 所以AG ⊥PD ,又DC ∩PD =D , 所以AG ⊥平面PCD ,所以PC ⊥AG , 又因为PC ⊥AF ,AG ∩AF =A , 所以PC ⊥平面AFG .3.[变条件]本例中的条件“AE ⊥PB 于点E ,AF ⊥PC 于点F ”,改为“E ,F 分别是AB ,PC 的中点,PA =AD ”,其他条件不变,求证:EF ⊥平面PCD .证明:取PD 的中点G ,连接AG ,FG . 因为G ,F 分别是PD ,PC 的中点, 所以GF ═∥12CD ,又AE ═∥12CD ,所以GF ═∥AE , 所以四边形AEFG 是平行四边形,所以AG ∥EF . 因为PA =AD ,G 是PD 的中点, 所以AG ⊥PD ,所以EF ⊥PD , 易知CD ⊥平面PAD ,AG ⊂平面PAD , 所以CD ⊥AG ,所以EF ⊥CD .因为PD ∩CD =D ,所以EF ⊥平面PCD .(1)线线垂直和线面垂直的相互转化(2)证明线面垂直的方法①线面垂直的定义.②线面垂直的判定定理.③如果两条平行直线的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面.④如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面.[提醒] 要证明两条直线垂直(无论它们是异面还是共面),通常是证明其中的一条直线垂直于另一条直线所在的一个平面.如图,AB为⊙O的直径,PA垂直于⊙O所在的平面,M为圆周上任意一点,AN⊥PM,N为垂足.(1)求证:AN⊥平面PBM;(2)若AQ⊥PB,垂足为Q,求证:NQ⊥PB.证明:(1)因为AB为⊙O的直径,所以AM⊥BM.又PA⊥平面ABM,所以PA⊥BM.又因为PA∩AM=A,所以BM⊥平面PAM.又AN⊂平面PAM,所以BM⊥AN.又AN⊥PM,且BM∩PM=M,所以AN⊥平面PBM.(2)由(1)知AN⊥平面PBM,PB⊂平面PBM,所以AN⊥PB.又因为AQ⊥PB,AN∩AQ=A,所以PB⊥平面ANQ.又NQ⊂平面ANQ,所以NQ⊥PB.1.若直线a⊥平面α,b∥α,则a与b的关系是( )A.a⊥b,且a与b相交B.a⊥b,且a与b不相交C.a⊥bD.a与b不一定垂直解析:选C.过直线b作一个平面β,使得β∩α=c,则b∥c.因为直线a⊥平面α,c⊂α,所以a⊥c.因为b∥c,所以a⊥b.当b与a相交时为相交垂直,当b与a不相交时为异面垂直.2.在正方体ABCD­A1B1C1D1中,与AD1垂直的平面是( )A.平面DD1C1C.平面A1DB1C.平面A1B1C1D1.平面A1DB解析:选B.因为AD1⊥A1D,AD1⊥A1B1,且A1D∩A1B1=A1,所以AD1⊥平面A1DB1.3.空间四边形的四边相等,那么它的对角线( )A.相交且垂直.不相交也不垂直C.相交不垂直.不相交但垂直解析:选D.如图,空间四边形ABCD,假设AC与BD相交,则它们共面α,从而四点A,B,C,D都在α内,这与ABCD为空间四边形矛盾,所以AC与BD不相交;取BD的中点O,连接OA与OC,因为AB=AD=DC=BC,所以AO⊥BD,OC⊥BD,从而可知BD⊥平面AOC,故AC⊥BD.4.已知a,b是一对异面直线,而且a平行于△ABC的边AB所在的直线,b平行于边AC 所在的直线,若∠BAC=120°,则直线a,b所成的角为________.解析:由a∥AB,b∥AC,∠BAC=120°,知异面直线a,b所成的角为∠BAC的补角,所以直线a,b所成的角为60°.答案:60°[A 基础达标]1.已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中,一定能推出m⊥β的是( )A.α∥β,且m⊂α.m∥n,且n⊥βC.m⊥n,且n⊂β.m⊥n,且n∥β解析:选B.A中,由α∥β,且m⊂α,知m∥β;B中,由n⊥β,知n垂直于平面β内的任意直线,再由m∥n,知m也垂直于β内的任意直线,所以m⊥β,B符合题意;C,D 中,m⊂β或m∥β或m与β相交,不符合题意.故选B.2.已知直线a∥b,平面α∥β,a⊥α,则b与β的位置关系是( )A.b⊥β.b∥βC.b⊂β.b⊂β或b∥β解析:选A.因为a⊥α,a∥b,所以b⊥α.又α∥β,所以b⊥β.3.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q分别为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不垂直的是( )解析:选D.对于A,易证AB⊥MN,AB⊥NQ,即可得直线AB⊥平面MNQ;对于B,易证AB⊥MN,AB⊥NQ,即可得直线AB⊥平面MNQ;对于C,易证AB⊥NQ,AB⊥MQ,即可得直线AB⊥平面MNQ;对于D,由图可得MN与直线AB相交且不垂直,故直线AB与平面MNQ不垂直.故选D.4.如图,P为△ABC所在平面α外一点,PB⊥α,PC⊥AC,则△ABC的形状为( )A.锐角三角形B.直角三角形C.钝角三角形D.不确定解析:选B.由PB⊥α,AC⊂α得PB⊥AC,又AC⊥PC,PC∩PB=P,所以AC⊥平面PBC,AC⊥BC.故选B.5.在正方体ABCD­A1B1C1D1中,点P在侧面BCC1B1及其边界上运动,并且总保持AP⊥BD1,则动点P的轨迹是( )A.线段B1CB.线段BC1C.BB1中点与CC1中点连成的线段D.BC中点与B1C1中点连成的线段解析:选A.如图,由于BD1⊥平面AB1C,故点P一定位于线段B1C上.6.如图,在正方形ABCD­A1B1C1D1中,AC与BC1所成角的大小是______.解析:连接AD1,则AD1∥BC1.所以∠CAD1(或其补角)就是AC与BC1所成的角,连接CD1,在正方体ABCD­A1B1C1D1中,AC=AD1=CD1,所以∠CAD1=60°,即AC与BC1所成的角为60°.答案:60°7.如图,∠BCA=90°,PC⊥平面ABC,则在△ABC,△PAC的边所在的直线中:(1)与PC垂直的直线有__________________;(2)与AP垂直的直线有__________________.解析:(1)因为PC⊥平面ABC,AB,AC,BC⊂平面ABC.所以PC⊥AB,PC⊥AC,PC⊥BC.(2)∠BCA=90°即BC⊥AC,又BC⊥PC,AC∩PC=C,所以BC⊥平面PAC,因为AP⊂平面PAC,所以BC⊥AP.答案:(1)AB,AC,BC(2)BC8.如图所示,在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD,且PA=1,若BC边上存在点Q,使得PQ⊥QD,则a的最小值为________.解析:因为PA⊥平面ABCD,所以PA⊥QD.若BC边上存在一点Q,使得QD⊥PQ,PA∩PQ=P,则有QD⊥平面PAQ,从而QD⊥AQ.在矩形ABCD中,当AD=a<2时,直线BC与以AD为直径的圆相离,故不存在点Q,使PQ⊥DQ.所以当a≥2时,才存在点Q,使得PQ⊥QD.所以a的最小值为2.答案:29.如图,在直三棱柱ABC­A1B1C1中,∠BAC=90°,AB=AC,D是BC的中点,点E在棱BB1上运动.证明:AD⊥C1E.证明:因为AB=AC,D是BC的中点,所以AD⊥BC.①又在直三棱柱ABC­A1B1C1中,BB1⊥平面ABC,而AD⊂平面ABC,所以AD⊥BB1.②由①②得AD⊥平面BB1C1C.由点E在棱BB1上运动,得C1E⊂平面BB1C1C,所以AD⊥C1E.10.如图所示,等腰直角三角形ABC中,∠BAC=90°,BC=2,DA⊥AC,DA⊥AB,若DA =1,且E 为DA 的中点,求异面直线BE 与CD 所成角的余弦值.解:取AC 的中点F ,连接EF ,BF , 在△ACD 中,E ,F 分别是AD ,AC 的中点,所以EF ∥CD ,所以∠BEF (或其补角)即为所求的异面直线BE 与CD 所成的角. 在Rt △ABC 中,BC =2,AB =AC , 所以AB =AC =1,在Rt △EAB 中,AB =1,AE =12AD =12,所以BE =52. 在Rt △AEF 中,AF =12AC =12,AE =12,所以EF =22. 在Rt △ABF 中,AB =1,AF =12,所以BF =52.在等腰三角形EBF 中,cos ∠FEB =12EF BE =2452=1010,所以异面直线BE 与CD 所成角的余弦值为1010. [B 能力提升]11.已知异面直线a 与b 所成的角为50°,P 为空间一定点,则过点P 且与a ,b 所成的角都是30°的直线有且仅有( )A .1条B .2条C .3条D .4条解析:选B.过空间一点P ,作a ′∥a ,b ′∥b .由a ′、b ′两交线确定平面α,a ′与b ′的夹角为50°,则过角的平分线与直线a ′、b ′所在的平面α垂直的平面上,角平分线的两侧各有一条直线与a ′、b ′成30°的角,即与a 、b 成30°的角且过点P 的直线有两条.在a ′、b ′相交另一个130°的角部分内不存在与a ′、b ′成30°角的直线.故应选B. 12.(2018·高考全国卷Ⅱ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( )A.15B.56C.55D.22解析:选C.如图,连接BD 1,交DB 1于O ,取AB 的中点M ,连接DM ,OM ,易知O 为BD 1的中点,所以AD 1∥OM ,则∠MOD 为异面直线AD 1与DB 1所成角.因为在长方体ABCD ­A 1B 1C 1D 1中,AB =BC =1,AA 1=3,AD 1=AD 2+DD 21=2,DM =AD 2+⎝ ⎛⎭⎪⎫12AB 2=52,DB 1=AB 2+AD 2+DD 21=5,所以OM =12AD 1=1,OD =12DB 1=52,于是在△DMO 中,由余弦定理,得cos ∠MOD =12+⎝ ⎛⎭⎪⎫522-⎝ ⎛⎭⎪⎫5222×1×52=55,即异面直线AD 1与DB 1所成角的余弦值为55,故选C.13.如图,在矩形ABCD 中,AB =8,BC =4,E 为DC 边的中点,沿AE 将△ADE 折起,在折起过程中,下列结论正确的有( )①ED ⊥平面ACD ;②CD ⊥平面BED ;③BD ⊥平面ACD ;④AD ⊥平面BED . A .1个 B .2个 C.3个D .4个解析:选A.因为在矩形ABCD 中,AB =8,BC =4,E 为DC 边的中点, 所以在折起过程中,D 点在平面ABCE 上的投影如图.因为DE与AC所成角不能为直角,所以DE不会垂直于平面ACD,故①错误;只有D点投影位于Q2位置时,即平面AED与平面AEB重合时,才有BE⊥CD,此时CD不垂直于平面AECB,故CD与平面BED不垂直,故②错误;BD与AC所成角不能为直角,所以BD不能垂直于平面ACD,故③错误;因为AD⊥ED,并且在折起过程中,有AD⊥BD,所以存在一个位置使AD⊥BE,所以在折起过程中有AD⊥平面BED,故④正确.故选A.14.如图,在多面体ABCDEF中,已知四边形ABCD是边长为2的正方形,△BCF为正三角形,G,H分别为BC,EF的中点,EF=4且EF∥AB,EF⊥FB.(1)求证:GH∥平面EAD;(2)求证:FG⊥平面ABCD.证明:(1)如图,取AD的中点M,连接EM,GM.因为EF∥AB,M,G分别为AD,BC的中点,所以MG∥EF.因为H为EF的中点,EF=4,AB=2,所以EH=AB=MG,所以四边形EMGH为平行四边形,所以GH∥EM,又因为GH⊄平面EAD,EM⊂平面EAD,所以GH∥平面EAD.(2)因为EF⊥FB,EF∥AB,所以AB⊥FB.在正方形ABCD中,AB⊥BC,所以AB⊥平面FBC.又FG⊂平面FBC,所以AB⊥FG.在正三角形FBC中,FG⊥BC,所以FG⊥平面ABCD.[C 拓展探究]15.如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.解:(1)证明:因为D,E分别为AC,AB的中点,所以DE∥BC.又因为DE⊄平面A1CB,BC⊂平面A1CB,所以DE∥平面A1CB.(2)证明:由已知得AC⊥BC且DE∥BC,所以DE⊥AC.因为DE⊥A1D,DE⊥CD,所以DE⊥平面A1DC.而A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,CD∩DE=D,所以A1F⊥平面BCDE.所以A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又因为DE∥BC,所以DE∥PQ.所以平面DEQ即为平面DEQP.由(2)知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰△DA1C底边A1C的中点,所以A1C⊥DP.又DP∩DE=D,所以A1C⊥平面DEQP.即A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.。

直线与平面垂直的性质教案

直线与平面垂直的性质教案

直线与平面垂直的性质教案教案:直线与平面垂直的性质一、教学目标1.知识目标:了解直线与平面的垂直关系,并掌握直线与平面垂直的性质。

2.能力目标:能够判断直线与平面是否垂直,并能够运用垂直的性质解决问题。

3.情感目标:培养学生对数学的兴趣,激发学习的主动性。

二、教学重点三、教学难点如何判断直线与平面是否垂直。

四、教学准备教师准备:教学课件、黑板、白板、绘图工具等。

学生准备:课本、笔记本等。

五、教学过程Step1:导入新知1.通过引入两个概念:“直线”和“平面”,并介绍其定义、性质和符号表示。

2.通过实际示例,引导学生思考并提出问题:“直线与平面之间是否存在一种特殊的关系?”“你认为直线与平面有什么样的垂直关系?”3.引导学生观察周围环境中直线与平面的垂直关系,并与学生一起讨论。

Step2:理论讲解1.引入直线与平面垂直的定义:“如果直线与平面上的任意一条直线都垂直相交,那么称这条直线与这个平面垂直。

”2.讲解直线与平面垂直的性质:(1)直线与平面垂直的定理:在同一个平面内,如果一条直线与另一条直线垂直相交,则它们与该平面垂直。

(2)直线与平面垂直的判定定理:一条直线与一个平面垂直的充分必要条件是这条直线上有一点在这个平面上,且在这个平面上有一般的直线与这条直线垂直。

3.讲解直线飞平面垂直的表示方法:以垂直符号“⊥”表示。

Step3:示例演练1.给出一些具体问题,引导学生分析并判断直线与平面是否垂直,并用判定定理进行解答。

例如:过一个点作平面外的一条直线,该直线与这个平面有什么样的关系?2.引导学生根据给定的条件使用垂直的性质进行证明,以锻炼思维能力。

Step4:归纳总结1.让学生复习并总结判定直线与平面垂直的方法和性质。

2.强化学生对垂直符号“⊥”的理解和应用。

Step5:拓展应用将所学的直线与平面垂直的知识应用到实际问题中,例如建筑工程、地理测量等领域,培养学生运用数学知识分析和解决实际问题的能力。

人教版高中数学《直线与平面垂直的判定》教学设计(全国一等奖)

人教版高中数学《直线与平面垂直的判定》教学设计(全国一等奖)

高中数学《直线与平面垂直的判定》教学设计(全国一等奖)《普通高中课程标准实验教科书—数学必修(二)》人教A版直线与平面垂直的判定姓名:单位:《直线与平面垂直的判定(第一课时)》教学设计一、内容和内容解析:本节内容选自人教A版《普通高中课程标准实验教科书——数学必修(二)》第二章第三节:2.3.1直线与平面垂直的判定(第一课时),属于新授概念课.本节课的内容包括直线与平面垂直的定义和判定定理两部分.直线与平面垂直的研究是直线与直线垂直研究的继续,也为平面与平面垂直的研究做了准备;判定定理的教学,尽管新课标在必修课程中不要求证明,但通过定理的探索过程,培养和发展学生的几何直觉以及运用图形语言进行交流的能力,是本节课的重要任务.线面垂直是在学生掌握了线在面内,线面平行之后紧接着研究的线面相交位置关系中的特例.在线面平行中,我们研究了定义、判定定理以及性质定理,为本节课提供了研究内容和研究方法上的范式.线面垂直是线线垂直的拓展,又是面面垂直的基础,后续内容如空间的角和距离等又都使用它来定义,在本章中起着承上启下的作用.通过本节课的学习与研究,可进一步完善学生的知识结构,更好地培养学生观察发现、空间想象及推理能力,体会由特殊到一般、类比、归纳、猜想、化归等数学思想方法.因此学习这部分知识有着非常重要的意义.二、目标和目标解析:《数学课程标准》中与本节课相关的要求是:① 在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面垂直位置关系的定义;② 通过直观感知、操作确认、思辨论证,认识和理解空间中线面垂直的判定定理;③ 能运用已获得的结论证明一些空间位置关系的简单命题.本节课的课程标准分解如下:(1)从认知角度进行分解:(2)从能力角度进行分解:根据《课程标准》,依据教材内容和学生情况,确定本课时的学习目标为:(1)在直观认识和理解空间点、线、面的位置关系的基础上,抽象出直线与平面垂直的定义;(2)通过直观感知、操作确认,归纳出直线与平面垂直的判定定理;(3)能运用直线与平面垂直的定义和判定定理证明一些空间位置关系的简单命题.针对本节课的学习目标,我设计了如下的评价任务:评价任务一:能否从生活现象中直观感受到直线与平面垂直的形象,并将其抽象出直线与平面垂直的概念;评价任务二:学生积极参与,通过影子实验,在动手操作、思考、归纳等一系列活动中完成探索.评价任务三:能够从正反例中,通过对比归纳出直线与平面垂直的定义,并用自己的语言描述定义内容.评价任务四:能够根据定义得到直线与平面垂直时,直线与平面内任意一条直线垂直的结论,并写出符号语言,了解定义的双向叙述功能.评价任务五:能够利用将无限转化为有限的思想,寻找判定直线与平面垂直的可能性假设. 评价任务六:能在实验操作中,确认直线与平面垂直的判定定理,能用自己的语言叙述出定理内容并写出相应的符号语言.评价任务七:能够用定义和判定定理解决空间位置关系的简单命题.三、教学问题诊断分析:1、学生已有基础:学生已经学习了两条直线互相垂直的位置关系,学习了直线、平面平行的判定及性质,有了“通过观察、操作并抽象概括等活动获得数学结论”的体会,有了一定的几何直观能力、推理论证能力等,具备学习本节课所需的知识.2、学生面临的问题:高一学生仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维.认识到这点,教学中要控制要求的拔高,关注学习过程.因此我确定本节课的难点为:直线与平面垂直的定义的生成,操作确认直线与平面垂直的判定定理.因此,在教学过程中我抓住学生好奇心强,学习积极性较高的特点,我让学生以小组为单位进行合作,通过动手操作,观察、思考、归纳总结,发现直线与平面垂直时,直线与平面内的直线有怎样的位置关系;再通过操作,反向验证,当直线与平面内的直线具有上述位置关系时,能否得到直线与平面垂直,让学生在实验中自然生成直线与平面垂直的定义.在探究直线与平面垂直的判定定理时,让学生从寻找合理假设出发,通过操作验证假设的正确性,从而获得直线与平面垂直的判定定理.由于学生对这种用“有限”代替“无限”的过程,在形成理解上的可能会有思维障碍,所以强调关于定理的证明,会在后续学习中获得.四、教学策略分析:新课程标准明确指出:数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维.因此本节课在“目标导引教学”这一理念的指引下,主要采用的是引导发现教学法.教学中,我利用学生感兴趣的图片引出直线与平面垂直的形象,抽象出直线与平面垂直的概念.让学生在分析操作过程发现规律特点,从而自发地生成定义;接着让学生在实际应用中自觉提出判定直线与平面垂直是否有更简洁方便的方法,通过折纸活动,让学生在游戏中学习,在活动中获得知识.我设计了分组探究等实践活动,通过活动引导学生进行观察、思考、操作、归纳、应用,使学生始终处于积极、主动、有趣的学习状态中,深刻体会到了“做数学、学数学”的乐趣,最终达成了本节课的学习目标.五、课前准备:多媒体课件、三角形纸片(多种形状)、三角板、手电筒、彩色手环、笔(表直线)、纸(表平面)等.六、教学过程:验证跨栏的支架与地面是否垂直,七、教学设计说明:兴趣是最好的老师,它是学生主动学习、积极思考、勇于探索的强大内驱力.因此,本节课我在“目标导引教学”理念及“数学源于生活、又应用于生活”的理念的指引下,以激发学生的学习兴趣为出发点,设置了一系列的动手操作、自主探索的活动,引导学生通过感受、思考、交流、总结,真正对所学内容有所感悟,进而内化为己有.课堂上加入了多种探究实验与动手操作活动,增加了学生学习的兴趣;加入了影子实验、折纸环节,使学生体会到了学数学的乐趣,达到了让教学生活化、让教学活动化、让教学趣味化的目的.符合新课标中“数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维,要注重培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法”的要求.此外,在整个教学过程中,“学生是学习的主体”这一理念,“让不同的人在数学上得到不同的发展”的理念都得到了充分的体现.总之,本节课的设计使学生的情感和能力都得到了一定的发展,成长过程和长期发展也得到了一定的关注,体现了新课程的要求.八、教学反思:本节课的设计从理解数学、理解学生、理解教学三个维度出发,对高中数学课程结构体系及本节课教学重点的知识进行了较为系统的分析;对学生学习本节课的难点进行了深入思考,并精心设计了重点、难点知识的教学解释;评估了学生的知识理解水平等方面,以达到教学设计的科学、完整和精细,具有一定的可操作性和调控性.本节课树立理解数学、理解学生、理解教学的观念来设计课堂教学,本质与核心是“以学生的发展为本”,这是时代发展的要求.这就要求教师在教学设计中,不仅要看到所教的学科知识,而且要看到相应的知识在学生发展中起什么作用;不仅要研究学生的发展规律,思考学习与发展的关系,而且要研究学生是如何学习的;不仅要以适合学生认知特点的方式传《直线与平面垂直(第一课时)》教学设计授数学知识,而且要在教学过程中时刻体现思想性,从而在提高学生在知识水平的同时,提高他们的素质,丰富他们的精神世界.点评这堂课给人的感觉是充满青春的朝气,一气呵成,如沐春风。

直线与平面垂直的教案设计

直线与平面垂直的教案设计

《直线与平面垂直的判定》教学设计甘肃省白银第九中学胡贵平教具、教学媒体准备:多媒体课件(以PowerPoint为平台)、三角板、大三角形纸片等教具.学生自备:三角形纸片(任意形状)、笔(表直线)、课本(表平面)等学具.教学过程:(一)从实际背景中直观感知直线与平面垂直问题1在日常生活中你见得最多的直线与平面相交的情形是什么?请举例说明。

师生活动:学生举例,通过比较,引导学生先研究直线与平面垂直的情形,教师根据学生举例的情况适当补充,如旗杆与地面、大桥的桥柱与水面垂直的位置关系等.问题2在已学的空间几何体中,举例说明哪些直线与平面是垂直的?师生活动:学生举例,如长方体的侧棱与底面,圆柱、锥的轴与底面的位置关系等.问题3你觉得画怎样的直观图最能反映直线与平面垂直?师生活动:学生画图,师生共同分析画法.(二)抽象概括直线与平面垂直的定义问题4 (1)你能回忆一下直线与平面平行的研究思路吗?(2)类似的我们又如何研究一条直线与一个平面垂直呢?师生活动:回忆线面平行的研究思路,考察线与面内直线的位置关系(图2),教师适时给出“旗杆与变动的影子的关系”的情景来启发学生.设计意图意图:通过对生活事例的观察,让学生直观感知直线与平面相交中的特例——直线与平面垂直的形象,由此引出课题.意图:在已学的几何模型中感知直线与平面垂直的位置关系.意图:给出直观图的画法,有利于揭示问题的本质,有利于进行几何的抽象概括.意图:引导学生用“降维”的思想来思考问题,通过考察直线与问题5如图3,在阳光下直立于地面的旗杆AB及它在地面的影子BC (1)它们的位置关系是怎样的?(2)随着太阳的移动,影子BC的位置也会移动,而旗杆AB与影子BC 所成的角度是否会发生改变?(3)AB与地面上任意一条不是影子(不过旗杆底部B)的直线B′C′的位置关系又是什么?由此得到什么结论?师生活动:学生思考、分析与说理,教师可利用多媒体课件演示旗杆在地面上的影子的移动过程.得出结论后引导学生思考:能否用一条直线垂直于一个平面内的任意一条直线,来定义直线与平面垂直.问题6 若一条直线与一个平面内的任意一条直线都垂直,该直线与此平面垂直吗?师生活动:引导学生操作、观察,如图4,当的平面外直线AB(用笔表示)与平面(用桌面表示)不垂直时,平面内就有直线BC(可用另一支笔表示)与平面外的这条直线不垂直.接着教师给出定义.定义:(板书)平面内直线的位置关系来研究直线与平面垂直的情形.意图:第(1)(2)让学生发现旗杆AB 所在直线始终与地面上任意一条过点B的直线垂直,第(3)问引导学生根据异面直线所成角的概念得出旗杆AB所在直线始终与地面上任意一条不过点B的直线也垂直,在这里,主要引导学生通过观察来分析、归纳直线与平面垂直这一概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ABCD
2、在三棱锥 V-ABC 中,VA=VC,AB=BC,求证:VB ⊥ AC
3、如图,在长方体 AC1 中,AB= 3 ,BC=1,BB1=1, (1)BC1 与平面 ABB1A1 所成角的大小; (2)BD 与平面 BCC1B1 所成角的大小。 A1
D1 பைடு நூலகம்1
C1
D A B
C
课后延伸拓展: 课后延伸拓展:
D
C
例 2、如图,正方体 AC1 中,求: (1)A1D 与平面 ABCD 所成角的大小; (3)BC 与平面 A1B1CD 所成角的大小。
B
D1 A1 B1
C1
D A B
C
1
连南民族高级中学“学案导学”课堂教学活页学案 执笔人:李水尧 审阅人:姚尹赞 时间:09年12月10日
探究: 。 探究:完成课本的“探究” 达标练习 1、点 P 是平行四边形 ABCD 所在平面外一点,O 是对角线 AC 与 BD 的交点,且 PA=PC,PB=PD. 求证:PO⊥平面
1、如图,已知 AB⊥平面 BCD,BC⊥CD 求证:AC⊥CD A
D B C
2、在正方体 ABCD-A1B1C1D1 中,
(1)BD1 与平面 BB1C1C 所成角的大小; (2)A1B 和平面 A1B1CD 所成的角 (3)直线 A1B 和平面 A1B1CD 所成的角 (4)若 E、F 分别为 AA1、AB 的中点,求 EF 与平面 AA1C1C 所成角的大小。
2
连南民族高级中学“学案导学”课堂教学活页学案 执笔人:李水尧 审阅人:姚尹赞 时间:09年12月10日
§2.3.1 直线与平面垂直的判定
学习目标: 学习目标:
1.借助对图片、实例的观察,抽象概括出直线与平面垂直的定义,并能正确理解直线与平面垂直的定义。 2.通过直观感知,操作确认,归纳直线与平面垂直判定的定理,并能运用判定定理证明一些空间位置关系的简单命题, 进一步培养学生的空间观念。 3.让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。
教学重点: 教学重点:操作确认并概括出直线与平面垂直的定义和判定定理。 教学难点: 教学难点:操作确认并概括出直线与平面垂直的判定定理及初步运用。 自学设计: 自学设计:
1、直线与平面垂直: 记作: 直线叫做平面的 平面叫做直线的 ,公共点叫做: 2、直线与平面垂直的判定定理: 用符号表示为_______________________________________ 3、平面的斜线: 斜足: 4、直线与平面所成的角: 直线与平面所成角的范围 : 5、判断: (1)如果一条直线垂直于平面内的两条直线,那么该直线与平面垂直 ( ) (2)如果一条直线垂直于平面内的无数多条直线,那么该直线与平面垂直( ) (3)如果一条直线垂直于平面内的任意一条直线,那么该直线与平面垂直( ) (4)如果一条直线垂直于平面内至少两条直线,那么该直线与平面垂直 ( ) ______ 6、若一条直线 a 垂直于平面 α 内的一条直线,则直线 a 与平面 α 的位置关系是 7、如果一条直线 a 与平面 α 不垂直,那么在平面 α 内与直线 a 垂直的直线( ) A、只有一条 B、有无数条 C、至多有一条 D 无法确定 例 1、如图,三棱锥 A-BCD 中,AD⊥BD,AD⊥DC。 A 求证:AD⊥BC
相关文档
最新文档