汽车级Simulink建模与仿真
基于simulink汽车速度控制系统的设计与仿真
基于simulink汽车速度控制系统的设计与仿真摘要:目前许多汽车把汽车速度控制系统作为配属设备或选配设备。
汽车装有汽车速度控制系统后,当驾驶员启动这一装置并进行一些简单的设置后,该装置可自动保持某一恒定速度行驶,而不踩油门。
由于电子系统能准确地控制车辆的速度,从而使高速行驶的车辆更加安全、平稳。
在文中,首先对汽车的运动原理进行分析,建立控制系统简化模型,根据研究对象的物理特性建立起汽车速度控制控制系统的微分方程,再将该微分方程进行线性化处理,运用PID控制理论的方法对汽车速度控制控制系统进行分析和控制。
然后对汽车速度控制系统进行设计分析,在已有的模型下,对设计的汽车速度控制系统进行Matlab语言仿真。
关键词:速度控制系统PID控制仿真指导老师签名:Design and Simulation of the vehicle speedcontrol systemStudent name Class:Supervisor:Abstract:At present, many cars make car speed control system as an attachment device or optional equipment. The car is fitted with the motor speed control system, when the driver start the device and make some simple settings, the device can automatically maintain a constant speed, and do not step on the accelerator. Because the electronic system can accurately control the speed of the vehicle, so that the high-speed vehicles more secure, stable.In this paper, the first principle of the movement of automobile is analyzed, establishing control system is simplified model, based on physical characteristics of the research object to establish the vehicle speed control differential equation of the control system, then the differential equation is linearized by using the method of control theory, analyze and control the motor speed control system. Then the design of the vehicle speed control system, the existing model, to design vehicle speed control system simulation language Matlab.Keyword:Speed control system PID control simulationSignature of Supervisor:目录1绪论 (1)1.1选题的依据及课题意义 (1)1.2汽车速度控制研究概况及发展趋势 (1)2速度控制系统的简述 (3)2.1汽车速度控制系统原理 (3)2.2速度控制系统的分类 (3)2.3速度控制系统的基本用途 (4)2.4电子式多功能速度控制系统功能 (4)3系统模型建立及性能分析 (6)3.1汽车受力分析 (6)3.2行驶汽车仿真模型 (7)3.3 动态性能和稳态性能指标 (8)4 PID控制器 (10)4.1 PID控制简述 (10)4.2 PID控制规律 (10)4.3 PID作用分析 (14)5 系统仿真及结果分析 (15)5.1 SIMULINK简介 (15)5.2实验方案选择 (15)5.2.1采用P控制 (15)5.2.2采用PI控制 (20)5.2.3采用PID控制 (22)5.3实验结果分析 (25)总结 (26)参考文献 (27)致谢 (28)1绪论1.1选题的依据及课题意义随着汽车工业和公路运输业的发展,汽车将走进千家万户,驾驶人员非职业化的特点将突出,车辆驾驶的自动化己成为汽车发展的主要趋势。
基于Simulink的汽车ABS建模与仿真
基于Matlab/Simulink 的汽车ABS 建模与仿真摘要:本文阐述了ABS(防抱死制动系统)的基本结构、原理和控制特点。
在Simulink 的环境下以ABS(防抱死制动系统)滑移率为对象进行控制,根据ABS 系统原理建立了ABS 单车轮的仿真模型,并得出仿真曲线,验证汽车ABS 具有良好的制动性能和方向操纵性。
Modeling and Simulation of the Anti-Lock BrakingSystem based on MATLAB/SimulinkAbstract :The article illustrates basic operations and control features of ABS system. Control the ABS Slip Ratio with Simulink, creates a single wheel ABS model according to the ABS principle. It produces Simulation curves ,which verifies that the Auto ABS has good braking performance and direction of the manipulation. 引言在遭遇紧急情况下,大多数驾驶员都会将制动踏板立即踩死。
在汽车制动时,如果车轮抱死滑移,车轮与路面间的侧向附着力将完全消失:如果只是前轮(转向轮)抱死滑移而后轮还在滚动,汽车将失去转向能力;如果只是后轮抱死滑移而前轮还在滚动,即使受到不大的侧向干扰力,汽车也将产生侧滑(甩尾)现象。
这些都极易造成严重的交通事故。
为了避免因车辆滑移而带来的交通事故,有必要研究一种以滑移率为对象进行控制的防抱死制动系统(ABS )。
ABS 是提高汽车安全性能的主要因素之一,对于具有较高非线性的汽车制动过程,很难建立精确的数学模型;随着计算机技术和软件技术的迅猛发展,仿真技术已成为国内外研究的热点,并且在汽车研发中获得了广泛应用。
基于CarsimSimulink联合仿真的分布式驱动电动汽车建模
基于CarsimSimulink联合仿真的分布式驱动电动汽车建模一、本文概述随着电动汽车技术的快速发展,分布式驱动电动汽车(Distributed Drive Electric Vehicles, DDEV)因其高效能源利用、优越操控性能以及灵活的驱动方式,正逐渐成为新能源汽车领域的研究热点。
为了更深入地理解和研究DDEV的动态特性与控制策略,建立精确的车辆模型是关键。
本文旨在探讨基于Carsim与Simulink 联合仿真的分布式驱动电动汽车建模方法,以期在车辆动力学建模、控制策略优化和系统集成等方面提供有效的技术支撑。
本文首先介绍分布式驱动电动汽车的基本结构和特点,阐述其相较于传统车辆的优势。
随后,详细介绍Carsim和Simulink两款软件在车辆建模和仿真分析方面的功能和特点,以及它们联合仿真的优势。
接着,将重点介绍如何利用Carsim建立DDEV的车辆动力学模型,包括车辆动力学方程、轮胎模型、驱动系统模型等。
将探讨如何利用Simulink构建DDEV的控制策略模型,包括驱动控制、制动控制、稳定性控制等。
在建立了DDEV的车辆动力学模型和控制策略模型后,本文将详细阐述如何将这两个模型进行联合仿真,并分析仿真结果。
通过对比分析不同控制策略下的车辆性能表现,验证所建模型的准确性和有效性。
本文还将讨论分布式驱动电动汽车建模面临的挑战和未来的研究方向,为相关领域的研究者提供参考和借鉴。
二、Carsim软件介绍Carsim是一款由密歇根大学开发的高级车辆动力学仿真软件,广泛应用于车辆控制、车辆动力学、主动和被动安全、电动和混合动力车辆以及先进的驾驶员辅助系统等领域的研究和开发。
该软件以模块化的方式集成了车辆各个子系统的动力学模型,包括发动机、传动系统、制动系统、转向系统、悬挂系统、轮胎以及车身等。
Carsim的核心优势在于其强大的物理引擎和精确的仿真能力。
通过精确的算法和详尽的车辆参数数据库,Carsim能够模拟出车辆在各种道路条件和驾驶操作下的动态行为,如加速、制动、转向、侧滑等。
基于MATLAB/Simulink的汽车平顺性的仿真模型(可编辑)
基于MATLAB/Simulink的汽车平顺性的仿真模型摘要本文在分析平顺性的研究意义和研究内容的基础上,以数学仿真原理为理论基础,建立了以某经济型轿车为原型的整车八自由度汽车模型拉格朗日方程,并应用仿真软件MATLAB/Simulink建立了汽车平顺性的仿真模型。
按照国家标准模拟了不同车速下的汽车试验,得出了平顺性仿真在不同车速下时间域和频率域的仿真结果。
本文还参考了实车的平顺性试验,该试验参照国标GB/T4970?1996执行。
在国家B级路面上以不同车速对驾驶员座椅、副驾驶员座椅和后排左侧座椅的垂直加速度信号进行了测量,得出了平顺性试验在时间域和频率域的结果。
在汽车平顺性仿真与试验的基础上,文中对处理后的数据结果进行了比较分析,对试验所用汽车的平顺性作出了评价,给出了仿真与试验的相应结论。
关键词:平顺性,八自由度建模,路谱,MATLAB/SimulinkAbstractThis paper analyzes the significance of ride comfort and contents of research based on the principle of mathematical simulation based on the theory established by an economy car for the prototype vehicle eight degrees of freedom vehicle model Lagrange equation, and applying simulation software MATLAB / Simulink to establish a simulation model ofvehicle ride comfort. Simulated in accordance with national standards of vehicles under different speed test results, the simulation ride at different speeds time domain and frequency domain simulation results This article also during the actual car test ride, test the light of the implementation of national standard GB/T4970-1996. B-class roads in the country at different speeds on the driver's seat, co-pilot seat and left rear seat of the vertical acceleration signal was measured, obtained test ride in the time domain and frequency domain results. In the car ride simulation and experiment based on the text of the processed data results were compared, the test used in ride comfort has been evaluated, the simulation and testing the corresponding conclusionsKey words: Comfort,Eight degrees of freedom model, Road spectrum, MATLAB/Simulink 目录前言 11绪论 21.1汽车平顺性研究的意义21.2汽车平顺性研究的主要内容 21.3汽车行驶平顺性研究发展概况 42汽车行驶平顺性的评价 62.1行驶平顺性评价的研究62.2人体对振动的反应 62.3平顺性指标评价方法72.3.1ISO 2631标准评价法72.3.2吸收功率法112.4平顺性评价流程113随机路面模型的研究 133.1随机路面模型133.1.1路面不平度的概述133.1.2路面不平度的表达133.1.3时域模型143.1.4时域响应153.2建立随机路面模型 153.2.1汽车前轮所受路面随机激励153.2.2前后轮滞后输入的处理164汽车平顺性模型的建立及仿真184.1建模基本原理与要求184.1.1建模基本要求184.1.2建模基本原理194.2 汽车平顺性建模194.2.1 八自由度整车力学模型的建立204.2.2 数学模型的建立214.2.3 汽车座椅的布置254.2.4 汽车八自由度Simulink仿真模型的建立26 4.3整车平顺性仿真284.3.1仿真参数的选取 284.3.2 50km/h车速下汽车平顺性仿真结果304.3.3 60km/h车速下汽车平顺性仿真结果314.3.4 70km/h车速下汽车平顺性仿真结果325整车平顺性试验与结果分析335.1 平顺性试验原理及试验过程335.2 仿真与试验结果的数据处理345.3 仿真与试验结果的时域分析365.4 仿真与试验结果的频域分析37结论38致谢39参考文献40前言汽车平顺性主要是指保持汽车在行驶过程中产生的振动和冲击环境对乘员舒适性的影响在一定界限之内,对载货汽车还包括保持货物完好的性能,它是现代高速汽车的主要性能之一。
基于Simulink的14车辆悬架建模及仿真
AUTO PARTS | 汽车零部件基于Simulink的1/4车辆悬架建模及仿真郑丽辉1 张月忠21.衢州职业技术学院 机电工程学院 浙江省衢州市 3240002.余姚朗德光电有限公司 浙江省宁波市 315400摘 要: 本文以1/4车辆悬架为研究对象,根据悬架动力学理论,建立动力学微分方程。
并在Matlab/Simulink环境下搭建路面激励模型和1/4悬架系统动力学仿真模型,对衡量悬架舒适性的车身加速度、悬架动行程、车轮动载荷三方面评价指标进行仿真研究,为悬架设计提供技术参考。
关键词:1/4车辆悬架 舒适性 仿真研究1 引言车辆悬架连接车身与车轮,传递两者之间的作用力和力矩,并通过弹性元件和阻尼元件的相互作用衰减不平路面引起的车辆振动,提高车辆平顺性与舒适性。
车辆悬架的类型可划分为被动悬架、半主动悬架和主动悬架三种,若悬架系统各元件的特性参数不可调整的称为被动悬架,可调整的称为半主动悬架,能根据控制反馈信号产生主动控制力,适应路况和车况变化的称为主动悬架。
本文以1/4车辆悬架为研究对象,根据其二自由度的简化力学模型建立微分方程,并基于Matlab/Simulink建立了仿真模型。
以某车型悬架参数为例,在以带限白噪声模拟的路面激励下,对衡量悬架舒适性的三方面评价指标进行仿真研究,为悬架设计提供技术参考。
2 1/4车辆悬架系统动力学模型由于车辆结构的复杂性决定了车辆悬架是多自由度互相耦合的非线性系统。
为分析问题方便,常将实车悬架模型简化成1/4车辆悬架二自由度模型。
简化过程作如下假设:(1)忽略簧载质量m2的变形,视其为刚体。
(2)车轮刚度k1和悬架减震弹簧刚度k2均为线性,忽略悬架减震器阻尼的迟滞现象。
(3)车辆行驶过程中,轮胎始终未脱离地面。
1/4车辆悬架二自由度力学模型如图1所示。
图中,m1为车轮质量,m2为车身质量,k1为车轮等效刚度,k2为悬架减震弹簧等效刚度,c为悬架减震器等效阻尼系数,q为路面激励,z1为车轮垂向位移,z2为车身垂向位移,Fd为主动控制力。
Simulink汽车仿真实例
案例背景:介绍案例的背景信息,如汽车型号、仿真目的等 模型建立:详细描述如何使用Simulink建立汽车故障诊断与预测模型 仿真结果:展示仿真结果,并分析其与实际故障的符合程度 结论:总结案例的优点与不足,提出改进建议
汇报人:XX
Simulink汽车仿真广泛应用于汽车行业的 研究、开发、测试和验证等领域。
目的:模拟汽 车系统的动态 行为和性能, 以便更好地理 解、预测和优
化系统设计
意义:提高设 计效率,降低 开发成本,缩 短开发周期, 减少试验次数 和风险,提高 产品质量和可
靠性
建立模型:根据 汽车系统原理, 建立数学模型
人工智能和机器学习在仿真中的应用:AI和机器学习技术将为仿真提供新的方法和思路,进一 步提高仿真的智能化水平。
深度学习算法在车辆控制 中的应用
强化学习在自动驾驶系统 中的应用
神经网络在车辆动力学模 拟中的应用
机器学习在仿真结果分析 和优化中的应用
发展前景:随着技术的不断进步,仿真 技术在汽车行业的应用将越来越广泛, 为汽车设计、研发和生产带来更多可能 性。
制算法。
添加标题
应用领域:广泛应用 于汽车、航空、工业 自动化等领域,用于 设计、优化和验证各
种控制系统。
添加标题
优势:易于使用,支 持模块化设计,可扩 展性强,能够提高控 制算法的设计效率和
仿真精度。
Simulink支持多 种第三方插件和 扩展模块,可扩 展仿真功能和模 型库
这些插件和模块 可提供额外的算 法、模型和工具, 以支持更广泛的 汽车系统仿真
建立各部件数学模 型:利用 Simulink进行建 模,考虑各部件的 动态特性和参数
基于matlab,simulink汽车三自由度模型仿真
作业任务包括:一、建立前轮角阶跃输入的汽车三自由度操控模型,并且参数可调。
二、绘制六面体并实现对六面体的三维操作,包括平移、旋转、缩放等。
三、动画:本文动画的实现是在对六面体的具体操作过程(平移、旋转、缩放)中表现。
四、GUI与simulink的联合仿真,并将所有作业内容集成到GUI界面,将程序进行编译,打包生exe的成可执行文件。
汽车三自由度操控模型1.1建模假设:•1、汽车车速不变。
•2、不考虑切向力对轮胎特性的影响。
•3、侧向加速度不大于0.3-0.4g 。
•4、前轮转角不大,不考虑前轮左右的区别。
•5、不考虑非悬架质量的倾角。
•6、不考虑空气动力作用。
•7、侧倾中心与非悬架质心等高,前后一样。
•8、左右对称。
假设汽车的结构:•前面是独立悬架。
•后面是纵置半椭圆板簧。
•车厢侧倾引起:前轮外倾角变化;后轴发生轴转向;左右侧车轮载荷重新分配引起滚动阻力不相等而产生绕Z轴的力矩。
1.2汽车模型受力分析车辆坐标系如图1所示图1 车辆坐标系M、Ms、Mu分别是整车、悬挂和非悬挂质量,M=Ms、Mu其质心分别是c.g. 、s和u。
如图二所示图2 车辆质量分布示意图汽车三自由度模型的三个自由度指:汽车沿y 轴平动的自由度、汽车绕z 轴的转动自由度、汽车绕x 轴的转动自由度。
一般分别用横向速度v 、横摆角速度r 、侧倾角φ来表征。
汽车三自由度模型的微分方程为:()()s r z xz r p s x xz s p M v rV M h Y Y r Y Y I r I N N r N N N p I I r M h v rV L L βφδβφδφφβφδφβφδφφφ⎫++=+++⎪-=++++⎬⎪-++=+⎭(1-1)其中各个参数的意义如下:算子说明:21k k Y +=β ()211bk ak VY r -=122Y Y Y k φαφφ∂∂=-∂∂ 其中:11YY γ∂∂前轮外倾刚度;1γφ∂∂侧倾外倾角系数;2αφ∂∂后轴侧倾转向系数。
matlab语言第5章 Simulink仿真设计
信号源模块(Sources)
l Band-Limited White Noise:宽带限幅白噪声; l Chirp Signal:线性调频信号(频率随时间线性变 化的正弦波);
l Clock:时钟信号; l Constant:常数输入; l Counter Free-Running:自动计数器,发生溢出后, 从0开始重新计数;
分; lPID Controller:PID控制; lPID Controller(2DOF):二维PID控制; lState-Space:状态空间模型; lTransfer-Fcn:传递函数模型; lTransport Delay:输入信号延迟一个固定时间输出; lVariable Time Delay:输入可变时间信号延迟输出; lVariable Transport Delay:输入信号延迟可变输出; lZero-Pole:零极点模型。
3. Simulink模型的创建和仿真
以图示系统建立Simulink模型
模型建立
(1)启动工具箱 (2)建立Simulink空白模型 (3)根据系统模型选择模块 首先要确定所需模块所在的子模块库名称。例子中用 到的模块有单位阶跃信号﹑符号比较器﹑传递函数模 型和信号输出模块,分别属于信号源模块库﹑数学运 算模块库﹑连续模块库和输出模块库。在模块库浏览 器中打开相应的模块库,选择所需模块。
常用模块库(Commonly Used Blocks)
l Bus Creator:将输入信号合并为总线信号; l Bus Selector:由总线信号选择需要的信号输出; l Constant:常数信号; l Data Type Conversion:数据类型转换模块; l Delay:延迟模块; l Delux:信号分解模块; l Discrete-Time Integrator:离散时间积分器; l Gain:增益模块; l Ground:接地模块; l In1:输入模块; l Integrator:输入信号积分;
基于MatlabSimulink的电动汽车仿真模型设计与应用
基于MatlabSimulink的电动汽车仿真模型设计与应用一、本文概述随着全球能源危机和环境污染问题的日益严重,电动汽车作为一种清洁、高效的交通工具,受到了越来越多的关注和推广。
在电动汽车的研发过程中,仿真模型的建立与应用发挥着至关重要的作用。
本文旨在探讨基于Matlab/Simulink的电动汽车仿真模型设计与应用,旨在为电动汽车的设计、优化和控制提供理论支持和实践指导。
本文将对电动汽车仿真模型的重要性进行阐述,指出其在电动汽车研发过程中的地位和作用。
接着,将详细介绍Matlab/Simulink在电动汽车仿真模型设计中的应用,包括其强大的建模功能、灵活的仿真能力以及高效的算法处理能力等。
在此基础上,本文将重点讨论电动汽车仿真模型的设计方法。
包括电动汽车动力系统的建模、控制系统的建模以及整车模型的集成等。
将结合具体案例,对电动汽车仿真模型在实际应用中的效果进行展示和分析,以验证其有效性和可靠性。
本文还将对电动汽车仿真模型的发展趋势进行展望,探讨其在未来电动汽车研发中的潜在应用前景。
通过本文的研究,希望能够为电动汽车仿真模型的设计与应用提供有益的参考和启示,推动电动汽车技术的不断发展和进步。
二、电动汽车仿真模型设计基础电动汽车(EV)仿真模型的设计是一个涉及多个学科领域的复杂过程,其中包括电力电子、控制理论、车辆动力学以及计算机建模等。
在Matlab/Simulink环境中,电动汽车仿真模型的设计基础主要包括对车辆各子系统的理解和建模,以及如何利用Simulink提供的各种模块和工具箱进行模型的构建和仿真。
电动汽车的主要子系统包括电池管理系统(BMS)、电机控制系统(MCS)、车辆控制系统(VCS)以及车辆动力学模型。
这些子系统都需要根据实际的电动汽车设计和性能参数进行精确的建模。
电池管理系统(BMS)建模:电池是电动汽车的能源来源,因此,BMS建模对于电动汽车的整体性能至关重要。
BMS模型需要包括电池的荷电状态(SOC)估计、电池健康状况(SOH)监测、电池热管理以及电池能量管理等功能。
第三章 matlab的simulink建模与仿真
nonlinear control
4、提供仿真库的扩充和定制功能
5、应用领域
通信与卫星系统 航空航天
生物系统
汽车系统
船舶系统
金融系统
3、simulink在matlab家族中的位置
Stateflow Blockset Toolboxes coder RTW compiler
simulink MATLAB
第三章 matlab的simulink建模 与仿真
3.1 绪论
一、系统与模型
1、系统
系统是指具有某些特定功能,相互联系、相互作 用的元素集合。 系统的两个基本特征:整体性、相关性
对系统的研究从以下三个方面入手:
1)实体:组成系统的元素,对象
2)属性:实体的特征
3)活动:系统状态变化的过程
系统仿真是研究系统的一种重要手段,而系统模 型是仿真所研究的直接对象。 2、系统模型 实体模型:根据相似性建立 模型 数学模型:原始系统数学模型;仿真系统数学模型
连续系统的输入输出方程为: y(t ) u(t ) sin u(t ) u(t)与y(n)的数学关系为: u(t ) y(n), nTs t (n 1)Ts 整个系统的方程描述:
y (t ) u (n) n / 2, n 1,2,3... y (n) u (n) 1, y (n) sin( y (n)),n t n 1
Function&Tables(函数与表库)
表数据选择器(从表中选择数据) 求取输入信号的数学函数值 对输入信号进行内插运算 输入信号的一维线性内插 输入信号的二维线性内插
输入信号的n维线性内插
M函数(对输入进行运算输出结果) 多项式求值 查找输入信号所在范围 S-函数模块 S-函数生成器
MATLABSimulink软件仿真平台之车辆模型
MATLAB/Simulink软件仿真平台之车辆模型新能源车控制策略仿真平台主要包括驾驶员模型、控制策略、车辆模型三部分,如下图所示。
今天我们详细说说第三部分车辆模型(车辆平台)的相关内容,也是最复杂的部分。
车辆模型需求分析车辆模型,从字面上理解就是把整车抽象出来,建立其数学模型,用于仿真研究或控制开发。
广义上的车辆模型应该是包括纵向、侧向、垂向三个方向的动力学模型,是一个及其复杂的系统。
通常,我们会根据实际的研究需要,搭建一个方向或两个方向的动力学模型。
这次我们搭建的增程式电动汽车软件仿真平台,主要用于验证车辆能量管理相关的控制策略,仅需要与驱动、制动相关的车辆纵向动力学模型,再加上增程器、电池等子系统模型(为简化建模搭建,忽略部件响应延迟以及部分摩擦)。
1、增程器模型需求增程器主要包括发动机、发电机,二者一般直连在一起,构成一个提供电能的增程器。
发动机启动过程中,发电机出正扭矩把发动机拉到点火转速后,发动机自行点火启动;发动机启动成功后,发动机出正扭矩,发电机出负扭矩发电同时维持发动机转速恒定;发动机停机过程中,发动机和发电机停止出力,在发动机摩擦力的作用下发动机转速会慢慢降为0。
增程器模型输入:发动机扭矩请求(来自控制策略,这里用固定的节气门开度近似代替)发电机扭矩请求(来自控制策略,这里用扭矩请求百分比信号近似代替)高压电池电压(来自高压电池实际状态)。
增程器模型输出;发电机充放电电流(充电为负,放电为正)模型物理关系:发动机实际扭矩=MAP1(发动机实际转速,发动机节气门开度)发电机实际扭矩=MAP2(发电机实际转速)* 发电机扭矩请求百分比发动机转速(即发电机转速)由增程器系统的动力学决定,TENG+TGM=(JENg+JGM)*dw/dt发电机充放电电流由功率守恒计算,充电时TGM*WGM*φ=UBATT*IGM,放电时TGM*WGM/φ=UBATT*IGM2、纵向动力学模型需求增程式电动汽车的纵向动力学模型与纯电车一样,由电机、主减速器、轮胎、车身等。
基于Simulink的汽车ABS建模与仿真
第22卷第2期 黑 龙 江 工 程 学 院 学 报(自然科学版) Vo l.22l .22008年6月Journal of H eilongjiang Institute of T echno logyJun.,2008基于Simulink 的汽车ABS 建模与仿真安永东1,杜嘉勇2,罗 萌3(1.黑龙江工程学院汽车工程系,黑龙江哈尔滨150050;2.浙江省桐乡市科技服务中心,浙江桐乡314500;3.中国船舶重工集团公司第七o 三研究所,黑龙江哈尔滨150000)摘 要:在Simulink 的环境下对汽车ABS 进行数学建模,以PID 控制器作为控制模块,对所建立的汽车A BS 数学模型进行仿真研究,得出仿真曲线,验证汽车A BS 具有良好的制动性能和方向操纵性。
关键词:A BS;建模;仿真;滑移率中图分类号:U 463.52+6 文献标识码:A 文章编号:1671-4679(2008)02-0040-04Modeling and emulation of the auto ant-i lock brakingsystem based on SimulinkAN Yong -dong 1,DU Jia -yong 2,LUO M eng(1.Dept.o f Automo bile Engineering ,H eilongjiang Institute of T echnolo g y,H arbin 150050,China;2.T o ng x iang Science and T echnolog y Serv ice Centr e,T o ng x ing 314500,China;3.N o.703Institute of China Shipping Gr oup,Har bin 150050,China)Abstract:This paper establishes the model of auto ant-i lock braking system w ith Simulink,em ulates the pro cedure of the ant-i lock braking system w ith the PID co ntro ller,and draw s a conclusion that anti-lock braking system has ex cellent braking performance and dir ection m anoeuver ability by contr asting em ulation curve.Key words:ant-i lock braking sy stem ;mo deling ;emulation;slip -ratio 收稿日期:2008-01-04基金项目:哈尔滨市科技局青年科学基金项目(6290)作者简介:安永东(1972~),男,副教授,研究方向:车辆工程.汽车防抱死制动系统(ABS)是一种主动安全装置。
汽车级Simulink建模与仿真
(车辆工程专业)
内容概览
1. 2. 3. 4. 5. 引例:用 Simulink 对微分方程建模仿真 一个发动机模型 离合器接合/分离模型 防抱死制动系统(ABS) 半车模型悬架系统
2
引例
用 Simulink 对下列微分方程进行建模仿真
x 2 x u (u 为常数)
17
实战1:一个发动机模型
发动机 转速闭 环控制 模型
Desired rpm
speed set point
Throttle setting N
theta
dotmai
dotmai
dotPm
Terminator2 PI controller
Pm mai dotmao Pm
Terminator1 part3
26
实战2:离合器接合/分离模型
基本模块介绍:
Hit Crossing:检测输入从指定方向上到达或通过指定 点(sys_hit.mdl); Goto/From:信号的跳转。注意 Tag 的可见性; Memory:存储模块(sys_memory.mdl);
Combinatorial Logic:组合逻辑模块;
5
6
7
8
9
10
5
dottheta
0
45
-5 0 1 2 3 4 5 time in seconds 6 7 8 9 10
作业
1、对半车模型悬架系统进行建模仿真。
46
9
实战1:一个发动机模型
6. 发动机扭矩:
10
实战1:一个发动机模型
7. 发动机角加速度:
11
实战1:一个发动机模型
新能源汽车性能仿真课件:系统仿真与Simulink-
2021年11月1日星期一
第 20 頁
➢3、電腦仿真
➢ 電腦仿真是在研究系統過程中根據相似原理,利用 電腦來逼真模擬研究對象。研究對象可以是實際的 系統,也可以是設想中的系統。
新能源汽車性能 仿真
系統仿真與Simulink
➢ 1.1 動態系統的電腦仿真 ➢ 1.2 動態系統的Simulink仿真 ➢ 1.3 Simulink簡介
2021年11月1日星期一
第2頁
1.1 動態系統的電腦仿真
➢1.1.1 系統與模型
➢ 為了能全面、正確的理解系統仿真,需要對系統 仿真所研究的對象進行概要的瞭解。這裏對與系 統仿真相關的知識——系統與系統模型進行簡單 的介紹。
➢ 若一個系統的輸出完全可以用它的輸入來表示, 則稱之為確定性系統。
➢ 若系統的輸出是隨機的,即對於給定的輸入存在 多種可能的輸出,則該系統是隨機系統。
2021年11月1日星期一
第 10 頁
➢ 動態系統模型又分為離散系統和連續系統。
➢ 離散系統是指系統的操作和狀態變化僅在離散時 刻產生的系統。如交通系統、電話系統、通信網 絡系統等等,常常用各種概率模型來描述。
2021年11月1日星期一
第 18 頁
➢ 按照仿真系統與實際系統時間尺度上的關係,又 可將其分為如下幾類:
➢ (1)即時仿真:仿真時鐘與系統實際時鐘完全一致 。許多仿真應用需要滿足即時性,這時往往需要 即時操作系統或者專用即時仿真硬體的支持。
2021年11月1日星期一
第 19 頁
➢ (2)欠即時仿真:仿真時鐘比實際時鐘慢。當對仿 真的即時性沒有嚴格的要求時,仿真時鐘比實際 時鐘慢,不影響仿真的目的,採取欠即時仿真則 可節約很多資金。
simulink三自由度汽车模型仿真
作业中演示了3个功能:汽车三自由度模型,单摆运动的动画,六面体的几何变换。
汽车三自由度模型查找到的一个汽车三自由度模型如下:将高阶的参数放在左边,经过变形后如下:φββδφφβδY r MV Y Y MV Y h M r s +-++-=)(... φβφδφβδN r N N I N r I r xz z ++++=...hVr M p L L r I I hV M s p xz x s s -+++-=φφβφ....在simulink 中建立的模型如下:并输入如下参数:I_z=10437;I_xz=0;s_I_x=1960;G_s=2687*9.8; C_f1=100620;C_f2=32755;yf=-5300;h1=0.012;h2=0.015;f=0.016;Y_dt=-k1;Y_bt=k1+k2;Y_r=(a*k1-b*k2)/V;Y_f=yf;N_dt=-k1*a-k1*h1*f;N_bt=a*k1-b*k2+(k1*h1+k2*h2)*f;N_r=(k1*a*a+k2*b*b+(k1*a*h1-k2*b*h2)*f)/V; N_f=a*yf+f*(C_f1+C_f2+h1*yf);L_f=G_s*h-C_f1-C_f2;L_p=-6864;其它的参数由GUI界面控制。
GUI与Simulink的联合设计好的GUI界面如下:在“确认”按钮的Callback下输入如下代码:M=str2double(get(handles.edit_M,'String'));V=str2double(get(handles.edit_V,'String'));Ms=str2double(get(handles.edit_Ms,'String'));k1=str2double(get(handles.edit_k1,'String'));k2=str2double(get(handles.edit_k2,'String'));a=str2double(get(handles.edit_a,'String'));b=str2double(get(handles.edit_b,'String'));h=str2double(get(handles.edit_h,'String'));options = simset('SrcWorkspace','current');sim('wangyf',[],options);plot(tout,yout);leg=char('³µÉí²àÇã½Ç¡Ó','Æû³µºá°Ú½ÇËÙ¶Èr','ÖÊÐIJàÆ«½Ç¦Â');legend(leg);grid on;编辑框中的数字可以自定义,在默认数值的输出结果如下:动画:单摆运动在“单摆运动”按钮下输入如下代码:h=figure('numbertitle','off','name','单摆运动','color','y')plot([-0.2;0.2],[0;0],'-k','linewidth',20);g=0.98;l=1;theta0=pi/4;x0=l*sin(theta0);y0=-l*cos(theta0);axis([-0.75,0.75,-1.25,0]);axis offhead=line(x0,y0,'color','r','linestyle','.','erasemode','xor','marker size',40);body=line([0;x0],[-0.05;y0],'color','b','linestyle','-','erasemode',' xor');t=0;dt=0.01;while 1t=t+dt;theta=theta0*cos(sqrt(g/l)*t);x=l*sin(theta);y=-l*cos(theta);if ~ishandle(h),return,endset(head,'xdata',x,'ydata',y);set(body,'xdata',[0;x],'ydata',[-0.05;y]);drawnow;end结果如下:三维图形几何变换六面体的生成根据在MATLAB中Help里查找到的方法,在按钮“六面体”下输入如下代码:figure('numbertitle','off','name','ÁùÃæÌåµÄ¼¸ºÎ±ä»»','color','b'); figure(1);subplot(2,2,1);v=[0 0 0;1 0 0;1 1 0;0 1 0;0 0 1;1 0 1;1 1 1;0 1 1;];m=[1 2 6 5;2 3 7 6;3 4 8 7;4 1 5 8;1 2 3 4;5 6 7 8];patch('Vertices',v,'Faces',m,'FaceVertexCData',hsv(8),'FaceColor','in terp');view(3);axis squarehold on;生成的六面体如下:图中把窗口分成了2*2的形式,方便平移、缩放、旋转变换后的比较。
汽车级Simulink建模与仿真
MinMax
9. 判正负
Sign
10. 汇总器
Mux
11. 开关
Switch
Sources Sources Sinks Sinks Math Operations Math Operations Math Operations Math Operations Math Operations Signal Routing Signal Routing
根据下列数学模型,用 Simulink 建模仿真。
1. 节气门开度(输入):
2. 负载扭矩(输入):
6
实战1:一个发动机模型
3. 进入进气歧管的空气质量速度:
7
实战1:一个发动机模型
4. 进气歧管的压力变化速度:
8
实战1:一个发动机模型
5. 离开进气歧管的空气质量速度(即进入气缸的空 气质量速度):
Combinatorial Logic:组合逻辑模块;
27
实战2:离合器接合 /分离模型
Simulink模型:
Tin
slipping
Tfmaxk
wv
Tin
we
NOT
Fn
回调函数 的使用
Tfmaxk Fn
Tfmaxs
part6 1
Gain1
Scope2
1 Gain
Tin
w
locked
locked Tin
Continuous
2. 查找表
Lookup TableLoopup Tables
3. 积分器(限幅)Integrator
Continuous
4. 终止仿真
Stop
Sinks
防止“ 除零 ”而采取的措施: 1.0 – u(1) / (u(2) + (u(2) == 0) * eps)
基于Simulink汽车电平衡系统仿真
基于Simulink汽车电平衡系统仿真Simulink汽车电平衡系统仿真是指通过Simulink软件模拟汽车电平衡系统的运作过程。
模拟过程可以以计算机图形化的方式表现,使用者可以在软件界面中操作,在实际芯片上电路写出虚拟电路原理图,然后通过模拟来验证电路的性能和稳定性,从而为实际应用做出参考。
在这里,我们将详细介绍Simulink 汽车电平衡系统仿真的相关内容及其重要性。
汽车电平衡系统是汽车安全性能的关键组成部分,它是通过控制车体在各方面的倾斜角度,以保证车辆行驶时的稳定性能。
汽车电平衡系统在日常生活中具有广泛的应用,在行驶过程中为司机和乘客提供了更安全和舒适的车内氛围。
在汽车近红外图像技术中,此技术也是刻不容缓的解决方案。
然而,生产厂商在推广其应用的过程中,需要确保汽车电平衡系统的稳定性、可靠性和性能。
因此,汽车电平衡系统的仿真工作也显得尤为重要。
Simulink是仿真软件中的佼佼者,在电路仿真中具有广泛的应用,这也是我们选择Simulink来进行汽车电平衡系统的仿真。
Simulink软件中汽车电平衡系统的仿真过程如下:首先,在软件界面上建立化系统实体块,然后在实体块中添加具体的控制算法和模型,模型中的参数可以通过计算机模拟出来,并在仿真过程中进行调整和优化,以达到我们想要的结果。
同时,还可以加入一些特定的控制参数,如重力、车速、路面状态、车辆倾角等,这些参数会对整个系统的运行产生重要的影响。
在Simulink 软件中,我们还可以使用各种信号图形化工具来设计汽车电平衡系统的控制信号,用于控制真实物理实体块达到我们预定的目标。
根据这些信号的复杂度和难度程度,调整信号的频率和幅值,以优化系统的功能性和可靠性。
在仿真过程中,在实体块中添加传感器来模拟车轮轴向力和车辆的倾斜角度。
模拟器将模拟实际道路运行过程中的各种场景,例如,人行道, 单向巷道, 常规道路和高速公路等等,然后通过调整实体块中的控制算法和信号来适应这些场景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12
实战1:一个发动机模型
用到的模块一览:
1. 关系运算符 Relational Op.
2. 积分器
Integrator
3. 饱和环节
Saturation
4. 单位延迟
Unit Delay
5. 初始条件
IC
6. 函数
Fcn
7. 子系统
SubSystem
8. 输入
In1
9. 输出
Out1
10. 触发器
9
实战1:一个发动机模型
6. 发动机扭矩:
10
实战1:一个发动机模型
7. 发动机角加速度:
11
实战1:一个发动机模型
用到的模块一览:
1. 常量
Constant
2. 阶跃
Step
3. 示波器
Scope
4. 终端
Terminator
5. 增益
Gain
6. 加减
Sum
7. 乘除
Product
8. 求最值
MinMax
9. 判正负
Sign
10. 汇总器
Mux
11. 开关
Switch
Sources Sources Sinks Sinks Math Operations Math Operations Math Operations Math Operations Math Operations Signal Routing Signal Routing
13
作业
完成各个子系统的建模。下节课将这些子系统 组装成一个完整的发动机模型。
14
实战1:一个发动机模型
Simulink throttle
模型:
part1
theta
dotmai
Pm
mai
part3
Terminator1
dotmai dotPm
dotmao
Pm
part4
Terminator2
N
dotmao
Trigger
Logic & Bit Op. Continuous Discontinuites Discrete Signal Attributes User-Defined Fcn Ports & Subsystems Ports & Subsystems Ports & Subsystems Ports & Subsystems
逻辑运算“ NOT”:(sys_not.mdl );
N
dotmao
Pm
mao
part5
Terminator3
1 s
Integrator
Terminator
T_load part2
T_eng N
T_load
part7
N
edge180
valve timing
ma T_eng
N
part6 30/pi
Gain
mass(k+1)
mass(k) trigger
compression
Scope1 Scope
15
实战1:一个发动机模型
仿真结果分析:
1. 负载减小,发动机转速升高并趋于稳定; 2. 节气门开度增加,发动机转速升高并趋于稳定; 3. 负载增大,发动机转速下降并趋于稳定。
2
3
1 发动机转速曲线
16
实战1:一个发动机模型
发动机转速闭环控制
加入一个离散控制器( PI控制器),通过一个快速节 气门执行器调节发动机转速,使得负载转矩的变化对 发动机转速的影响最小。
说明
0
0
0
0
保持分离态
0
0
1
1
保持接合态
0
1
0
0
保持分离态
0
1
1
0
切换至分离态
1
0
0
1
切换至接合态
1
0
1
1
保持接合态
1
1
0
1
切换至接合态
1
1
1
0
切换至分离态
25
实战2:离合器接合 /分离模型
基本模块介绍:
使能子系统 :当使能端口的控制信号为正时,子系统 执行(sys_enable.mdl );
触发子系统 :子系统只在触发事件发生的时刻执行, 并保持该时刻的输出直至下一次触发事 件发生(sys_trigger.mdl );
Pm
mao
part5
Terminator3
1 s
Integrator
Terminator
T_load part2
T_eng N
T_load
part7
N
edge180
valve timing
ma T_eng
N
part6 30/pi
Gain
mass(k+1)
mass(k) trigger
compression
根据下列数学模型,用 Simulink 建模仿真。
1. 节气门开度(输入):
2. 负载扭矩(输入):
6
实战1:一个发动机模型
3. 进入进气歧管的空气质量速度:
7
实战1:一个发动机模型
4. 进气歧管的压力变化速度:
8
实战1:一个发动机模型
5. 离开进气歧管的空气质量速度(即进入气缸的空 气质量速度):
参数定义:
Tf
22
实战2:离合器接合 /分离模型
摩擦扭矩:
最大动摩擦扭矩:
最大静摩擦扭矩:
对于非金属材 料的当量半径
23
实战2:离合器接合 /分离模型
离合器保持接合所需要的摩擦扭矩:
24
实战2:离合器接合 /分离模型
接合/分离的有限状态机(FSM):
接合条件 分离条件 原状态 执行动作 lock unlock mem locked
17
实战1:一个发动机模型
发动机
转速闭
speed set point
环控制
模型
Desired rpm Throttle setting
N
PI controller
theta
dotmai
Pm
mai
part3
Terminator1
dotmai dotPm
dotmao
Pm
part4
Terminator2
3
基本步骤
1. 启动 MATLAB 2. 启动 Simulink 3. 新建一个模型 4. 保存模型 5. 选择合适的模块 6. 模块操作 7. 信号线操作 8. 仿真参数设置 9. 开始仿真
4
扩展步骤
1. 示波器设置 2. 多个示波器分别显示多条曲线 3. 在一个示波器中显示多条曲线
5
实战1:一个发动机模型
车辆典型部件Simulink建模仿真
(车辆工程专业)
内容概览
1. 引例:用 Simulink 对微分方程建模仿真 2. 一个发动机模型 3. 离合器接合/分离模型 4. 防抱死制动系统(ABS) 5. 半车模型悬架系统
2
引例
用 Simulink 对下列微分方程进行建模仿真
x? ? ?2x ? u (u 为常数) x(t) ? ue?2t
Scope1 Scope
18
实战1:一个发动机模型
发动机转速闭环控制
发动机转速曲线 负载扭矩曲线
节气门开度曲线
19
作业
建立一个完整的带 PI 转速控制器的 Simulink 发动机模型(可参考 enginewc.mdl) 。
20
实战2:离合器接合 /分离模型
一个离合器集中参数模型
21
实战2:离合器接合 /分离模型