等腰三角形的性质-复习试题

合集下载

等腰三角形的判定与性质-初中数学习题集含答案

等腰三角形的判定与性质-初中数学习题集含答案

等腰三角形的判定与性质(北京习题集)(教师版)一.选择题(共6小题)1.(2019秋•丰台区期末)如图,每个小方格的边长为1,A,B两点都在小方格的顶点上,点C也是图中小方格的顶点,并且ABC∆是等腰三角形,那么点C的个数为()A.1B.2C.3D.42.(2019秋•海淀区校级月考)在ABCDE BC交BA于点D,∠的平分线交于点I,过点I作//∠与ACB∆中,ABC交AC于点E,且5∠=︒,则下列说法错误的是()AAC=,50AB=,3A.DBI∆和EICDI IE=∆是等腰三角形B. 1.5C.ADE∆的周长是8D.115?∠=BIC3.(2018秋•海淀区校级期中)如图,已知ABCMN BA,分+=,AO,BO分别是角平分线,且//∆中,24AC BC别交AC于N,BC于M,则CMN∆的周长为()A.12B.24C.36D.不确定4.(2017秋•北京期中)如图,ABCDE=,5CE=,∠的平分线,//DE AB交AC于点E,若6∆中,AD是BAC则AC的长为()A.11B.12C.13D.145.(2013秋•石景山区期末)如图,在ABC ∆中,BE 、CE 分别是ABC ∠和ACB ∠的平分线,过点E 作//DF BC 交AB 于D ,交AC 于F ,若4AB =,3AC =,则ADF ∆周长为( )A .6B .7C .8D .106.(2013秋•西城区期末)如图,ABC ∆中,AD 是BAC ∠的平分线,//DE AB 交AC 于点E ,若7DE =,5CE =,则(AC = )A .11B .12C .13D .14二.填空题(共7小题)7.(2018秋•东城区期末)已知在ABC ∆中,AB AC =.(1)若36A ∠=︒,在ABC ∆中画一条线段,能得到2个等腰三角形( 不包括)ABC ∆,这2个等腰三角形的顶角的度数分别是 ;(2)若36A ∠≠︒,当A ∠= 时,在等腰ABC ∆中画一条线段,能得到2个等腰三角形( 不包括)ABC ∆.(写出两个答案即可)8.(2018秋•顺义区期末)如图,在Rt ABC ∆中,90C ∠=︒,以ABC ∆的一边为边画等腰三角形,使得它的第三个顶点在ABC ∆的其他边上,则可以画出的不同的等腰三角形的个数最多为 .9.(2019秋•海淀区校级期中)ABC ∆中,AB AC =.设ABC ∆的面积为S , ①图1中,D 为BC 中点,E ,F ,M ,N 是AD 上的四点;②图2中,60BAC ∠=︒,AD BC ⊥,BE AC ⊥,CF AB ⊥,AD ,BE ,CF 交于点O ; ③图3中,90BAC ∠=︒,D 为BC 中点,90MDN ∠=︒.其中,阴影部分面积为12S 的是 (填序号).10.(2017秋•房山区期末)用一条长为16cm 的细绳围成一个等腰三角形,已知其中有一边的长为4cm ,那么该等腰三角形的腰长为 cm .11.(2018秋•西城区校级期中)如图,ABC ∆中,AD 是BAC ∠的平分线,//DE AB 交AC 于点E ,若7DE =,6CE =,则AC 的长为 .12.(2017秋•海淀区期末)如图,在ABC ∆中,4AB =,6AC =,ABC ∠和ACB ∠的平分线交于O 点,过点O 作BC 的平行线交AB 于M 点,交AC 于N 点,则AMN ∆的周长为 .13.(2015秋•北京校级期中)如图,ABC ∆中,BO 、CO 分别平分ABC ∠、ACB ∠,//OM AB ,//ON AC ,10BC cm =,则OMN ∆的周长= .三.解答题(共2小题)14.(2019秋•大兴区期末)如图,在ABC ∆中,点D ,E 在边BC 上,BD CE =,且AD AE =.求证:AB AC =.15.(2019秋•朝阳区校级期中)已知,如图,在ABC ∆中,AD 平分BAC ∠,AD AB =,CM AD ⊥于M ,请你通过观察和测量,猜想线段AB 、AC 之和与线段AM 有怎样的数量关系,并证明你的结论.猜想B ∠,ACM ∠,BCM ∠有怎样的数量关系,并证明你的结论.等腰三角形的判定与性质(北京习题集)(教师版)参考答案与试题解析一.选择题(共6小题)1.(2019秋•丰台区期末)如图,每个小方格的边长为1,A ,B 两点都在小方格的顶点上,点C 也是图中小方格的顶点,并且ABC ∆是等腰三角形,那么点C 的个数为( )A .1B .2C .3D .4【分析】分AB 为腰和为底两种情况考虑,画出图形,即可找出点C 的个数. 【解答】解:当AB 为腰时,点C 的个数有2个; 当AB 为底时,点C 的个数有1个, 故选:C .【点评】本题考查了等腰三角形的判定,解题的关键是画出图形,利用数形结合解决问题.2.(2019秋•海淀区校级月考)在ABC ∆中,ABC ∠与ACB ∠的平分线交于点I ,过点I 作//DE BC 交BA 于点D ,交AC 于点E ,且5AB =,3AC =,50A ∠=︒,则下列说法错误的是( )A .DBI ∆和EIC ∆是等腰三角形B . 1.5DI IE =C .ADE ∆的周长是8D .115?BIC ∠=【分析】由角平分线以及平行线的性质可以得到等角,从而可以判定IDB ∆和IEC ∆是等腰三角形,所以BD DI =,CE EI =,ADE ∆的周长被转化为ABC ∆的两边AB 和AC 的和,即求得ADE ∆的周长为8.【解答】解:BI 平分DBC ∠,DBI CBI ∴∠=∠, //DE BC , DIB IBC ∴∠=∠,DIB DBI ∴∠=∠,BD DI ∴=.同理,CE EI =.DBI ∴∆和EIC ∆是等腰三角形;ADE ∴∆的周长8AD DI IE EA AB AC =+++=+=;50A ∠=︒,130ABC ACB ∴∠+∠=︒, 65IBC ICB ∴∠+∠=︒, 115BIC ∴∠=︒,故选项A ,C ,D 正确, 故选:B .【点评】此题考查了等腰三角形的性质与判定以及角平分线的定义.此题难度适中,注意掌握数形结合思想与转化思想的应用.3.(2018秋•海淀区校级期中)如图,已知ABC ∆中,24AC BC +=,AO ,BO 分别是角平分线,且//MN BA ,分别交AC 于N ,BC 于M ,则CMN ∆的周长为( )A .12B .24C .36D .不确定【分析】由AO ,BO 分别是角平分线求得12∠=∠,34∠=∠,利用平行线性质求得,16∠=∠,35∠=∠,利用等量代换求得26∠=∠,45∠=∠,即可解题.【解答】解:由AO ,BO 分别是角平分线得12∠=∠,34∠=∠, 又//MN BA ,16∴∠=∠,35∠=∠, 26∴∠=∠,45∠=∠, AN NO ∴=,BM OM =.24AC BC +=,24AC BC AN NC BM MC ∴+=+++=,即24MN MC NC ++=,也就是CMN ∆的周长是24. 故选:B .【点评】此题考查学生对等腰三角形的判定与性质和平行线行至的理解和掌握,此题主要求得ANO BMO ∆∆是等腰三角形,这是解答此题的关键.4.(2017秋•北京期中)如图,ABC ∆中,AD 是BAC ∠的平分线,//DE AB 交AC 于点E ,若6DE =,5CE =,则AC 的长为( )A .11B .12C .13D .14【分析】先根据角平分线的性质得出BAD CAD ∠=∠,再根据平行线的性质得出CAD ADE ∠=∠,故可得出6AE DE ==,再根据AC AE CE =+即可得出结论.【解答】解:ABC ∆中,AD 是BAC ∠的平分线, BAD CAD ∴∠=∠,//DE AB ,6DE =,5CE =, CAD ADE ∴∠=∠, 6AE DE ∴==,6511AC AE CE ∴=+=+=.故选:A .【点评】本题考查的是等腰三角形的判定与性质,熟知等腰三角形的两底角相等是解答此题的关键.5.(2013秋•石景山区期末)如图,在ABC ∆中,BE 、CE 分别是ABC ∠和ACB ∠的平分线,过点E 作//DF BC 交AB 于D ,交AC 于F ,若4AB =,3AC =,则ADF ∆周长为( )A .6B .7C .8D .10【分析】根据角平分线的定义可得EBD EBC ∠=∠,ECF ECB ∠=∠,再根据两直线平行,内错角相等可得EBC BED ∠=∠,ECB CEF ∠=∠,然后求出EBD DEB ∠=∠,ECF CEF ∠=∠,再根据等角对等边可得ED BD =,EF CF =,即可得出DF BD CF =+;求出ADF ∆的周长AB AC =+,然后代入数据进行计算即可得解.【解答】(1)证明:E 是ABC ∠,ACB ∠平分线的交点,EBD EBC ∴∠=∠,ECF ECB ∠=∠,//DF BC ,DEB EBC ∴∠=∠,FEC ECB ∠=∠,DEB DBE ∴∠=∠,FEC FCE ∠=∠, DE BD ∴=,EF CF =,DF DE EF BD CF ∴=+=+, 即DE BD CF =+,ADF ∴∆的周长()()AD DF AF AD BD CF AF AB AC =++=+++=+,4AB =,3AC =, ADF ∴∆的周长437=+=,故选:B .【点评】本题考查了等腰三角形的判定与性质,平行线的性质,主要利用了角平分线的定义,等角对等边的性质,两直线平行,内错角相等的性质,熟记各性质是解题的关键.6.(2013秋•西城区期末)如图,ABC ∆中,AD 是BAC ∠的平分线,//DE AB 交AC 于点E ,若7DE =,5CE =,则(AC = )A .11B .12C .13D .14【分析】先根据角平分线的性质得出BAD CAD ∠=∠,再根据平行线的性质得出CAD ADE ∠=∠,故可得出7AE DE ==,再根据AC AE CE =+即可得出结论.【解答】解:ABC ∆中,AD 是BAC ∠的平分线, BAD CAD ∴∠=∠,//DE AB ,7DE =,5CE =, CAD ADE ∴∠=∠, 7AE DE ∴==,7512AC AE CE ∴=+=+=.故选:B .【点评】本题考查的是等腰三角形的判定与性质,熟知等腰三角形的两底角相等是解答此题的关键. 二.填空题(共7小题)7.(2018秋•东城区期末)已知在ABC ∆中,AB AC =.(1)若36A ∠=︒,在ABC ∆中画一条线段,能得到2个等腰三角形( 不包括)ABC ∆,这2个等腰三角形的顶角的度数分别是 108︒,36︒ ;(2)若36A ∠≠︒,当A ∠= 时,在等腰ABC ∆中画一条线段,能得到2个等腰三角形( 不包括)ABC ∆.(写出两个答案即可)【分析】(1)根据等腰三角形的性质和三角形的内角和即可得到结论; (2)当90A ∠=︒或108︒时,根据等腰三角形的性质即可得到结论. 【解答】解:(1)如图1所示:AB AC =,36A ∠=︒,∴当AE BE =,则36A ABE ∠=∠=︒,则108AEB ∠=︒,则36EBC ∠=︒,∴这2个等腰三角形的顶角度数分别是108度和36度;故答案为:108︒,36︒;(2)当90A ∠=︒或108︒时,在等腰ABC ∆中画一条线段,能得到2个等腰三角形, 故答案为:90︒或108︒.【点评】此题主要考查了应用作图与设计以及等腰三角形的性质,得出分割图形是解题关键.8.(2018秋•顺义区期末)如图,在Rt ABC ∆中,90C ∠=︒,以ABC ∆的一边为边画等腰三角形,使得它的第三个顶点在ABC ∆的其他边上,则可以画出的不同的等腰三角形的个数最多为 7个 .【分析】①以B 为圆心,BC 长为半径画弧,交AB 于点D ,BCD ∆就是等腰三角形; ②以A 为圆心,AC 长为半径画弧,交AB 于点E ,ACE ∆就是等腰三角形;③以C 为圆心,BC 长为半径画弧,交AC 于点F ,BCF ∆就是等腰三角形; ④以C 为圆心,BC 长为半径画弧,交AB 于点K ,BCK ∆就是等腰三角形; ⑤作AB 的垂直平分线交AC 于G ,则AGB ∆是等腰三角形; ⑥作BC 的垂直平分线交AB 于I ,则BCI ∆和ACI ∆是等腰三角形. 【解答】解:如图:可以画出7个等腰三角形;故答案为7.【点评】本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力. 9.(2019秋•海淀区校级期中)ABC ∆中,AB AC =.设ABC ∆的面积为S , ①图1中,D 为BC 中点,E ,F ,M ,N 是AD 上的四点;②图2中,60BAC ∠=︒,AD BC ⊥,BE AC ⊥,CF AB ⊥,AD ,BE ,CF 交于点O ; ③图3中,90BAC ∠=︒,D 为BC 中点,90MDN ∠=︒. 其中,阴影部分面积为12S 的是 ①②③ (填序号).【分析】由等腰三角形的性质可判断①,由等边三角形的性质可判断②,由ASA 可证ADF DBE ∆≅∆,可得ADF DBE S S ∆∆=,即可判断③.【解答】解:如图1,AB AC =,点D 是BC 中点,BD CD ∴=,AD 垂直平分BC ,BDN DCN S S ∆∆∴=,BMN MNC S S ∆∆=,BFM CFM S S ∆∆=,EFB EFC S S ∆∆=,AEB AEC S S ∆∆=,∴阴影部分面积为12S ;如图2,AB AC =,60BAC ∠=︒,ABC ∴∆是等边三角形,且AD BC ⊥,BE AC ⊥,CF AB ⊥,AD ∴垂直平分BC ,BE 垂直平分AC ,CF 垂直平分AB ,BDO CDO S S ∆∆∴=,AEO CEO S S ∆∆=,AFO BFO S S ∆∆=,∴阴影部分面积为12S ; 如图3,连接AD ,AB AC =,90BAC ∠=︒,D 为BC 中点,AD BD ∴=,45B DAC ∠=∠=︒,AD BC ⊥,90ADM BDM ∴∠+∠=︒,且90MDA ADN ∠+∠=︒,BDM ADN ∴∠=∠,且AD BD =,45B DAC ∠=∠=︒,()ADF DBE ASA ∴∆≅∆ ADF DBE S S ∆∆∴=,∴阴影部分面积为12S ; 故答案为:①②③.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,等边三角形的性质,灵活运用等腰三角形的性质是本题的关键.10.(2017秋•房山区期末)用一条长为16cm 的细绳围成一个等腰三角形,已知其中有一边的长为4cm ,那么该等腰三角形的腰长为 6 cm .【分析】分已知边4cm 是腰长和底边两种情况讨论求解.【解答】解:4cm 是腰长时,底边为16428-⨯=,448+=,4cm ∴、4cm 、8cm 不能组成三角形;4cm 是底边时,腰长为1(164)62cm -=, 4cm 、6cm 、6cm 能够组成三角形;综上所述,它的腰长为6cm .故答案为:6;【点评】本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.11.(2018秋•西城区校级期中)如图,ABC ∆中,AD 是BAC ∠的平分线,//DE AB 交AC 于点E ,若7DE =,6CE =,则AC 的长为 13 .【分析】先根据角平分线的性质得出BAD CAD ∠=∠,再根据平行线的性质得出CAD ADE ∠=∠,故可得出6AE DE ==,再根据AC AE CE =+即可得出结论.【解答】解:ABC ∆中,AD 是BAC ∠的平分线,BAD CAD ∴∠=∠,//DE AB ,7DE =,6CE =,CAD ADE ∴∠=∠,7AE DE ∴==,7613AC AE CE ∴=+=+=.故答案为:13.【点评】本题考查的是等腰三角形的判定与性质,熟知等腰三角形的两底角相等是解答此题的关键.12.(2017秋•海淀区期末)如图,在ABC ∆中,4AB =,6AC =,ABC ∠和ACB ∠的平分线交于O 点,过点O 作BC的平行线交AB 于M 点,交AC 于N 点,则AMN ∆的周长为 10 .【分析】利用角平分线及平行线性质,结合等腰三角形的判定得到MB MO =,NC NO =,将三角形AMN 周长转化,求出即可.【解答】解:BO 为ABC ∠的平分线,CO 为ACB ∠的平分线,ABO CBO ∴∠=∠,ACO BCO ∠=∠,//MN BC ,MOB OBC ∴∠=∠,NOC BCO ∠=∠,ABO MOB ∴∠=∠,NOC ACO ∠=∠,MB MO ∴=,NC NO =,MN MO NO MB NC ∴=+=+,4AB =,6AC =,AMN ∴∆周长为10AM MN AN AM MB AN NC AB AC ++=+++=+=,故答案为:10【点评】此题考查了等腰三角形的性质,以及平行线的性质,熟练掌握各自的性质是解本题的关键.13.(2015秋•北京校级期中)如图,ABC ∆中,BO 、CO 分别平分ABC ∠、ACB ∠,//OM AB ,//ON AC ,10BC cm =,则OMN ∆的周长= 10cm .【分析】由BO 为ABC ∠的平分线,得到一对角相等,再由OM 与AB 平行,根据两直线平行内错角相等得到一对角相等,等量代换得到MBO MOB ∠=∠,再由等角对等边得到OM BM =,同理ON CN =,然后利用三边之和表示出三角形OMN 的周长,等量代换得到其周长等于BC 的长,由BC 的长即可求出三角形OMN 的周长.【解答】解:BO 平分ABC ∠,ABO DBO ∴∠=∠,又//OM AB ,ABO MOB ∴∠=∠,MBO MOB ∴∠=∠,OM BM ∴=,同理ON CM =,10BC cm =,则OMN ∆的周长10c OM MN ON BM MN NC BC cm =++=++==.故答案为10cm .【点评】此题考查了等腰三角形的判定与性质,以及平行线的性质,利用了等量代换的思想,熟练掌握性质是解本题的关键.三.解答题(共2小题)14.(2019秋•大兴区期末)如图,在ABC ∆中,点D ,E 在边BC 上,BD CE =,且AD AE =.求证:AB AC =.【分析】作AF BC ⊥于点F ,由AD AE =,可得DF EF =,证出BF CF =,则结论得证.【解答】证明:作AF BC ⊥于点F ,AD AE =,DF EF ∴=,BD CE =,BD DF CE EF ∴+=+,即BF CF =,AF BC ⊥,AB AC ∴=.【点评】本题考查了等腰三角形的性质和中垂线的判定与性质,解题的关键是正确作出辅助线.15.(2019秋•朝阳区校级期中)已知,如图,在ABC ∆中,AD 平分BAC ∠,AD AB =,CM AD ⊥于M ,请你通过观察和测量,猜想线段AB 、AC 之和与线段AM 有怎样的数量关系,并证明你的结论.猜想B ∠,ACM ∠,BCM ∠有怎样的数量关系,并证明你的结论.【分析】根据题目提供的条件和图形中线段的关系,做出猜想2AB AC AM +=,过点C 作//CE AB ,CE 与AM 的延长线交于点E ,进一步证明AB AC AB CE AD ED AE +=+=+=,从而得到2AB AC AM +=,由B ADB EDC ECD ∠=∠=∠=∠,ACM MCE ∠=∠,可得B ACM BCM ∠-∠=∠.【解答】猜想:2AB AC AM +=,证明:过点C 作//CE AB ,CE 与AM 的延长线交于点E ,则ECD B ∠=∠,E BAD ∠=∠, AD 平分BAC ∠,∴∠=∠,BAD CAD∴∠=∠,E CAD∴=,AC EC又CM AD⊥于M,AM ME∴=,即2=,AE AM=,AD AB∴∠=∠,B ADB又EDC ADB∠=∠,∴∠=∠,ECD EDC∴=,ED EC∴+=+=+=,AB AC AB CE AD ED AE∴+=.AB AC AM2∠=∠,B ADB EDC ECD∠=∠=∠=∠,ACM MCE∴∠-∠=∠.B ACM BCM【点评】本题考查了等腰三角形的性质,解题的关键是正确地做出猜想,然后向着这个目标努力即可.。

等腰三角形的性质和判定复习

等腰三角形的性质和判定复习

学习目标1. 熟练运用等腰三角形的判定定理与性质定理进行推理和计算.学习过程一、填空题1. 如图1,如果一个三角形的两条高线相等,那么这个三角形一定是____ __.图12. 如图2,在ΔABC 中,高AD 、BE 交于H 点,若BH =AC ,则∠ABC =______.图2 图3 图4 图5 3. 如图3,ΔABC 中,AB =AC ,AD =BD ,AC =CD ,则∠BAC =______.4. 如图4,在ΔABC 中,∠ABC =120°,点D 、E 分别在AC 和AB 上,且AE =ED =DB =BC ,则∠A 的度数为 _° 5. 如图5,ΔABC 是等腰直角三角形,BD 平分∠ABC ,DE ⊥BC 于点E ,且BC =10cm ,则△DCE 的周长为______cm . 二、选择题6. 6.△ABC 中三边为a 、b 、c ,满足关系式()()()0a b b c c a ---=,则这个三角形一定为 ( ) A .等边三角形 B .等腰三角形 C .等腰钝角三角形 D .等腰直角三角形 7. 若一个三角形是轴对称图形,则这个三角形一定是 ( ) A .等边三角形 B .不等边三角形 C .等腰三角形 D .等腰直角三角形8. 如图6,ΔABC 中,AB =AC ,∠BAC =108°,若AD 、AE 三等分∠BAC ,则图中等腰三角形有 ( ) A .4个 B .5个 C .6个 D .7个 9. 等腰三角形两边a 、b 满足()2223110a b a b -+++-=,则此三角形的 周长是( ) A .7 B .5 C .8 D .7或510. 如图7,ΔABC 中,AB =AC ,BE =CD ,BD =CF ,则∠EDF =( )A .2∠AB .90°-2∠AC .90°-∠AD .A o∠-2190图6图7三、解答题11.如图,AD是∠BAC的平分线,∠B=∠EAC,EF⊥AD于F.求证:EF平分∠AEB.12.如图,在ΔABC中,CE是角平分线,EG∥BC,交AC边于F,交∠ACB的外角的平分线于G,探究线段EF 与FG的数量关系并证明你的结论.13.如图,过线段AB的两个端点作射线AM,BN,使AM∥BN,请按以下步骤画图并回答.(1)画∠MAB、∠NBA的平分线交于点E,∠AEB是什么角?(2)过点E任作一线段交AM于点D,交BN于点C.观察线段DE、CE,有什么发现?请证明你的猜想.(3)试猜想AD,BC与AB有什么数量关系?。

等腰三角形的性质精选试题

等腰三角形的性质精选试题

等腰三角形的性质精选试题一.选择题1.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A.7 B 11 . 7或11 D 7或102.如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A20° B 25° C 30° D 40°3.若等腰三角形一腰上的高等于腰长的一半,则此三角形的底角等于()A75° B 15° C 75°或15° D 30°4.等腰三角形一腰上的高与底边所成的角等于()A.顶角的一半B.底角的一半C.90°减去顶角的一半D.90°减去底角的一半5.如图,AB=AC,∠C=70°,AB垂直平分线EF交AC于点D,则∠DBC的度数为()A10° B 15° C 20° D 30°6.如图,在△ABC中,∠B=∠C,点F为AC上一点,FD⊥BC于D,过D点作DE⊥AB于E.若A90° B 80° C 68° D 60°1223341=P1P2,则A 4B 5C 6D 7PABA50° B 60° C 70° D 65°9.如图,AD=BC=BA,那么∠1与∠2之间的关系是()A.∠1=2∠2 B. 2∠1+∠2=180°C.∠1+3∠2=180°D. 3∠1﹣∠2=180°角三角形;③等腰三角形有一个外角等于120°,这个三角形一定是等边三角形;④等腰三角形中有一个是40°,那么它的底角是70°;⑤一个三角形中至少有一个角不小于60度.其中正确的有()A2个 B 3个 C 4个 D 5个11.(2011•沈河区一模)如图,在△ABC中,∠B=∠C,点D、E分别在BC、AC边上,∠CDE=15°,且∠AED=∠ADE,则∠BAD的度数为 _________ .12.如图,已知:AB=AC=AD,∠BAC=50°,∠DAC=30°,则∠BDC= _________ .13.如图所示,AOB是一钢架,且∠AOB=10°,为了使钢架更加坚固,需在其内部添加一些钢管EF,FG,GH…,添加的钢管长度都与OE相等,则最多能添加这样的钢管 _________ 根.14.如图,在△ABC中,DE、FG分别是边AB、AC的垂直平分线,则∠B _________ ∠1,∠C _________ ∠2;若∠BAC=126°,则∠EAG= _________ 度.三.解答题(共4小题)15.已知:如图,AD平分∠BAC,AD=AB,CM⊥AD于M.请你通过观察和测量,猜想线段AB、AC之和与线段AM有怎样的数量关系,并证明你的结论.猜想: _________ .证明:16.如图,在等腰△ABC中,AB=AC,点D在BC上,且AD=AE.(1)若∠BAC=90°,∠BAD=30°,求∠EDC的度数?(2)若∠BAC=a(a>30°),∠BAD=30°,求∠EDC的度数?(3)猜想∠EDC与∠BAD的数量关系?(不必证明)17.已知等腰直角三角形ABC,BC是斜边.∠B的角平分线交AC于D,过C作CE与BD垂直且交BD延长线于E,求证:BD=2CE.18.已知:如图,AF平分∠BAC,BC⊥AF于点E,点D在AF上,ED=EA,点P在CF上,连接PB交AF于点M.若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.19.如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明;(2)若D在底边的延长线上,(1)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.20:已知等边三角形△ABC,(1)动点P从点A出发,沿线段AB向点B运动,动点Q从点B 出发,沿线段BC向点C运动,连接CP、AQ交于M,如果动点P、Q都以相同的速度同时出发,则∠AMP=___度。

2021-2022学年人教版八年级数学上册等腰三角形的性质练习含答案

2021-2022学年人教版八年级数学上册等腰三角形的性质练习含答案

等腰三角形的性质一、选择题1.如图,已知线段AB,分别以A,B为圆心,大于AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD2.如图,在△ABC中,AB=AC,∠A=40°,CD∥AB,则∠BCD=()A.40°B.50°C.60°D.70°3.如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°4.等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°5.如图,在△ABC中,AB=AC,BD平分∠ABC,BD=BE,∠A=100°,则∠DEC=()A.90°B.100°C.105°D.110°6.如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于()A.10B.5C.4D.37.如图,将一张长方形纸按图中虚线AD对折,再沿直线l剪开,再把它展开后得到△ABC,则下列结论错误的是()A.AD⊥BC B.BD=CD C.∠B=∠C D.AB=CB8.如图,AB=AC,AB的垂直平分线MN交AC于点D,若∠C=65°,则∠DBC的度数是()A.25°B.20°C.30°D.15°9.如图,在△ABC中,AB=AC,点D在CA的延长线上,DE⊥BC于点E,∠BAC=100°,则∠D=()A.40°B.50°C.60°D.80°10.等腰三角形一腰上的高与另一腰的夹角为30°,它的顶角为()A.30°B.60°C.120°D.60°或120°二、非选择题11.已知:如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=度.12.如图,在△ABC中,AB=AC,D是BC边上的中点,连接AD,BE平分∠ABC交AC 于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.13.问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA =EC.若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由.(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.14.如图,在△ABC中,AB=AC,D是BC边上任意一点,过点D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当点D在BC的什么位置时,DE=DF?请加以证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?请加以证明.(3)若点D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.15.如图,∠ACB=90°,D、E在AB上,AD=AC,BE=BC,求∠DCE的度数.参考答案与试题解析一、选择题1.如图,已知线段AB,分别以A,B为圆心,大于AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD【分析】根据作图判断出四边形ACBD是菱形,再根据菱形的性质:菱形的对角线平分一组对角、菱形的对角线互相垂直平分可得出答案.【解答】解:由作图知AC=AD=BC=BD,∴四边形ACBD是菱形,∴AB平分∠CAD、CD平分∠ACB、AB⊥CD,不能判断AB=CD,故选:D.2.如图,在△ABC中,AB=AC,∠A=40°,CD∥AB,则∠BCD=()A.40°B.50°C.60°D.70°【分析】根据等腰三角形的性质可求∠ACB,再根据平行线的性质可求∠BCD.【解答】解:∵在△ABC中,AB=AC,∠A=40°,∴∠ACB=70°,∵CD∥AB,∴∠ACD=180°﹣∠A=140°,∴∠BCD=∠ACD﹣∠ACB=70°.故选:D.3.如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°【分析】根据三角形的内角和和等腰三角形的性质即可得到结论.【解答】解:∵在Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=40°,∵BC=BD,∴∠BCD=∠BDC=(180°﹣40°)=70°,∴∠ACD=90°﹣70°=20°,故选:D.4.等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°【分析】分80°角是顶角与底角两种情况讨论求解.【解答】解:①80°角是顶角时,三角形的顶角为80°,②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.故选:B.5.如图,在△ABC中,AB=AC,BD平分∠ABC,BD=BE,∠A=100°,则∠DEC=()A.90°B.100°C.105°D.110°【分析】由在△ABC中,AB=AC,∠A=100°,根据等边对等角的性质,可求得∠ABC 的度数,又由BD平分∠ABC,即可求得∠DBE的度数,又由等边对等角的性质,可求得∠BED的度数,根据平角的定义就可求出∠DEC的度数.【解答】解:∵在△ABC中,AB=AC,∠A=100°,∴∠ABC=∠C=40°,∵BD平分∠ABC,∴∠DBE=∠ABC=20°,∴∠BDE=∠BED=80°,∴∠DEC=100°.故选:B.6.如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于()A.10B.5C.4D.3【分析】根据等腰三角形三线合一的性质即可求解.【解答】解:∵AD是等腰三角形ABC的顶角平分线,BD=5,∴CD=5.故选:B.7.如图,将一张长方形纸按图中虚线AD对折,再沿直线l剪开,再把它展开后得到△ABC,则下列结论错误的是()A.AD⊥BC B.BD=CD C.∠B=∠C D.AB=CB【分析】由图中操作可知:AD所在直线是△ABC的对称轴,即可得出结论.【解答】解:由图中操作可知:AD所在直线是△ABC的对称轴,∴AD⊥BC,BD=CD,∠B=∠C,AB=AC,∴A,B,C正确,D错误,故选:D.8.如图,AB=AC,AB的垂直平分线MN交AC于点D,若∠C=65°,则∠DBC的度数是()A.25°B.20°C.30°D.15°【分析】根据等腰三角形的性质得到∠ABC,再根据垂直平分线的性质求出∠ABD,从而可得结果.【解答】解:∵AB=AC,∠C=∠ABC=65°,∴∠A=180°﹣65°×2=50°,∵MN垂直平分AB,∴AD=BD,∴∠A=∠ABD=50°,∴∠DBC=∠ABC﹣∠ABD=15°,故选:D.9.如图,在△ABC中,AB=AC,点D在CA的延长线上,DE⊥BC于点E,∠BAC=100°,则∠D=()A.40°B.50°C.60°D.80°【分析】根据等腰三角形的性质和三角形内角和定理,求得∠C=40°,然后根据直角三角形两锐角互余,即可求得∠D=50°.【解答】解:∵AB=AC,∠BAC=100°,∴∠C=∠B=40°,∵DE⊥BC于点E,∴∠D=90°﹣∠C=50°,故选:B.10.等腰三角形一腰上的高与另一腰的夹角为30°,它的顶角为()A.30°B.60°C.120°D.60°或120°【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成立,因而可分两种情况进行讨论.【解答】解:分两种情况:①当高在三角形内部时(如图1),∵∠ABD=30°,∴顶角∠A=90°﹣30°=60°;②当高在三角形外部时(如图2),∵∠ABD=30°,∴顶角∠CAB=90°+30°=120°.故选:D.二、非选择题11.已知:如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=40度.【分析】根据等腰三角形的性质和三角形的内角和定理即可得到结论.【解答】解:∵AD=DC,∴∠DAC=∠C=35°,∴∠ADB=∠DAC+∠C=70°.∵AB=AD,∴∠B=∠ADB=70°,∴∠BAD=180°﹣∠B﹣∠ADB=180°﹣70°﹣70°=40°.故答案为:40.12.如图,在△ABC中,AB=AC,D是BC边上的中点,连接AD,BE平分∠ABC交AC 于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.【分析】(1)利用等腰三角形的三线合一的性质证明∠ADB=90°,再利用等腰三角形的性质求出∠ABC即可解决问题.(2)只要证明∠FBE=∠FEB即可解决问题.【解答】(1)解:∵AB=AC,∴∠C=∠ABC,∵∠C=36°,∴∠ABC=36°,∵BD=CD,AB=AC,∴AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣36°=54°.(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC,∵EF∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴FB=FE.13.问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA =EC.若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由.(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.【分析】(1)根据三角形外角的性质得到∠AED=2∠C,①求得∠DAE=90°﹣∠BAD =90°﹣(45°+∠C)=45°﹣∠C,②由①,②即可得到结论;(2)设∠ABC=m°,根据三角形的内角和定理和等腰三角形的性质即可得到结论.【解答】解:(1)∠DAC的度数不会改变;∵EA=EC,∴∠EAC=∠C,①,∵BA=BD,∴∠BAD=∠BDA,∵∠BAE=90°,∴∠B=90°﹣∠AED=90°﹣2∠C,∴∠BAD=(180°﹣∠B)=[180°﹣(90°﹣2∠C)]=45°+∠C,∴∠DAE=90°﹣∠BAD=90°﹣(45°+∠C)=45°﹣∠C,②由①,②得,∠DAC=∠DAE+∠CAE=45°﹣∠C+∠C=45°;(2)设∠ABC=m°,则∠BAD=(180°﹣m°)=90°﹣m°,∠AEB=180°﹣n°﹣m°,∴∠DAE=n°﹣∠BAD=n°﹣90°+m°,∵EA=EC,∴∠CAE=AEB=90°﹣n°﹣m°,∴∠DAC=∠DAE+∠CAE=n°﹣90°+m°+90°﹣n°﹣m°=n°.14.如图,在△ABC中,AB=AC,D是BC边上任意一点,过点D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当点D在BC的什么位置时,DE=DF?请加以证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?请加以证明.(3)若点D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.【分析】(1)当点D在BC的中点时,DE=DF,根据AAS证△BED≌△CFD,根据全等三角形的性质推出即可;(2)连接AD,根据三角形ABC的面积=三角形ABD的面积+三角形ACD的面积,进行分析证明;(3)类似(2)的思路,仍然用计算面积的方法来确定线段之间的关系.即三角形ABC 的面积=三角形ABD的面积﹣三角形ACD的面积.【解答】(1)解:当点D在BC的中点时,DE=DF.理由:如图1中,连接AD.∵D为BC的中点,∴BD=CD.∵AB=AC,∴∠B=∠ACB,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°.在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴DE=DF.(2)解:DE+DF=CG.证明如下:如图2,连接AD,则S△ABC=S△ABD+S△ACD,即AB•CG=AB•DE+AC•DF.∵AB=AC,∴DE+DF=CG.(3)解:当点D在BC的延长线上时,(2)中的结论不成立,但有DE﹣DF=CG.理由如下:如图3,延长BC至点D,连接AD,过点D作DF⊥AC,交AC的延长线于点F,则S△ABD=S△ABC+S△ACD,即AB•DE=AB•CG+AC•DF.∵AB=AC,∴DE=CG+DF,即DE﹣DF=CG.15.如图,∠ACB=90°,D、E在AB上,AD=AC,BE=BC,求∠DCE的度数.【分析】由AD=AC,BC=BE,根据等边对等角得出∠ACD=∠ADC,∠BEC=∠ECB,再利用三角形内角和定理得出∠A=180°﹣2∠ADC,∠B=180°﹣2∠DEC,而∠A+∠B=90°,那么求出∠ADC+∠DEC=135°,则∠DCE=180°﹣(∠ADC+∠DEC)=180°﹣135°=45°.【解答】解:∵AD=AC,∴∠ADC=∠ACD.∵BE=BC,∴∠BEC=∠ECB.∵∠ACB=90°,∴∠A+∠B=90°.在△ACD中,∠A=180°﹣2∠ADC,在△BCE中,∠B=180°﹣2∠DEC,∴∠A+∠B=180°﹣2∠ADC+180°﹣2∠DEC=90°.∴360°﹣2(∠ADC+∠DEC)=90°.∴∠ADC+∠DEC=135°.∴∠DCE=180°﹣(∠ADC+∠DEC)=180°﹣135°=45°.。

专题16 等腰三角形的性质

专题16 等腰三角形的性质

专题16 等腰三角形的性质例题与求解【例1】如图,在△ABC 中,D 在AC 上,E 在AB 上,且AB =AC ,BC =BD ,AD =DE =BE , 则∠A =___________.(五城市联赛试题)解题思路:图中有很多相关的角,用∠A 的代数式表示这些角,建立关于∠A 的等式.【例2】如图,在△ABC 中,已知∠BAC =900,AB =AC ,D 为AC 中点,AE ⊥BD 于E ,延长AE 交BC 于F ,求证:∠ADB =∠CDF .(安徽省竞赛试题)解题思路:∠ADB 与∠CDF 对应的三角形不全等,因此,需构造全等三角形,而在等腰三角形中,作顶角的平分线或底边上的高(中线)是一条常用的辅助线.【例3】如图,在△ABC 中,AC =BC ,∠ACB =900,D 是AC 上一点,且AE 垂直BD 的延长线于E ,又AE =12BD ,求证:BD 是∠ABC 的角平分线. (北京市竞赛试题)解题思路:∠ABC 的角平分线与AE 边上的高重合,故应作辅助线补全图形,构造全等三角形、等腰三角形.【例4】如图,在△ABC 中,∠BAC =∠BCA =440,M 为△ABC 内一点,使∠MCA =300,∠MAC =160,求∠BMC 度数.(北京市竞赛试题)A EBCDA BCD E A BCD EF解题思路:作等腰△ABC 的对称轴(如图1),通过计算,证明全等三角形,又440+160=600;可以AB 为一边,向点C 所在的一侧作等边△ABN ,连结CN ,MN (如图2);或以AC 为一边,向点B 所在的一侧作等边△ACN ,连结BN (如图3).【例5】如图,△ABC 是边长为1的等边三角形,△BDC 是顶角∠BDC =1200的等腰三角形,以D 为顶点作一个600角,角的两边分别交AB 于M ,交AC 于N ,连结MN ,形成一个三角形.求证:△AMN 的周长等于2.(天津市竞赛试题)解题思路:欲证△AMN 的周长等于2,只需证明MN =BM +CN ,考虑用补短法证明.能力训练A 级1.如果等腰三角形一腰上的高另一腰的夹角为450,那么这个等腰三角形的底角为_____________. 2.如图,已知∠A =150,AB =BC =CD =DE =EF ,则∠FEM =_____________.3.如图,在等边△ABC 的AC ,BC 边上各取一点P 、Q ,使AP =CQ ,AQ ,BP 相交于点O ,则 ∠BOQ =____________.4.如图,在△ABC 中,∠BCA =900,∠BAC =600,BC =4,在CA 的延长线取点D ,使AD =AB ,则D ,B 两点之间的距离是____________.BACDN M BCMAB C M A 图 1 DO BC M A 图 2NBC MA 图 3 N5.如图,在△ABC 中,AB =AC ,D 为BC 上一点,BF =CD ,CE =BD ,那么∠EDF 等于( ) A .900-12∠A B .900-∠AC .1800-∠AD .450-12∠A 6.如图,在△ABC 中,∠ACB =900,AC =AE ,BC =BF ,则∠ECF =()A .600B .450C .300D .不确定(安徽省竞赛试题)B第5题图 第6题图7.△ABC 的一个内角的大小是400,且∠A =∠B ,那么∠C 的外角的大小是( )A .1400B .800或1000C .1000或1400D .800或1400(“希望杯”邀请赛试题) 8.三角形三边长a ,b ,c 满足1111a b c a b c -+=-+,则三角形一定是( ) A .等边三角形 B .以a 为底边的等腰三角形C .以c 为底边的等腰三角形D .等腰三角形(北京市竞赛试题)9.如图,在△ABC 中,AB =AC ,D ,E 分别是腰AB ,AC 延长线上的点,且BD =CE ,连结DE 交BC 于G ,求证:DG =EG .(湖北省竞赛试题)(第2题)BACDEFM NABC QPO(第3题)ABC D(第4题)ACBEF10.如图,在△ABC 中,∠BAC =900,AB =AC ,BE 平分∠ABC ,CE ⊥BE ,求证:CE =12BD . (江苏省竞赛试题)11.已知Rt △ABC 中,AC =BC ,∠C =900,D 为AB 边中点,∠EDF =900,将∠EDF 绕D 点旋转,它的两边分别交AC ,BC (或它们的延长线)于E 、F ,当∠EDF 绕D 点旋转到DE ⊥AC 于E 时(如图1),易证:S △DEF +S △CEF =12S △ABC ,当∠EDF 绕D 点旋转到DE 和AC 不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,S △DEF ,S △CEF ,S △ABC 又有怎样的数量关系?请写出你的猜想,不需证明.(牡丹江市中考试题)12.如图,在△ABC 中,AB =AC ,∠BAC =800,O 为△ABC 内一点,且∠OBC =100,∠OCA =200,求∠BAO 的度数.(天津市竞赛试题)A B CAB CAB CE D FE DF DF图1图2图3ABC D GE A B C D EBB 级1.如图,在△ABC 中,∠ABC =1000,AM =AN ,CN =CP ,则∠MNP =_________.2.如图,在△ABC 中,AB =AC ,∠BAC =900,直角∠EPF 的顶点P 是BC 的中点,两边PE ,PF 分别交AB ,AC 于点E ,F ,给出以下4个结论:①AE =CF ;②△EPF 是等腰直角三角形;③S 四边形AEPF =12S △ABC;④EF =AP .当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A ,B 重合).上述结论正确的是____________.(苏州市中考试题)3.如图,在△ABC 中,AB =BC ,M ,N 为BC 边上两点,并且∠BAM =∠CAN ,MN =AN ,则∠MAC 的度数是____________.4.如图,在△ABC 中,AB =AC ,∠BAC 与∠ACB 的平分线相交于D ,∠ADC =1300,那么∠CAB 的大小是( )A .800B .500C .400D .2005.如图,在△ABC 中,∠BAC =1200,AD ⊥BC 于D ,且AB +BD =DC ,则∠C 的大小是( )A .200B .250C .300D .450 6.如图,在△ABC 中,AC =BC ,∠ACB =900,AE 平分∠BAC 交BC 于E ,BD ⊥AE 于D ,DM ⊥AC 交AC 的延长线于M ,连CD ,下列四个结论:①∠ADC =450;②BD =12AE ;③AC +CE =AB ;④AB -BC =2MC .其中正确结论的个数为( )A .1个B .2个C .3个D .4个7.如图,已知△ABC 为等边三角形,延长BC 至D ,延长BA 至E ,并且使AE =BD ,连结CE 、DE ,求证:CE =DE .ABCNM P (第1题)ABC PEF(第2题)AB CN M(第3题)A(第4题)B CD(第5题)ABCD ABD ECM(第6题)8.如图,△ABC 中,已知∠C =600,AC >BC ,又△ABC ′、△A ′BC 、△AB ′C 都是△ABC 外的等边三角形,而点D 在AC 上,且BC =DC .⑴ 证明:△C ′BD ≌△B ′DC ; ⑵ 证明:△AC ′D ≌△DB ′A ;⑶ 对△ABC 、△ABC ′、△A ′BC 、△AB ′C ,从面积大小关系上,你能得出什么结论?(江苏省竞赛试题)9.在△ABC 中,已知AB =AC ,且过△ABC 某一顶点的直线可将△ABC 分成两个等腰三角形,试求△ABC 各内角的度数.(江苏省扬州中学测试题)10.如图,在△ABC 中,∠C =900,∠CAD =300,AC =BC =AD ,求证:CD =BD .A BCDEAB CDA ′B ′C ′ABC D。

备考2023年中考数学一轮复习-图形的性质_三角形_等腰三角形的性质-综合题专训及答案

备考2023年中考数学一轮复习-图形的性质_三角形_等腰三角形的性质-综合题专训及答案

备考2023年中考数学一轮复习-图形的性质_三角形_等腰三角形的性质-综合题专训及答案等腰三角形的性质综合题专训1、(2016北京.中考真卷) 在等边△ABC中,(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明PA=PM,只需证△APM是等边三角形;想法2:在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM;想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK…请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可).2、(2015葫芦岛.中考真卷) 在△ABC中,AB=AC,点F是BC延长线上一点,以CF 为边,作菱形CDEF,使菱形CDEF与点A在BC的同侧,连接BE,点G是BE的中点,连接AG、DG.(1)如图①,当∠BAC=∠DCF=90°时,直接写出AG与DG的位置和数量关系;(2)如图②,当∠BAC=∠DCF=60°时,试探究AG与DG的位置和数量关系,(3)当∠BAC=∠DCF=α时,直接写出AG与DG的数量关系.3、(2017杭州.中考模拟) 如图1,O为线段AB上一点,AB=6,OC为射线,且∠BOC=60°,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.(1)若AO=4,=;①当t=1秒时,OP=,S△ABP②当△ABP是直角三角形时,求t的值;(2)如图2,若点O为AB中点,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B,求AQ•BP的值.4、(2016巢湖.中考模拟) 如图,有一块分别均匀的等腰三角形蛋糕(AB=AC且AB≠BC),在蛋糕的边缘均匀分布着巧克力,小明和小华决定只切一刀将这块蛋糕平分(要求分得的蛋糕和巧克力质量都一样).这条分割直线既平分了三角形的面积,又平分了三角形的周长,我们称这条直线为三角形的“等分积周线”.(1)小明很快就想到了一条经过点A分割直线,请你用尺规作图在图1中画出这条“等分积周线(不写画法).(2)小华觉得小明的方法很好,所以自己模仿着在图2中过点C画了一条直线CD交AB于点D.你觉得小华会成功吗?请说明理由.(3)若AB=BC=5,BC=6,请你通过计算,在图3中找出△ABC不经过顶点的一条“等分积周线”.5、(2018南宁.中考模拟) 如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.(1)求证:△PFA∽△ABE;(2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件:.6、(2017洛阳.中考模拟) 如图,在△ABD中,AB=AD,以AB为直径的⊙F交BD于点C,交AD于点E,CG⊥AD于点G,连接FE,FC.(1)求证:GC是⊙F的切线;(2)填空:①若∠BAD=45°,AB=2 ,则△CDG的面积为.②当∠GCD的度数为时,四边形EFCD是菱形.7、(2017衡阳.中考模拟) 如图△ABC中,AB=AC=10厘米,BC=12厘米,D是BC的中点,点P从B出发,以a厘米/秒(a>0)的速度沿BA匀速向点A运动,点Q 同时以1厘米/秒的速度从D出发,沿DB匀速向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,设它们运动的时间为t秒.(1)若a=2,△BPQ∽△BDA,求t的值;(2)设点M在AC上,四边形PQCM为平行四边形.①若a= ,求PQ的长;②是否存在实数a,使得点P在∠ACB的平分线上?若存在,请求出a的值;若不存在,请说明理由.8、(2018永州.中考真卷) 如图1.在△ABC中,矩形EFGH的一边EF在AB上,顶点G、H分别在BC、AC上,CD是边AB上的高,CD交GH于点I.若CI=4,HI=3,AD .矩形DFGI恰好为正方形.(1)求正方形DFGI的边长;(2)如图2,延长AB至P.使得AC=CP,将矩形EFGH沿BP的方向向右平移,当点G刚好落在CP上时,试判断移动后的矩形与△CBP重叠部分的形状是三角形还是四边形,为什么?(3)如图3,连接DG,将正方形DFGI绕点D顺时针旋转一定的角度得到正方形DF′G′I′,正方形DF′G′I′分别与线段DG、DB相交于点M、N,求△MNG′的周长.9、(2019广东.中考模拟) 如图M2-11,Rt△ABC中,∠C=90°,BD为△ABC的角平分线,以AD为直径的⊙O交AB于点E,BD的延长线交⊙O于点F,连接AF,EF,ED.(1)求证:∠BDC=∠BDE;(2)求证:FA=FE;(3)若BC=4,CD=3,求AF的长.10、(2019柳州.中考模拟) 如图,已知直线与双曲线交于A,B两点点A在点B的上方.(1)求点A与点B的坐标;(2)点C在x轴上,若AC是等腰的腰,求符合条件的所有点C坐标.11、(2017遵义.中考真卷) 边长为2 的正方形ABCD中,P是对角线AC上的一个动点(点P与A、C不重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,QP与BC交于点E,QP延长线与AD(或AD延长线)交于点F.(1)连接CQ,证明:CQ=AP;(2)设AP=x,CE=y,试写出y关于x的函数关系式,并求当x为何值时,CE= BC;(3)猜想PF与EQ的数量关系,并证明你的结论.12、(2017云南.中考真卷) 如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E,F分别是AB,AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.13、(2020衡阳.中考真卷) 如图1,平面直角坐标系中,等腰的底边在x轴上,,顶点A在y的正半轴上,,一动点从出发,以每秒1个单位的速度沿向左运动,到达的中点停止.另一动点F从点C出发,以相同的速度沿向左运动,到达点O停止.已知点E、F同时出发,以为边作正方形,使正方形和在的同侧.设运动的时间为秒().(1)当点H落在边上时,求t的值;(2)设正方形与重叠面积为S,请问是存在t值,使得?若存在,求出t值;若不存在,请说明理由;(3)如图2,取的中点D,连结,当点E、F开始运动时,点N从点O出发,以每秒个单位的速度沿运动,到达点O停止运动.请问在点E的整个运动过程中,点M可能在正方形内(含边界)吗?如果可能,求出点M在正方形内(含边界)的时长;若不可能,请说明理由.14、(2020温州.中考模拟) 如图,在平面直角坐标系中,矩形ABCD的边AB在x轴上,AB、BC的长分别是一元二次方程x2﹣7x+12=0的两个根(BC>AB),OA=2OB,边CD交y轴于点E,动点P以每秒1个单位长度的速度,从点E出发沿折线段ED﹣DA向点A运动,运动的时间为t(0≤t<6)秒,设△BOP与矩形AOED 重叠部分的面积为S.(1)求点D的坐标;(2)求S关于t的函数关系式,并写出自变量的取值范围;(3)在点P的运动过程中,是否存在点P,使△BEP为等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.15、(2020路北.中考模拟) 如图,在中,,点从点出发沿向点运动,点从点出发沿向点运动,点和点同时出发,速度相同,到达点或点后运动停止.(1)求证:;(2)若,求的度数;(3)若的外心在其内部时,直接写出的取值范围.等腰三角形的性质综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。

2021暑假复习七年级下册--等腰三角形的性质

2021暑假复习七年级下册--等腰三角形的性质

2021暑假复习七年级下册--等腰三角形的性质【典例解析】1.(2021春•七星关区期末)已知等腰三角形中有两边长分别为4cm和8cm,那么此三角形的周长为()A.16cm B.20cm C.16cm或20cm D.以上都不正确2.(2021春•盐湖区校级期末)若等腰三角形的一个角是80°,则此等腰三角形的顶角为()A.80°B.20°C.80°或20°D.40°3.(2021春•漳州期末)如图,△ABC中,AB=AC,AD是BC边上的中线,若∠B=70°,则∠BAD等于()A.20°B.30°C.40°D.50°4.(2020秋•长垣市月考)如图,△ABC是等边三角形,CB=CD,∠ABD=12°,则∠BAD的度数为()3题图4题图6题图A.10°B.15°C.18°D.20°5.(2021春•顺德区期末)一个等腰三角形的底角是顶角的2倍,则顶角的大小是.6.(2020秋•姜堰区期末)如图,BD、CE是等边三角形ABC的中线,则∠EFD=.7.(2021春•延庆区期末)完成下面的证明.已知:如图,三角形ABC中,∠B=∠C,点N在BA的延长线上,且AM∥BC.求证:AM是∠CAN的角平分线.证明:∵AM∥BC,∴∠B=∠1(),∠C=∠2().∵∠B=∠C,∴∠1=.∴AM是∠CAN的角平分线().8.(2021•门头沟区一模)已知,如图,△ABC是等边三角形,BD⊥AC于D,E是BC延长线上的一点,DB=DE.求∠E的度数.9.(2021春•莲湖区期末)如图,在△ABC中,AB=AC,点D是BC的中点,点E在AB上,BE=BD,∠BAC=76°,求∠ADE的大小.【跟踪练习】一.选择题(共10小题)1.(2021春•铁西区期末)AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于()A.10B.5C.4D.32.(2021春•皇姑区期末)如图,△ABC中,点D为BC边上的一点,且BD=BA,连结AD,BP平分∠ABC交AD 于点P,连结PC,若△ABC面积为2cm2,则△BPC的面积为().A.0.5cm2B.1cm2C.0.5cm2D.2cm23.(2021春•长丰县期末)如图,在△ABC中,AB=AD=CD,∠C=38.5°,则∠BAD=()A.26°B.28°C.36°D.38.5°2题图3题图5题图6题图4.(2021春•碑林区校级期末)若(a﹣2)2+|b﹣5|=0,则以a、b为边长的等腰三角形的周长为()A.7B.12C.9D.9或125.(2021•益阳)如图,AB∥CD,△ACE为等边三角形,∠DCE=40°,则∠EAB等于()A.40°B.30°C.20°D.15°6.(2021•前郭县二模)如图,直线L1∥L2,△ABC是等边三角形.若∠1=40°,则∠2的大小为()A.60°B.80°C.90°D.100°二.填空题(共8小题)7.(2021春•泗县期末)已知等腰三角形腰长为3,底为4,则这个等腰三角形周长为.8.(2021春•槐荫区期末)如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠BAC=100°,∠C=50°,则∠BAD的大小为度.9.(2021春•福田区期末)等腰三角形中有一个角为100°,则其顶角的度数为度.10.(2021春•城阳区期末)如图,在△ABC中,AC=BC,D是AB的中点,连接CD,∠ACB=46°,则∠A=.8题图10题图11题图11.(2021春•侯马市期末)如图所示,在△ABC中,∠B=∠C,∠BAD=36°,并且∠ADE=∠AED,则∠CDE 的度数是.12.(2021春•章丘区期末)等腰三角形一腰上的中线将它的周长分为9和12两部分,则它的腰长、底边长分别为.三.解答题(共7小题)13.(2021春•济南期末)如图,AD是等边△ABC的中线,AE=AD,求∠AED的度数.14.(2021春•砀山县期末)三角形ABC中,AB=AC,D是AC上一点,且AD=BD=BC,则∠A等于多少?15.(2021春•闵行区期末)已知在等腰△ABC中AB=AC,∠B=2∠A,求∠B的度数.16.(2019秋•大名县期中)已知:如图,等边三角形ABC中,D、E分别是BC、AC上的点,且AE=CD.(1)求证:AD=BE;(2)求:∠BFD的度数.2021暑假复习七年级下册--等腰三角形的性质参考答案与试题解析【典例解析】1.(2021春•七星关区期末)已知等腰三角形中有两边长分别为4cm和8cm,那么此三角形的周长为()A.16cm B.20cmC.16cm或20cm D.以上都不正确【解答】解:等腰三角形的两边长分别为4cm和8cm,当腰长是4cm时,则三角形的三边是4cm,4cm,8cm,4cm+4cm=8cm不满足三角形的三边关系;当腰长是8cm时,三角形的三边是8cm,8cm,4cm,三角形的周长是20cm.故选:B.12.(2021春•盐湖区校级期末)若等腰三角形的一个角是80°,则此等腰三角形的顶角为()A.80°B.20°C.80°或20°D.40°【解答】解:当80°角为顶角时,则等腰三角形的顶角为80°;当80°角为底角时,等腰三角形的顶角为180°﹣80°﹣80°=20°,即此等腰三角形的顶角为80°或20°.故选:C.3.(2021春•漳州期末)如图,△ABC中,AB=AC,AD是BC边上的中线,若∠B=70°,则∠BAD等于()A.20°B.30°C.40°D.50°【解答】解:∵AB=AC,AD为BC边上的中线,∴AD⊥BC,∴∠BAD=90°﹣∠B=20°,故选:A.4.(2020秋•长垣市月考)如图,△ABC是等边三角形,CB=CD,∠ABD=12°,则∠BAD的度数为()A.10°B.15°C.18°D.20°【解答】解:∵△ABC是等边三角形,∠ABC=60°,而∠ABD=12°,∴∠DBC=60°+12°=72°.∵CB=CD,∴∠BCD=180°﹣72°﹣72°=36°,∴∠DCA=60°﹣36°=24°,∵CD=CB=CA,∴∠DAC=×(180°﹣24°)=78°,∴∠BAD=78°﹣60°=18°.故选:C.5.(2021春•顺德区期末)一个等腰三角形的底角是顶角的2倍,则顶角的大小是36°.【解答】解:设等腰三角形的顶角度数为x,∵等腰三角形的底角是顶角的2倍,∴底角度数为2x,根据三角形内角和定理得:x+2x+2x=180°,解得x=36°,则顶角的度数为36°.故答案为:36°.6.(2020秋•姜堰区期末)如图,BD、CE是等边三角形ABC的中线,则∠EFD=120°.【解答】解:∵BD、CE是等边三角形ABC的中线,∴BD⊥AC,CE⊥AB,∠A=60°,∴∠AEF=∠ADF=90°,∵∠EFD=360°﹣90°﹣90°﹣∠A=180°﹣60°=120°.故答案为120°.7.(2021春•延庆区期末)完成下面的证明.已知:如图,三角形ABC中,∠B=∠C,点N在BA的延长线上,且AM∥BC.求证:AM是∠CAN的角平分线.证明:∵AM∥BC,∴∠B=∠1(两直线平行,同位角相等),∠C=∠2(两直线平行,内错角相等).∵∠B=∠C,∴∠1=∠2.∴AM是∠CAN的角平分线(角平分线定义).【解答】证明:∵AM∥BC,∴∠B=∠1(两直线平行,同位角相等),∠C=∠2(两直线平行,内错角相等).∵∠B=∠C,∴∠1=∠2.∴AM是∠CAN的角平分线(角平分线定义).故答案为:两直线平行,同位角相等;两直线平行,内错角相等;∠2;角平分线定义.8.(2021•门头沟区一模)已知,如图,△ABC是等边三角形,BD⊥AC于D,E是BC延长线上的一点,DB=DE.求∠E的度数.【解答】解:∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∵BD⊥AC,∴∠DBC=∠ABD==30°,∵DB=DE,∴∠E=∠DBC=30°.9.(2021春•莲湖区期末)如图,在△ABC中,AB=AC,点D是BC的中点,点E在AB上,BE=BD,∠BAC=76°,求∠ADE的大小.【解答】解:∵AB=AC,∠BAC=76°,∴∠B=∠C=(180°﹣∠BAC)=52°,∵BD=BE,∴∠BDE=∠BED=(180°﹣∠B)=64°,∵点D是BC的中点,∴AD⊥BC,∴∠ADB=90°,∴∠ADE=∠ADB﹣∠BDE=26°.【跟踪练习】一.选择题(共10小题)1.(2021春•铁西区期末)AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于()A.10B.5C.4D.3【解答】解:∵AD是等腰三角形ABC的顶角平分线,BD=5,∴CD=5.故选:B.2.(2021春•皇姑区期末)如图,△ABC中,点D为BC边上的一点,且BD=BA,连结AD,BP平分∠ABC交AD 于点P,连结PC,若△ABC面积为2cm2,则△BPC的面积为().A.0.5cm2B.1cm2C.0.5cm2D.2cm2【解答】解:∵BD=BA,BP平分∠ABC,∴AP=PD,∴△APB的面积=△DPB的面积,△APC的面积=△DPC的面积,∴△BPC的面积=×△ABC的面积=1(cm2),故选:B.3.(2021春•长丰县期末)如图,在△ABC中,AB=AD=CD,∠C=38.5°,则∠BAD=()A.26°B.28°C.36°D.38.5°【解答】解:∵AD=DC∴∠DAC=∠C,∵∠C=38.5°,∴∠DAC=38.5°,∴∠BDA=∠C+∠DAC═77°,∵AB=AD∴∠BDA=∠B=77°,∴∠BAD=180°﹣∠BDA﹣∠B=26°.故选:A.4.(2021春•碑林区校级期末)若(a﹣2)2+|b﹣5|=0,则以a、b为边长的等腰三角形的周长为()A.7B.12C.9D.9或12【解答】解:∵(a﹣2)2+|b﹣5|=0,∴a﹣2=0,b﹣5=0,解得a=2,b=5,∴等腰三角形的三边长分别为2,2,5或2,5,5,∵2+2<5,2+5>5,∴边长分别为2,2,5的等腰三角形不存在,∴以a、b为边长的等腰三角形的周长为2+5+5=12,故选:B.5.(2021•益阳)如图,AB∥CD,△ACE为等边三角形,∠DCE=40°,则∠EAB等于()A.40°B.30°C.20°D.15°【解答】解:∵AB∥CD,∴∠DCA+∠CAB=180°,即∠DCE+∠ECA+∠EAC+∠EAB=180°,∵△ACE为等边三角形,∴∠ECA=∠EAC=60°,∴∠EAB=180°﹣40°﹣60°﹣60°=20°.故选:C.6.(2021•前郭县二模)如图,直线L1∥L2,△ABC是等边三角形.若∠1=40°,则∠2的大小为()A.60°B.80°C.90°D.100°【解答】解:如图,∵△ABC是等边三角形,∴∠A=60°,∵∠1=40°,∴∠3=∠1+∠A=40°+60°=100°,∵直线l1∥l2,∴∠2+∠3=180°,∴∠2=180°﹣∠3=80°,故选:B.二.填空题(共8小题)7.(2021春•泗县期末)已知等腰三角形腰长为3,底为4,则这个等腰三角形周长为10.【解答】解:根据题意画出图形,∵等腰△ABC,AB=3,∴AC=3,∵BC=4,∴△ABC的周长为:3+3+4=10.故答案为:10.8.(2021春•槐荫区期末)如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠BAC=100°,∠C=50°,则∠BAD的大小为75度.【解答】解:∵∠BAC=100°,∠C=50°,∴∠B=180°﹣∠BAC﹣∠C=30°,∵AB=BD,∴∠BAD=∠ADB=(180°﹣∠B)÷2=75°,故答案为:75.9.(2021春•福田区期末)等腰三角形中有一个角为100°,则其顶角的度数为100度.【解答】解:(1)当100°角为顶角时,其顶角为100°;(2)当100°为底角时,100°×2>180°,不能构成三角形.故它的顶角是100°.故答案为:100.10.(2021春•城阳区期末)如图,在△ABC中,AC=BC,D是AB的中点,连接CD,∠ACB=46°,则∠A=67°.【解答】解:∵AC=BC,D是AB的中点,∴CD平分∠ACB,CD⊥AB,∵∠ACB=46°,∴∠ACD=∠BCD=23°,∴∠A=90°﹣23°=67°.故答案为67°.11.(2021春•侯马市期末)如图所示,在△ABC中,∠B=∠C,∠BAD=36°,并且∠ADE=∠AED,则∠CDE 的度数是18°.【解答】解:∵∠EDC+∠C=∠AED,∠ADE=∠AED,∴∠C+∠EDC=∠ADE,又∵∠B+∠BAD=∠ADC,∴∠B+36°=∠C+∠EDC+∠EDC,∵∠B=∠C.∴2∠EDC=36°,∴∠EDC=18°.故答案为:18°.12.(2021春•章丘区期末)等腰三角形一腰上的中线将它的周长分为9和12两部分,则它的腰长、底边长分别为6,9或8,5.【解答】解:设等腰三角形的腰长为2x,由题意得2x+x=9或2x+x=12,解得x=3或4,∴等腰三角形的腰长为6或8,∵等腰三角形的周长为9+12=21,∴该等腰三角形的底边长为:21﹣2×6=9或21﹣2×8=5,∵6+6=12>9,5+8>8,∴等腰三角形的腰长,底边长分别为:6,9或8,5.故答案为6,9或8,5.三.解答题(共7小题)13.(2021春•济南期末)如图,AD是等边△ABC的中线,AE=AD,求∠AED的度数.【解答】解:∵AD是等边△ABC的中线,∴∠BAC=60°,AD平分∠BAC,∴∠CAD=∠BAC=30°,∵AD=AE,∴∠ADE=∠AED,∴∠AED=(180°﹣∠DAE)=×(180°﹣30°)=75°.14.(2021春•砀山县期末)三角形ABC中,AB=AC,D是AC上一点,且AD=BD=BC,则∠A等于多少?【解答】解:设∠A=x°,∵AD=BD,∴∠ABD=∠A=x°,∴∠BDC=∠A+∠ABD=2x°,∵BD=BC,∴∠C=∠BDC=2x°,∵AB=AC,∴∠ABC=∠C=2x°,在△ABC中,∠A+∠ABC+∠C=180°,∴x+2x+2x=180,解得:x=36,∴∠A=36°.15.(2021春•闵行区期末)已知在等腰△ABC中AB=AC,∠B=2∠A,求∠B的度数.【解答】解:∵等腰△ABC中AB=AC,∴∠B=∠C,∵∠B=2∠A,∴∠B=∠C=2∠A,设∠A=x°,则∠B=∠C=2x°,∵∠A+∠B+∠C=180°,∴2x+2x+x=180,解得:x=36,∴∠B=2x=2×36°=72°.16.(2019秋•大名县期中)已知:如图,等边三角形ABC中,D、E分别是BC、AC上的点,且AE=CD.(1)求证:AD=BE;(2)求:∠BFD的度数.【解答】(1)证明:∵△ABC是等边三角形,∴∠BAC=∠C=60°,AB=CA,在△ABE和△CAD中,∴△ABE≌△CAD(SAS),∴AD=BE(全等三角形对应边相等);(2)解:∵△ABE≌△CAD(已证),∴∠ABE=∠CAD(全等三角形对应角相等),又∵∠BFD=∠BAD+∠ABE,∴∠BFD=∠BAD+∠CAD=∠BAC,又∠BAC=60°,∴∠BFD=60°.。

九年级数学上册321等腰三角形的性质定理和判定定理及其证明习题精选试题

九年级数学上册321等腰三角形的性质定理和判定定理及其证明习题精选试题

习题精选1.等腰三角形的一个角是110,那么另外两个角分别是〔 〕 A . 15,45 B . 35,35 C . 40,40 D . 60,602.小芳要画一个有两边长分别为5 cm 和6 cm 的等腰三角形,那么这个等腰三角形的周长是〔 〕 A .16 cm B .17 cmC .16cm 或者17cmD .11 cm3.在ABC ∆中,AB =AC ,点D 在AC 上,且BC =BD =AD ,那么A ∠的度数是〔 〕A .30B .45C .36D .724.等腰三角形的底边为7cm,一边上的中线把其周长分为两局部的差为3cm,那么腰长为〔 〕A .20cmB .10cm 或者4cmC .18cmD .以上均不对5.等腰三角形底角的外角为100,那么它的底角为___________.6.在ABC ∆中,假设AB =AC ,A+B=110∠∠,那么A ∠=_______,B ∠=_______。

7.如图32—1,在ABC ∆中,AB =AC ,A=40∠,P 为三角形ABC 内一点,PB = PC ,且PBC=PCA ∠∠,求BPC ∠的度数.8.在ABC ∆中,AB =AC ,两底角平分线分别与AB 、AC 交于点D 、E ,图32—l —2中等腰三角形的个数是〔 〕A .2B .3C .4D .59.如图32—l —3,在ABC ∆中,ABC ACB ∠∠、的平分线交于点P ,PD//AB ,PE//AC ,分别交BC 于点D 、E ,且BC =7cm ,那么PDE ∆的周长为〔 〕A .7 cmB .8 cmC .9 cmD .10 cm10.在ABC ∆中,B=70C 40∠∠=,,那么ABC ∆的形状是〔 〕 A .直角三角形 B .等腰三角形 C .等边三角形 D .等腰直角三角形11.如图32-1-4,ABC ∆中,BD ⊥DC 于D ,CE ⊥上EB 于点E ,试判断ABC ∆的形状, 并证明你的结论.12.边长为a的等边三角形的面积为〔〕A2 5 2B2 3 2C2 3 4D2 5 413.等边三角形角平分线、中线和高的条数一共为〔〕A.3B.5C.7D.914.有一个角是60的________为等边三角形.15.假如一个三角形是轴对称图形,且有一个角是60,那么这个三角形是_________三角形,这个图形有_________条对称轴.16.如图32—1—5,ABC ∆为等边三角形,D 、E 分别是BC 、AC 上的一点,且BD=CE ,AD 和BE 交于点P ,求APE ∠的度数.17.如图32—l —6,ABC ∆中,AB =AC ,点E 在CA 的延长线上,且AEF AFE ∠=∠,试问直线EF 和BC 有何种位置关系?为什么?18.〔2021·〕如图32—l —7,某在“旧城改造〞中方案在内一块三角形空地上种植某种草皮以美化环境,这种草皮每平方米售价a 元,那么购置这种草皮至少需要多少〔 〕A .450a 元B .225a 元C .150a 元D .300a 元19.〔课本习题2变式题〕:如图32-l-8,在ABC ∆中,A=36,C=72∠∠,BD 是ABC∆的角平分线.求证:2AD =CD CA. ⋅20.ABC ∆和A B C '''∆中,A=A '∠∠,那么BC 和B C '',的关系是〔 〕 A .BC =B C '', B .BC>B C '' C .BC<B C '', D .不确定21.如图32—l —9,ABC=m ∠中,ABC,ACB ∠∠的平分线交于点F ,过点F 作DE//BC分别交AB 、AC 于D 、E ,ADE ∆的周长为24cm ,且BC =8cm ,求ABC ∆的周长.22.如图32-1-10 ,点D 、E 在ABC ∆的边BC 上,AB=AC ,AD=AE ,求证:BD=CE 。

等腰三角形的性质精选试题附答案

等腰三角形的性质精选试题附答案

等腰三角形的性质精选试题一.选择题(共21小题)1. (2009?呼和浩特)在等腰△ ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为A. 7)B . 11 7或11 D. 7 或102. (2006?仙桃)在△ ABC中,已知AB=AC ,DE垂直平分AC,/ A=50。

,则/ DCB的度数是(A. 15 30°50°D. 65△ ABC 中,/ ACB=100 ,AC=AE , BC=BD,则/ DCE 的度数为(3. (2006?威海)如图,在25°4. (2003?青海)A . 75 °C. 30若等腰三角形一腰上的高等于腰长的一半,C . 75°或15°B .15°D. 40则此三角形的底角等于(D. 30°5. (2006?普陀区二模)等腰三角形一腰上的高与底边所成的角等于()A . 顶角的一半B. 底角的一半• C . 90°减去顶角的一半 D . 90°减去底角的一半6.在等腰△ ABC中,AB=AC=9 , BC=6 , DE是AC的垂直平分线,交AB、AC于点D、E,则△ BDC的周长是()A. 67.如图,AB=AC ,A. 10C. 12D. 15B . 9/ C=70° AB垂直平分线EF交AC于点D,则/ DBC的度数为(B .15°C .20°D. 3014 .在△ ABC 中,AB=AC , / BAC=80° 卩在^ ABC 中,/ PBC=10 ° / PCB=20 ° 则/ PAB 的度数为()&如图,点 D 、E 在^ABC 的BC 边上,AB=AC , AD=AE ,则图中全等三角形共有(D . 3对10.已知△ ABC 是等腰三角形,且/A=40 °那么/ ACB 的外角的度数是A . 110°B . 140 °C . 110或 140°11.如图已知/ BAC=100 ° AB=AC , AB 、AC 的垂直平分线分别交 BC 于D 、E ,则/ DAE=()9.如图,在△ ABC 则/ EDF 的度数为( £中,/ B= / C ,点F 为AC 上一点, )FD 丄 BC 于 D ,过 D 点作 DE 丄 AB 于 E .若/ AFD=158 °△ A . 90 ° B .80°C .68°D . 60 C20°D . 1012.如图,钢架中/ 要( )根. A=16 °焊上等长的钢条 P 1P 2, P 2P 3, P 3P 4••来加固钢架,若 AP 仁P 1P 2,则这样的钢条至多需 C . D . 7 13.如图,在△ ABC 图中阴影部分的面积是 中, AB=AC , ) AD 是/ BAC 的角平分线,AD=8cm , BC=6cm ,点E 、F 是AD 上的两点,则 CA . 48 24C . 12D .6( )D .以上都不对A . 0对14 .在△ ABC 中,AB=AC , / BAC=80 ° 卩在^ ABC 中,/ PBC=10 ° / PCB=20 ° 则/ PAB 的度数为( )A. 50D是线段AB与线段C. 70D.BC的垂直平分线的交点,/65B=40 °,则/ ADC 等于( )15.如图,点B .60°C. 70AD=BC=BA,那么/ 1与/ 2之间的关系是(16.如图,A . / 1=2 /2B. 2 / 1+ / 2=18017.有下列命题说法:形有一个外角等于120°这个三角形一定是等边三角形;一个三角形中至少有一个角不小于60度.其中正确的有(A . 2个B . 3个①锐角三角形中任何两个角的和大于18.设等腰三角形的顶角为/ A,则/ A的取值范围是(A . 0° 2^A<180°B . 0°</ A< 180° C. 0°19 .如图,已知△ ABC中,AB=AC ,8cm,那么BC的长是()cm .AB的垂直平分线D. 80/ 1+3 / 2=180 D . 3 / 1 -/ 2=18090°②等腰三角形一定是锐角三角形;④ 等腰三角形中有一个是40°那么它的底角是)D . 5个D . 0°</ A < 90③等腰三角70 °;⑤DE 交AC 于D,垂足为E,若AB=5cm , △ BCD 的周长为20 .已知△ ABC 中,/ C=32 °, / A、( )/ B的外角平分线分别交对边的延长线于D、E两点,且AC=AD , 则/ E=A .10B .16°C.20°D .2421.如图,△ ABC中,AB=BC=AD , D在BC的延长线上,则角a和B的关系是(二•填空题(共5小题)22.(2011?沈河区一模)如图,在△ ABC 中,/ B= / C,点 D 、E 分别在 BC 、AC 边上,/ CDE=15 ° 且/ AED= / ADE , 则/ BAD 的度数为 ________________ .AB=AC=AD , / BAC=50 ° / DAC=30 ° 则/ BDC=25.如图,在 △ ABC 中,DE 、FG 分别是边 AB 、AC 的垂直平分线,则/ / 2;若/ BAC=126 ° 贝EAG= 度.26.如图,A 、B 是网格中的两个格点,点 C 也是网格中的一个格点,连接 形时,格点C 的不同位置有 形ABC 的面积之和等于_三.解答题(共4小题)27.已知:如图,AD 平分/ BAC , AD=AB , CM 丄AD 于M .请你通过观察和测量,猜想线段AB 、AC 之和与线段AM 有怎样的数量关系,并证明你的结论.C . 3a+3=180 ° D. 2 3=a24.如图所示, 添加的钢管长度都与AOB 是一钢架,且/ AOB=10 °为了使钢架更加坚固,需在其内部添加一些钢管 OE相等,则最多能添加这样的钢管 ___________________ 根.EF , FG , GH …,AB 、BC 、AC ,当△ ABC 为等腰三角 处,设网格中的每个小正方形的边长为 1,则所有满足题意的等腰三角23.如图,已知:28.如图,在等腰△ ABC中,AB=AC ,(1)若/ BAC=90 ° / BAD=30 ° 求/(2)若/ BAC=a (a>30° , / BAD=30(3)猜想/ EDC与/ BAD的数量关系?30.如图,在等腰△ ABC(1)连接OA,求/ OAC的度数;(2)求:/ BOC .猜想:证明:c29.如图所示,在△ ABC长.中,AB=AC , DE是AB的垂直平分线,△ BCE的周长为24cm,且BC=10cm,求AB的点D在BC上,且AD=AE .EDC的度数?°求/ EDC的度数?(不必证明)中,/ A=80 °/ B和/ C的平分线相交于点O等腰三角形的性质精选试题参考答案与试题解析一•选择题(共21小题)1. (2009?呼和浩特)在等腰 △ ABC 中,AB=AC ,中线BD 将这个三角形的周长分为 15和12两个部分,则这个等 腰三角形的底边长为()A . 7B . 11考点:等腰三角形的性质;三角形三边关系. 专题:分类讨论.分析:~题中给出了周长关系,要求底边长,首先应先想到等腰三角形的两腰相等,寻找问题中的等量关系,列 方程求解,然后结合三角形三边关系验证答案.解答:~解:设等腰三角形的底边长为~X ,腰长为y ,则根据题意,5C点评: 本题考查等腰三角形的性质及相关计算.学生在解决本题时, 有的同学会审题错误, 以为15, 12中包含着中线BD 的长,从而无法解决问题,有的同学会忽略掉等腰三角形的分情况讨论而漏掉其中一种情况; 注意:求出的结果要看看是否符合三角形的三边关系定理.故解决本题最好先画出图形再作答.2. (2006?仙桃)在△ ABC 中,已知 AB=AC , DE 垂直平分 AC , / A=50 °则/ DCB 的度数是(考点「线段垂直平分线的性质;等腰三角形的性质. 专题:’■十算题.分析: 首先由AB=AC 可得/ ABC= / ACB ,再由DE 垂直平分AC 可得DC=AD ,推出/ DAC= / DCA •易 求/ DCB .D . 7 或 10解方程组①得:”=口I 尸8 解方程组②得:(口I 尸10即等腰三角形的底边长是故选C . A,根据三角形三边关系定理,此时能组成三角形;,根据三角形三边关系定理此时能组成三角形, 11 或 7;B . 30°C . 50D . 65A . 15解: AB=AC , / A=50 ° / ABC= / ACB=65 °•••DE 垂直平分 AC ,•••/ DAC= / DCA .•••/ DCB= / ACB -/ DCA=65。

初二数学等腰三角形的性质试题

初二数学等腰三角形的性质试题

初二数学等腰三角形的性质试题1.如图,在△ABC中,已知∠B和∠C的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E,若BD+CE=9,则线段DE的长为().A.9B.8C.7D.6【答案】A【解析】根据△ABC中,∠ABC和∠ACB的平分线相交于点F,可得∠DBF=∠FBC,∠ECF=∠FCB,再根据两直线平行内错角相等,可得∠DFB=∠FBC,∠EFC=∠FCB,则有∠DBF=∠DFB,∠EFC=∠ECF,根据等角对等边可得BD=FD,EC=EF,然后利用等量代换即可求出线段DE的长.∵BF为∠ABC的平分线,CF为∠ACB的平分线,∴∠DBF=∠FBC,∠ECF=∠FCB,∵DE∥BC,∴∠DFB=∠FBC,∠EFC=∠FCB,∴∠DBF=∠DFB,∠EFC=∠ECF,∴BD=FD,EC=EF,则DE=DF+FE=BD+CE=9,故选A.【考点】本题主要考查角平分线的性质,平行线的性质,等腰三角形的性质点评:解答此类题关键是在复杂图形之中辨认出应用性质的基本图形,从而利用性质和已知条件计算.2.如图,△ABC的两边AB和AC的垂直平分线分别交BC于D,E,若∠BAC+∠DAE=150°,则∠BAC的度数是().A.105°B.110°C.115°D.120°【答案】B【解析】根据垂直平分线性质:垂直平分线上的点到线段两段的距离相等,可得DA=DB,EA=EC,再根据等角对等边可得∠B=∠DAB,∠C=∠EAC,则有∠B+∠C+2∠DAE=150°,即180°-∠BAC+2∠DAE=150°,再与∠BAC+∠DAE=150°联立解方程组即可.∵△ABC的两边AB,AC的垂直平分线分别交BC于D,E,∴DA=DB,EA=EC,∴∠B=∠DAB,∠C=∠EAC.∵∠BAC+∠DAE=150°,①∴∠B+∠C+2∠DAE=150°.∵∠B+∠C+∠BAC=180°,∴180°-∠BAC+2∠DAE=150°,即∠BAC-2∠DAE=30°.②由①②组成的方程组:解得∠BAC=110°,故选B.【考点】此题考查了线段的垂直平分线、等腰三角形的性质、三角形内角和定理点评:本题主要考查的是线段垂直平分线的性质及等腰三角形的性质,三角形的内角和定理知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键.3.如图,,AB的垂直平分线交AC于D,则.【答案】20°【解析】先根据垂直平分线的性质:“垂直平分线上的点到线段两端的距离相等”得到AD=BD,即可根据“等边对等角”得到∠ABD=∠A,从而求得结果。

初中数学:等腰三角形测试题(含答案)

初中数学:等腰三角形测试题(含答案)

初中数学:等腰三角形测试题(含答案)时间40分钟总分100分一、选择题(每题5分)1、若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为()A、75°或15°B、30°或60°C、75°D、30°【答案】A【解析】试题分析:分等腰三角形的顶角是锐角和钝角两种情况求解.解:当等腰三角形的顶角是锐角时,如图所示,∵BD=12 AB,∴∠A=30°,∴∠ABC=∠C=75°;当等腰三角形的顶角是钝角时,如图所示,∵BD=12 AB,∴∠BAD=30°,∴∠BAC=150°,∴∠ABC=∠C=15°.故应选A.考点:等腰三角形的性质.2、等腰三角形的底边为7cm,一边上的中线把其周长分为两部分的差为3cm,则腰长为()A.20cm B.10cm C.10cm或4cm D.4cm 【答案】C【解析】试题分析:解:等腰三角形底边上的中线把等腰三角形分成的两部分的长度相等,∴把等腰三角形的周长分成差为3cm的两部分的中线是腰上的中线,设等腰三角形的腰长是2xcm,则被分成的两部分的长度分别是3xcm和(7+x)cm,当3x-(7+x)=3时,解得:x=5,则2x=10,∴等腰三角形的腰长为5cm;当(7+x)-3x=3时,解得:x=2,则2x=4,∴等腰三角形的腰长是4cm或10cm.故应选C考点:等腰三角形的性质.3、如图,坐标平面内一点A(2,﹣1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A. 2 B. 3 C. 4 D. 5【答案】C【解析】试题分析:根据等腰三角形的定义分情况讨论.解:如下图所示,当OA为等腰三角形的底边时,点P是线段OA的垂直平分线与x轴的交点;当AP为等腰三角形的底边时,符合条件的点P有2个;当OP为等腰三角形的底边时,符合条件的点P有1个.符合条件的点共有4个.故应选C考点:等腰三角形的定义.4、如图,在△ABC中,D、E分别是AC、AB上的点,BD与CE相交于点O,给出四个条件:①OB=OC;②∠EBO=∠DCO;③∠BEO=∠CDO;④BE=CD.上述四个条件中,选择两个可以判定△ABC是等腰三角形的方法有()A.2种B.3种C.4种D.6种【答案】C【解析】试题分析:利用等腰三角形的定义和判定定理进行判断.解:可以证明△ABC是等腰三角形的方法有:①②①③②④③④,所以共有4种,故应选C.考点:等腰三角形的判定5、下列说法中:(1)顶角相等,并且有一腰相等的两个等腰三角形全等;(2)底边相等,且周长相等的两个等腰三角形全等;(3)腰长相等,且有一角是50°的两个等腰三角形全等;(4)两条直角边对应相等的两个直角三角形全等;错误的有()A.1个B. 2个C.3个D.4个【答案】A【解析】试题分析:根据等腰三角形的性质和全等三角形的判定定理进行判断.解:(1)顶角相等,并且有一腰相等的两个等腰三角形,根据SAS可证全等,故(1)正确;(2) 底边相等,且周长相等的两个等腰三角形,根据SSS可证全等,故(2)正确;(3)腰长相等,且有一角是50°的两个等腰三角形,50°角可能是等腰三角形的顶角也可能是等腰三角形的底角,所以这两个等腰三角形不一定全等,故(3)错误;(4) 两条直角边对应相等的两个直角三角形,根据SAS可证全等,故(4)正确.所以错误的有1个.故应选A.考点:1.等腰三角形的性质;2.全等三角形的判定6、已知:如图,下列三角形中,AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③④B.①②③④C.①②④D.①③【答案】A【解析】试题分析:根据三角形各内角的度数进行划分.解:如下图所示,所以①③④都可以.故应选A.考点:等腰三角形的判定二、填空题(每题6分)7、若一个等腰三角形的周长是20cm,一边长是5cm,则另两边的长是__________。

初三数学等腰三角形的性质和判定试题

初三数学等腰三角形的性质和判定试题

初三数学等腰三角形的性质和判定试题1.等腰三角形的底边长为6,它的周长不大于20,则腰长x的取值范围是_______。

【答案】【解析】根据等腰三角形的性质结合周长不大于20即可列不等式求解.由题意得,.【考点】等腰三角形的性质点评:不等式的应用在初中数学中极为广泛,与各个知识点的结合极为容易,因而是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.2.如图,在⊿ABC中,AB=AC,过∠ABC和∠ACB的平分线的交点O作DE∥BC,交AB于D,交AC于E,则图中的等腰三角形有___________个,它们分别是____________。

【答案】5,△ABC,△ADE,△DBO,△ECO,△BCO【解析】由AB=AC可得∠ABC=∠ACB,再根据角平分线的性质结合平行线的性质即可判断.∵AB=AC∴∠ABC=∠ACB∵OB平分∠ABC,OC平分∠ACB∴∠ABO=∠OBC,∠ACO=∠OCB∵DE∥BC∴∠DOB=∠OBC,∠EOC=∠OCB∴∠DOB=∠ABO=∠EOC=∠ACO∴BD=OD,CE=OE,OB=OC∵DE∥BC∴∠ADE=∠ABC,∠AED=∠ACB∴∠ADE=∠AED∴AD=AE∴等腰三角形有△ABC,△ADE,△DBO,△ECO,△BCO共5个.【考点】角平分线的性质,平行线的性质点评:角平分线的性质与平行线的性质在初中数学中极为广泛,与各个知识点的结合极为容易,因而是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.3.如图,在⊿ABC中,∠C=90°,AD平分∠BAC交BC于点D,BD=6cm,DC=3cm,则D到AB的距离为______。

【答案】3cm【解析】角平分线的性质:角平分线上的点到角两边的距离相等.∵∠C=90°,AD平分∠BAC,DC=3cm∴D到AB的距离为3cm.【考点】角平分线的性质点评:角平分线的性质在初中数学中极为广泛,与各个知识点的结合极为容易,因而是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.4.将两块直角三角板的直角顶点重合为如图所示的形状,若∠AOD=127°,则∠BOC=________。

初中数学:等腰三角形练习(含答案)

初中数学:等腰三角形练习(含答案)

初中数学:等腰三角形练习(含答案)一、选择题1、等腰三角形一底角为50°,则顶角的度数为()A、65B、70C、80D、40【答案】C【解析】试题分析:根据三角形的内角和定理求解.解:等腰三角形的顶角度数=180°-50°-50°=80°.故应选C考点:等腰三角形的性质2、如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别为∠ABC,∠ACB的角平分线,则图中等腰三角形共有()A. 5个B. 6个C.7个D.8个【答案】D【解析】试题分析:根据等腰三角形两底角相等和∠A=36°,求出∠ABC和∠ACB的度数,再根据角平分线的定义求出∠ABD、∠CBD、∠ACE、∠BCE的度数,利用三角形外角定理求出∠BOE、∠COD的度数,根据等角对等边进行判断.解:如下图所示,∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°,∵BD平分∠ABC,CE平分∠ACB,∴∠ABD=∠C BD=∠ACE=∠BCE=∠A=36°,∴△ABD、△BCD、△ACE、△BCE、△OBC是等腰三角形;∴∠BEC=∠A+∠ACE=72°,∠BOE=∠BCE+∠CBD=72°,∴∠BEC=∠BOE,同理可得:∠CDO=∠COD,∴△BOE、△COD是等腰三角形;又△ABC是等腰三角形,∴共有8个等腰三角形.故应选D.考点:1.等腰三角形的性质;2.等腰三角形的判定3、下列条件中不能确定是等腰三角形的是()A.三条边都相等的三角形B.一条中线把面积分成相等的两部分的三角形C.有一个锐角是45°的直角三角形D.一个外角的平分线平行于三角形一边的三角形【答案】D【解析】试题分析:根据等腰三角形的定义和等腰三角形的判定定理进行判断.解:A选项、三条边都相等的三角形是特殊的等腰三角形,故A选项正确;B选项、三角形任何一条边上的中线都能把三角形分成面积相等的两个三角形,故B选项错误;C选项、有一个锐角是45°的直角三角形的另一个锐角也是45°,根据等角对等边可得这是一个等腰三角形,故C选项正确;D选项、如果一个外角的平分线平行于三角形一边,利用平行线的性质可证三角形的两个角相等,根据等角对等边可证这是一个等腰三角形,故D选项正确.故应选B考点:等腰三角形的判定4、下列能断定△ABC为等腰三角形的是()A.∠A=30°,∠B=60°B.∠A=50°,∠B=80°C. AB=AC=2,BC=4 D.AB=3,BC=7,周长为13【答案】B【解析】试题分析:根据等腰三角形的判定定理进行判断.解:A选项、若∠A=30°,∠B=60°,则∠C=90°,不能判定△ABC为等腰三角形;B选项、若∠A=50°,∠B=80°,则∠C=50°,根据等角对等边能判定△ABC为等腰三角形;C选项、若AB=AC=2,BC=4,因为2+2=4,所以不能构成三角形;D选项、若AB=3,BC=7,周长为13,则AC=3,因为3+3<7,所以不能构成三角形.故应选B.考点:等腰三角形的判定5、已知下列各组数据,可以构成等腰三角形的是()A. 1,2,1 B.2,2,1 C. 1,3,1 D.2,2,5【答案】B【解析】试题分析:根据三角形三边的关系进行判断.解:A选项、因为1+1=2,所以不能构成三角形;B选项、因为2+1>2,能构成三角形,所以可以构成等腰三角形;C选项、因为1+1<3,所以不能构成三角形;D选项、因为2+2<5,所以不能构成三角形.故应选B.考点:三角形三边关系6、小明将两个全等且有一个角为60°的直角三角形拼成如图所示的图形,其中两条较长直角边在同一直线上,则图中等腰三角形的个数是()A.4 B.3 C.2 D.1【答案】B【解析】试题分析:根据直角三角形的性质求出各角的度数,根据等角对等边进行判断. 解:∵∠B=∠E=60°,∴∠A=∠D=30°,∴△MAD是等腰三角形;∵∠EMG-∠A+∠D=60°,∴△EGM是等腰三角形;同理可证△BHM是等腰三角形.∴共有三个等腰三角形.故应选B考点:1.直角三角形的性质;2.等腰三角形的判定二、填空题7、一个等腰三角形的两边分别为3cm和4cm,则它的周长为_________;【答案】10cm或11cm【解析】试题分析:根据三角形的周长公式分情况进行计算.解:当三角形三边分别是3cm、3cm、4cm时,三角形的周长是3+3+4=10cm;当三角形三边分别是3cm、4cm、4cm时,三角形的周长是3+4+4=11cm.故答案是10cm或11cm.考点:等腰三角形的性质8、在方格纸上有一个△ABC,它的顶点位置如图所示,则这个三角形是三角形.【答案】等腰【解析】试题分析:根据点A在BC的垂直平分线上,可证AB=AC,所以这个三角形是等腰三角形.解:∵点A在BC的垂直平分线上,∴AB=AC,∴△ABC是等腰三角形.故答案是等腰.考点:1.线段垂直平分线的性质;2.等腰三角形的定义9、如果一个三角形有两个角分别为80°,50°,则这个三角形是_________三角形.【答案】等腰【解析】试题分析:根据三角形内角和求出三角形的另一个内角,根据等角对等边进行判断.解:∵第三个角=180°-50°-80°=50°.∴这个三角形是等腰三角形.故答案是等腰.考点:等腰三角形的判定10、用若干根火柴(不折断)紧接着摆成一个等腰三角形,一边用了10根火柴,则至少还要用_________根火柴.【答案】11【解析】试题分析:根据用10根火柴组成的边是等腰三角形的底边和腰,分两种情况进行讨论.解:当用10根火柴组成的边是等腰三角形的底边时,则每个腰上至少用6根火柴棍,∴共需要12根火柴棍;当用10根火柴组成的边是等腰三角形的腰时,则另一个腰上需要用10根火柴棍,底边至少用1根火柴,∴共需要11根火柴棍.∴至少还要用11根火柴.故答案是11.考点:1.等腰三角形的定义;2.三角形三边关系11、如图,△ABC是等腰三角形,且AB=AC,BM,CM分别平分∠ABC,∠ACB,DE 经过点M,且DE∥BC,则图中有_________个等腰三角形.【答案】5【解析】试题分析:根据等腰三角形的性质可得∠ABC=∠ACB,根据平行线的性质可证∠ADE=∠AED,根据角平分线的性质可证∠DBM=∠MBC=∠DMB=∠EMC=∠ECM=∠BCM,根据等角对等边进行证明.解:∵△ABC是等腰三角形,∴∠ABC=∠ACB,∵DE∥BC,∴∠ADE=∠AED,∴△ADE是等腰三角形;∵BM平分∠ABC,∴∠DBM=∠CBM,∵BC∥DE,∴∠DMB=∠CBM,∴∠DBM=∠DMB,∴△DBM是等腰三角形,同理可得△EMC是等腰三角形;又∵∠ABC=∠ACB,∴∠MBC=∠MCB,∴△MBC是等腰三角形.∵△ABC是等腰三角形.∴共有5个等腰三角形.故答案是5.考点:1.等腰三角形的性质;2.等腰三角形的判定三、解答题12、已知:如图,OA平分∠BAC,∠1=∠2.求证:△ABC是等腰三角形.【答案】证明见解析【解析】试题分析:首先过点O作OE⊥AB于E,OF⊥AC于F,根据角平分线的性质可证OE=OF,根据HL可证Rt△OBE≌Rt△OCF,利用全等三角形的性质可证∠5=∠6,所以可证∠ABC=∠ACB,根据等角对等边可证结论成立.证明:如下图所示,过点O作OE⊥AB于E,OF⊥AC于F,∵AO平分∠BAC,∴OE=OF(角平分线上的点到角两边的距离相等).∵∠1=∠2,∴OB=OC.∴Rt△OBE≌Rt△OCF(HL).∴∠5=∠6.∴∠1+∠5=∠2+∠6.即∠ABC=∠ACB.∴AB=AC.∴△ABC是等腰三角形.考点:1.角平分线的性质;2.等腰三角形的判定定理;3.全等三角形的判定和性质13、如图,△ABC中,∠A=36°,AB=AC,CD平分∠ACB,试说明△BCD是等腰三角形.【答案】证明见解析【解析】试题分析:根据等腰三角形的性质求出∠B=∠ACB=72°,根据角平分线的定义可以求出∠ACD=∠A=36°,根据三角形外角的性质可以求出∠ADB=72°,再根据等角对等边可证结论成立.证明:∵∠A=36°,AB=AC,∴∠B=∠ACB=72°,∵CD平分∠ACB,∴∠ACD=∠A=36°,∴∠BDC=∠A+∠ACD,∴∠BDC=∠B=72°,∴△BCD是等腰三角形.考点:1.等腰三角形的性质;2.等腰三角形的判定14、如图,ABC△中,∠ABC、∠ACB的平分线交于点F,过点F作DE∥BC分别交AB、AC于D、E,已知△ADE的周长为20cm,且BC=12cm,求△ABC的周长【答案】32cm.【解析】试题分析:首先根据角平分线的性质可证∠DBF=∠FBC,根据平行线的性质可证∠DFB=∠DBF,所以可证BD=DF,同理可证EC=EF,所以可证AD+AE+DF+EF=20cm,再根据BC的长度求出△ABC的周长.解:∵∠ABC、∠ACB的平分线交于点F,∴∠DBF=∠FBC,又∵DE∥BC,∴∠DFB=∠FBC,∴∠DFB=∠DBF,∴BD=DF,同理EC=EF,∵△ADE的周长为20cm,∴AD+AE+DF+EF=20cm,∴AD+AE+BD+EC=AB+AC=20cm又∵BC=12cm,∴AB+AC+BC=32cm即△ABC的周长为32cm.考点:1.等腰三角形的判定;2.等腰三角形的性质。

人教版八年级下册数学专题复习及练习(含解析):等腰三角形

人教版八年级下册数学专题复习及练习(含解析):等腰三角形

专题13.3 等腰三角形知识点1:等腰三角形1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.2.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、 底边上的高互相重合(通常称作“三线合一”).3.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).知识点2:等边三角形1.定义:三条边相等的三角形叫做等边三角形.2.等边三角形的性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60°。

(2)三个角都相等的三角形是等边三角形。

(3)有一个角是60°的等腰三角形是等边三角形。

知识点3:直角三角形的一个定理在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【例题1】如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:△ABC各角的度数.【例题2】证明:在直角三角形中,如果一个锐角等于30°, 那么它所对的直角边等于斜边的一半. 已知:如图,在Rt △ABC 中,∠C=90°,∠BAC=30°.求证:BC=AB .【例题7】已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )A .B .C .D .不能确定【例题3】如图,已知AC ⊥BC ,BD ⊥AD ,AC 与BD 交于点O ,AC=BD.求证:(1)BC=AD ;(2)△OAB 是等腰三角形.一、选择题1.已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )12C AA.B.C.D.不能确定2.如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC3.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN 为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上4.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.3二、解答题5.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.6.如图,在△ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E.求证:AE=CE.7.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:∠CAE 是△ABC 的外角,∠1=∠2,AD ∥BC (如图).求证:AB=AC .8.已知:如图,AD ∥BC ,BD 平分∠ABC .求证:AB=AD .9.证明:等腰三角形两底角的平分线相等.已知:如图,在△ABC 中,AB=AC ,BD 、CE 是△ABC 的平分线.求证:BD=CE .10.证明:等腰三角形两腰上的高相等.已知:如图,在△ABC 中,AB=AC ,BE 、CF 分别是△ABC 的高.E DCAB11.证明:等腰三角形两腰上的中线相等.已知:如图,在△ABC 中,AB=AC ,BD 、CE 分别是两腰上的中线.求证:BD=CE .12.已知:如图,在△ABC 中,AB=AC=2a ,∠ABC=∠ACB=15°,CD 是腰AB 上的高.求:CD 的长.13.已知:如图,△ABC 中,∠ACB=90°,CD 是高,∠A=30°.求证:BD=AB .14.已知直角三角形的一个锐角等于另一个锐角的2倍,这个角的平分线把对边分成两条线段.求证:其中一条是另一条的2倍.已知:在Rt △ABC 中,∠A=90°,∠ABC=2∠C ,BD 是∠ABC 的平分线.1415.已知:如图,在Rt △ABC 中,∠C=90°,BC=AB .求证:∠BAC=30°.16.已知,如图,点C 为线段AB 上一点,△ACM 、△CBN 是等边三角形.求证:AN=BM .17.一个直角三角形房梁如图所示,其中BC ⊥AC ,∠BAC=30°,AB=10cm , CB 1⊥AB ,B 1C ⊥AC 1,垂足分别是B 1、C 1,那么BC 的长是多少?18.如图,△ABC 中,AB=AC ,∠A=36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC .(1)求∠ECD 的度数;(2)若CE=5,求BC 长.12专题13.3 等腰三角形知识点1:等腰三角形1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.2.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、 底边上的高互相重合(通常称作“三线合一”).3.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).知识点2:等边三角形1.定义:三条边相等的三角形叫做等边三角形.2.等边三角形的性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60°。

等腰三角形的性质与判定(人教版)(含答案)

等腰三角形的性质与判定(人教版)(含答案)

等腰三角形的性质与判定(人教版)试卷简介:本套试卷主要考查等腰三角形的判定及性质,等边对等角、等角对等边;三线合一等,以此为载体考查同学们几何学习的有序操作能力.一、单选题(共10道,每道10分)1.已知等腰三角形的一个内角为70°,则另两个内角的度数是( )A.55°,55°B.70°,40°C.55°,55°或70°,40°D.以上都不对答案:C解题思路:此题仅告诉我们等腰三角形的一个内角为70°,并没有确定是顶角还是底角,所以需分两种情况考虑.①当70°为顶角时,另外两个角是底角,度数相等,为(180°-70°)÷2=55°,②当70°为底角时,另外一个底角也是70°,顶角是180°-140°=40°.综上,另两个内角度数为55°,55°或70°,40°.故选C.试题难度:三颗星知识点:等腰三角形的性质2.一个等腰三角形的两边长分别为2和5,则它的周长为( )A.7B.9C.12D.9或12答案:C解题思路:求等腰三角形的周长,即是确定等腰三角形的腰与底的长,题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还需应用三角形的三边关系验证能否组成三角形.①若2为腰长,5为底边长,由于2+2<5,则三角形不存在;②若5为腰长,2为底边长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为5+5+2=12.故选C试题难度:三颗星知识点:三角形的三边关系3.如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别是∠ABC,∠BCD的角平分线,则图中的等腰三角形有( )A.5个B.4个C.3个D.2个答案:A解题思路:∵AB=AC,∴△ABC是等腰三角形.∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°.∵BD,CE分别是∠ABC,∠BCD的角平分线,∴,,∴∠DBC=∠BCE,∠CED=∠DBC+∠BCE=36°+36°=72°,∠A=∠ABD,∠BDC=180°-∠DBC-∠BCD=180°-72°-36°=72°,∴△EBC,△ABD是等腰三角形;∵∠BDC=∠BCD,∠CED=∠CDE,∴△BCD,△CDE是等腰三角形,∴图中的等腰三角形有5个.故选A试题难度:三颗星知识点:等腰三角形的判定及性质4.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,则下列五个结论:①AD上任意一点到AB,AC两边的距离相等;②AD上任意一点到B,C两点的距离相等;③AD⊥BC,且BD=CD;④∠BDE=∠CDF;⑤AE=AF.其中正确的有( )A.2个B.3个C.4个D.5个答案:D解题思路:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一);故AD所在直线可以看成△ABC的对称轴,再根据角平分线的性质、垂直平分线的性质可得①②③④⑤都正确.故选D试题难度:三颗星知识点:全等三角形的判定与性质5.如图,在四边形ABCD中,对角线AC与BD相交于点E,若AC平分∠DAB,且AB=AC=AD,有如下四个结论:①AC⊥BD;②BC=DE;③;④△ABD一定是正三角形.请写出正确结论的序号是( )A.①②B.①③C.②④D.①②③答案:B解题思路:①∵AB=AC=AD,AC平分∠DAB∴AC垂直平分BD,①正确;②由①可知DC=CB,DE=BE,∠DEC=90°,∴DC>DE∴BC>DE,②错误;③在Rt△BCE中,∠DBC=90°-∠ACB,在等腰△ABC中,∠BAC=180°-2∠ACB,即∠DAC=180°-2∠ACB,∴,③正确;④△ABD是等腰三角形,但不一定是等边三角形,而且根据题中条件也推导不出△ABD是等边三角形,④错误.正确的为①③,故选B试题难度:三颗星知识点:等腰三角形的判定与性质6.如图,在△ABC中,BC=9cm,BP,CP分别是∠ABC和∠ACB的角平分线,且PD∥AB,PE∥AC,则△PDE的周长是( )A.6cmB.9cmC.10cmD.12cm答案:B解题思路:∵BP,CP分别是∠ABC和∠ACB的角平分线,∴∠ABP=∠PBD,∠ACP=∠PCE.∵PD∥AB,PE∥AC,∴∠ABP=∠BPD,∠ACP=∠CPE,∴∠PBD=∠BPD,∠PCE=∠CPE,∴BD=PD,CE=PE,∴PD+DE+PE=BD+DE+EC=BC=9,即△PDE的周长为9cm.故选B试题难度:三颗星知识点:等腰三角形的判定及性质7.如图,AD⊥BC于点D,D为BC的中点,连接AB,∠ABC的平分线交AD于点O,连接OC,若∠AOC=125°,则∠ABC的度数为( )A.60°B.65°C.70°D.75°答案:C解题思路:∵AD⊥BC,∠AOC=125°,∴∠C=∠AOC-∠ADC=125°-90°=35°,∵D为BC的中点,AD⊥BC,∴OB=OC,∴∠OBC=∠C=35°,∵BO平分∠ABC,∴∠ABC=2∠OBC=2×35°=70°.故选C试题难度:三颗星知识点:等腰三角形的性质8.如图,在等腰三角形ABC中,AB=AC=8,,点D为底边BC上一动点(不与点B,C重合),DE⊥AB,DF⊥AC,垂足分别为E,F,则DE+DF的长为( )A.2B.3C.4D.5答案:C解题思路:连接AD,∵AB=AC=8,∴DE+DF=4.故选C试题难度:三颗星知识点:等腰三角形的性质9.如图,在3×3的网格中,每个网格线的交点称为格点.已知图中A,B两个格点,请在图中再寻找另一个格点C,使△ABC成为等腰三角形,则满足条件的点C有( )A.4个B.6个C.8个D.10个答案:C解题思路:已知A,B两个定点,再寻找点C使得△ABC为等腰三角形,可知需要利用“两圆一线”解题,即:分别以A,B为圆心,以AB的长为半径画圆;作线段AB的垂直平分线.再来判断点C 的个数.如图所示,图中的10个格点均在圆或垂直平分线上,但是点M,N与A,B在同一直线上,构不成等腰三角形,故舍去,所以有8个点.故选C试题难度:三颗星知识点:等腰三角形的存在性10.如图,在平面直角坐标系中,O为原点,已知A(2,-1),P是x轴上的一个动点,如果以点P,O,A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为( )A.2B.3C.4D.5答案:C解题思路:已知O,A两个定点,再寻找点P使得△OAP为等腰三角形,可知需要利用“两圆一线”解题,即:分别以O,A为圆心,以OA的长为半径画圆;作线段OA的垂直平分线,与x轴的交点即为所求.如图所示,图中,,,即为所求.故选C.试题难度:三颗星知识点:等腰三角形的存在性。

等腰三角形的性质(1)

等腰三角形的性质(1)

∴ ∠2=2∠A
∵ BD=BC ∴ ∠C=∠2=2∠A(等边对等角)
∵ AB=AC, ∴ ∠C=∠ABC(等边对等角)
又∵ ∠A+∠ABC+∠C=180°(三角形内角和)
∴ 5∠A=180° ∴ ∠A=36°
∴ ∠C=∠ABC=72° 总结:此题运用“等边对等角”、“三角
形内角和”、“三角形内外角”这些性质
1、如图,△ABC是等腰直角三角形,(AB=AC, ∠BAC=90°),AD是底边BC上的高,
求出∠B 、∠C 、∠BAD 、∠DAC的度数,图中有哪些 相等的线段?
A
A
B D
1题
CB
D
C
2题
2、如图在△ABC中,AB=AD=DC, ∠BAD=26°, 求∠B和∠C
答案:1、∠B=∠C=∠BAD=∠DAC=45° AB=AC BD=CD=AD
复习提问: 1、一般三角形的性质:
A. 三角形三边关系是什么? B. 三角形三个内角间的关系是什么? C.三角形内外角间的关系是什么?
2.什么叫等腰三角形?
做一做:将准备好的等腰三角形△ABC纸片 折叠,使相等的两边AB、AC重叠。
议一议:等腰三角形两部分是否完全重合?
等腰三角形两部分完全重合, A 折痕AD是对称轴;
∵ ①② ∴ ③④ ; ∵ ①③ ∴ ②④ ; ∵ ①④ ∴ ②③。
做一做:等边三角形呢?
A
例1、如图在△ABC中,AB=AC,点D
在AC上,且BD=BC=AD,
求△ABC各角的度数。
解:∵ BD=AD ∴ ∠A=∠1(等边对等角)
D
2
1
Байду номын сангаас
B

等腰直角三角形的性质(人教版)(含答案)

等腰直角三角形的性质(人教版)(含答案)

等腰直角三角形的性质(人教版)试卷简介:测试学生对于常见的等腰直角三角形的思考角度,从边、角、特殊的线、周长、面积等角度分别如何思考,初步体会结构化思考的意识。

一、单选题(共10道,每道10分)1.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC.若∠1=20°,则∠2的度数为( )A.25°B.65°C.70°D.75°答案:B解题思路:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵∠1=20°,∴∠ACE=65°,∵a∥b,∴∠2=∠ACE=65°.故选B.试题难度:三颗星知识点:等腰直角三角形2.如图,在Rt△ABC中,AB=AC,AD⊥BC,垂足为D.E,F分别是CD,AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF=( )A.38°B.30°C.28°D.26°答案:C解题思路:在Rt△ABC中,AB=AC,AD⊥BC,∴BD=CD,∠ADB=∠ADC=90°,∵∠BAC=90°,∴BD=AD=CD,∵CE=AF,∴DF=DE.∴Rt△BDF≌Rt△ADE(SAS).∴∠DFB=∠AED,∵∠AED=62°∴∠DFB=62°,∴∠DBF=28°.故选C.试题难度:三颗星知识点:等腰直角三角形3.将一副三角板按如图所示方式叠放在一起,若AB=8,则阴影部分的面积是( )A.4B.6C.8D.10答案:C解题思路:在Rt△ABC中,∠B=30°,∠ACB=90°,AB=8,∴.∵BC⊥AE,DE⊥AE∴BC∥ED,∴∠AFC=∠ADE=45°,∴AC=CF=4.故.故选C.试题难度:三颗星知识点:等腰直角三角形4.如图,在等腰三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE⊥DF,交AB于E,交BC 于F.若,则AB的长为( )A.3B.6C.9D.18答案:B解题思路:如图,连接BD.∵在等腰直角三角形ABC中,D为AC边上中点,∴BD=CD=AD,∠ABD=45°,BD⊥AC,∴∠C=45°,∴∠ABD=∠C,又∵DE⊥DF,∴∠FDC=∠EDB,∴△EDB≌△FDC(ASA),∴∴∴AB=6,故选B.试题难度:三颗星知识点:等腰直角三角形5.如图,在△ABC中,∠ACB=90°,CA=CB,点D为△ABC外一点,且点D在AC的垂直平分线上.若∠BCD=30°,则∠ABD的值为( )A.25°B.30°C.35°D.45°答案:B解题思路:∵在△ABC中,∠ACB=90°,CA=CB,∴△ABC为等腰直角三角形,∴∠ACB=90°,∠CAB=∠CBA=45°,∵∠BCD=30°,∴∠ACD=60°,∵D在AC的垂直平分线上,∴CD=AD,∴△ACD为等边三角形,∴AC=CD=AD,∴DC=AC=BC,∴∠CBD=∠CDB=75°,∴∠ABD=∠CBD-∠CBA=30°.故选B试题难度:三颗星知识点:等腰直角三角形6.已知在平面上有不重合的两个点A和B,以点A和点B为两个顶点作位置不同的等腰直角三角形,一共可以作出( )A.2个B.4个C.6个D.8个答案:C解题思路:如图所示,可作不同位置的等腰直角三角形6个.故选C.试题难度:三颗星知识点:等腰直角三角形7.如图,在△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE.则下列结论:①∠ECA=165°;②BE=BC;③AD⊥BE;④.其中正确的是( )A.①②③B.①②④C.①③④D.①②③④答案:D解题思路:①∵∠CAD=30°,AC=BC=AD,∴,∵CE⊥CD,∴∠DCE=90°,∴∠ECA=165°,①正确.②∵CE⊥CD,∠ECA=165°,∴∠BCE=∠ECA-∠ACB=165°-90°=75°,∴△ACD≌△BCE(SAS),∴BE=BC,②正确.③如图,延长AD交BE于点F.∵∠ACB=90°,∠CAD=30°,AC=BC,∴∠CAB=∠ABC=45°∴∠BAD=∠BAC-∠CAD=45°-30°=15°,∵△ACD≌△BCE,∴∠CBE=30°,∴∠ABF=75°,∴∠AFB=90°,∴AD⊥BE.③正确.④证明:如图,过D作DM⊥AC于M,过D作DN⊥BC于N.∵∠CAD=30°,AC=AD∴,∵AC=AD,∠CAD=30°,∴∠ACD=75°,∴∠NCD=90°-∠ACD=15°,∠MDC=90°-∠ACD=15°,∴△CMD≌△DNC,∴,∴CN=BN.∵DN⊥BC,∴BD=CD.④正确.所以4个结论都正确.故选D.试题难度:三颗星知识点:等腰直角三角形8.如图,在等腰直角△ABC中,∠BAC=90°,AC=AB,BD⊥AH于D,CH⊥AH于H,HE,DF分别平分∠AHC和∠ADB.则下列结论中:①△AHC≌△BDA;②DF⊥HE;③DF=HE;④AE=BF.其中正确的结论有( )A.①③④B.①C.①②③D.①②③④答案:D解题思路:①∵∠BAC=90°,BD⊥AH,CH⊥AH,∴∠AHC=∠BDA=90°,∴∠CAH+∠BAD=90°,∠ABD+∠BAD=90°,∴∠CAH=∠ABD又∵AC=AB∴△AHC≌△BDA(AAS),①正确;②如图,延长BD与AC相交于点M,延长FD,HE交于点G.∵∠CHD+∠HDM=90°+90°=180°,∴CH∥BM∵DF平分∠ADB∴DG平分∠HDM又∵HE平分∠AHC∴∠HGD=90°∴DF⊥HE,②正确;③又∵∠CHA=∠ADB∴∠EHA=∠FDB又∵∠EAH=∠FBD,AH=BD∴△EHA≌△FDB∴DF=HE,∴③正确④∵△EHA≌△FDB∴AE=BF,④正确.故选D.试题难度:三颗星知识点:等腰直角三角形9.如图,在△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC的度数为( )A.30°B.45°C.55°D.60°答案:B解题思路:∵DE垂直平分AB,∴AE=BE,∵BE⊥AC,∴△ABE是等腰直角三角形,∴∠BAC=∠ABE=45°,又∵AB=AC,∴∠ABC=∠ACB=67.5°,∴∠CBE=∠ABC-∠ABE=22.5°,∵AB=AC,AF⊥BC,∴BF=CF,∴BF=EF,∴∠BEF=∠CBE=22.5°,∴∠EFC=∠BEF+∠CBE=45°.故选B.试题难度:三颗星知识点:等腰直角三角形10.如图,在△ABC中,∠ACB=90°,AD⊥AB,AD=AB,BE⊥DC于点E,CA的垂线AF交EB的延长线于点F,连接CF,则∠ACF的度数为( )A.30°B.40°C.45°D.60°答案:C解题思路:∵∠ACB=90°,∴BC⊥AC,∵AF⊥AC,∴BC∥AF,∴∠EBC=∠AFB,∵EF⊥DE,∠ACB=90°,∴∠DCA+∠ECB=90°,∠ECB+∠EBC=90°,∴∠DCA=∠EBC,∴∠DCA=∠AFB,∵AD⊥AB,AF⊥AC,∴∠DAC=∠BAF,∴△DAC≌△BAF(AAS),∴AC=AF,∵AF⊥AC,∴∠ACF=45°.故选C.试题难度:三颗星知识点:等腰直角三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3、等腰三角形的一个角是80°,它的另外两个角的度数是
A
4、如图3,在△ABC中,AB=AC,
(1)若AD平分∠BAC,那么 AD⊥BC、 BD=CD
(2)若BD=CD,那么 AD⊥BC、 (3)若AD⊥BC,那么AD平分∠、BAC
AD平分∠BACB
D
BD=CD
图3
80° 20° 或5.0° 50° C
BD和 CD ∠ቤተ መጻሕፍቲ ባይዱDA 和 ∠CDA
等腰三角形的性质
? 性质1:等腰三角形的两个底角相等(简写成 “等边对等角”)
? 性质2:等腰三角形的顶角平分线、底边上 的中线、底边上的高相互重合。(简写成 “三线合一”)
?你能发现等腰三角形有什么性质吗?说一
说你的猜想.
性质1:等腰三角形的 两底角相等。(简写成 “等边对等角” )
例1.在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ ABC各角的度数 解:AB=AC,BD=BC=AD,
∠ ABC= ∠ C= ∠ BDC
A
∠ A= ∠ ADD(等边对等角)
设A=x,则
∠ BDC= ∠ A+ ∠ ABD=2x
D
从而∠ ABC= ∠ C= ∠ BDC=2x
B
C
于是在△ ABC中,有
性质2:等腰三角形的顶 角的平分线,底边上的中 线,底边上的高互相重合。
(简称“三线合一” )
A A
1 22
B
C
B
C
D
活动2:等腰三角形性质定理的证明
证明性质 1: 等腰三角形的两个底角相等
(等边对等角) 。 提问:这性质的条件和结论是什么 ?用数学符号如何
表达条件和结论 ?
已知:△ABC中,AB=AC 求证:∠B=? C
13.3.1 等腰三角形的性质(1)
学习目标:
1.了解等腰三角形的概念,掌握等腰三角形的 性质.
2.运用等腰三角形的概念及性质解决相关问 题.
向同学们出示精美的建筑物图片
定义:两条边相等的三
角形叫做等腰三角形 。
边:等腰三角形中 ,相等
的两条边叫做腰,另一条 边叫做底边 .
腰腰 底
相关概念:
角:等腰三角形中 ,两腰
5、在△ ABC中,AB=AD=DC, ∠BAD=26°,求∠ B和∠ C 的度数
A
解:在△ ABC中,AB=AD=DC
∵ ∠B=∠ADB=(180 ° -26° )×0.5=77°
BD
C
又∵AD=DC,在△ ADC中,
∴∠C=0.5 ∠ADB=77 °×0.5=38.5°
这节课我们学习了什么?
∠ A+ ∠ ABC+ ∠ C=x+2x+2x=1800.
解得x=360
在△ ABC中, ∠ A=360 ∠,ABC= ∠ C=720
随堂练习 1. 等腰三角形的顶角是70°,两个底角的度数分别是70° 40°或55°,55°.
2. 等腰三角形的一个底角是50°,顶角的度数是 50° ,80° .
的夹角叫做顶角,腰和底边 的夹角叫做底角 .
顶角


底角 底
? 活动1:探索等腰三角形性质
? 上面剪出的等腰三角形是轴对称图形吗?
? 把剪出的等腰三角形ABC沿折痕AD对折,找出其中相等的线 段和角,填入下表
B
重合的线段
重合的角
AB 和 AC ∠B 和 ∠C
A
D
AD和 AD ∠BAD和 ∠CAD
C
等 腰 三 角
等边对等角
1、求有关等腰三角形的问题,作 顶角平分线、底边中线,底边的
高是常用的辅助线;
形 的 性
等腰三角形 2、熟练掌握求解等腰三角形的顶 三线合一 角、底角的度数;

3、掌握等腰三角形三线合一的
应用。
习题13.3
北京欢迎你
分析:1.如何证明两个角相等?
2.如何构造两个全等的三角形?
证明:在△ABC中,AB=AC,作底边
A
BC的中线AD,
在 △ BAD 与△ CAD 中
∵ AB=_A__C
BD=_C_D_
AD=_A_D_ ∴ △ BAD ≌△ CAD( SSS)
B
D
C
∠B= _∠__C
活动4:等腰三角形性质定理的运用
相关文档
最新文档