现代材料分析测试技术材料分析测试技术
材料现代分析测试方法-rietveld
材料A的Rietveld分析
通过Rietveld分析确定了材料 A的晶格参数和晶体结构。对定量 分析,确定了多相材料的不 同相的含量。
应力分析中的Rietveld 分析
利用Rietveld分析和细致的晶 格参数测定,研究了材料内 部应力分布的变化。
材料现代分析测试方法rietveld
欢迎来到本次演讲,我们将介绍材料现代分析测试方法中的一种重要技术— —Rietveld分析。让我们一起探索这个引人入胜的领域。
什么是Rietveld分析
Rietveld分析是一种用于材料结构精确测定和相对定量分析的X射线衍射技术。它通过模拟实验光 谱与理论衍射谱之间的匹配,获得材料中的晶格参数、晶体结构和物相信息。
高分子材料
用于聚合物晶体结构、配位化合物和疏水 材料的分析。
Rietveld分析的优势和局限性
优势
• 高精度的结构测定 • 广泛适用于不同材料和结构类型 • 非破坏性分析
局限性
• 对样品质量和衍射数据的要求较高 • 无法解析非晶态或非结晶态样品 • 需要对实验结果进行仔细解释
Rietveld分析的实例和案例研究
总结和展望
Rietveld分析作为一种先进的材料现代分析测试方法,在材料科学和许多其他领域具有广泛应用前 景。希望本次演讲能为大家提供了对Rietveld分析的全面了解和启发。
3 模型优化
4 结构分析
通过最小二乘法将实验和计算的衍射谱 拟合。
从拟合结果中提取材料的晶格参数和晶 体结构信息。
Rietveld分析的应用领域
材料科学
用于研究材料的晶体结构、相变以及材料 表征。
地球科学
用于研究岩石、矿石和地质样品的晶体结 构和相组成。
药物化学
现代材料分析方法
现代材料分析方法现代材料分析方法包括物理、化学、电子、光学、表面和结构等多个方面的技术手段,具有快速、准确、非破坏性的特点。
下面将针对常用的材料分析技术进行详细介绍。
一、物理分析方法1. 微观结构分析:包括金相显微镜分析、扫描电镜、透射电镜等技术。
通过观察材料的显微结构、晶粒尺寸、相组成等参数,揭示材料的内在性质和形貌特征。
2. 热分析:如热重分析、差示扫描量热仪等。
利用材料在高温下的重量、热容变化,分析材料的热行为和热稳定性。
3. 电学性能测试:包括电导率、介电常数、介电损耗等测试,用于了解材料的电导性和电介质性能。
4. 磁性测试:如霍尔效应测试、磁滞回线测试等,用于研究材料的磁性行为和磁性特性。
二、化学分析方法1. 光谱分析:包括紫外可见光谱、红外光谱、核磁共振等。
通过检测材料对不同波长的光谱的吸收、散射等现象,分析材料的组分和结构。
2. 质谱分析:如质子质谱、电喷雾质谱等。
通过挥发、电离和分离等过程,分析材料中不同元素的存在及其相对含量。
3. 电化学分析:包括电化学阻抗谱、循环伏安法等。
通过测量材料在电场作用下的电流、电压响应,研究材料的电化学性能和反应过程。
4. 色谱分析:如气相色谱、高效液相色谱等。
利用材料在色谱柱上的分离和吸附效果,分析材料中组分的种类、含量和分布。
三、电子分析方法1. 扫描电子显微镜(SEM):通过照射电子束,利用电子和物质的相互作用,获得样品表面的详细形貌和成分信息。
2. 透射电子显微镜(TEM):通过透射电子束,观察材料的细观结构,揭示原子尺度的微观细节。
3. 能谱分析:如能量色散X射线谱(EDX)、电子能量损失谱(EELS)等。
通过分析材料与电子束相互作用时,产生的X射线和能量损失,来确定样品的元素组成和化学状态。
四、光学分析方法1. X射线衍射:通过物质对入射的X射线束的衍射现象,分析材料的晶体结构和晶格参数。
2. 红外光谱:通过对材料在红外辐射下的吸收和散射特性进行分析,确定材料的分子结构和化学键。
现代材料分析技术及应用
现代材料分析技术及应用现代材料分析技术是指利用现代科学技术手段对材料进行全面、准确、细致的研究和分析的方法。
它是材料科学领域研究的基础和支撑,广泛应用于材料的研发、生产和质量控制等方面。
现代材料分析技术包括物理性质测试、化学分析、显微成像、表面分析、光谱分析、电子显微镜等多个方面。
下面将介绍几种常见的现代材料分析技术及其应用。
一、物理性质测试技术物理性质测试技术是对材料的物理性能进行测试和分析的方法。
常见的测试技术有强度测试、硬度测试、韧性测试、热膨胀系数测量等。
这些测试技术可以用于评估材料的强度、硬度、韧性、热稳定性等性能。
例如,在金属材料的研发过程中,可以通过硬度测试来评估其抗拉强度和延展性,进而确定最佳的工艺参数。
二、化学分析技术化学分析技术是对材料中化学成分进行定性和定量分析的方法。
常见的化学分析技术包括光谱分析、质谱分析、原子吸收光谱分析等。
这些技术可以确定材料中元素的种类、含量以及化学结构。
化学分析技术在材料研发过程中起到了重要作用,可以选择最佳的原材料组合,提高材料的性能。
三、显微成像技术显微成像技术是观察和研究材料的微观形貌和结构的方法。
常见的显微成像技术有光学显微镜、电子显微镜和原子力显微镜等。
这些技术可以提供高分辨率的图像,揭示材料的表面形貌、内部结构和缺陷等信息。
显微成像技术广泛应用于材料的质量检测、缺陷分析和外观评估等方面。
四、表面分析技术表面分析技术是研究材料表面性质和表面结构的方法。
常见的表面分析技术有扫描电子显微镜、表面拉曼光谱、X射线光电子能谱等。
这些技术可以提供材料表面的化学组成、成分分布、晶体结构等信息。
表面分析技术对于材料的表面改性、涂层质量控制等有重要意义。
五、光谱分析技术光谱分析技术是研究物质的光学特性和结构的方法。
常见的光谱分析技术有红外光谱、紫外-可见吸收光谱、核磁共振光谱等。
这些技术可以通过分析物质与光的相互作用来判断其分子结构、化学键信息等。
光谱分析技术广泛应用于材料的组分分析、质量控制和性能评估等方面。
现代材料分析测试技术 凝胶渗透色谱 GPC
• 含有固化剂的EPOXY
酚醛树脂在室温条件下的自然 固化现象观察
8 6 4
RI/mv
2 0 -2 -4 15
1d 2d 5d 11d 19d
20
25 t/min
30
35
补充内容:水相GPC的应用
• 用于溶解于水的聚合物 • 较有机相GPC要复杂得多
水相GPC中存在的问题
• 非体积排除效应
• 分子尺寸不能直接反映分子质量及其分布 的信息。
聚合物分子量的特点
1.分子量大 2.多分散性
3.分子量统计平均值+分布系数才能确切 描述聚合物分子量
GPC分离机理
二、GPC仪器的基本配置
• • • • • • 溶剂贮存器(Solvent) 泵(Pump) 进样系统(Autosample ) 色谱柱(column) 检测器(detector) 数据采集与处理系统(Data Acquirement and Process System) • 废液池 (Waste)
(1)分子质量变化不大
• 这是由于分子链发生了氧化现象,生成了 其它物质,如羟基被氧化为醛、酮或酯的 结构,这时聚合物整体的分子链长度没有 明显的改变,但聚合物的性质发生了变化, 这时可以通过红外的方法检测其分子链结 构组成的变化。
(2)分子质量降低
• 有些高聚物的老化是因为分子链的断裂, 这时分子量急剧下降,使产品性能发生显 著的变化。如纤维强度下降,变脆,达不 到使用要求。
仪器基本配置流程图
3 2.5 2
RI/mv
1.5 1 0.5 0 -0.5 0 5 10 15 20 25 30 35 t/min
泵(515 HPLC Pump)
• 要求精度很高
材料现代分析与测试技术-各种原理及应用
材料现代分析与测试技术-各种原理及应用XRD :1.X 射线产生机理:(1)连续X 射线的产生:任何高速运动的带电粒子突然减速时,都会产生电磁辐射。
①在X 射线管中,从阴极发出的带负电荷的电子在高电压的作用下以极大的速度向阳极运动,当撞到阳极突然减速,其大部分动能变为热能都损耗掉了,而一部分动能以电磁辐射—X 射线的形式放射出来。
②由于撞到阳极上的电子极多,碰撞的时间、次数及其他条件各不相同,导致产生的X 射线具有不同波长,即构成连续X 射线谱。
(2)特征X 射线:根本原因是原子内层电子的跃迁。
①阴极发出的热电子在高电压作用下高速撞击阳极;②若管电压超过某一临界值V k ,电子的动能(eV k )就大到足以将阳极物质原子中的K 层电子撞击出来,于是在K 层形成一个空位,这一过程称为激发。
V k 称为K 系激发电压。
③按照能量最低原理,电子具有尽量往低能级跑的趋势。
当K 层出现空位后,L 、M 、N……外层电子就会跃入此空位,同时将它们多余的能量以X 射线光子的形式释放出来。
④K 系:L, M, N, ...─→K ,产生K α、K β、K r ... 标识X 射线L 系:M, N, O,...─→L ,产生L α、L β... 标识X 射线特征X 射线谱M 系: N, O, ....─→M ,产生M α... 标识X 射线特征谱Moseley 定律2)(1αλ-?=Z Z:原子序数,、α:常数2.X 射线与物质相互作用的三个效应(1)光电效应?当X 射线的波长足够短时,X 射线光子的能量就足够大,以至能把原子中处于某一能级上的电子打出来,?X 射线光子本身被汲取,它的能量传给该电子,使之成为具有一定能量的光电子,并使原子处于高能的激发态。
(2)荧光效应①外层电子填补空位将多余能量ΔE 辐射次级特征X 射线,由X 射线激发出的X 射线称为荧光X 射线。
②衍射工作中,荧光X 射线增加衍射花样背影,是有害因素③荧光X 射线的波长只取决于物质中原子的种类(由Moseley 定律决定),利用荧光X 射线的波长和强度,可确定物质元素的组分及含量,这是X 射线荧光分析的基本原理。
材料现代分析测试方法教学设计
材料现代分析测试方法教学设计1. 引言材料现代分析测试方法是材料科学中的重要领域,它不仅关系到材料的性能评估、质量控制、过程优化等方面,也与材料基础研究密切相关。
本文旨在探讨如何针对材料现代分析测试方法的教学设计,提高学生的实验技能、科学素养和综合素质。
2. 教学目标1.了解材料现代分析测试方法的技术基础、原理和应用;2.掌握现代分析测试方法的基本技能,包括样品制备、测试操作、数据处理等;3.培养学生的实验思维、实验技能和科学态度;4.提高学生的综合素质,包括团队协作、口头表达、写作能力等。
3. 教学内容3.1 材料现代分析测试方法概述介绍材料现代分析测试方法的发展历程、技术分类、应用领域等,使学生了解不同的现代测试方法的特点和优势。
3.2 样品制备与仪器调试掌握样品制备的基本方法和实验技巧,包括样品收集、样品制备、样品保存等方面内容。
同时,对仪器操作、仪器调试等方面进行详细介绍和演示,以保证实验数据的准确性和稳定性。
3.3 现代分析测试方法基础实验介绍常见的材料现代分析测试方法,包括SEM、TEM、XRD、XRF等方法,通过实验演示的方式来掌握分析测试方法的基本操作技能。
3.4 分析测试方法的综合应用选取一些案例,通过现代分析测试方法对材料进行分析测试,提高学生对分析测试方法的综合应用能力。
4. 教学方法与手段该课程以理论与实践相结合的方式进行,顺序讲解每个部分内容,进行示范,引导学生进行操作练习。
同时,结合课程设计,设计习题,让学生进行思考、探讨和解决问题。
5. 教学评价本课程的教学评价是单项评估和综合评估相结合的方式,主要由实验操作能力、实验报告写作和课堂表现三个方面来综合考察学生的综合素质。
6. 教学效果预期通过本次课程的学习,学生将对材料现代分析测试方法有了新的认识和理解,掌握了相关的基本技能和知识。
这将为他们未来的学习学术研究和实践应用打下基础,并有助于提高他们实验技能、科学素养和综合素质。
现代分析与测试技术优选全文
析
相干散射——电子衍射分析—— 显微结构分析
技
激发被测物质中原子发出特种X射线
术
——电子探针(电子能(波)谱分析,电子
探针X射线显微分析)
——显微化学分析(Be或Li以上元素分析)
1.材料现代分析技术绪论
材 料 现 代 分 析 技 术
1.材料现代分析技术绪论
材
材料现代分析的任务与方法
料
材料组成分析
1.材料现代分析技术绪论
材
料
直接法的局限
现 代
采用高分辨电子显微分析等直接分析技术并不能有效、 直观地反映材料的实际三维微观结构;高分辨电子
分
显微结构像是直接反映晶体的原子分辨率的投影结
析
构,并不直接反映晶体结构。
技 尽管借助模型法,通过对被测晶体拍摄一系列不同离
术
焦条件的显微像,来分析测定材料的晶体结构,但
性能和使用性能间相互关系的知识及这些知识的应用,是一门应用
基础科学。材料的组成、结构,工艺,性能被认为是材料科学与工
程的四个基本要素。
1.材料现代分析技术绪论
材 料
组成 (composition) 组成是指材料的化学组成及其所占比例。
现 工艺 (process)
代
工艺是将原材料或半成品加工成产品的方法、技术等。
2. 多晶相各种相的尺寸与形态、含量与分布、位向 关系(新相与母相、孪生相、夹杂物)
微观,0.1nm尺度(原子及原子组合层次)
结构分析:原子排列方式与电子构型
1. 各种相的结构(即晶体类型和晶体常数)、晶体缺 陷(点缺陷、位错、层错)
2. 分子结构与价键(电子)结构:包括同种元素的不 同价键类型和化学环境、高分子链的局部结构(官 能团、化学键)和构型序列等
材料现代分析测试方法
材料现代分析测试方法材料的现代分析测试方法是为了研究材料的组成、结构、性质以及相应的测试手段。
通过分析测试方法,我们可以深入了解材料的特点,进而为材料的研发、优化和应用提供有效的数据支持。
下面将介绍几种常用的材料现代分析测试方法。
一、质谱分析法质谱分析法是一种通过测量样品中不同质荷比(m/z)的离子的相对丰度来确定样品组成和结构的分析方法。
质谱分析法适用于分析有机物和无机物。
其优点是能快速分析出物质组成,提供准确的质量数据,对于结构复杂的样品仍能有效分析。
二、核磁共振(NMR)谱学核磁共振谱学是一种通过测量样品中核自旋与磁场相互作用的现象来分析样品结构和组成的方法。
不同核的共振频率和强度可以提供关于样品分子结构和组成的信息。
核磁共振谱学适用于有机物和无机物的分析。
由于从核磁共振谱图中可以获得丰富的结构信息,所以核磁共振谱学被广泛应用于有机化学、药物研发和材料科学等领域。
三、红外光谱学红外光谱学是一种通过测量样品对不同波长的红外辐射的吸收情况来分析样品结构和组成的方法。
不同官能团在红外区域会有特定的吸收峰位,因此红外光谱能提供有关样品中化学键和官能团的信息。
红外光谱学适用于有机物和无机物的分析。
它具有非破坏性、快速、易于操作等特点,在化学、生物和材料科学领域得到了广泛应用。
四、X射线衍射(XRD)X射线衍射是一种通过测量样品对入射X射线的衍射现象来研究样品结构和晶体结构的方法。
不同物质的晶格结构具有不同的衍射图样,通过分析衍射图样可以获得样品的晶体结构信息。
X射线衍射适用于分析有晶体结构的材料,如金属、陶瓷、单晶等。
它能提供关于晶体结构、晶粒尺寸和应力等信息,被广泛应用于材料科学、地质学和能源领域。
五、扫描电子显微镜(SEM)和透射电子显微镜(TEM)扫描电子显微镜和透射电子显微镜是一种通过聚焦电子束对材料进行观察和分析的方法。
扫描电子显微镜主要用于获得材料的表面形貌、颗粒分布和成分分析。
透射电子显微镜则能提供材料的内部结构和界面微观结构的信息。
材料现代分析与测试技术论文
材料结构分析结课论文学院:物理化学学院专业班级:应化1001 姓名:学号: 311013030110材料现代分析与测试技术论文随着经济的迅速发展,人们对材料的需求日益增加。
为了满足这些现代技术对材料的需求,世界各国都非常重视功能材料的研究和开发。
功能材料作为现代技术的标志,引起了各国的关注,已经成为材料科学中的一个分支学科,并在不同程度上推动或加速了各种现代技术的进一步发展。
本篇综述简单介绍了功能材料的材料是现代科技和国民经济的物质基础。
一个国家生产材料的品种、数量和质量是衡量其科技和经济发展水平的重要标志。
因此,现在称材料、信息和能源为现代文明的三大支柱,又把新材料、信息和生物技术作为新技术革命的主要标志。
材料的发展虽然历史悠久,但作为一门独立的学科始于20世纪60年代。
材料的研究和制造开始从经验的、定性的和宏观的向理论的、定量的和微观的发展。
20世纪70年代,美国学者首先提出材料科学与工程这个学科全称。
1975年美国科学院发表的《材料与人类》专著中[1],对材料科学与工程定义为:探索和应用材料的成分、结构、加工和其性质与应用之间关系的一门学科。
功能材料的概念是美国 Morton J A于1965年首先提出来的。
功能材料是指具有一种或几种特定功能的材料,如磁性材料、光学材料等,它具有优良的物理、化学和生物功能,在物件中起着“功能”的作用[2]。
20世纪60年代以来,各种现代技术的兴起,强烈刺激了功能材料的发展。
为了满足这些现代技术对材料的需求,世界各国都非常重视功能材料的研究和开发。
同时,由于固体物理、固体化学、量子理论、结构化学、生物物理和生物化学等学科的飞速发展以及各种制备功能材料的新技术和现代分析测试技术在功能材料研究和生产中的实际应用,许多新功能材料不仅已经在实验室中研制出来,而且已经批量生产和得到基本性能、特点和分类及其发展现状和发展趋势。
(1)X射线单晶体衍射仪(X-ray single crystal diffractometer,简写为XRD) 原理:根据布拉格公式:2dsinθ=λ可知,对于一定的晶体,面间距d一定,有两种途径可以使晶体面满足衍射条件,即改变波长λ或改变掠射角θ。
材料分析测试技术
材料分析测试技术第一篇:材料分析测试技术一、引言材料分析测试技术是现代材料科学领域中非常重要的一部分,涵盖了材料结构、材料性能以及材料组成等方面的研究。
通过对材料进行分析测试,能够为材料的合理设计、精细加工、可靠使用以及环境保护等方面提供科学依据。
二、主要内容1.材料结构分析测试:此项测试主要是通过对材料的原位形貌、拉伸或压缩变形过程以及破坏机理的观察和分析,来揭示材料微结构的特征和结构与性能之间的关系。
2.材料物理性质测试:此项测试主要包括材料的热学性能、电学性能、光学性能等各个方面。
其中,热学性能测试包括热膨胀系数、热导率、比热等;电学性能测试包括电导率、介电常数、磁导率等;光学性能测试包括透过率、反射率、吸收率等。
3.材料化学成分测试:此项测试主要是通过对材料中各种元素化学量的测定,来确定材料的组成及其含量范围。
其中,常用的测试方法有荧光光谱法、原子吸收光谱法、质谱法等。
4.材料力学性能测试:此项测试主要是通过对材料的受力响应、变形、破坏等参数的测定,来评估材料的强度、韧性、脆性、疲劳性等力学特性。
其中,常用的测试方法有拉伸试验、压缩试验、硬度测试等。
三、测试技术优化为了提高材料分析测试的准确性和可靠性,需要注重以下几个方面:1.测试设备的选用和改进:从设备的选型、使用、维护等多方面考虑,提高设备的测试精度、可靠性和稳定性,并为特定的测试任务提供更优化的测试方法。
2.测试方法的优化:对测试方法的有效性、精度和可重复性进行评估和提高,并根据实际测试情况不断优化测试方法。
3.测试样品的处理:要注重对测试样品的处理和制备,避免样品的变形、损伤、干扰等因素对测试结果的影响。
4.测试人员的素质提高:对测试人员必须进行专业知识的培训和技能的提高,使其具备独立进行测试的能力和科学分析测试结果的能力。
四、应用前景目前,材料分析测试技术已经广泛应用于材料科学领域中的各个方面,如材料设计、加工制造、环境保护、矿产资源开发等。
材料现代分析与测试技术 教学大纲
材料现代分析与测试技术课程教学大纲一、课程性质、教学目的及教学任务1.课程性质本课程是材料类专业的专业基础课,必修课程。
2.教学目的学习有关材料组成、结构、形貌状态等分析测试的基本理论和技术,为后续专业课学习及将来材料研究工作打基础。
3.教学任务课程任务包括基本分析测试技术模块——X射线衍射分析、电子显微分析、热分析;扩充分析测试技术模块——振动光谱分析和光电子能谱分析。
在各模块中相应引入新发展的分析测试技术:X射线衍射分析X射线衍射图谱计算机分析处理;电子显微分析引入扫描探针显微分析(扫描隧道显微镜、原子力显微镜);热分析引入DSC分析。
二、教学内容的结构、模块绪论了解材料现代分析与测试技术在无机非金属材料中的应用、发展趋势,明确本课程学习的目的和要求。
1. 本课程学习内容2. 本课程在无机非金属材料中的应用3. 本课程的要求(一)X射线衍射分析理解掌握特征X射线、X射线与物质的相互作用、布拉格方程等X射线衍射分析的基本理论,掌握X射线衍射图谱的分析处理和物相分析方法,掌握X射线衍射分析在无机非金属材料中的应用,了解X射线衍射研究晶体的方法和X射线衍射仪的结构,了解晶胞参数测定方法。
1. X射线物理基础(1)X射线的性质(2)X射线的获得(3)特征X射线和单色X射线2. X射线与物质的相互作用3. X射线衍射几何条件4. X射线衍射研究晶体的方法(1)X射线衍射研究晶体的方法(2)粉末衍射仪的构造及衍射几何5. X射线衍射数据基本处理6. X射线衍射分析应用(1)物相分析(2)X射线衍射分析技术在测定晶粒大小方面的应用(二)电子显微分析理解掌握电子光学基础、电子与固体物质的相互作用、衬度理论等电子显微分析的基本理论,掌握透射电镜分析、扫描电镜分析、电子探针分析的应用和特点,掌握用各种衬度理论解释电子显微像,掌握电子显微分析样品的制备方法,了解透射电镜、扫描电镜、电子探针的结构。
1. 电子光学基础(1)电子的波长和波性(2)电子在电磁场中的运动和电磁透镜(3)电磁透镜的像差和理论分辨率(4)电磁透镜的场深和焦深2. 电子与固体物质的相互作用(1)电子散射、内层电子激发后的驰豫过程、自由载流子(2)各种电子信号(3)相互作用体积与信号产生的深度和广度3. 透射电子显微分析(1)透射电子显微镜(2)透射电镜样品制备(3)电子衍射(4)透射电子显微像及衬度(5)透射电子显微分析的应用4. 扫描电子显微分析(1)扫描电子显微镜(2)扫描电镜图像及衬度(3)扫描电镜样品制备5. 电子探针X射线显微分析(1)电子探针仪的构造和工作原理(2)X射线谱仪的类型及比较(3)电子探针分析方法及其应用6. 扫描探针显微分析(1)扫描隧道显微镜(2)原子力显微镜(三)热分析理解掌握差热分析、热释光谱分析的基本原理,掌握差热曲线的判读及影响因素,掌握热释光谱分析,了解差热分析仪的结构,了解热重分析和示差扫描量热分析。
现代分析测试技术
通过分子对不同偏正光吸收的差异作手性分子检测的分析 技术。
14
现代分析测试技术概述
• X-射线光谱技术
• X—射线荧光光谱
检测分子受X—射线照射后产生的荧光谱线的分析技术。
• X—射线衍射法
检测由不同晶格结构对X—射线所产生的不同衍射角的分析技术。
40
现代分析测试技术概述
41
现代分析测试技术概述
晶体特性: 原子、离子、分子在空间周期性排列而构成的固态物称晶体,晶体结构
的最小单位是晶胞,晶胞由晶轴a、b、c,及夹角、、 ,以及晶面h
液相色谱(LC)
利用物质在流动相(液相)和固定相(液相或固相)中的分配比不 同原理的分离技术。
毛细管电泳(CE)
以高压电场为驱动力,以毛细管为分离通道,根据样品中各组分间 的趟度或分配行为上的不同进行分离的技术。
18
现代分析测试技术概述
联用技术
色谱—质谱联用技术 色谱—核磁共振波谱联用技术 色谱—红外吸收光谱联用技术
9
现代分析测试技术概述
现代分析测试技术的分类
电化学技术 光分析技术 质谱与能谱技术 色谱技术 联用技术 显微技术 热分析技术
10
现代分析测试技术概述
电化学技术
应用电化学的基本原理和实验技术,依据物质电化学性质来测定物质组成及含量。
电导技术 利用物体、溶液电导率变化的检测技术。
电位分析 根据物质电位变化和电极反应过程中电位变化的检测技术。
普通蒸馏水的电导率 210-6 S· cm-1 离子交换水的电导率 510-7 S· cm-1 纯水的电导率 510-8 S· cm-1
现代材料分析测试技术材料分析测试技术
(1-7)
如果电子速度较低,其质量和静止质量相近,即m≈m0.如果加速电压很高,使电子速度极高,则必须经过相对论校正,此时:
式中 c——光速
表1-长在390-760nm之间,从计算出的电子波波长可以看出,在常用的100-200kV加速电压下,电子波的波长要比可见光小5个数量级。
01
1.1 引言
光学显微镜的分辨率
由于光波的波动性,使得由透镜各部分折射到像平面上的像点及其周围区域的光波发生相互干涉作用,产生衍射效应。一个理想的物点,经过透镜成像时,由于衍射效应,在像平面上形成的不再是一个像点,而是一个具有一定尺寸的中央亮斑和周围明暗相间的圆环所构成的Airy斑。如图1-1所示。 测量结果表明Airy斑的强度大约84%集中在中心亮斑上,其余分布在周围的亮环上。由于周围亮环的强度比较低,一般肉眼不易分辨,只能看到中心亮斑。因此通常以Airy斑的第一暗环的半径来衡量其大小。根据衍射理论推导,点光源通过透镜产生的Airy斑半径R0的表达式为:
据说日本电子已经制造了带球差校正器的透射电镜,但一个球差校正器跟一台场发射透射电镜的价格差不多。
式中 Cs表示球差系数。
No Fringe Un-corrected Corrected Si (111)Σ3 grain boundary TEM Cs Corrector
β-Si3N4
2nm
2200FS + STEM Cs corrector
电子波波长
根据德布罗意(de Broglie)的观点,运动的电子除了具有粒子性外,还具有波动性。这一点上和可见光相似。电子波的波长取决于电子运动的速度和质量,即 (1-4) 式中,h为普郎克常数:h=6.626×10-34J.s;m为电子质量;v为电子运动速度,它和加速电压U之间存在如下关系: 即 (1-5) 式中e为电子所带电荷,e=1.6×10-19C。 将(1-5)式和(1-4)式整理得: (1-6)
材料现代分析测试技术-光谱分析
弧层边缘的温度较低,因而这里处于基态的同类原子较多。 这些低能态的同类原子能吸收高能态原子发射出来的光而 产生吸收光谱。原子在高温时被激发,发射某一波长的谱 线,而处于低温状态的同类原子又能吸收这一波长的辐射, 这种现象称为自吸现象。
光电直读光谱仪
在原子发射光谱法中, 一般多采用摄谱法(spectrography)。
摄谱法是用感光板记录光谱。将光谱感光板置于摄谱仪 焦面上,接受被分析试样的光谱作用而感光,再经过 显影、定影等过程后,制得光谱底片,其上有许多黑 度不同的光谱线。然后用影谱仪观察谱线位置及大致 强度,进行光谱定性及半定量分析。
(6)谱线的自吸与自蚀
三、谱线的自吸与自蚀(self-absorption and selfreversal of spectral lines)
在实际工作中,发射光谱是通过物质的蒸发、激发、 迁移和射出弧层而得到的。首先,物质在光源中蒸发形成 气体,由于运动粒子发生相互碰撞和激发,使气体中产生
大量的分子、原子、离子、电子等粒子,这种电离的气 体在宏观上是中性的,称为等离子体。在一般光源中, 是在弧焰中产生的,弧焰具有一定的厚度,如下图:
4. Atomic fluorimetry
气态自由原子吸收特征波长的辐射后,原子的外层 电子 从基态或低能态跃迁到较高能态,约经10-8 s,又跃
迁至基态或低能态,同时发射出与原激发波长相同(共 振荧光)或不同的辐射(非共振荧光—直跃线荧光、阶 跃线荧光、阶跃激发荧光、敏化荧光等),称为原子荧 光。波长在紫外和可见光区。在与激发光源成一定角度 (通常为90)的方向测量荧光的强度,可以进行定量分 析。
材料现代分析测试技术试卷
期末考试试卷课程名称:材料现代分析技术 闭卷 A 卷 120分钟一、选择题(每小题2分,共20分)1、下列材料现代分析方法中能进行局部点的微结构分析的是( )A )X 射线衍射分析B )扫描电子显微镜C )透射电子显微镜D )热重分析法 2、X 射线衍射分析是近代材料微观结构与缺陷分析必不可少的重要手段之一,以下哪个选项不是X 射线衍射分析的应用 ( )A )晶体结构研究 B) 物相分析 C )精细结构研究 D )表面元素分析 3、X 射线管所产生的特征谱的波长受以下哪种因素所影响( )A )管电压 B) 管电流 C )阳极靶材的原子序数 D )电子电荷4、利用吸收限两边吸收系数相差十分悬殊的特点,可制作X 射线滤波片,滤波片材料是根据靶材元素确定的,根据滤波片材料选择规律,当阳极靶材料为元素Mo 时,选择的滤波片材料应该是下列选项中的( )A )FeB )CoC )NiD )Zr5、X 射线衍射定量分析中,如待测样品中含有多个物相,各相的质量吸收系数又不同,常常采用下列哪种方法( )A )外标法B )内标法C )参比强度法D )直接对比法6、透射电子显微镜成像系统中通常包含三级放大系统,下列选项中不是其三级放大系统的是( )A )物镜B )中间镜C )目镜D )投影镜7、利用透射电子显微镜观察纳米二氧化钛形态,通常采用下列哪种制样方法( )A )支持膜法 B) 超薄切片法 C )复型法 D )晶体减薄法8、扫描电子显微镜观察中,二次电子像的衬度主要受以下哪个因素所影响( )A )形貌B )成分C )电压D )电磁9、采用X 光电子能谱分析Be 的化学状态,根据影响其化学位移的规律,下列选项中Be 的1s 电子结合能排列正确的是( )A )BeO > BeF 2 > Be B) BeF 2 > Be > BeO C) BeF 2 > BeO > Be D) Be > BeF 2 > BeO 10、根据差热曲线方程,为了提高仪器的检测灵敏度,采用如下哪种方法( )二、填空题(每空1分,共20分) 1、X 射线管发出的X 射线,其波长并不相同,根据其波长变化的特点可分为 和 。
期末考试:现代材料测试分析方法及答案
期末考试:现代材料测试分析方法及答案一、引言本文旨在介绍现代材料测试分析方法,并提供相关。
现代材料测试分析方法是材料科学与工程领域的重要内容之一,它帮助我们了解材料的性质和特性,为材料的设计和应用提供依据。
本文将首先介绍几种常见的现代材料测试分析方法,然后给出相应的。
二、现代材料测试分析方法1. 机械性能测试方法机械性能是材料的重要指标之一,它包括材料的强度、硬度、韧性等方面。
常见的机械性能测试方法包括拉伸试验、压缩试验、冲击试验等。
这些测试方法通过施加外力或载荷,测量材料在不同条件下的变形和破坏行为,从而评估材料的机械性能。
2. 热性能测试方法热性能是材料在高温或低温条件下的表现,它包括热膨胀性、热导率、热稳定性等方面。
常见的热性能测试方法包括热膨胀试验、热导率测试、热分析等。
这些测试方法通过加热或冷却材料,测量其在不同温度下的性能变化,从而评估材料的热性能。
3. 化学性能测试方法化学性能是材料在不同化学环境中的表现,它包括耐腐蚀性、化学稳定性等方面。
常见的化学性能测试方法包括腐蚀试验、酸碱浸泡试验等。
这些测试方法通过将材料置于不同的化学介质中,观察其在化学环境下的变化,从而评估材料的化学性能。
三、1. 机械性能测试方法的应用机械性能测试方法广泛应用于材料工程领域。
例如,在汽车工业中,拉伸试验可以评估材料的抗拉强度和延伸性,从而选择合适的材料制造汽车零部件。
在建筑工程中,压缩试验可以评估材料的抗压强度,确保建筑结构的稳定性和安全性。
在航空航天领域,冲击试验可以评估材料的抗冲击性能,确保飞机在遭受外力冲击时不会破坏。
2. 热性能测试方法的意义热性能测试方法对于材料的设计和应用非常重要。
通过热膨胀试验,我们可以了解材料在高温条件下的膨胀性,从而避免热膨胀引起的构件变形和破坏。
通过热导率测试,我们可以评估材料的导热性能,为热传导设备的设计提供依据。
通过热分析,我们可以了解材料在不同温度下的热行为,为材料的热稳定性评估提供依据。
现代材料分析测试技术
现代材料分析测试技术1. 引言现代材料分析测试技术是指利用科学仪器和方法对材料进行测试、分析和评估的一种技术手段。
随着材料科学的不断发展和技术的进步,现代材料分析测试技术在工业、科研和生产领域起着至关重要的作用。
本文将介绍常用的现代材料分析测试技术,包括扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、红外光谱(FTIR)等。
2. 扫描电子显微镜(SEM)扫描电子显微镜(SEM)是一种非常重要的材料分析测试仪器。
它通过扫描材料表面并通过电子束与材料相互作用来获得材料表面微观形貌和成分信息。
SEM广泛应用于材料科学、纳米材料研究、材料工艺等领域。
它可以观察样品的表面形貌、晶体结构、晶粒大小等,并通过能谱分析仪来获得元素组成信息。
3. 透射电子显微镜(TEM)透射电子显微镜(TEM)是一种用于观察材料内部结构的高分辨率显微镜。
TEM通过电子束穿透材料,并通过对透射电子进行束缚和散射来图像化材料的内部结构。
它在材料科学、纳米技术、纤维材料等领域具有重要的应用价值。
TEM能够观察材料的晶体结构、晶格缺陷、晶粒尺寸等,并可获得高分辨率的像像。
4. X射线衍射(XRD)X射线衍射(XRD)是一种常用的材料分析测试技术。
它利用材料对入射X射线的衍射现象来研究材料的晶体结构和晶格参数。
XRD广泛应用于材料科学、矿产勘探、无机化学等领域。
XRD可以确定材料的晶体结构、晶格常数、相对结晶度等,并可通过对射线衍射的精确测定来研究材料的相变行为和配位状态。
5. 红外光谱(FTIR)红外光谱(FTIR)是一种常用的材料分析测试技术,可以用来研究材料的分子结构和化学键的振动情况。
红外光谱可以提供关于材料的化学成分、结构和功能的重要信息。
它广泛应用于材料科学、有机化学、聚合物科学等领域。
红外光谱可以帮助确定材料的分子结构、功能团的存在和分布,以及材料的晶体性质等。
6. 总结现代材料分析测试技术在材料科学和工程领域起着至关重要的作用。
现代材料分析测试技术
晶体和非 晶体
晶体是质点(原子、离子或分子)在空间按一 定规律周期性重复排列构成的固体物质。
非晶体是指组成物质的分子(或原子、离子) 不呈空间有规则周期性排列的固体。它没有一 定规则的外形,如玻璃、松香、石蜡等。它的 物理性质在各个方向上是相同的,叫“各向同 性”。它没有固定的熔点。所以有人把非晶体 叫做“过冷液体”或“流动性很小的液体”。
五. 最小内能:指的是在相同热力学条件下,晶体与同种物质的非晶 态相比较,其内能最小,因而晶体的结构也是最稳定的。
六. 稳定性:由于晶体有最小的内能,因而结晶状态是一个相对稳定 的状态。
七. 固定的熔点
空间点阵
为了探讨千变万化的晶体结构的一些共同规律,可 以把晶体结构进行几何抽象。抽象的方法是把晶体 结构中各周期重复单位中的等同点抽象成一个仅代 表重心位置而不代表组成、重量和大小的几何点, 这些几何点称为结点或点阵点。
,
晶面指数
描述晶面或一族互相平行面网在 空间位置的符号(hkl)称为晶面 符号或密勒符号。其中hkl称为晶 面指数或晶面指标。
晶面指数确定方法:取晶面在各晶轴上的截 距系数p、q、r的倒数1/p、1/q、1/r,化简 成互质的整数比h :k :l,用(hkl)表示这 组晶面。
法晶 面 指 数 确 定 方
1. 2. 3.
晶 选 称 结 空 何 结
Байду номын сангаас
取
最 小 。
在 满 ① 和 ②
多 的 直 角 ;
在 满 足 ① 的
期 性 和 对 称
能 同 时 反 映
晶 胞 的 条
为点间图点 晶而点形在 胞成阵,空 。的。就间
单连称周
胞
的 条性出件
材料现代分析测试技术概述
分析测试数据并撰写详细的测试报告。
2 测试设备操作
进行测试和实验,确保准确和可靠的测试结 果。
4 质量控制
确保测试设备和方法的质量和准确性。
未来测试技术和趋势展望
1
自动化
测试流程的自动化和智能化将大幅提高效率和精度。
2
纳米级测试
开发更精细的测试技术来研究和处理纳米级材料。
3
可持续发展
技术应用领域
现代分析测试技术在材料科学、工程和制造业中的广泛应用。
基础测试设备和原理
测量工具
简单而经典的测量工具,如卡钳的微观结构和形貌。
拉伸试验机
测试材料的力学性能和强度。
光谱仪
通过分析光的特性来确定材料的组成。
先进测试设备和技术介绍
扫描电子显微镜
可观察材料的表面形貌和微观 结构。
热分析仪
测量材料在不同温度下的热性 能和热行为。
拉曼光谱仪
通过分析材料的散射光谱来确 定其结构和成分。
测试结果的数据分析和应用
数据分析
统计分析 图像处理 数据建模
应用
确定材料特性和性能的分布和变化。 分析材料的形貌和结构。 预测材料行为和优化设计。
测试工程师角色和职责
1 测试计划制定
制定测试流程和方法。
材料现代分析测试技术概 述
本演示将介绍材料现代分析测试技术的背景、基础设备和原理、先进设备和 技术、数据分析和应用、测试工程师角色和职责、未来技术趋势、总结和答 疑。
背景介绍
材料科学
材料科学的发展历程和重要性,为什么需要现代分析测试技术。
测试技术发展
现代分析测试技术的发展演变和在材料科学领域的应用。
测试技术将更加注重环境友好和资源可持续利用。
材料现代测试分析技术和方法(第一大部分)
材料现代测试分析技术第一讲本课程概述及教学安排❑材料现代测试分析技术概述❑本课程的教学内容和教学要求❑教学计划与主要参考书材料现代测试分析技术概述材料、信息和能源是现代科学技术重点发展的三大领域,而材料又是信息和能源发展的物质基础,是重中之重,可以说没有先进材料就没有现代科技。
然而,对材料的科学分析是获得先进材料的核心环节。
----引自《材料现代分析技术》(朱和国等编著)前言第一节一般原理材料现代测试分析技术是关于材料成分、结构、微观形貌与缺陷等的现代分析、测试技术及其有关理论基础的科学。
●不仅包括材料(整体的)成分、结构分析,也包括材料表面与界面分析、微区分析、形貌分析等诸多内容。
●创立新的理论,发明新的技术和方法科学技术上的重大成就和科学研究新领域的开辟,往往是以测试方法和仪器的突破为先导,“在诺贝尔物理和化学奖中,大约有四分之一是属于测试方法和仪器创新的”材料分析是如何实现的?⏹通过对表征材料的物理性质参数及其变化(称为测量信号或特征信息)的检测实现的。
即,材料分析的基本原理是指测量信号与材料成分、结构等的特征关系。
⏹采用各种不同的测量信号(相应地具有与材料的不同特征关系)形成了各种不同的材料分析方法。
基于电磁辐射及运动粒子束与物质相互作用的各种性质建立的各种分析方法已成为材料现代测试分析方法的重要组成部分:⏹衍射分析⏹光谱分析⏹电子能谱分析⏹电子显微分析基于其它物理性质与材料的特征关系建立的分析方法:⏹色谱分析⏹质谱分析⏹热分析第二节衍射分析方法概述⏹基本目的:衍射分析方法是以材料结构分析为基本目的的现代分析方法。
⏹技术基础:衍射——电磁辐射或运动的电子束、中子束与材料相互作用产生相干散射(弹性散射),相干散射相互干涉的结果⏹X射线衍射分析电子衍射分析中子衍射分析是材料结构分析工作的两个基本特征X射线衍射仪13⏹高能电子衍射分析(HEED)入射电子能量10~200keV●透射电子显微镜(TEM)——可实现样品选定区域的电子衍射分析实现微区样品结构分析与形貌观察相对应⏹低能电子衍射分析(LEED)入射电子能量10~1000eV●样品表面1~5个原子层的结构信息;是晶体表面结构分析的重要方法,应用于表面吸附、腐蚀、催化、外延生长、表面处理等领域●衍射线方向由布拉格方程描述⏹反射式高能电子衍射分析(RHEED)●以高能电子照射较厚固体样品来研究分析其表面结构●为获得表面信息,入射电子采用掠射方式(<5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光学显微镜的分辨率
由于光波的波动性,使得由透镜各部分折射到像平面上
的像点及其周围区域的光波发生相互干涉作用,产生衍
Hale Waihona Puke 射效应。一个理想的物点,经过透镜成像时,由于衍射
效应,在像平面上形成的不再是一个像点,而是一个具
有一定尺寸的中央亮斑和周围明暗相间的圆环所构成的
Airy斑。如图1-1所示。
❖ 测量结果表明Airy斑的强度大约84%集中在中心亮斑上, 其余分布在周围的亮环上。由于周围亮环的强度比较低,
下关系:12 m即v2 eU
(1-5v)
2eU m
式中e为电子所带电荷,e=1.6×10-19C。
❖ 将(1-5)式和(1-4)式整理得:
(1-h6)
2emU
❖ 如果电子速度较低,其质量和静止质量相近,即m≈m0. 如果加速电压很高,使电子速度极高,则必须经过相对 论校正,此时:
m m0
1
2
1.1 引言
眼睛是人类认识客观世界的第一架“光学仪器”。 但它的能力是有限的,如果两个细小物体间的距离小 于0.1mm时,眼睛就无法把它们分开。
光学显微镜的发明为人类认识微观世界提供了重要 的工具。随着科学技术的发展,光学显微镜因其有限 的分辨本领而难以满足许多微观分析的需求。
上世纪30年代后,电子显微镜的发明将分辨本领提 高到纳米量级,同时也将显微镜的功能由单一的形貌 观察扩展到集形貌观察、晶体结构、成分分析等于一 体。人类认识微观世界的能力从此有了长足的发展。
离是强度的叠加
透镜分辨率
❖ 通常把两个Airy斑中心间距等于Airy斑半径时,物平面
上相应的两个物点间距(Δr0)定义为透镜能分辨的最小 间距,即透镜分辨率(也称分辨本领)。由式1-1得:
r0
R0 M
即
r0
0.61 n sin
(1-2)
对于光学透镜,当n•sinα做到最大时(n≈1.5,α≈70-
电子波波长/nm 0.0388 0.0274 0.0224 0.0194 0.0173 0.0122 0.00859 0.00698
加速电压/kV 40 50 60 80 100 200 500
4)了解扫描电镜的基本结构及其工作原理,掌握原子序数衬度、表面形貌衬度及其 在材料领域的应用;了解波谱仪、能谱仪的结构及工作原理,初步掌握电子探针分 析技术;
5)对表面成分分析技术有初步了解; 6)了解电子显微技术的新进展及实验方法的选择;
参考书:
1)常铁军, 祁欣 主编。《材料近代分析测试方法》 哈尔滨工业大学出版社; 2)周玉,武高辉 编著。 《材料分析测试技术——材料X射线与电子显微分析》 哈 尔滨工业大学出版社。1998版 3)黄孝瑛 编著。 《透射电子显微学》 上海科学技术出版社。1987版 4)进藤 大辅, 及川 哲夫 合著. 《材料评价的分析电子显微方法》 冶金工业出版社。 2001年版 5)叶恒强 编著。 《材料界面结构与特性》 科学出版社,1999版
75°),式(1-2)简化为:
r0
2
(1-3)
有效放大倍数
❖ 上式说明,光学透镜的分辨本领主要取决于照明源的波长。 半波长是光学显微镜分辨率的理论极限。可见光的最短波 长 是 390nm , 也 就 是 说 光 学 显 微 镜 的 最 高 分 辨 率 是 ≈200nm。
❖ 一般地,人眼的分辨本领是大约0.2mm,光学显微镜的 最大分辨率大约是0.2μm。把0.2μm放大到0.2mm让人 眼能分辨的放大倍数是1000倍。这个放大倍数称之为有 效放大倍数。光学显微镜的分辨率在0.2μm时,其有效放 大倍数是1000倍。
一般肉眼不易分辨,只能看到中心亮斑。因此通常以
Airy斑的第一暗环的半径来衡量其大小。根据衍射理论
推导,点光源通过透镜产生的Airy斑半径R0的表达式为:
R0
0.61 n sin
M
(1-1)
图1-1 两个电光源成像时形成的Airy斑 (a)Airy斑; (b)两个Airy斑靠近到刚好能分开的临界距
电子显微分析技术
本部分的主要目的: 介绍透射电镜分析、扫描电镜分析、表面成 分分析及相关技术的基本原理,了解透射电 镜样品制备和分析的基本操作和步骤,掌握 扫描电镜在材料研究中的应用技术。在介绍 基本原理的基础上,侧重分析技术的应用! 讲课18学时,实验:4学时,考试2学时。
主要要求:
1)掌握透射电镜分析、扫描电镜分析和表面分析技术及其在材料研究领域的应用; 2)了解电子与物质的交互作用以及电磁透镜分辨率的影响因素; 3)了解透射电镜的基本结构和工作原理,掌握电子衍射分析及衍射普标定、薄膜样 品的制备及其透射电子显微分析;
c
(1-7)
式中 c——光速
表1-1是根据上式计算出的不同加速电压下电子波的波长。
可见光的波长在390-760nm之间,从计算出的电子波波 长可以看出,在常用的100-200kV加速电压下,电子波 的波长要比可见光小5个数量级。
表 1-1 不同加速电压下的电子波波长
加速电压/kV 1 2 3 4 5 10 20 30
❖ 光学显微镜的放大倍数可以做的更高,但是,高出的部分 对提高分辨率没有贡献,仅仅是让人眼观察更舒服而已。 所以光学显微镜的放大倍数一般最高在1000-1500之间。
如何提高显微镜的分辨率
❖ 根据式(1-3),要想提高显微镜的分辨率,关键是降 低照明光源的波长。
❖ 顺着电磁波谱朝短波长方向寻找,紫外光的波长在13390nm之间,比可见光短多了。但是大多数物质都强 烈地吸收紫外光,因此紫外光难以作为照明光源。
❖ 更短的波长是X射线。但是,迄今为止还没有找到能使 X射线改变方向、发生折射和聚焦成象的物质,也就是 说还没有X射线的透镜存在。因此X射线也不能作为显 微镜的照明光源。
❖ 除了电磁波谱外,在物质波中,电子波不仅具有短波长, 而且存在使之发生折射聚焦的物质。所以电子波可以作 为照明光源,由此形成电子显微镜。
电子波波长
❖ 根据德布罗意(de Broglie)的观点,运动的电子除 了具有粒子性外,还具有波动性。这一点上和可见光相
似。电子波的波长取决于电子运动的速度和质量,即
( 1-h4) 式中,h为普郎克常数:hm=v 6.626×10-34J.s;m为电子
质量;v为电子运动速度,它和加速电压U之间存在如