2020-2021深圳市南山二外高中三年级数学下期末第一次模拟试卷(含答案)

合集下载

2020-2021高中三年级数学下期末一模试题及答案

2020-2021高中三年级数学下期末一模试题及答案

2020-2021高中三年级数学下期末一模试题及答案一、选择题1.函数32()31f x x x =-+的单调减区间为A .(2,)+∞B .(,2)-∞C .(,0)-∞D .(0,2)2.在“近似替代”中,函数()f x 在区间1[,]i i x x +上的近似值( ) A .只能是左端点的函数值()i f x B .只能是右端点的函数值1()i f x +C .可以是该区间内的任一函数值()(i i fξξ∈1[,]i i x x +)D .以上答案均正确3.已知236a b ==,则a ,b 不可能满足的关系是() A .a b ab += B .4a b +> C .()()22112a b -+-< D .228a b +> 4.已知a 为函数f (x )=x 3–12x 的极小值点,则a=A .–4B .–2C .4D .25.水平放置的ABC V 的斜二测直观图如图所示,已知4B C ''=,3AC ''=,//'''B C y 轴,则ABC V 中AB 边上的中线的长度为( )A 73B 73C .5D .526.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为 A .1220B .2755C .2125D .272207.已知抛物线22(0)y px p =>交双曲线22221(0,0)x y a b a b-=>>的渐近线于A ,B 两点(异于坐标原点O 5AOB ∆的面积为32,则抛物线的焦点为( ) A .(2,0)B .(4,0)C .(6,0)D .(8,0)8.样本12310,?,?,? a a a a ⋅⋅⋅的平均数为a ,样本12310,?,?,? b b b b ⋅⋅⋅的平均数为b ,那么样本1122331010,? ,,? ,?,,?,? a b a b a b a b ⋅⋅⋅的平均数为( )A .()a b +B .2()a b +C .1()2a b + D .1()10a b + 9.已知非零向量AB u u u v 与AC u u uv 满足0AB AC BC AB AC ⎛⎫⎪+⋅= ⎪⎝⎭u u u v u u u vu u u v u u u v u u u v 且12AB AC AB AC ⋅=u u u v u u u v u u u v u u u v ,则ABC V 的形状是( ) A .三边均不相等的三角形 B .等腰直角三角形 C .等边三角形D .以上均有可能10.将函数()sin 2y x ϕ=+的图象沿轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为( ) A .B .C .0D .4π-11.已知ABC V 为等边三角形,2AB =,设P ,Q 满足AP AB λ=uu u r uu u r ,()()1AQ AC λλ=-∈R u u u r u u u r ,若32BQ CP ⋅=-uu u r uu r ,则λ=( )A .12B .122± C 110± D .322± 12.一个样本a,3,4,5,6的平均数是b ,且不等式x 2-6x +c <0的解集为(a ,b ),则这个样本的标准差是( ) A .1 B 2C 3D .2二、填空题13.若三点1(2,3),(3,2),(,)2A B C m --共线,则m 的值为 . 14.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,4c =,42a A =,且C 为锐角,则ABC ∆面积的最大值为________. 15.设正数,a b 满足21a b +=,则11a b+的最小值为__________. 16.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________. 17.已知点()0,1A ,抛物线()2:0C y ax a =>的焦点为F ,连接FA ,与抛物线C 相交于点M ,延长FA ,与抛物线C 的准线相交于点N ,若:1:3FM MN =,则实数a 的值为__________.18.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若cos 1cos2cos 1cos2b C Cc B B+=+,C是锐角,且27a =,1cos 3A =,则ABC △的面积为______. 19.已知1OA =u u u r ,3OB =u u u r ,0OA OB •=u u u r u u u r,点C 在AOB ∠内,且AOC 30∠=o ,设OC mOA nOB=+u u u r u u u r u u u r ,(,)m n R ∈,则m n=__________. 20.三个数成等差数列,其比为3:4:5,又最小数加上1后,三个数成等比数列,那么原三个数是三、解答题21.已知平面直角坐标系xoy .以O 为极点,x 轴的非负半轴为极轴建立极坐标系,P 点的极坐标为23,6π⎛⎫⎪⎝⎭,曲线C 的极坐标方程为223sin 1ρρθ+= (1)写出点P 的直角坐标及曲线C 的普通方程; (2)若Q 为C 上的动点,求PQ 中点M 到直线32:2x tl y t=+⎧⎨=-+⎩(t 为参数)距离的最小值.22.设椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △的面积为6,求直线AP 的方程. 23.如图,直三棱柱ABC-A 1B 1C 1中,D,E 分别是AB ,BB 1的中点.(Ⅰ)证明: BC 1//平面A 1CD;(Ⅱ)设AA 1= AC=CB=2,2,求三棱锥C 一A 1DE 的体积.24.已知A 为圆22:1C x y +=上一点,过点A 作y 轴的垂线交y 轴于点B ,点P 满足2.BP BA =u u u v u u u v(1)求动点P 的轨迹方程;(2)设Q 为直线:3l x =上一点,O 为坐标原点,且OP OQ ⊥,求POQ ∆面积的最小值.25.如图,四棱锥P ABCD -中,//AB DC ,2ADC π∠=,122AB AD CD ===,6PD PB ==,PD BC ⊥.(1)求证:平面PBD ⊥平面PBC ;(2)在线段PC 上是否存在点M ,使得平面ABM 与平面PBD 所成锐二面角为3π?若存在,求CMCP的值;若不存在,说明理由. 26.在直角坐标平面内,以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A ,B 的极坐标分别为()π42,,5π224⎛⎫⎪⎝⎭,,曲线C 的方程为r ρ=(0r >). (1)求直线AB 的直角坐标方程;(2)若直线AB 和曲线C 有且只有一个公共点,求r 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】对函数求导,让函数的导函数小于零,解不等式,即可得到原函数的单调减区间. 【详解】32'2()31()363(2)002f x x x f x x x x x x -=-<⇒=+∴=<-<Q ,所以函数的单调减区间为(0,2),故本题选D. 【点睛】本题考查了利用导数求函数的单调减区间问题,正确求出导函数是解题的关键.2.C解析:C 【解析】 【分析】 【详解】根据近似替代的定义,近似值可以是该区间内的任一函数值()(i i f ξξ∈ []1,i i x x +),故选C .3.C解析:C 【解析】 【分析】根据236a b ==即可得出21l 3og a =+,31l 2og b =+,根据23log log 132⋅=,33log log 222+>,即可判断出结果.【详解】 ∵236a b ==;∴226log 1og 3l a ==+,336log 1og 2l b ==+;∴2332log 2log 4a b +=++>,2332log og 42l ab =++>,故,A B 正确;()()()()2322223211log log 2log 323log 22a b =>⋅-+-+=,故C 错误;∵()()()22232223log log 2log 2323log 2a b =+++++232l 23og log 82>+=⋅,故D 正确故C . 【点睛】本题主要考查指数式和对数式的互化,对数的运算,以及基本不等式:a b +≥和不等式222a b ab +≥的应用,属于中档题4.D解析:D 【解析】试题分析:()()()2312322f x x x x ==+'--,令()0f x '=得2x =-或2x =,易得()f x 在()2,2-上单调递减,在()2,+∞上单调递增,故()f x 的极小值点为2,即2a =,故选D.【考点】函数的导数与极值点【名师点睛】本题考查函数的极值点.在可导函数中,函数的极值点0x 是方程'()0f x =的解,但0x 是极大值点还是极小值点,需要通过这个点两边的导数的正负性来判断,在0x 附近,如果0x x <时,'()0f x <,0x x >时'()0f x >,则0x 是极小值点,如果0x x <时,'()0f x >,0x x >时,'()0f x <,则0x 是极大值点.5.A解析:A 【解析】 【分析】根据斜二测画法的规则还原图形的边角关系再求解即可. 【详解】由斜二测画法规则知AC BC ⊥,即ABC V 直角三角形,其中3AC =,8BC =,所以AB =所以AB. 故选:A . 【点睛】本题主要考查了斜二测画法前后的图形关系,属于基础题型.6.D解析:D 【解析】 【分析】旧球个数x=4即取出一个新球,两个旧球,代入公式即可求解. 【详解】因为从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数为x=4,即旧球增加一个,所以取出的三个球中必有一个新球,两个旧球,所以129331227(4)220C C P X C ===,故选D . 【点睛】本题考查离散型随机变量的分布列,需认真分析P(X=4)的意义,属基础题.7.B解析:B 【解析】 【分析】由题意可得2ba=,设点A 位于第一象限,且(),A m n ,结合图形的对称性列出方程组确定p 的值即可确定焦点坐标. 【详解】2222222215c a b b e a a a+===+=,∴2b a =, 设点A 位于第一象限,且(),A m n ,结合图形的对称性可得:22322n m mn n pm ⎧=⎪⎪=⎨⎪=⎪⎩,解得:8p =,∴抛物线的焦点为()4,0,故选B . 【点睛】本题主要考查圆锥曲线的对称性,双曲线的渐近线,抛物线焦点坐标的求解等知识,意在考查学生的转化能力和计算求解能力.8.C解析:C 【解析】 【分析】 【详解】由题意可知1210121010,10a a a a b b b b +++=+++=L L ,所以所求平均数为()121012101210121012020202a a ab b b a a a b b b a b +++++++++++++=+=+L L L L考点:样本平均数9.C解析:C 【解析】 【分析】AB AB u u u v u u u v 和AC AC u u u vu u uv 分别表示向量AB u u u v 和向量AC u u u v 方向上的单位向量,0AB AC BC AB AC ⎛⎫⎪+⋅=⎪⎝⎭u u u v u u u v u u uv u u u v u u u v 表示A ∠平分线所在的直线与BC 垂直,可知ABC V 为等腰三角形,再由12AB AC AB AC ⋅=u u u v u u u v u u uv u u u v 可求出A ∠,即得三角形形状。

2020-2021高中三年级数学下期末第一次模拟试卷带答案(2)

2020-2021高中三年级数学下期末第一次模拟试卷带答案(2)

2020-2021高中三年级数学下期末第一次模拟试卷带答案(2)一、选择题1.若复数21iz =-,其中i 为虚数单位,则z = A .1+iB .1−iC .−1+iD .−1−i2.在复平面内,O 为原点,向量OA u u u v对应的复数为12i -+,若点A 关于直线y x =-的对称点为点B ,则向量OB uuu v对应的复数为( ) A .2i -+ B .2i -- C .12i +D .12i -+3.设双曲线2222:1x y C a b-=(00a b >>,)的左、右焦点分别为12F F ,,过1F 的直线分别交双曲线左右两支于点M N ,,连结22MF NF ,,若220MF NF ⋅=u u u u v u u u u v,22MF NF =u u u u v u u u u v ,则双曲线C 的离心率为( ). A .2B .3C .5D .64.如图所示,程序据图(算法流程图)的输出结果为( )A .34 B .16C .1112D .25245.在“近似替代”中,函数()f x 在区间1[,]i i x x +上的近似值( )A .只能是左端点的函数值()i f xB .只能是右端点的函数值1()i f x +C .可以是该区间内的任一函数值()(i i fξξ∈1[,]i i x x +)D .以上答案均正确6.在ABC V 中,若 13,3,120AB BC C ==∠=o ,则AC =( ) A .1B .2C .3D .47.水平放置的ABC V 的斜二测直观图如图所示,已知4B C ''=,3AC ''=,//'''B C y 轴,则ABC V 中AB 边上的中线的长度为( )A .73 B .73C .5D .528.如图是一个正方体的平面展开图,则在正方体中直线AB 与CD 的位置关系为( )A .相交B .平行C .异面而且垂直D .异面但不垂直9.已知当m ,[1n ∈-,1)时,33sin sin22mnn m ππ-<-,则以下判断正确的是( )A .m n >B .||||m n <C .m n <D .m 与n 的大小关系不确定10.样本12310,?,?,? a a a a ⋅⋅⋅的平均数为a ,样本12310,?,?,? b b b b ⋅⋅⋅的平均数为b ,那么样本1122331010,? ,,? ,?,,?,? a b a b a b a b ⋅⋅⋅的平均数为( )A .()a b +B .2()a b +C .1()2a b + D .1()10a b + 11.抛掷一枚骰子,记事件A 为“落地时向上的点数是奇数”,事件B 为“落地时向上的点数是偶数”,事件C 为“落地时向上的点数是3的倍数”,事件D 为“落地时向上的点数是6或4”,则下列每对事件是互斥事件但不是对立事件的是( ) A .A 与BB .B 与CC .A 与DD .C 与D12.已知P 为双曲线2222:1(0,0)x y C a b a b-=>>上一点,12F F ,为双曲线C 的左、右焦点,若112PF F F =,且直线2PF 与以C 的实轴为直径的圆相切,则C 的渐近线方程为( ) A .43y x =±B .34y x =?C .35y x =±D .53y x =±二、填空题13.如图,一辆汽车在一条水平的公路上向正西行驶,到处时测得公路北侧一山顶D 在西偏北的方向上,行驶600m 后到达处,测得此山顶在西偏北的方向上,仰角为,则此山的高度________ m.14.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若3A π=,3a =,b=1,则c =_____________15.371()x x+的展开式中5x 的系数是 .(用数字填写答案)16.若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_____________.17.已知α,β均为锐角,4cos 5α=,1tan()3αβ-=-,则cos β=_____. 18.已知向量a r 与b r 的夹角为60°,|a r |=2,|b r |=1,则|a r+2 b r |= ______ .19.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点,E F ,且2EF =,现有如下四个结论: AC BE ①⊥;//EF ②平面ABCD ;③三棱锥A BEF -的体积为定值;④异面直线,AE BF 所成的角为定值,其中正确结论的序号是______.20.在ABC ∆中,若13AB =3BC =,120C ∠=︒,则AC =_____.三、解答题21.已知()()ln 1f x x a x =+-. (1)讨论()f x 的单调性;(2)当()f x 有最大值,且最大值大于22a -时,求a 的取值范围.22.已知()f x 是二次函数,不等式()0f x <的解集是()0,5,且()f x 在区间[]1,4-上的最大值是12.(1)求()f x 的解析式;(2)设函数()f x 在[],1x t t ∈+上的最小值为()g t ,求()g t 的表达式.23.若不等式2520ax x +->的解集是122x x ⎧⎫<<⎨⎬⎩⎭,求不等式22510ax x a -+->的解集.24.已知函数()()2f x x 2a 1x 2alnx(a 0)=-++>.()1求()f x 的单调区间;()2若()f x 0≤在区间[]1,e 上恒成立,求实数a 的取值范围.25.商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数,已知销售价格为5元/千克时,每日可售出该商品11千克. (1) 求的值;(2) 若商品的成品为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大26.某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚I 内的地块形状为矩形ABCD ,大棚II 内的地块形状为CDP V ,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP V 的面积,并确定sin θ的取值范围;(2)若大棚I 内种植甲种蔬菜,大棚II 内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 试题分析:22(1i)1i,1i 1i (1i)(1i)z z +===+∴=---+,选B. 【考点】复数的运算,复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,一般考查复数运算与概念或复数的几何意义,也是考生必定得分的题目之一.2.A解析:A 【解析】 【分析】首先根据向量OA u u u v对应的复数为12i -+,得到点A 的坐标,结合点A 与点B 关于直线y x =-对称得到点B 的坐标,从而求得向量OB uuu v对应的复数,得到结果.【详解】复数12i -+对应的点为(1,2)A -, 点A 关于直线y x =-的对称点为(2,1)B -,所以向量OB uuu r对应的复数为2i -+.故选A . 【点睛】该题是一道复数与向量的综合题,解答本题的关键是掌握复数在平面坐标系中的坐标表示.3.B解析:B 【解析】 【分析】本道题设2MF x =,利用双曲线性质,计算x ,结合余弦定理,计算离心率,即可. 【详解】结合题意可知,设22,,,MF x NF x MN ===则则结合双曲线的性质可得,21122,2MF MF a MF MN NF a -=+-=代入,解得x =,所以122,NF a NF =+=,01245F NF ∠= 对三角形12F NF 运用余弦定理,得到()()()()()22202222cos45a c a ++-=+⋅,解得ce a==故选B. 【点睛】本道题考查了双曲线的性质,考查了余弦定理,关键利用余弦定理,解三角形,进而计算x ,即可,难度偏难.4.C解析:C 【解析】由算法流程图知s =0+12+14+16=1112.选C. 5.C解析:C 【解析】 【分析】 【详解】根据近似替代的定义,近似值可以是该区间内的任一函数值()(i i f ξξ∈ []1,i i x x +),故选C .6.A解析:A 【解析】余弦定理2222?cos AB BC AC BC AC C =+-将各值代入 得2340AC AC +-=解得1AC =或4AC =-(舍去)选A.7.A解析:A 【解析】 【分析】根据斜二测画法的规则还原图形的边角关系再求解即可. 【详解】由斜二测画法规则知AC BC ⊥,即ABC V 直角三角形,其中3AC =,8BC =,所以AB =所以AB . 故选:A . 【点睛】本题主要考查了斜二测画法前后的图形关系,属于基础题型.8.D解析:D 【解析】解:利用展开图可知,线段AB 与CD 是正方体中的相邻两个面的面对角线,仅仅异面,所成的角为600,因此选D9.C解析:C 【解析】 【分析】由函数的增减性及导数的应用得:设3()sin,[1,1]2xf x x x π=+∈-,求得可得()f x 为增函数,又m ,[1n ∈-,1)时,根据条件得()()f m f n <,即可得结果.【详解】解:设3()sin ,[1,1]2xf x x x π=+∈-, 则2()3cos022xf x x ππ'=+>,即3()sin,[1,1]2xf x x x π=+∈-为增函数,又m ,[1n ∈-,1),33sin sin22mnn m ππ-<-,即33sinsin22mnm n ππ+<+,所以()()f m f n <,所以m n <. 故选:C . 【点睛】本题考查了函数的增减性及导数的应用,属中档题.10.C解析:C 【解析】 【分析】 【详解】由题意可知1210121010,10a a a a b b b b +++=+++=L L ,所以所求平均数为()121012101210121012020202a a ab b b a a a b b b a b +++++++++++++=+=+L L L L考点:样本平均数11.C解析:C 【解析】分析:利用互斥事件、对立事件的概念直接求解判断即可. 详解:在A 中,A 与B 是对立事件,故不正确;在B 中,B 与C 能同时发生,不是互斥事件,所以不正确;在C 中,A 与D 两个事件不能同时发生,但能同时不发生,所以是互斥事件,但不是对立事件,所以是正确的;在D 中,C 与D 能同时发生,不是互斥事件,所以是错误的. 综上所述,故选C.点睛:本题主要考查了命题的真假判定,属于基础题,解答时要认真审题,注意互斥事件与对立事件的定义的合理运用,同时牢记互斥事件和对立事件的基本概念是解答的基础.12.A解析:A 【解析】 【分析】依据题意作出图象,由双曲线定义可得1122PF F F c ==,又直线PF 2与以C 的实轴为直径的圆相切,可得2MF b =,对2OF M ∠在两个三角形中分别用余弦定理及余弦定义列方程,即可求得2b a c =+,联立222c a b =+,即可求得43b a =,问题得解. 【详解】依据题意作出图象,如下:则1122PF F F c ==,OM a =, 又直线PF 2与以C 的实轴为直径的圆相切, 所以2OM PF ⊥, 所以222MF c a b =-=由双曲线定义可得:212PF PF a -=,所以222PFc a =+, 所以()()()()22222222cos 2222c a c c b OF M c c a c ++-∠==⨯⨯+整理得:2b a c =+,即:2b a c -= 将2c b a =-代入222c a b =+,整理得:43b a =, 所以C 的渐近线方程为43b y x x a =±=± 故选A 【点睛】本题主要考查了双曲线的定义及圆的曲线性质,还考查了三角函数定义及余弦定理,考查计算能力及方程思想,属于难题.二、填空题13.1006【解析】试题分析:由题设可知在中由此可得由正弦定理可得解之得又因为所以应填1006考点:正弦定理及运用 解析:【解析】试题分析:由题设可知在中,,由此可得,由正弦定理可得,解之得,又因为,所以,应填.考点:正弦定理及运用.14.2【解析】【分析】根据条件利用余弦定理可建立关于c 的方程即可解出c 【详解】由余弦定理得即解得或(舍去)故填2【点睛】本题主要考查了利用余弦定理求三角形的边属于中档题解析:2 【解析】 【分析】根据条件,利用余弦定理可建立关于c 的方程,即可解出c. 【详解】由余弦定理2222cos a b c bc A =+-得231c c =+-,即220c c --=,解得2c =或1c =-(舍去).故填2.【点睛】本题主要考查了利用余弦定理求三角形的边,属于中档题.15.【解析】由题意二项式展开的通项令得则的系数是考点:1二项式定理的展开式应用 解析:35【解析】由题意,二项式371()x x+展开的通项372141771()()r rr r r r T C x C x x--+==,令2145r -=,得4r =,则5x 的系数是4735C =.考点:1.二项式定理的展开式应用.16.6【解析】【分析】首先根据题中所给的约束条件画出相应的可行域再将目标函数化成斜截式之后在图中画出直线在上下移动的过程中结合的几何意义可以发现直线过B 点时取得最大值联立方程组求得点B 的坐标代入目标函数解析:6 【解析】 【分析】首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式3122y x z =-+,之后在图中画出直线32y x =-,在上下移动的过程中,结合12z 的几何意义,可以发现直线3122y x z =-+过B 点时取得最大值,联立方程组,求得点B 的坐标代入目标函数解析式,求得最大值. 【详解】根据题中所给的约束条件,画出其对应的可行域,如图所示:由32z x y =+,可得3122y x z =-+, 画出直线32y x =-,将其上下移动, 结合2z的几何意义,可知当直线3122y x z =-+在y 轴截距最大时,z 取得最大值, 由2200x y y --=⎧⎨=⎩,解得(2,0)B ,此时max 3206z =⨯+=,故答案为6.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.17.【解析】【分析】先求得的值然后求得的值进而求得的值【详解】由于为锐角且故由解得由于为锐角故【点睛】本小题主要考查同角三角函数的基本关系式考查两角差的正切公式属于中档题【解析】【分析】先求得tan α的值,然后求得tan β的值,进而求得cos β的值.【详解】由于α为锐角,且4cos 5α=,故3sin 5α==,sin 3tan cos 4ααα==.由()tan tan 1tan 1tan tan 3αβαβαβ--==-+⋅,解得13tan 9β=,由于β为锐角,故cos β====. 【点睛】本小题主要考查同角三角函数的基本关系式,考查两角差的正切公式,属于中档题.18.【解析】【分析】【详解】∵平面向量与的夹角为∴∴故答案为点睛:(1)求向量的夹角主要是应用向量的数量积公式(2)常用来求向量的模解析:【解析】【分析】【详解】 ∵平面向量a r 与b r 的夹角为060,21a b ==r r , ∴021cos601a b ⋅=⨯⨯=r r .∴2a b +====r r故答案为点睛:(1)求向量的夹角主要是应用向量的数量积公式.(2) a =r 常用来求向量的模. 19.【解析】【分析】对于①可由线面垂直证两线垂直;对于②可由线面平行的定义证明线面平行;对于③可证明棱锥的高与底面积都是定值得出体积为定值;对于④可由两个特殊位置说明两异面直线所成的角不是定值【详解】对 解析:①②③【解析】【分析】对于①,可由线面垂直证两线垂直;对于②,可由线面平行的定义证明线面平行;对于③,可证明棱锥的高与底面积都是定值得出体积为定值;对于④,可由两个特殊位置说明两异面直线所成的角不是定值.【详解】对于①,由1,AC BD AC BB ⊥⊥,可得AC ⊥面11DD BB ,故可得出AC BE ⊥,此命题正确;对于②,由正方体1111ABCD A B C D -的两个底面平行,EF 在平面1111D C B A 内,故EF 与平面ABCD 无公共点,故有//EF 平面ABCD ,此命题正确;对于③,EF 为定值,B 到EF 距离为定值,所以三角形BEF 的面积是定值,又因为A 点到面11DD BB 距离是定值,故可得三棱锥A BEF -的体积为定值,此命题正确; 对于④,由图知,当F 与1B 重合时,此时E 与上底面中心为O 重合,则两异面直线所成的角是1A AO ∠,当E 与1D 重合时,此时点F 与O 重合,则两异面直线所成的角是1OBC ∠,此二角不相等,故异面直线,AE BF 所成的角不为定值,此命题错误. 综上知①②③正确,故答案为①②③【点睛】本题通过对多个命题真假的判断,综合考查线面平行的判断、线面垂直的判断与性质、棱锥的体积公式以及异面直线所成的角,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.20.1【解析】【分析】由题意利用余弦定理得到关于AC 的方程解方程即可确定AC 的值【详解】由余弦定理得解得或(舍去)【点睛】本题主要考查余弦定理解三角形的方法方程的数学思想等知识意在考查学生的转化能力和计 解析:1【解析】【分析】由题意利用余弦定理得到关于AC 的方程,解方程即可确定AC 的值.【详解】由余弦定理得21393AC AC =++,解得1AC =或4AC =-(舍去).【点睛】本题主要考查余弦定理解三角形的方法,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.三、解答题21.(1) ()f x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减. (2)()0,1.【解析】试题分析:(Ⅰ)由()1f x a x'=-,可分0a ≤,0a >两种情况来讨论;(II )由(I )知当0a ≤时()f x 在()0,+∞无最大值,当0a >时()f x 最大值为1ln 1.f a a a ⎛⎫=-+- ⎪⎝⎭因此122ln 10f a a a a ⎛⎫>-⇔+-< ⎪⎝⎭.令()ln 1g a a a =+-,则()g a 在()0,+∞是增函数,当01a <<时,()0g a <,当1a >时()0g a >,因此a 的取值范围是()0,1.试题解析:(Ⅰ)()f x 的定义域为()0,+∞,()1f x a x '=-,若0a ≤,则()0f x '>,()f x 在()0,+∞是单调递增;若0a >,则当10,x a ⎛⎫∈ ⎪⎝⎭时()0f x '>,当1,x a ⎛⎫∈+∞ ⎪⎝⎭时()0f x '<,所以()f x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减. (Ⅱ)由(Ⅰ)知当0a ≤时()f x 在()0,+∞无最大值,当0a >时()f x 在1x a =取得最大值,最大值为111ln 1ln 1.f a a a a a a ⎛⎫⎛⎫⎛⎫=+-=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因此122ln 10f a a a a ⎛⎫>-⇔+-< ⎪⎝⎭.令()ln 1g a a a =+-,则()g a 在()0,+∞是增函数,()10g =,于是,当01a <<时,()0g a <,当1a >时()0g a >,因此a 的取值范围是()0,1.考点:本题主要考查导数在研究函数性质方面的应用及分类讨论思想.22.(1)2()210f x x x =-(2)223268,,22535(),,2225210,,2t t t g t t t t t ⎧--≤⎪⎪⎪=-<<⎨⎪⎪-≥⎪⎩【解析】(1)因为()f x 是二次函数,不等式()0f x <的解集是()0,5,所以可设()(5)(0).f x ax x a =->,然后因为-1比5离对称轴的距离远,所以最大值为(-1)=6a,求出a 值,从而求出f(x)的解析式.(II )本小题属于二次函数轴定区间动的问题,分三种情况讨论分别求其最小值即可. 解:(1)Q ()f x 是二次函数,且()0f x <的解集是(0,5),∴可设()(5)(0).f x ax x a =->()f x ∴在区间[]1,4-上的最大值是(1)6.f a -=由已知,得612,a =2,a ∴=2()2(5)210().f x x x x x x R ∴=-=-∈(2)由(1)知22525()2102.22f x x x x ⎛⎫∴=-=-- ⎪⎝⎭,开口向上,对称轴为52x = ①当512t +≤,即32t ≤时,()f x 在[],1t t +上是单调递减, ()()()2221101268g t t t t t ∴=+-+=--②当52t ≥时,()f x 在[],1t t +上是单调递减 ()22210210g t t t t t ∴=-=-③当512t t ≤≤+,即3522t ≤≤时,()f x 在对称轴处取得最小值 ()52522g t f ⎛⎫∴==- ⎪⎝⎭23.132x x ⎧⎫-<<⎨⎬⎩⎭ 【解析】【分析】 由不等式的解集和方程的关系,可知12,2是方程520ax x +-=的两根,利用韦达定理求出a ,再代入不等式22510ax x a -+->,解一元二次不等式即可.【详解】解:由已知条件可知0a <,且方程520ax x +-=的两根为12,2; 由根与系数的关系得55221a a⎧-=⎪⎪⎨⎪-=⎪⎩解得2a =-.所以原不等式化为2530x x +-<解得132x -<<所以不等式解集为132x x ⎧⎫-<<⎨⎬⎩⎭【点睛】本题主要考查一元二次不等式的解法,还考查一元二次不等式解集与一元二次方程的关系以及利用韦达定理求值.24.(1)见解析; (2)2e 2e a 2e 2-≥-. 【解析】【分析】()1求函数的导数,利用函数单调性和导数之间的关系,即可求()f x 的单调区间;()2若()0f x ≤在区间[]1,e 上恒成立,则只需求出()f x 的最大值即可,求实数a 的取值范围.【详解】()()()21f x x 2a 1x 2alnx(a 0)=-++>Q .()()()()22x 2a 1x 2a 2x 1x a f'x (x 0)x x-++--∴==>, 由得1x a =,2x 1=,当0a 1<<时,在()x 0,a ∈或()x 1,∞∈+时, 在()x a,1∈时,()f x ∴的单调增区间是()0,a 和()1,∞+,单调减区间是()a,1;当a 1=时,在()x 0,∞∈+时,()f x ∴的单调增区间是()0,∞+;当a 1>时,在()x 0,1∈或()x a,∞∈+时,在()x 1,a ∈时. ()f x ∴的单调增区间是()0,1和()a,∞+,单调减区间是()1,a .()2由()1可知()f x 在区间[]1,e 上只可能有极小值点,()f x ∴在区间[]1,e 上的最大值在区间的端点处取到,即有()()f 112a 10=-+≤且()()2f e e 2a 1e 2a 0=-++≤,解得2e 2e a 2e 2-≥-.即实数a 的取值范围是2e 2e a 2e 2-≥-. 【点睛】本题主要考查函数单调性和导数之间的关系,以及不等式恒成立问题,将不等式恒成立转化为求函数的最值是解决本题的关键.25.(1)因为时,所以;(2)由(1)知该商品每日的销售量,所以商场每日销售该商品所获得的利润:222()(3)[10(6)]210(3)(6),363f x x x x x x x =-+-=+--<<-; /2()10[(6)2(3)(6)]30(4)(6)f x x x x x x =-+-----,令/()0f x =得4x =函数在(3,4)上递增,在(4,6)上递减,所以当时函数取得最大值 答:当销售价格时,商场每日销售该商品所获得的利润最大,最大值为42. 【解析】(1)利用销售价格为5元/千克时,每日可售出该商品11千克.把x=5,y=11代入,解关于a 的方程即可求a..(2)在(1)的基础上,列出利润关于x 的函数关系式,利润=销售量⨯(销售单价-成品单价),然后利用导数求其最值即可.26.(1)()8004cos cos sin θθθ+, ()1600cos cos ,sin θθθ- 1,14⎡⎫⎪⎢⎣⎭;(2)6π. 【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定sin θ的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法. 详解:解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10.过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ,故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ), △CDP 的面积为12×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10.令∠GOK =θ0,则sin θ0=14,θ0∈(0,π6). 当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sin θ的取值范围是[14,1). 答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为 1600(cos θ–sin θcos θ),sin θ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0),则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ) =8000k (sin θcos θ+cos θ),θ∈[θ0,π2). 设f (θ)= sin θcos θ+cos θ,θ∈[θ0,π2), 则()()()()222'sin sin 2sin 1211f cos sin sin sin θθθθθθθθ=--=-+-=--+. 令()'=0f θ,得θ=π6, 当θ∈(θ0,π6)时,()'>0f θ,所以f (θ)为增函数; 当θ∈(π6,π2)时,()'<0f θ,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值. 答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大. 点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.。

2020-2021深圳市高三数学下期末模拟试题(及答案)

2020-2021深圳市高三数学下期末模拟试题(及答案)

2020-2021深圳市高三数学下期末模拟试题(及答案) 一、选择题1.已知2a ib ii+=+,,a b∈R,其中i为虚数单位,则+a b=()A.-1B.1C.2D.32.一个容量为80的样本中数据的最大值是140,最小值是51,组距是10,则应将样本数据分为( )A.10组B.9组C.8组D.7组3.在下列区间中,函数()43xf x e x=+-的零点所在的区间为()A.1,04⎛⎫-⎪⎝⎭B.10,4⎛⎫⎪⎝⎭C.11,42⎛⎫⎪⎝⎭D.13,24⎛⎫⎪⎝⎭4.若()34i x yi i+=+,,x y R∈,则复数x yi+的模是()A.2 B.3 C.4 D.55.已知函数()25,1,,1,x ax xf x axx⎧---≤⎪=⎨>⎪⎩是R上的增函数,则a的取值范围是()A.30a-≤<B.0a<C.2a≤-D.32a--≤≤6.已知i为虚数单位,复数z满足(1)i z i+=,则z=()A.14B.12C.22D.27.正方形ABCD中,点E是DC的中点,点F是BC的一个三等分点,那么EF=u u u v()A.1123AB AD-u u u v u u u vB.1142AB AD+u u u v u u u vC.1132AB DA+u u u v u u u vD.1223AB AD-u u u v u u u v.8.已知函数()32cos2[0,]2f x x x mπ=+-在上有两个零点,则m的取值范围是A.(1,2)B.[1,2)C.(1,2] D.[l,2]9.函数y ()y ()f x f x ==,的导函数的图像如图所示,则函数y ()f x =的图像可能是A .B .C .D .10.下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程为0.70.35y x =+,则下列结论错误的是( )x3 4 5 6 y 2.5t44.5A .产品的生产能耗与产量呈正相关B .回归直线一定过4.5,3.5() C .A 产品每多生产1吨,则相应的生产能耗约增加0.7吨D .t 的值是3.1511.在如图的平面图形中,已知1,2,120OM ON MON ==∠=o,2,2,BM MA CN NA ==u u u u v u u u v u u u v u u u v 则·BC OM u u u vu u u u v的值为A .15-B .9-C .6-D .012.若奇函数()f x 在[1,3]上为增函数,且有最小值0,则它在[3,1]--上 ( )A .是减函数,有最小值0B .是增函数,有最小值0C .是减函数,有最大值0D .是增函数,有最大值0二、填空题13.在ABC V 中,60A =︒,1b =,面积为3,则sin sin sin a b cA B C++=++________.14.已知实数x ,y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是__________.15.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.16.已知复数z=1+2i (i 是虚数单位),则|z|= _________ .17.如图,圆C (圆心为C )的一条弦AB 的长为2,则AB AC ⋅u u u r u u u r=______.18.已知1OA =u u u r ,3OB =u u u r 0OA OB •=u u u r u u u r,点C 在AOB ∠内,且AOC 30∠=o ,设OC mOA nOB=+u u u r u u u r u u u r ,(,)m n R ∈,则mn=__________. 19.函数232x x --的定义域是 .20.ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为__________.三、解答题21.已知向量()2sin ,1a x =+r ,()2,2b =-r ,()sin 3,1c x =-r,()1,d k =u r(),x R k R ∈∈(1)若,22x ππ⎡⎤∈-⎢⎥⎣⎦,且()//a b c +r r r ,求x 的值.(2)若函数()f x a b =⋅r r,求()f x 的最小值.(3)是否存在实数k ,使得()()a dbc +⊥+r u r r r?若存在,求出k 的取值范围;若不存在,请说明理由.22.在直角坐标系xOy 中,曲线C 的参数方程为2221141t xt t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,(t 为参数),以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos 3sin 110ρθρθ++=.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.23.如图:在ABC ∆中,10a =,4c =,5cos 5C =-.(1)求角A ;(2)设D 为AB 的中点,求中线CD 的长.24.如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B 的中心,122AA =,1C H ⊥平面11AA B B ,且1 5.C H =(Ⅰ)求异面直线AC 与11A B 所成角的余弦值; (Ⅱ)求二面角111A AC B --的正弦值;(Ⅲ)设N 为棱11B C 的中点,点M 在平面11AA B B 内,且MN ⊥平面111A B C ,求线段BM 的长.25.已知函数()ln f x x x =. (1)若函数2()1()f x g x x x=-,求()g x 的极值; (2)证明:2()1xf x e x +<-.(参考数据:ln20.69≈ ln3 1.10≈ 32 4.48e ≈ 27.39e ≈)26.某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚I内的地块形状为矩形ABCD,大棚II内的地块形状为CDPV,要求,A B均在线段MN上,,C D均在圆弧上.设OC与MN所成的角为θ.(1)用θ分别表示矩形ABCD和CDPV的面积,并确定sinθ的取值范围;(2)若大棚I内种植甲种蔬菜,大棚II内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】利用复数除法运算法则化简原式可得2ai b i-=+,再利用复数相等列方程求出,a b的值,从而可得结果.【详解】因为22222a i ai iai b ii i+--==-=+-,,a b∈R,所以2211b ba a==⎧⎧⇒⎨⎨-==-⎩⎩,则+1a b=,故选B.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.B解析:B【解析】由题意知,(14051)108.9-÷=,所以分为9组较为恰当,故选B.3.C解析:C 【解析】 【分析】先判断函数()f x 在R 上单调递增,由104102f f ⎧⎛⎫< ⎪⎪⎪⎝⎭⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,利用零点存在定理可得结果.【详解】因为函数()43xf x e x =+-在R 上连续单调递增,且114411221143204411431022f e e f e e ⎧⎛⎫=+⨯-=-<⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=+⨯-=-> ⎪⎪⎝⎭⎩, 所以函数的零点在区间11,42⎛⎫⎪⎝⎭内,故选C. 【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.4.D解析:D 【解析】试题分析:根据题意可知34xi y i -=+,所以有3{4y x =-=,故所给的复数的模该为5,故选D.考点:复数相等,复数的模.5.D解析:D 【解析】 【分析】根据分段函数的单调性特点,两段函数在各自的定义域内均单调递增,同时要考虑端点处的函数值. 【详解】要使函数在R 上为增函数,须有()f x 在(,1]-∞上递增,在(1,)+∞上递增,所以21,20,115,1a a a a ⎧-≥⎪⎪<⎨⎪⎪--⨯-≤⎩,解得32a --≤≤.故选D. 【点睛】本题考查利用分段函数的单调性求参数的取值范围,考查数形结合思想、函数与方程思想的灵活运用,求解时不漏掉端点处函数值的考虑.6.C解析:C 【解析】 由题得22(1)111112()()12222222i i i i z i z i -+====+∴=+=+. 故选C. 7.D解析:D 【解析】 【分析】用向量的加法和数乘法则运算。

2020-2021高中三年级数学下期末第一次模拟试卷(带答案)(4)

2020-2021高中三年级数学下期末第一次模拟试卷(带答案)(4)

2020-2021高中三年级数学下期末第一次模拟试卷(带答案)(4)一、选择题1.如图所示的圆锥的俯视图为( )A .B .C .D .2.在空间直角坐标系中,点P(3,4,5)与Q(3,-4,-5)两点的位置关系是( ) A .关于x 轴对称 B .关于xOy 平面对称 C .关于坐标原点对称 D .以上都不对3.从分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数字不大于第二张卡片的概率是( ) A .110B .310C .35D .254.ABC ∆的内角A B C 、、的对边分别是a b c 、、,若2B A =,1a =,3b =c =( )A .3B .2C 2D .15.若θ是ABC ∆的一个内角,且1sin θcos θ8=-,则sin cos θθ-的值为( ) A .3B .32C .52-D 5 6.在“近似替代”中,函数()f x 在区间1[,]i i x x +上的近似值( ) A .只能是左端点的函数值()i f x B .只能是右端点的函数值1()i f x +C .可以是该区间内的任一函数值()(i i fξξ∈1[,]i i x x +)D .以上答案均正确7.下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程为0.70.35y x =+,则下列结论错误的是( )x3 4 5 6 y 2.5t44.5A .产品的生产能耗与产量呈正相关B .回归直线一定过4.5,3.5()C .A 产品每多生产1吨,则相应的生产能耗约增加0.7吨D .t 的值是3.158.已知2tan()5αβ+=,1tan()44πβ-=,则tan()4πα+的值等于( ) A .1318B .322C .1322D .3189.在ABC ∆中,A 为锐角,1lg lg()lgsin lg 2b A c+==-,则ABC ∆为( ) A .等腰三角形 B .等边三角形 C .直角三角形D .等腰直角三角形10.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)[)20,40,40,60,60,80,[80,100].若低于60分的人数是15人,则该班的学生人数是( )A .45B .50C .55D .11.将函数()sin 2y x ϕ=+的图象沿轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为( ) A .B .C .0D .4π-12.一个样本a,3,4,5,6的平均数是b ,且不等式x 2-6x +c <0的解集为(a ,b ),则这个样本的标准差是( ) A .1 B 2C 3D .2二、填空题13.若双曲线22221x y a b-=()0,0a b >>两个顶点三等分焦距,则该双曲线的渐近线方程是___________.14.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________ 件.15.若不等式|3|4x b -<的解集中的整数有且仅有1,2,3,则b 的取值范围是16.已知函数21,1()()1a x x f x x a x ⎧-+≤=⎨->⎩,函数()2()g x f x =-,若函数()()y f x g x =-恰有4个不同的零点,则实数a的取值范围为______.17.若x,y满足约束条件x y102x y10x0--≤⎧⎪-+≥⎨⎪≥⎩,则xz y2=-+的最小值为______.18.在极坐标系中,直线cos sin(0)a aρθρθ+=>与圆2cosρθ=相切,则a=__________.19.若45100a b==,则122()a b+=_____________.20.在区间[﹣2,4]上随机地取一个数x,若x满足|x|≤m的概率为,则m=_________.三、解答题21.已知曲线C的参数方程为32cos12sinxyαα=+⎧⎨=-⎩(a参数),以直角坐标系的原点为极点,x正半轴为极轴建立极坐标系.(Ⅰ)求曲线C的极坐标方程;(Ⅱ)若直线l极坐标方程为1sin2cosθθρ-=,求曲线C上的点到直线l最大距离. 22.已知复数12iz m=-,复数21iz n=-,其中i是虚数单位,m,n为实数.(1)若1m=,1n=-,求12z z+的值;(2)若212z z=,求m,n的值.23.已知函数()3f x ax bx c=++在点2x=处取得极值16c-.(1)求,a b的值;(2)若()f x有极大值28,求()f x在[]3,3-上的最小值.24.已知()f x是二次函数,不等式()0f x<的解集是()0,5,且()f x在区间[]1,4-上的最大值是12.(1)求()f x的解析式;(2)设函数()f x在[],1x t t∈+上的最小值为()g t,求()g t的表达式.25.如图:在ABC∆中,10a=,4c=,5cos C=-.(1)求角A ;(2)设D 为AB 的中点,求中线CD 的长. 26.(选修4-4:坐标系与参数方程)在平面直角坐标系xOy ,已知曲线:sin x a C y a⎧=⎪⎨=⎪⎩(a 为参数),在以O 原点为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为cos()14πρθ+=-. (1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)过点()1,0M -且与直线l 平行的直线1l 交C 于A ,B 两点,求点M 到A ,B 的距离之积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】找到从上往下看所得到的图形即可. 【详解】由圆锥的放置位置,知其俯视图为三角形.故选C. 【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,本题容易误选B ,属于基础题.2.A解析:A【解析】点P(3,4,5)与Q(3,-4,-5)两点的x 坐标相同,而y 、z 坐标互为相反数,所以两点关于x 轴对称. 考点:空间两点间的距离.3.C解析:C 【解析】 【分析】设第一张卡片上的数字为x ,第二张卡片的数字为y ,问题求的是()P x y ≤,首先考虑分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,有多少种可能,再求出x y ≤的可能性有多少种,然后求出()P x y ≤. 【详解】设第一张卡片上的数字为x ,第二张卡片的数字为y , 分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,共有5525⨯=种情况, 当x y ≤时,可能的情况如下表:xy个数 1 1,2,3,4,5 5 2 2,3,4,5 4 3 3,4,5 3 4 4,5 2 551()255P x y ≤==,故本题选C .【点睛】本题考查用列举法求概率,本问题可以看成有放回取球问题.4.B解析:B 【解析】1333,sin A ===3cos A =, 所以()222313232c c =+-⨯⨯,整理得2320,c c -+=求得1c =或 2.c = 若1c =,则三角形为等腰三角形,030,60A C B ===不满足内角和定理,排除. 【考点定位】本题考查正弦定理和余弦定理的应用,考查运算能力和分类讨论思想. 当求出3cos 2A =后,要及时判断出0030,60A B ==,便于三角形的初步定型,也为排除1c =提供了依据.如果选择支中同时给出了1或2,会增大出错率.5.D解析:D 【解析】试题分析:θ是ABC ∆的一个内角,,又,所以有,故本题的正确选项为D.考点:三角函数诱导公式的运用.6.C解析:C 【解析】 【分析】 【详解】根据近似替代的定义,近似值可以是该区间内的任一函数值()(i i f ξξ∈ []1,i i x x +),故选C .7.D解析:D 【解析】 由题意,x =34564+++=4.5, ∵ˆy=0.7x+0.35, ∴y =0.7×4.5+0.35=3.5, ∴t=4×3.5﹣2.5﹣4﹣4.5=3, 故选D .8.B解析:B 【解析】 【分析】由题可分析得到()tan +tan 44ππααββ⎡⎤⎛⎫⎛⎫=+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由差角公式,将值代入求解即可 【详解】 由题,()()()21tan tan 3454tan +tan 21442211tan tan 544παββππααββπαββ⎛⎫+---⎪⎡⎤⎛⎫⎛⎫⎝⎭=+--=== ⎪ ⎪⎢⎥⎛⎫⎝⎭⎝⎭⎣⎦+⨯++-⎪⎝⎭,故选:B 【点睛】本题考查正切的差角公式的应用,考查已知三角函数值求三角函数值问题9.D解析:D 【解析】 【分析】 【详解】试题分析:由1lg lg()lgsin b A c+==-lglg 22b bc c =⇒=且sin A =A 为锐角,所以45A =o ,由b =,根据正弦定理,得sin )cos sin B C B B B ==-=+o ,解得cos 090B B =⇒=o ,所以三角形为等腰直角三角形,故选D. 考点:三角形形状的判定.10.B解析:B 【解析】根据频率分布直方可知成绩低于60分的有第一、二组数据,在频率分布直方图中,对应矩形的高分别为0.005,0.01,每组数据的组距为20, 则成绩低于60分的频率P=(0.005+0.010)×20=0.3. 又因为低于60分的人数是15人, 所以该班的学生人数是15÷0.3=50. 本题选择B 选项.11.B解析:B 【解析】得到的偶函数解析式为sin 2sin 284y x x ππϕϕ⎡⎤⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦,显然.4πϕ= 【考点定位】本题考查三角函数的图象和性质,要注意三角函数两种变换的区别,sin 24x πϕ⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦选择合适的ϕ值通过诱导公式把sin 24x πϕ⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦转化为余弦函数是考查的最终目的. 12.B解析:B 【解析】由题意得a +3+4+5+6=5b ,a +b =6, 解得a =2,b =4,所以样本方差s 2=15[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2]=2,. 故答案为B.二、填空题13.【解析】【分析】由题意知渐近线方程是再据得出与的关系代入渐近线方程即可【详解】∵双曲线的两个顶点三等分焦距∴又∴∴渐近线方程是故答案为【点睛】本题考查双曲线的几何性质即双曲线的渐近线方程为属于基础题解析:y =±【解析】 【分析】由题意知,渐近线方程是b y x a =±,1223a c =⨯,再据222c ab =+,得出 b 与a 的关系,代入渐近线方程即可. 【详解】∵双曲线22221x y a b-= (0,0)a b >>的两个顶点三等分焦距,∴1223a c =⨯,3c a =,又222c a b =+,∴b =∴渐近线方程是by x a=±=±,故答案为y =±. 【点睛】本题考查双曲线的几何性质即双曲线22221x y a b-= (0,0)a b >>的渐近线方程为b y xa =±属于基础题.14.18【解析】应从丙种型号的产品中抽取件故答案为18点睛:在分层抽样的过程中为了保证每个个体被抽到的可能性是相同的这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比即ni解析:18 【解析】应从丙种型号的产品中抽取30060181000⨯=件,故答案为18. 点睛:在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .15.【解析】【分析】【详解】由得由整数有且仅有123知解得 解析:(5,7)【解析】 【分析】 【详解】 由|3|4x b -<得4433b b x -+<<由整数有且仅有1,2,3知40134343b b -⎧≤<⎪⎪⎨+⎪<≤⎪⎩,解得57b <<16.【解析】【分析】由函数把函数恰有个不同的零点转化为恰有4个实数根列出相应的条件即可求解【详解】由题意函数且函数恰有个不同的零点即恰有4个实数根当时由即解得或所以解得;当时由解得或所以解得综上可得:实 解析:(]2,3【解析】 【分析】由函数()2()g x f x =-,把函数()()y f x g x =-恰有4个不同的零点,转化为()1f x =恰有4个实数根,列出相应的条件,即可求解. 【详解】由题意,函数()2()g x f x =-,且函数()()y f x g x =-恰有4个不同的零点, 即()1f x =恰有4个实数根,当1x ≤时,由11a x -+=,即110x a +=-≥,解得2=-x a 或x a =-,所以2112a a a a -≤⎧⎪-≤⎨⎪-≠-⎩,解得13a <?;当1x >时,由2()1x a -=,解得1x a =-或1x a =+,所以1111a a ->⎧⎨+>⎩,解得2a >,综上可得:实数a 的取值范围为(]2,3. 【点睛】本题主要考查了函数与方程的应用,其中解答中利用条件转化为()1f x =,绝对值的定义,以及二次函数的性质求解是解答的关键,着重考查了数形结合思想,以及推理与计算能力,属于中档试题.17.-1【解析】【分析】画出约束条件表示的平面区域由图形求出最优解再计算目标函数的最小值【详解】画出约束条件表示的平面区域如图所示由图形知当目标函数过点A 时取得最小值由解得代入计算所以的最小值为故答案为解析:-1 【解析】 【分析】画出约束条件表示的平面区域,由图形求出最优解,再计算目标函数1z x y 2=-+的最小值. 【详解】画出约束条件102100x y x y x --≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域如图所示,由图形知,当目标函数1z x y 2=-+过点A 时取得最小值,由{x 0x y 10=--=,解得()A 0,1-,代入计算()z 011=+-=-,所以1z x y 2=-+的最小值为1-.故答案为1-. 【点睛】本题考查了线性规划的应用问题,也考查了数形结合的解题方法,是基础题.18.【解析】【分析】根据将直线与圆极坐标方程化为直角坐标方程再根据圆心到直线距离等于半径解出【详解】因为由得由得即即因为直线与圆相切所以【点睛】(1)直角坐标方程化为极坐标方程只要运用公式及直接代入并化 解析:12【解析】 【分析】根据222,cos ,sin x y x y ρρθρθ=+==将直线与圆极坐标方程化为直角坐标方程,再根据圆心到直线距离等于半径解出a . 【详解】因为222,cos ,sin x y x y ρρθρθ=+==, 由cos sin (0)a a ρθρθ+=>,得(0)x y a a +=>,由2cos ρθ=,得2=2cos ρρθ,即22=2x y x +,即22(1)1x y -+=,111201 2.2a a a a -=∴=±>∴=+Q ,,,【点睛】(1)直角坐标方程化为极坐标方程,只要运用公式cos x ρθ=及sin y ρθ=直接代入并化简即可;(2)极坐标方程化为直角坐标方程时常通过变形,构造形如2cos ,sin ,ρθρθρ的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.19.【解析】【分析】根据所给的指数式化为对数式根据对数的换地公式写出倒数的值再根据对数式的性质得到结果【详解】则故答案为【点睛】本题是一道有关代数式求值的问题解答本题的关键是熟练应用对数的运算性质属于基 解析:2【解析】【分析】根据所给的指数式,化为对数式,根据对数的换地公式写出倒数的值,再根据对数式的性质,得到结果.【详解】45100a b ==Q ,4log 100a ∴=,5log 100b =,10010010012log 42log 5log 1001a b ∴+=+==, 则1222a b ⎛⎫+= ⎪⎝⎭ 故答案为2【点睛】本题是一道有关代数式求值的问题,解答本题的关键是熟练应用对数的运算性质,属于基础题.20.3【解析】【分析】【详解】如图区间长度是6区间﹣24上随机地取一个数x 若x 满足|x|≤m 的概率为若m 对于3概率大于若m 小于3概率小于所以m=3故答案为3解析:3【解析】【分析】【详解】如图区间长度是6,区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,若m 对于3概率大于,若m 小于3,概率小于,所以m=3.故答案为3.三、解答题21.(1)26cos 2sin 60ρρθρθ--+=(22 【解析】【分析】 (1)利用平方和为1消去参数α得到曲线C 的直角坐标方程,再利用y sin x cos ρθρθ=⎧⎨=⎩,整理即可得到答案;(2)将直线的极坐标方程化为直角坐标方程,求出圆心到直线的距离,加上半径即可得到最大距离.【详解】(1)由3212x cos y sin αα=+⎧⎨=-⎩,得3212x cos y sin αα-=⎧⎨-=-⎩, 两式两边平方并相加,得()()22314x y -+-=,所以曲线C 表示以()3,1为圆心,2为半径的圆. 将y sin x cos ρθρθ=⎧⎨=⎩代入得()()22cos 3sin 14ρθρθ-+-=,化简得26cos 2sin 60ρρθρθ--+=所以曲线C 的极坐标方程为26cos 2sin 60ρρθρθ--+=(2)由1sin 2cos θθρ-=,得sin 2cos 1ρθρθ-=,即21y x -=,得210x y -+=所以直线l 的直角坐标方程为210x y -+=因为圆心()3,1C 到直线:l 210x y -+=的距离5d ==,所以曲线C 上的点到直线l 的最大距离为2d r +=+. 【点睛】本题考查直角坐标方程,参数方程及极坐标方程之间的互化,考查直线与圆的位置关系的应用,属于基础题.22.(1(2)0,1.m n =⎧⎨=⎩【解析】【分析】(1)根据题意求出()()121212i z i z i +=-++=-,即可得到模长;(2)根据212z z =,化简得()2212m i n ni -=--,列方程组即可求解.【详解】(1)当1m =,1n =-时112z i =-,21z i =+,所以()()121212i z i z i +=-++=-,所以12z z +==. (2)若212z z =,则()221m i ni -=-, 所以()2212m i n ni -=--,所以2122m n n ⎧=-⎨-=-⎩解得0,1.m n =⎧⎨=⎩ 【点睛】此题考查复数模长的计算和乘法运算,根据两个复数相等,求参数的取值范围.23.(1) 1,12a b ==-;(2) 4-.【解析】【分析】(1)f′(x )=3ax 2+b ,由函数f (x )=ax 3+bx+c 在点x=2处取得极值c ﹣16.可得f′(2)=12a +b=0,f (2)=8a+2b+c=c ﹣16.联立解出.(2)由(1)可得:f (x )=x 3﹣12x+c ,f′(x )=3x 2﹣12=3(x+2)(x ﹣2),可得x=﹣2时,f (x )有极大值28,解得c .列出表格,即可得出.【详解】解:因()3f x ax bx c =++.故()23f x ax b '=+ 由于()f x 在点x=2处取得极值c-16.故有()()20,216,f f c ⎧'=⎪⎨=-⎪⎩即120,8216,a b a b c c +=⎧⎨++=-⎩化简得120,48,a b a b +=⎧⎨+=-⎩解得a=1,b=-12. (2)由(1)知()312f x x x c =-+; ()()()2312322f x x x x ==-'-+.令()0f x '=,得12x =-,22x =.当(),2x ∈-∞-时,()0f x '>,故()f x 在(),2-∞-上为增函数;当()2,2x ∈-时,()0f x '<,故()f x 在()2,2-上为减函数;当()2,x ∈+∞时,()0f x '>,故()f x 在()2,+∞上为增函数.由此可知()f x 在12x =-处取得极大值;()216f c -=+,()f x 在22x =处取得极小值()216f c =-.由题设条件知16+c=28,得c=12.此时()3921f c -=+=,()393f c =-+=,()2164f c =-+=-,因此()f x 在[]3,3-上的最小值为()24f =-.【点睛】本题考查了利用导数研究函数的单调性极值与最值、分类讨论方法、方程与不等式的解法,考查了推理能力与计算能力,属于中档题.24.(1)2()210f x x x =-(2)223268,,22535(),,2225210,,2t t t g t t t t t ⎧--≤⎪⎪⎪=-<<⎨⎪⎪-≥⎪⎩【解析】(1)因为()f x 是二次函数,不等式()0f x <的解集是()0,5,所以可设()(5)(0).f x ax x a =->,然后因为-1比5离对称轴的距离远,所以最大值为(-1)=6a,求出a 值,从而求出f(x)的解析式.(II )本小题属于二次函数轴定区间动的问题,分三种情况讨论分别求其最小值即可. 解:(1)Q ()f x 是二次函数,且()0f x <的解集是(0,5),∴可设()(5)(0).f x ax x a =->()f x ∴在区间[]1,4-上的最大值是(1)6.f a -=由已知,得612,a =2,a ∴=2()2(5)210().f x x x x x x R ∴=-=-∈(2)由(1)知22525()2102.22f x x x x ⎛⎫∴=-=-- ⎪⎝⎭,开口向上,对称轴为52x = ①当512t +≤,即32t ≤时,()f x 在[],1t t +上是单调递减, ()()()2221101268g t t t t t ∴=+-+=--②当52t ≥时,()f x 在[],1t t +上是单调递减 ()22210210g t t t t t ∴=-=-③当512t t ≤≤+,即3522t ≤≤时,()f x 在对称轴处取得最小值 ()52522g t f ⎛⎫∴==- ⎪⎝⎭25.(1)4A π=;(2【解析】【分析】(1)通过cos C 求出sin C 的值,利用正弦定理求出sin A 即可得角A ;(2)根据()sin sin B A C =+求出sin B 的值,由正弦定理求出边b ,最后在ACD ∆中由余弦定理即可得结果.【详解】(1)∵cos C =,∴sin C ===. 由正弦定理sin sin a c A C ==.得sin A =cos 0C =<,∴C 为钝角,A 为锐角, 故4A π=.(2)∵()B A C π=-+,∴()sin sin sin cos cos sin B A C A C A C =+=+⎛=+= ⎝⎭. 由正弦定理得sin sin b a B A ==得b = 在ACD ∆中由余弦定理得:2222cos CD AD AC AD AC A =+-⋅⋅242222=+-⨯=,∴CD =. 【点睛】 本题主要考查了正弦定理和余弦定理在解三角形中的应用,考查三角函数知识的运用,属于中档题.26.(1)曲线C :2213x y +=,直线l 的直角坐标方程20x y -+=;(2)1. 【解析】试题分析:(1)先根据三角函数平方关系消参数得曲线C 化为普通方程,再根据cos ,sin x y ρθρθ== 将直线l 的极坐标方程化为直角坐标方程;(2)根据题意设直线1l 参数方程,代入C 方程,利用参数几何意义以及韦达定理得点M 到A ,B 的距离之积试题解析:(1)曲线C 化为普通方程为:2213x y +=,由cos 124πρθ⎛⎫+=- ⎪⎝⎭,得cos sin 2ρθρθ-=-, 所以直线l 的直角坐标方程为20x y -+=.(2)直线1l的参数方程为122x ty t⎧=-+⎪⎪⎨⎪=⎪⎩(t为参数),代入2213xy+=化简得:2220t-=,设,A B两点所对应的参数分别为12,t t,则121t t=-,121MA MB t t∴⋅==.。

2020-2021深圳中学小学三年级数学下期末第一次模拟试题及答案

2020-2021深圳中学小学三年级数学下期末第一次模拟试题及答案

2020-2021深圳中学小学三年级数学下期末第一次模拟试题及答案一、选择题1.下一幅图是()A. B. C. D.2.观察已知图形的相同点,想一想,“?”处应填()A. B. C. D.3.钟面上的时间是下午的时刻,用二十四时计时法表示是()。

A. 5:45B. 17:45C. 17:404.爸爸打算乘9:25的飞机出差。

机场规定,旅客必须提前半小时登机,爸爸最少要在()到达登机口。

A. 9:10B. 9:05C. 9:00D. 8:55 5.边长是1米的正方形,可以分成()个边长是1分米的小正方形.A. 1B. 10C. 20D. 1006.下面的算式中,得数大于2400的是()A. 38×42B. 49×62C. 53×25D. 35×527.要使□□÷5的商是两位数,被除数的十位上的数字不能()。

A. 大于5B. 等于5C. 小于58.面向北极星,后面的方向是()。

A. 东B. 南C. 西D. 北9.12.32在()相邻的两个整数之间.A. 11~12B. 12~13C. 13~1410.4-0.4=()A. 0.6B. 2C. 2.9D. 3.6 11.从一张长14厘米,宽10厘米的长方形纸上剪出一个最大的正方形,剩下部分的面积是()A. 100平方厘米B. 40平方厘米C. 60平方厘米二、填空题12.3件不同颜色的衬衣和3条不同颜色的裤子共有________种搭配方法。

13.用长30cm,宽24cm的长方形砖铺地,需900块;如果改用边长为20cm的正方形砖铺,需用________块。

14.492÷7的商是________位数;32×45的积是________位数.15.统计表可分为________和________统计表。

16.□75÷6,当商是两位数时,□里最大能填________,当商是三位数时,□里最小能填________。

2020-2021高中三年级数学下期末一模试卷(及答案)(12)

2020-2021高中三年级数学下期末一模试卷(及答案)(12)

2020-2021高中三年级数学下期末一模试卷(及答案)(12)一、选择题1.若复数21iz =-,其中i 为虚数单位,则z = A .1+iB .1−iC .−1+iD .−1−i2.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为 A .10B .11C .12D .153.若以连续掷两颗骰子分别得到的点数m ,n 作为点P 的横、纵坐标,则点P 落在圆229x y +=内的概率为( )A .536B .29C .16D .194.已知F 1,F 2分别是椭圆C :22221x y a b+= (a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 离心率的取值范围是( )A .2,13⎡⎫⎪⎢⎣⎭B .12,3⎡⎤⎢⎥⎣⎦C .1,13⎡⎫⎪⎢⎣⎭D .10,3⎛⎤ ⎥⎝⎦5.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排方法共有( ) A .20种 B .30种C .40种D .60种6.函数()sin(2)2f x x π=-的图象与函数()g x 的图象关于直线8x π=对称,则关于函数()y g x =以下说法正确的是( )A .最大值为1,图象关于直线2x π=对称B .在0,4π⎛⎫⎪⎝⎭上单调递减,为奇函数 C .在3,88ππ⎛⎫-⎪⎝⎭上单调递增,为偶函数 D .周期为π,图象关于点3,08π⎛⎫⎪⎝⎭对称 7.已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A .108cm 3B .100cm 3C .92cm 3D .84cm 38.在如图的平面图形中,已知1,2,120OM ON MON ==∠=o,2,2,BM MA CN NA ==u u u u vu u u v u u u v u u u v则·BC OM u u u vu u u u v的值为A .15-B .9-C .6-D .09.设A (3,3,1),B (1,0,5),C (0,1,0),AB 的中点M ,则CM = A .534B .532C .532D .13210.下列说法正确的是( ) A .22a b ac bc >⇒> B .22a b a b >⇒> C .33a b a b >⇒>D .22a b a b >⇒>11.如图,AB 是圆的直径,PA 垂直于圆所在的平面,C 是圆上一点(不同于A 、B )且PA =AC ,则二面角P -BC -A 的大小为( )A .60︒B .30°C .45︒D .15︒12.sin 47sin17cos30cos17-o o ooA .3B .12-C .12D .32二、填空题13.设25a b m ==,且112a b+=,则m =______. 14.在ABC V 中,60A =︒,1b =3sin sin sin a b cA B C++=++________.15.已知函数()sin ([0,])f x x x π=∈和函数1()tan 2g x x =的图象交于,,A B C 三点,则ABC ∆的面积为__________.16.已知复数z=(1+i )(1+2i ),其中i 是虚数单位,则z 的模是__________ 17.学校里有一棵树,甲同学在A 地测得树尖D 的仰角为45︒,乙同学在B 地测得树尖D 的仰角为30°,量得10AB AC m ==,树根部为C (,,A B C 在同一水平面上),则ACB =∠______________.18.计算:1726cos()sin43ππ-+=_____. 19.在区间[1,1]-上随机取一个数x ,cos 2xπ的值介于1[0,]2的概率为 .20.在ABC ∆中,若13AB =,3BC =,120C ∠=︒,则AC =_____.三、解答题21.已知()()ln 1f x x a x =+-. (1)讨论()f x 的单调性;(2)当()f x 有最大值,且最大值大于22a -时,求a 的取值范围. 22.如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=o ,求二面角A −PB −C 的余弦值. 23.设()34f x x x =-+-.(Ⅰ)求函数()2()g x f x =-(Ⅱ)若存在实数x 满足()1f x ax ≤-,试求实数a 的取值范围. 24.设函数()15,f x x x x R =++-∈. (1)求不等式()10f x ≤的解集;(2)如果关于x 的不等式2()(7)f x a x ≥--在R 上恒成立,求实数a 的取值范围.25.某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2018年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示(1)由折线图可以看出,可用线性回归模型拟合月利润y (单位:百万元)与月份代码x 之间的关系,求y 关于x 的线性回归方程,并预测该公司2019年3月份的利润;(2)甲公司新研制了一款产品,需要采购一批新型材料,现有,A B 两种型号的新型材料可供选择,按规定每种新型材料最多可使用4个月,但新材料的不稳定性会导致材料损坏的年限不同,现对,A B 两种型号的新型材料对应的产品各100件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表: 使用寿命/材料类型 1个月 2个月 3个月 4个月 总计 A 20 35 35 10 100 B10304020100如果你是甲公司的负责人,你会选择采购哪款新型材料? 参考数据:6196ii y==∑ 61371i i i x y ==∑参考公式:回归直线方程ˆˆˆybx a =+,其中()()()()1122211ˆ=n niii ii i nniii i x x y y x y nxyb x x xnx====---=--∑∑∑∑26.已知0,0a b >>. (1)211ab a b≥+ ;(2)若a b >,且2ab =,求证:224a b a b+≥-.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B 【解析】试题分析:22(1i)1i,1i 1i(1i)(1i)z z+===+∴=---+,选B.【考点】复数的运算,复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,一般考查复数运算与概念或复数的几何意义,也是考生必定得分的题目之一.2.B解析:B【解析】【分析】【详解】由题意知与信息0110至多有两个对应位置上的数字相同的信息包括三类:第一类:与信息0110有两个对应位置上的数字相同有246C=个;第二类:与信息0110有一个对应位置上的数字相同有14C4=个;第三类:与信息0110没有位置上的数字相同有04C1=个,由分类计数原理与信息0110至多有两个数字对应位置相同的共有64111++=个,故选B.3.D解析:D【解析】掷骰子共有36个结果,而落在圆x2+y2=9内的情况有(1,1),(1,2),(2,1),(2,2)这4种,∴P=41 369=.故选D4.C解析:C【解析】如图所示,∵线段PF1的中垂线经过F2,∴PF 2=12F F =2c ,即椭圆上存在一点P ,使得PF 2=2c. ∴a-c≤2c≤a+c.∴e=1[,1)3c a ∈.选C. 【点睛】求离心率范围时,常转化为x,y 的范围,焦半径的范围,从而求出离心率的范围。

2020-2021高中三年级数学下期末一模试卷(附答案)

2020-2021高中三年级数学下期末一模试卷(附答案)

2020-2021高中三年级数学下期末一模试卷(附答案)一、选择题1.若复数21iz =-,其中i 为虚数单位,则z = A .1+iB .1−iC .−1+iD .−1−i2.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为$y =0.85x-85.71,则下列结论中不正确的是 A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1cm ,则其体重约增加0.85kgD .若该大学某女生身高为170cm ,则可断定其体重必为58.79kg3.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为 A .23B .35C .25 D .154.函数()23x f x x+=的图象关于( )A .x 轴对称B .原点对称C .y 轴对称D .直线y x =对称5.已知函数()(3)(2ln 1)xf x x e a x x =-+-+在(1,)+∞上有两个极值点,且()f x 在(1,2)上单调递增,则实数a 的取值范围是( )A .(,)e +∞B .2(,2)e eC .2(2,)e +∞D .22(,2)(2,)e e e +∞U6.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( ).A .6500元B .7000元C .7500元D .8000元7.在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他十个小长方形面积的和的,且样本容量是160,则中间一组的频数为( ) A .32B .0.2C .40D .0.258.已知ABC V 为等边三角形,2AB =,设P ,Q 满足AP AB λ=uu u r uu u r,()()1AQ AC λλ=-∈R u u u r u u u r ,若32BQ CP ⋅=-uu u r uu r ,则λ=( )A .12B .122± C .1102± D .3222± 9.已知长方体的长、宽、高分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ) A .25πB .50πC .125πD .都不对10.已知双曲线C :()222210,0x y a b a b-=>>的焦距为2c ,焦点到双曲线C 的渐近线的距离为32c ,则双曲线的渐近线方程为() A .3y x =±B .2y x =±C .y x =±D .2y x =±11.一个样本a,3,4,5,6的平均数是b ,且不等式x 2-6x +c <0的解集为(a ,b ),则这个样本的标准差是( ) A .1 B .2 C .3D .212.sin 47sin17cos30cos17-o o ooA .32-B .12-C .12D .32二、填空题13.已知曲线ln y x x =+在点()1,1处的切线与曲线()221y ax a x =+++相切,则a= .14.若过点()2,0M 且斜率为3的直线与抛物线()2:0C y ax a =>的准线l 相交于点B ,与C 的一个交点为A ,若BM MA =u u u u v u u u v,则a =____.15.已知复数z=(1+i )(1+2i ),其中i 是虚数单位,则z 的模是__________ 16.已知样本数据,,,的均值,则样本数据,,,的均值为 .17.已知直线:与圆交于两点,过分别作的垂线与轴交于两点.则_________.18.设复数1(z i i =--虚数单位),z 的共轭复数为z ,则()1z z -⋅=________.19.若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_____________.20.已知正三棱锥P ABC -的底面边长为3,外接球的表面积为16π,则正三棱锥P ABC -的体积为________. 三、解答题21.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X =2);(2)求事件“X =4且甲获胜”的概率. 22.已知曲线C 的参数方程为32cos 12sin x y αα=+⎧⎨=-⎩(a 参数),以直角坐标系的原点为极点,x 正半轴为极轴建立极坐标系. (Ⅰ)求曲线C 的极坐标方程;(Ⅱ)若直线l 极坐标方程为1sin 2cos θθρ-=,求曲线C 上的点到直线l 最大距离.23.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.(1)求直方图的的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由; (3)估计居民月用水量的中位数.24.在直角坐标系xOy 中,曲线C 的参数方程为2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,(t 为参数),以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos 3sin 110ρθρθ++=.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.25.某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.()1设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率; ()2设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.26.已知函数()()2f x x 2a 1x 2alnx(a 0)=-++>.()1求()f x 的单调区间;()2若()f x 0≤在区间[]1,e 上恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 试题分析:22(1i)1i,1i 1i (1i)(1i)z z +===+∴=---+,选B. 【考点】复数的运算,复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,一般考查复数运算与概念或复数的几何意义,也是考生必定得分的题目之一.2.D解析:D 【解析】根据y 与x 的线性回归方程为 y=0.85x ﹣85.71,则 =0.85>0,y 与 x 具有正的线性相关关系,A 正确; 回归直线过样本点的中心(,x y ),B 正确;该大学某女生身高增加 1cm ,预测其体重约增加 0.85kg ,C 正确;该大学某女生身高为 170cm ,预测其体重约为0.85×170﹣85.71=58.79kg ,D 错误. 故选D .3.B解析:B 【解析】【分析】本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解. 【详解】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B ,则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B ,{,c,},{,c,},{b,,},{c,,}b A b B A B A B 共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,c,},{,c,}b A b B 共6种,所以恰有2只做过测试的概率为63105=,选B . 【点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.4.C解析:C 【解析】 【分析】求函数的定义域,判断函数的奇偶性即可. 【详解】解:()f x =Q0x ∴≠解得0x ≠()f x ∴的定义域为()(),00,D =-∞+∞U ,D 关于原点对称.任取x D ∈,都有()()f x f x -===,()f x ∴是偶函数,其图象关于y 轴对称,故选:C . 【点睛】本题主要考查函数图象的判断,根据函数的奇偶性的定义判断函数的奇偶性是解决本题的关键.5.C解析:C 【解析】 【分析】求得函数的导数()(2)()x xe af x x x-'=-⋅,根据函数()f x 在(1,)+∞上有两个极值点,转化为0x xe a -=在(1,)+∞上有不等于2的解,令()xg x xe =,利用奥数求得函数的单调性,得到()1a g e >=且()222a g e ≠=,又由()f x 在(1,2)上单调递增,得到()0f x '≥在(1,2)上恒成立,进而得到x a xe ≥在(1,2)上恒成立,借助函数()x g x xe =在(1,)+∞为单调递增函数,求得2(2)2a g e >=,即可得到答案.【详解】由题意,函数()(3)(2ln 1)x f x x e a x x =-+-+,可得2()(3)(1)(2)()(2)()x xxxa xe a f x e x e a x e x x x x-'=+-+-=--=-⋅,又由函数()f x 在(1,)+∞上有两个极值点,则()0f x '=,即(2)()0x xe ax x--⋅=在(1,)+∞上有两解,即0x xe a -=在在(1,)+∞上有不等于2的解,令()xg x xe =,则()(1)0,(1)xg x x e x '=+>>,所以函数()xg x xe =在(1,)+∞为单调递增函数,所以()1a g e >=且()222a g e ≠=,又由()f x 在(1,2)上单调递增,则()0f x '≥在(1,2)上恒成立,即(2)()0x xe ax x--⋅≥在(1,2)上恒成立,即0x xe a -≤在(1,2)上恒成立,即x a xe ≥在(1,2)上恒成立,又由函数()xg x xe =在(1,)+∞为单调递增函数,所以2(2)2a g e >=,综上所述,可得实数a 的取值范围是22a e >,即2(2,)a e ∈+∞,故选C.【点睛】本题主要考查导数在函数中的综合应用,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.6.D解析:D 【解析】 【分析】设目前该教师的退休金为x 元,利用条形图和折线图列出方程,求出结果即可.【详解】设目前该教师的退休金为x 元,则由题意得:6000×15%﹣x×10%=100.解得x =8000. 故选D . 【点睛】本题考查由条形图和折线图等基础知识解决实际问题,属于基础题.7.A解析:A 【解析】试题分析:据已知求出频率分布直方图的总面积;求出中间一组的频率;利用频率公式求出中间一组的频数.解:设间一个长方形的面积S 则其他十个小长方形面积的和为4S ,所以频率分布直方图的总面积为5S 所以中间一组的频率为所以中间一组的频数为160×0.2=32 故选A点评:本题考查频率分布直方图中各组的面积除以总面积等于各组的频率.注意频率分布直方图的纵坐标是.8.A解析:A 【解析】 【分析】运用向量的加法和减法运算表示向量BQ BA AQ =+u u u r u u u r u u u r ,CP CA AP =+u u u r u u u r u u u r,再根据向量的数量积运算,建立关于λ的方程,可得选项. 【详解】∵BQ BA AQ =+u u u r u u u r u u u r ,CP CA AP =+u u u r u u u r u u u r,∴()()BQ CP BA AQ CA AP AB AC AB AP AC AQ AQ AP ⋅=+⋅+=⋅-⋅-⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r()()2211AB AC AB AC AB AC λλλλ=⋅---+-⋅u u u r u u u r u u u r u u u r u u u r u u u r()()232441212222λλλλλλ=---+-=-+-=-,∴12λ=.故选:A. 9.B解析:B 【解析】 【分析】根据长方体的对角线长等于其外接球的直径,求得2252R =,再由球的表面积公式,即可求解. 【详解】设球的半径为R ,根据长方体的对角线长等于其外接球的直径,可得2R =2252R =,所以球的表面积为22544502S R πππ==⨯=球. 故选:B 【点睛】本题主要考查了长方体的外接球的性质,以及球的表面积的计算,其中解答中熟练应用长方体的对角线长等于其外接球的直径,求得球的半径是解答的关键,着重考查了运算与求解能力,属于基础题.10.A解析:A 【解析】 【分析】利用双曲线C :()222210,0x y a b a b -=>>的焦点到渐近线的距离为2c ,求出a ,b 的关系式,然后求解双曲线的渐近线方程. 【详解】双曲线C :()222210,0x y a b a b -=>>的焦点(),0c 到渐近线0bx ay +=,可得:2c =,可得b c =,ba =C 的渐近线方程为y =.故选A . 【点睛】本题考查双曲线的简单性质的应用,构建出,a b 的关系是解题的关键,考查计算能力,属于中档题.11.B解析:B 【解析】由题意得a +3+4+5+6=5b ,a +b =6, 解得a =2,b =4,所以样本方差s 2=15[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2]=2,. 故答案为B.12.C解析:C【分析】由()sin 473017sin θ=+oo o,利用两角和的正弦公式以及特殊角的三角函数,化简即可. 【详解】0000sin 47sin17cos30cos17-sin()sin cos cos 1730173017︒+︒-︒︒=︒sin17cos30cos17sin 30sin17cos30cos17︒︒+︒︒-︒︒=︒1302sin =︒=.故选C .【点睛】三角函数式的化简要遵循“三看”原则: (1)一看“角”,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式; (3)三看“结构特征”,分析结构特征,找到变形的方向.二、填空题13.8【解析】试题分析:函数在处的导数为所以切线方程为;曲线的导函数的为因与该曲线相切可令当时曲线为直线与直线平行不符合题意;当时代入曲线方程可求得切点代入切线方程即可求得考点:导函数的运用【方法点睛】解析:8 【解析】试题分析:函数ln y x x =+在(1,1)处的导数为111|1|2x x y x===+=',所以切线方程为;曲线2(2)1y ax a x =+++的导函数的为,因与该曲线相切,可令,当时,曲线为直线,与直线平行,不符合题意;当时,代入曲线方程可求得切点,代入切线方程即可求得.考点:导函数的运用.【方法点睛】求曲线在某一点的切线,可先求得曲线在该点的导函数值,也即该点切线的斜率值,再由点斜式得到切线的方程,当已知切线方程而求函数中的参数时,可先求得函数的导函数,令导函数的值等于切线的斜率,这样便能确定切点的横坐标,再将横坐标代入曲线(切线)得到纵坐标得到切点坐标,并代入切线(曲线)方程便可求得参数.14.【解析】【分析】由直线方程为与准线得出点坐标再由可得点为线段的中点由此求出点A 的坐标代入抛物线方程得出的值【详解】解:抛物线的准线方程为过点且斜率为的直线方程为联立方程组解得交点坐标为设A 点坐标为因【解析】 【分析】由直线方程为2)y x =-与准线:al x 4=-得出点B 坐标,再由BM MA u u u u v u u u v =可得,点M 为线段AB 的中点,由此求出点A 的坐标,代入抛物线方程得出a 的值.【详解】解:抛物线()2:0C y ax a =>的准线方程为:a l x 4=-过点()2,0M2)y x =-,联立方程组2)4y x a x ⎧=-⎪⎨=-⎪⎩,解得,交点B坐标为)(,)a a 844+-, 设A 点坐标为00(,)x y , 因为BM MA u u u u v u u u v=,所以点M 为线段AB 的中点,所以00()442402a x y ⎧+-⎪=⎪⎪⎨⎪+⎪=⎪⎩,解得)()a a 8A 444++,将(a A 44+代入抛物线方程,即()2aa 44=+, 因为0a >, 解得8a =. 【点睛】本题考查了抛物线的性质、向量相等等知识,解决几何问题时,往往可以转化为代数问题来进行研究,考查了数形结合的思想.15.【解析】【分析】利用复数的运算法则模的计算公式即可得出【详解】解:复数z =(1+i )(1+2i )=1﹣2+3i =﹣1+3i ∴|z|故答案为【点睛】对于复数的四则运算要切实掌握其运算技巧和常规思路如其【解析】 【分析】利用复数的运算法则、模的计算公式即可得出. 【详解】解:复数z =(1+i )(1+2i )=1﹣2+3i =﹣1+3i , ∴|z |22(1)310=-+=. 故答案为10. 【点睛】对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()a bi c di ++=()()(,,,)ac bd ad bc i a b c d R -++∈.其次要熟悉复数相关概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 、模为22a b +、对应点为(,)a b 、共轭复数为a bi -.16.11【解析】因为样本数据x1x2⋅⋅⋅xn 的均值x=5所以样本数据2x1+12x2+1⋅⋅⋅2xn+1的均值为2x+1=2×5+1=11所以答案应填:11考点:均值的性质 解析:【解析】 因为样本数据,,,的均值,所以样本数据,,,的均值为,所以答案应填:.考点:均值的性质.17.4【解析】试题分析:由x-3y+6=0得x=3y-6代入圆的方程整理得y2-33y+6=0解得y1=23y2=3所以x1=0x2=-3所以|AB|=(x1-x2)2+(y1-y2)2=23又直线l 的解析:4 【解析】 试题分析:由,得,代入圆的方程,整理得,解得,所以,所以.又直线的倾斜角为,由平面几何知识知在梯形中,.【考点】直线与圆的位置关系【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系的非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.18.【解析】分析:由可得代入利用复数乘法运算法则整理后直接利用求模公式求解即可详解:因为所以故答案为点睛:本题主要考查的是共轭复数的概念与运算以及复数的乘法的运算属于中档题解题时一定要注意和 解析:10【解析】分析:由1i z =--,可得1i z =-+,代入()1z z -⋅,利用复数乘法运算法则整理后,直接利用求模公式求解即可.详解:因为1i z =--,所以1i z =-+,()()()()()111121z z i i i i ∴-⋅=++⋅-+=+⋅-+39110i =-+=+=,故答案为10.点睛:本题主要考查的是共轭复数的概念与运算以及复数的乘法的运算,属于中档题.解题时一定要注意21i =-和()()()()a bi c di ac bd ad bc i ++=-++19.6【解析】【分析】首先根据题中所给的约束条件画出相应的可行域再将目标函数化成斜截式之后在图中画出直线在上下移动的过程中结合的几何意义可以发现直线过B 点时取得最大值联立方程组求得点B 的坐标代入目标函数解析:6 【解析】 【分析】首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式3122y x z =-+,之后在图中画出直线32y x =-,在上下移动的过程中,结合12z 的几何意义,可以发现直线3122y x z =-+过B 点时取得最大值,联立方程组,求得点B 的坐标代入目标函数解析式,求得最大值. 【详解】根据题中所给的约束条件,画出其对应的可行域,如图所示:由32z x y =+,可得3122y x z =-+, 画出直线32y x =-,将其上下移动, 结合2z的几何意义,可知当直线3122y x z =-+在y 轴截距最大时,z 取得最大值, 由2200x y y --=⎧⎨=⎩,解得(2,0)B , 此时max 3206z =⨯+=,故答案为6.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.20.或【解析】【分析】做出简图找到球心根据勾股定理列式求解棱锥的高得到两种情况【详解】正三棱锥的外接球的表面积为根据公式得到根据题意画出图像设三棱锥的高为hP 点在底面的投影为H 点则底面三角形的外接圆半径解析:334或93【解析】 【分析】做出简图,找到球心,根据勾股定理列式求解棱锥的高,得到两种情况. 【详解】正三棱锥P ABC -的外接球的表面积为16π,根据公式得到21642,r r ππ=⇒= 根据题意画出图像,设三棱锥的高为h,P 点在底面的投影为H 点,则2,2,2OP r OA r OH h =====-,底面三角形的外接圆半径为AH ,根据正弦定理得到323sin 60= 3.在三角形OAH 中根据勾股定理得到()223413h h -+=⇒=或三棱锥的体积为:13ABC h S ⨯⨯V代入数据得到111333224⨯⨯⨯⨯⨯=或者11333322⨯⨯⨯⨯⨯=故答案为:4或4【点睛】这个题目考查了已知棱锥的外接球的半径,求解其中的一些量;涉及棱锥的外接球的球心的求法,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.三、解答题21.(1)0.5;(2)0.1 【解析】 【分析】(1)本题首先可以通过题意推导出()2P X =所包含的事件为“甲连赢两球或乙连赢两球”,然后计算出每种事件的概率并求和即可得出结果;(2)本题首先可以通过题意推导出()4P X =所包含的事件为“前两球甲乙各得1分,后两球均为甲得分”,然后计算出每种事件的概率并求和即可得出结果. 【详解】(1)由题意可知,()2P X =所包含的事件为“甲连赢两球或乙连赢两球” 所以()20.50.40.50.60.5P X ==??(2)由题意可知,()4P X =包含的事件为“前两球甲乙各得1分,后两球均为甲得分”所以()40.50.60.50.4+0.50.40.50.40.1P X ==创创创= 【点睛】本题考查古典概型的相关性质,能否通过题意得出()2P X =以及()4P X =所包含的事件是解决本题的关键,考查推理能力,考查学生从题目中获取所需信息的能力,是中档题.22.(1)26cos 2sin 60ρρθρθ--+=(22 【解析】【分析】(1)利用平方和为1消去参数α得到曲线C 的直角坐标方程,再利用y sin x cos ρθρθ=⎧⎨=⎩,整理即可得到答案;(2)将直线的极坐标方程化为直角坐标方程,求出圆心到直线的距离,加上半径即可得到最大距离. 【详解】 (1)由3212x cos y sin αα=+⎧⎨=-⎩,得3212x cos y sin αα-=⎧⎨-=-⎩,两式两边平方并相加,得()()22314x y -+-=, 所以曲线C 表示以()3,1为圆心,2为半径的圆. 将y sin x cos ρθρθ=⎧⎨=⎩代入得()()22cos 3sin 14ρθρθ-+-=,化简得26cos 2sin 60ρρθρθ--+=所以曲线C 的极坐标方程为26cos 2sin 60ρρθρθ--+= (2)由1sin 2cos θθρ-=,得sin 2cos 1ρθρθ-=,即21y x -=,得210x y -+=所以直线l 的直角坐标方程为210x y -+= 因为圆心()3,1C 到直线:l 210x y -+=的距离()23111655d ⨯+-⨯+==, 所以曲线C 上的点到直线l 的最大距离为652d r +=+. 【点睛】本题考查直角坐标方程,参数方程及极坐标方程之间的互化,考查直线与圆的位置关系的应用,属于基础题. 23.(1) ; (2)36000;(3).【解析】 【分析】本题主要考查频率分布直方图、频率、频数的计算等基础知识,考查学生的分析问题、解决问题的能力. 第(Ⅰ)问,由高×组距=频率,计算每组的频率,根据所有频率之和为1,计算出a 的值;第(Ⅱ)问,利用高×组距=频率,先计算出每人月均用水量不低于3吨的频率,再利用频率×样本容量=频数,计算所求人数;第(Ⅲ)问,将前5组的频率之和与前4组的频率之和进行比较,得出2≤x<2.5,再估计月均用水量的中位数. 【详解】(Ⅰ)由频率分布直方图,可知:月均用水量在[0,0.5)的频率为0.08×0.5=0.04. 同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5)等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1–(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a+0.5×a , 解得a=0.30.(Ⅱ)由(Ⅰ)100位居民月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12. 由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36000. (Ⅲ)设中位数为x 吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5, 而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5 所以2≤x<2.5.由0.50×(x –2)=0.5–0.48,解得x=2.04. 故可估计居民月均用水量的中位数为2.04吨. 【考点】 频率分布直方图 【名师点睛】本题主要考查频率分布直方图、频率、频数的计算公式等基础知识,考查学生的分析问题、解决问题的能力.在频率分布直方图中,第n 个小矩形的面积就是相应组的频率,所有小矩形的面积之和为1,这是解题的关键,也是识图的基础.24.(1)22:1,(1,1]4y C x x +=∈-;:2110l x ++=;(2【解析】 【分析】(1)利用代入消元法,可求得C 的直角坐标方程;根据极坐标与直角坐标互化原则可得l 的直角坐标方程;(2)利用参数方程表示出C 上点的坐标,根据点到直线距离公式可将所求距离表示为三角函数的形式,从而根据三角函数的范围可求得最值. 【详解】(1)由2211t x t -=+得:210,(1,1]1x t x x -=≥∈-+,又()2222161t y t =+ ()()222116141144111xx y x x x x x -⨯+∴==+-=--⎛⎫+ ⎪+⎝⎭整理可得C 的直角坐标方程为:221,(1,1]4y x x +=∈-又cos x ρθ=,sin y ρθ=l ∴的直角坐标方程为:2110x ++=(2)设C 上点的坐标为:()cos ,2sin θθ则C 上的点到直线l的距离d ==当sin 16πθ⎛⎫+=- ⎪⎝⎭时,d 取最小值则min d = 【点睛】本题考查参数方程、极坐标方程与直角坐标方程的互化、求解椭圆上的点到直线距离的最值问题.求解本题中的最值问题通常采用参数方程来表示椭圆上的点,将问题转化为三角函数的最值求解问题. 25.(1)13; (2)()1E X =. 【解析】 【分析】(1)可根据题意分别计算出“从10人中选出2人”以及“2人参加义工活动的次数之和为4”的所有可能情况数目,然后通过概率计算公式即可得出结果;(2)由题意知随机变量X 的所有可能取值,然后计算出每一个可能取值所对应的概率值,写出分布列,求出数学期望值. 【详解】(1)由已知有1123432101()3C C C P A C ⋅+==, 所以事件A 的发生的概率为13; (2)随机变量X 的所有可能的取值为0,1,2;2223342104(0)15C C C P X C ++===;111133342107(1)15C C C C P X C ⋅+⋅===; 11342104(2)15C C P X C ⋅===; 所以随机变量X 的分布列为:数学期望为()0121151515E X =???. 【点睛】本题考查了离散型随机变量的分布列与数学期望的计算问题,能否正确计算出每一个随机变量所对应的的概率是解决本题的关键,考查推理能力,是中档题.26.(1)见解析; (2)2e 2ea 2e 2-≥-.【解析】 【分析】()1求函数的导数,利用函数单调性和导数之间的关系,即可求()f x 的单调区间;()2若()0f x ≤在区间[]1,e 上恒成立,则只需求出()f x 的最大值即可,求实数a 的取值范围. 【详解】()()()21f x x 2a 1x 2alnx(a 0)=-++>Q .()()()()22x 2a 1x 2a2x 1x a f'x (x 0)xx-++--∴==>,由得1x a =,2x 1=,当0a 1<<时,在()x 0,a ∈或()x 1,∞∈+时 ,在()x a,1∈时,()f x ∴的单调增区间是()0,a 和()1,∞+,单调减区间是()a,1;当a 1=时,在()x 0,∞∈+时,()f x ∴的单调增区间是()0,∞+;当a 1>时,在()x 0,1∈或()x a,∞∈+时,在()x 1,a ∈时.()f x ∴的单调增区间是()0,1和()a,∞+,单调减区间是()1,a .()2由()1可知()f x 在区间[]1,e 上只可能有极小值点, ()f x ∴在区间[]1,e 上的最大值在区间的端点处取到,即有()()f 112a 10=-+≤且()()2f e e 2a 1e 2a 0=-++≤,解得2e 2ea 2e 2-≥-.即实数a 的取值范围是2e 2ea 2e 2-≥-.【点睛】本题主要考查函数单调性和导数之间的关系,以及不等式恒成立问题,将不等式恒成立转化为求函数的最值是解决本题的关键.。

2020-2021高中三年级数学下期末一模试题带答案(12)

2020-2021高中三年级数学下期末一模试题带答案(12)

2020-2021高中三年级数学下期末一模试题带答案(12)一、选择题1.已知平面向量a r=(1,-3),b r=(4,-2),a b λ+rr与a r垂直,则λ是( )A .2B .1C .-2D .-1 2.(1+2x 2 )(1+x )4的展开式中x 3的系数为A .12B .16C .20D .243.如图所示,程序据图(算法流程图)的输出结果为( )A .34 B .16C .1112D .25244.某单位有职工100人,不到35岁的有45人,35岁到49岁的有25人,剩下的为50岁以上(包括50岁)的人,用分层抽样的方法从中抽取20人,各年龄段分别抽取的人数为( ) A .7,5,8B .9,5,6C .7,5,9D .8,5,75.函数()23x f x x+=的图象关于( )A .x 轴对称B .原点对称C .y 轴对称D .直线y x =对称6.函数y =2x sin2x 的图象可能是A .B .C .D .7.不等式2x 2-5x -3≥0成立的一个必要不充分条件是( ) A .1x <-或4x >B .0x …或2x -…C .0x <或2x >D .12x -…或3x …8.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( )A .,βγαγ<<B .,βαβγ<<C .,βαγα<<D .,αβγβ<<9.样本12310,?,?,? a a a a ⋅⋅⋅的平均数为a ,样本12310,?,?,? b b b b ⋅⋅⋅的平均数为b ,那么样本1122331010,? ,,? ,?,,?,? a b a b a b a b ⋅⋅⋅的平均数为( )A .()a b +B .2()a b +C .1()2a b + D .1()10a b + 10.定义运算()()a ab a b b a b ≤⎧⊕=⎨>⎩,则函数()12xf x =⊕的图象是( ).A .B .C .D .11.已知向量a v ,b v 满足2a =v||1b =v ,且2b a +=v v ,则向量a v 与b v 的夹角的余弦值为( ) A .22B .23C 2D .2412.一个几何体的三视图如图所示,其中正视图是一个正三角形,俯视图是一个等腰直角三角形,则该几何体的外接球的表面积为( )A.4 3πB.83πC.163πD.203π二、填空题13.设函数()212log,0log(),0x xf x x x>⎧⎪=⎨-<⎪⎩,若()()f a f a>-,则实数a的取值范围是__________.14.设a R∈,直线20ax y-+=和圆22cos,12sinxyθθ=+⎧⎨=+⎩(θ为参数)相切,则a的值为____.15.已知圆C经过(5,1),(1,3)A B两点,圆心在x轴上,则C的方程为__________.16.如图,长方体1111ABCD A B C D-的体积是120,E为1CC的中点,则三棱锥E-BCD的体积是_____.17.若函数2()1lnf x x x a x=-++在(0,)+∞上单调递增,则实数a的最小值是__________.18.在区间[1,1]-上随机取一个数x,cos2xπ的值介于1[0,]2的概率为.19.如图,正方体1111ABCD A B C D-的棱长为1,线段11B D上有两个动点,E F,且22EF=,现有如下四个结论:AC BE①⊥;//EF②平面ABCD;③三棱锥A BEF-的体积为定值;④异面直线,AE BF所成的角为定值,其中正确结论的序号是______.20.若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_____________.三、解答题21.已知()f x 是二次函数,不等式()0f x <的解集是()0,5,且()f x 在区间[]1,4-上的最大值是12.(1)求()f x 的解析式;(2)设函数()f x 在[],1x t t ∈+上的最小值为()g t ,求()g t 的表达式.22.如图,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD ,//EF AB ,90BAF ∠=︒,2AD =,1AB AF ==,点P 在线段DF 上.(1)求证:AF ⊥平面ABCD ; (2)若二面角D AP C --6,求PF 的长度. 23.选修4-5:不等式选讲 设函数()|2||1|f x x x =-++.(1)求()f x 的最小值及取得最小值时x 的取值范围; (2)若集合{|()10}x f x ax +->=R ,求实数a 的取值范围. 24.在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m m y k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设()3:cos sin 20l ρθθ+-=,M 为l 3与C 的交点,求M 的极径.25.为评估设备生产某种零件的性能,从设备生产该零件的流水线上随机抽取100个零件为样本,测量其直径后,整理得到下表:经计算,样本的平均值,标准差,以频率值作为概率的估计值.(I )为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行判定(表示相应事件的概率): ①; ②; ③.判定规则为:若同时满足上述三个式子,则设备等级为甲;若仅满足其中两个,则等级为乙,若仅满足其中一个,则等级为丙;若全部都不满足,则等级为了.试判断设备的性能等级.(Ⅱ)将直径尺寸在之外的零件认定为是“次品”.①从设备的生产流水线上随机抽取2个零件,求其中次品个数的数学期望;②从样本中随意抽取2个零件,求其中次品个数的数学期望.26.如图,在几何体111ABC A B C -中,平面11A ACC ⊥底面ABC ,四边形11A ACC 是正方形,1l //B C BC ,Q 是1A B 的中点,1122,3AC BC B C ACB π==∠=(I )求证:1//QB 平面11A ACC (Ⅱ)求二面角11A BB C --的余弦值.【参考答案】***试卷处理标记,请不要删除1.D 解析:D 【解析】 【详解】试题分析:()()(),34,24,32a b λλλλλ+=-+-=+--r r ,由a b λ+r r与a r 垂直可知 ()()()·0433201a b a λλλλ+=∴+---=∴=-r r r考点:向量垂直与坐标运算2.A解析:A 【解析】 【分析】本题利用二项展开式通项公式求展开式指定项的系数. 【详解】由题意得x 3的系数为314424812C C +=+=,故选A .【点睛】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数.3.C解析:C 【解析】由算法流程图知s =0+12+14+16=1112.选C. 4.B解析:B 【解析】 【分析】分层抽样按比例分配,即可求出各年龄段分别抽取的人数. 【详解】由于样本容量与总体中的个体数的比值为2011005=,故各年龄段抽取的人数依次为14595⨯=,12555⨯=,20956--=.故选:B【点睛】本题考查分层抽样方法,关键要理解分层抽样的原则,属于基础题.5.C解析:C【分析】求函数的定义域,判断函数的奇偶性即可. 【详解】解:()f x x=Q0x ∴≠解得0x ≠()f x ∴的定义域为()(),00,D =-∞+∞U ,D 关于原点对称.任取x D ∈,都有()()f x f x x-===,()f x ∴是偶函数,其图象关于y 轴对称,故选:C . 【点睛】本题主要考查函数图象的判断,根据函数的奇偶性的定义判断函数的奇偶性是解决本题的关键.6.D解析:D 【解析】分析:先研究函数的奇偶性,再研究函数在π(,π)2上的符号,即可判断选择.详解:令()2sin 2xf x x =,因为,()2sin 2()2sin 2()xx x R f x x x f x -∈-=-=-=-,所以()2sin 2xf x x =为奇函数,排除选项A,B;因为π(,π)2x ∈时,()0f x <,所以排除选项C ,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.7.C解析:C 【解析】 【分析】根据题意,解不等式2x 2-5x-3≥0可得x≤-12或x≥3,题目可以转化为找x≤-12或x≥3的必要不充分条件条件,依次分析选项即可得答案.根据题意,解不等式2x 2-5x-3≥0可得x≤-12或x≥3,则2x 2-5x-3≥0⇔x≤12-或3x …,所以可以转化为找x≤-12或x≥3的必要不充分条件; 依次选项可得:x 1<-或x 4>是12x ≤-或x≥3成立的充分不必要条件; x 0≥或x 2≤-是12x ≤-或x≥3成立的既不充分也不必要条件x 0<或x 2>是12x ≤-或x≥3成立的必要不充分条件;x≤-12或x≥3是12x ≤-或x≥3成立的充要条件; 故选C . 【点睛】本题考查了充分必要条件,涉及一元二次不等式的解答,关键是正确解不等式2x 2-5x-3≥0.8.B解析:B 【解析】 【分析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半. 【详解】方法1:如图G 为AC 中点,V 在底面ABC 的投影为O ,则P 在底面投影D 在线段AO 上,过D 作DE 垂直AE ,易得//PE VG ,过P 作//PF AC 交VG 于F ,过D 作//DH AC ,交BG 于H ,则,,BPF PBD PED α=∠β=∠γ=∠,则cos cos PF EG DH BD PB PB PB PB α===<=β,即αβ>,tan tan PD PDED BDγ=>=β,即y >β,综上所述,答案为B.方法2:由最小角定理βα<,记V AB C --的平面角为γ'(显然γ'=γ)由最大角定理β<γ'=γ,故选B.方法3:(特殊位置)取V ABC -为正四面体,P 为VA 中点,易得cos sin sin α=⇒α=β=γ=B. 【点睛】常规解法下易出现的错误有,不能正确作图得出各种角.未能想到利用“特殊位置法”,寻求简便解法.9.C解析:C 【解析】 【分析】 【详解】由题意可知1210121010,10a a a a b b b b +++=+++=L L ,所以所求平均数为()121012101210121012020202a a ab b b a a a b b b a b +++++++++++++=+=+L L L L考点:样本平均数10.A解析:A 【解析】 【分析】 【详解】由已知新运算a b ⊕的意义就是取得,a b 中的最小值,因此函数()1,0122,0xxx f x x >⎧=⊕=⎨≤⎩, 只有选项A 中的图象符合要求,故选A. 11.D解析:D 【解析】 【分析】根据平方运算可求得12a b ⋅=r r ,利用cos ,a b a b a b ⋅<>=r r r r r r 求得结果. 【详解】由题意可知:2222324b a b a b a a b +=+⋅+=+⋅=r r r r r r r r ,解得:12a b ⋅=r rcos ,4a b a b a b ⋅∴<>===r r r rr r 本题正确选项:D【点睛】本题考查向量夹角的求解问题,关键是能够通过平方运算求得向量的数量积.12.C解析:C 【解析】 【分析】根据三视图知几何体是三棱锥,且一侧面与底面垂直,结合图中数据求出三棱锥外接球的半径,从而求出球的表面积公式. 【详解】由三视图知,该几何体是如图所示的三棱锥,且三棱锥的侧面SAC ⊥底面ABC ,高为3SO =;其中1OA OB OC ===,SO ⊥平面ABC ,其外接球的球心在SO 上,设球心为M ,OM x =,根据SM=MB 得到:在三角形MOB 中,21SM 3x x +=,213x x +=, 解得3x =∴外接球的半径为3233R ==;∴三棱锥外接球的表面积为223164(3S ππ=⨯=.故选:C . 【点睛】本题考查了三视图复原几何体形状的判断问题,也考查了三棱锥外接球的表面积计算问题,是中档题.一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.二、填空题13.【解析】【分析】【详解】由题意或或或则实数的取值范围是故答案为 解析:(1,0)(1,)-??【解析】 【分析】 【详解】由题意()()f a f a >-⇒2120 log log a a a >⎧⎪⎨>⎪⎩或()()1220log log a a a <⎧⎪⎨->-⎪⎩01a a a >⎧⎪⇒⎨>⎪⎩或11a a a a<⎧⎪⇒>⎨->-⎪⎩或10a -<<,则实数a 的取值范围是()()1,01,-⋃+∞,故答案为()()1,01,-⋃+∞.14.【解析】【分析】根据圆的参数方程确定圆的半径和圆心坐标再根据直线与圆相切的条件得出满足的方程解之解得【详解】圆化为普通方程为圆心坐标为圆的半径为由直线与圆相切则有解得【点睛】直线与圆的位置关系可以使解析:34【解析】 【分析】根据圆的参数方程确定圆的半径和圆心坐标,再根据直线与圆相切的条件得出a 满足的方程,解之解得。

2020-2021高中三年级数学下期末第一次模拟试卷(及答案)

2020-2021高中三年级数学下期末第一次模拟试卷(及答案)

2020-2021高中三年级数学下期末第一次模拟试卷(及答案)一、选择题1.现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的概率为A .12B .13 C .16 D .112 2.123{3x x >>是12126{9x x x x +>>成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .即不充分也不必要条件 3.已知2a i b i i +=+ ,,a b ∈R ,其中i 为虚数单位,则+a b =( ) A .-1 B .1 C .2 D .34.设ω>0,函数y=sin(ωx+3π)+2的图象向右平移43π个单位后与原图象重合,则ω的最小值是A .23B .43C .32D .35.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙6.甲、乙、丙三人到三个不同的景点旅游,每人只去一个景点,设事件A 为“三个人去的景点各不相同”,事件B 为“甲独自去一个景点,乙、丙去剩下的景点”,则(A |B)P 等于( )A .49B .29C .12D .137.如图是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为1214,,A A A L ,下图是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图,那么算法流程图输出的结果是( )A .7B .8C .9D .10 8.一动圆的圆心在抛物线28y x =上,且动圆恒与直线20x +=相切,则此动圆必过定点( )A .(4,0)B .(2,0)C .(0,2)D .(0,0)9.设集合{1,2,3,4,5,6}U =,{1,2,4}A =,{2,3,4}B =,则()C U A B ⋃等于( ) A .{5,6} B .{3,5,6} C .{1,3,5,6} D .{1,2,3,4}10.函数f (x )=2sin(ωx +φ)(ω>0,-2π<φ<2π)的部分图象如图所示,则ω、φ的值分别是( )A .2,-3π B .2,-6π C .4,-6π D .4,3π 11.抛掷一枚骰子,记事件A 为“落地时向上的点数是奇数”,事件B 为“落地时向上的点数是偶数”,事件C 为“落地时向上的点数是3的倍数”,事件D 为“落地时向上的点数是6或4”,则下列每对事件是互斥事件但不是对立事件的是( )A .A 与B B .B 与C C .A 与D D .C 与D12.已知双曲线C :()222210,0x y a b a b -=>>的焦距为2c ,焦点到双曲线C 的渐近线的距离为32c ,则双曲线的渐近线方程为() A .3y x =±B .2y x =±C .y x =±D .2y x =± 二、填空题13.复数()1i i +的实部为 .14.已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是__________.15.若,满足约束条件则的最大值 .16.学校里有一棵树,甲同学在A 地测得树尖D 的仰角为45︒,乙同学在B 地测得树尖D 的仰角为30°,量得10AB AC m ==,树根部为C (,,A B C 在同一水平面上),则ACB =∠______________.17.已知直线:与圆交于两点,过分别作的垂线与轴交于两点.则_________.18.抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.现有抛物线22(0)y px p =>,如图一平行于x 轴的光线射向抛物线,经两次反射后沿平行x 轴方向射出,若两平行光线间的最小距离为4,则该抛物线的方程为__________.19.已知正三棱锥P ABC -的底面边长为3,外接球的表面积为16π,则正三棱锥P ABC -的体积为________.20.三个数成等差数列,其比为3:4:5,又最小数加上1后,三个数成等比数列,那么原三个数是三、解答题21.如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2AB AD ==2CA CB CD BD ====.(1)求证:AO ⊥平面BCD ;(2)求异面直线AB 与CD 所成角的余弦值;(3)求点E 到平面ACD 的距离.22.已知()11f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若()0,1x ∈时不等式()f x x >成立,求a 的取值范围.23.已知()f x 是二次函数,不等式()0f x <的解集是()0,5,且()f x 在区间[]1,4-上的最大值是12.(1)求()f x 的解析式;(2)设函数()f x 在[],1x t t ∈+上的最小值为()g t ,求()g t 的表达式. 24.已知函数()2f x m x =--,m R ∈,且()20f x +≥的解集为[]1,1-(1)求m 的值;(2)若,,a b c ∈R ,且11123m a b c++=,求证239a b c ++≥ 25.如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B 的中心,122AA =,1C H ⊥平面11AA B B ,且1 5.C H =(Ⅰ)求异面直线AC 与11A B 所成角的余弦值;(Ⅱ)求二面角111A AC B --的正弦值;(Ⅲ)设N 为棱11B C 的中点,点M 在平面11AA B B 内,且MN ⊥平面111A B C ,求线段BM 的长.26.定义在R 的函数()f x 满足对任意x y ÎR 、恒有()()()f xy f x f y =+且()f x 不恒为0.(1)求(1)(1)f f -、的值;(2)判断()f x 的奇偶性并加以证明;(3)若0x ≥时,()f x 是增函数,求满足不等式(1)(2)0f x f x +--≤的x 的集合.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】 求得基本事件的总数为222422226C C n A A =⨯=,其中乙丙两人恰好参加同一项活动的基本事件个数为2222222m C C A ==,利用古典概型及其概率的计算公式,即可求解.【详解】由题意,现有甲乙丙丁4名学生平均分成两个志愿者小组到校外参加两项活动, 基本事件的总数为222422226C C n A A =⨯=, 其中乙丙两人恰好参加同一项活动的基本事件个数为2222222m C C A ==, 所以乙丙两人恰好参加同一项活动的概率为13m p n ==,故选B. 【点睛】 本题主要考查了排列组合的应用,以及古典概型及其概率的计算问题,其中解答中合理应用排列、组合的知识求得基本事件的总数和所求事件所包含的基本事件的个数,利用古典概型及其概率的计算公式求解是解答的关键,着重考查了运算与求解能力,属于基础题.2.A解析:A【解析】试题分析:因为123{3x x >>12126{9x x x x +>⇒>,所以充分性成立;1213{1x x ==满足12126{9x x x x +>>,但不满足123{3x x >>,必要性不成立,所以选A.考点:充要关系3.B解析:B【解析】【分析】利用复数除法运算法则化简原式可得2ai b i -=+,再利用复数相等列方程求出,a b 的值,从而可得结果.【详解】 因为22222a i ai i ai b i i i+--==-=+- ,,a b ∈R , 所以2211b b a a ==⎧⎧⇒⎨⎨-==-⎩⎩,则+1a b =,故选B. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.4.C解析:C【解析】 函数sin 23y x πω⎛⎫=++ ⎪⎝⎭的图象向右平移43π个单位后44sin 2sin 23333w y w x wx ππππ⎡⎤⎛⎫⎛⎫=-++=+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 所以有43332013222w k k k w w k w ππ=∴=>∴≥∴=≥Q 故选C5.A解析:A【解析】【分析】利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A .【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.6.C解析:C【解析】【分析】这是求甲独自去一个景点的前提下,三个人去的景点不同的概率,求出相应的基本事件的个数,即可得出结果.【详解】甲独自去一个景点,则有3个景点可选,乙、丙只能在剩下的两个景点选择,根据分步乘法计数原理可得,对应的基本事件有32212⨯⨯=种;另外,三个人去不同景点对应的基本事件有3216⨯⨯=种,所以61(/)122P A B ==,故选C. 【点睛】本题主要考查条件概率,确定相应的基本事件个数是解决本题的关键. 7.C解析:C【解析】【分析】根据流程图可知该算法表示统计14次考试成绩中大于等于90的人数,结合茎叶图可得答案.【详解】根据流程图所示的顺序,可知该程序的作用是累计14次考试成绩超过90分的次数.根据茎叶图可得超过90分的次数为9.故选:C .【点睛】本题主要考查了循环结构,以及茎叶图的认识,解题的关键是弄清算法流程图的含义,属于基础题.8.B解析:B【解析】【分析】设圆和x 轴相交于M 点,根据圆的定义得到CA =CM =R ,因为x=-2,是抛物线的准线,结合抛物线的定义得到M 点为焦点.【详解】圆心C 在抛物线上,设与直线20x +=相切的切点为A ,与x 轴交点为M ,由抛物线的定义可知,CA =CM =R ,直线20x +=为抛物线的准线,故根据抛物线的定义得到该圆必过抛物线的焦点()2,0.故选B【点睛】这个题目考查了抛物线的定义的应用以及圆的定义的应用,一般和抛物线有关的小题,很多时可以应用结论来处理的;平时练习时应多注意抛物线的结论的总结和应用.尤其和焦半径联系的题目,一般都和定义有关,实现点点距和点线距的转化.9.A解析:A【解析】【分析】先求并集,得到{1,2,3,4}A B ⋃=,再由补集的概念,即可求出结果.【详解】因为{1,2,4}A =,{2,3,4}B =,所以{1,2,3,4}A B ⋃=,又{1,2,3,4,5,6}U =,所以()C {5,6}U A B ⋃=.故选A.【点睛】本题主要考查集合的并集与补集的运算,熟记概念即可,属于基础题型.10.A解析:A【解析】【分析】由函数f (x )=2sin (ωx+φ)的部分图象,求得T 、ω和φ的值.【详解】由函数f (x )=2sin (ωx+φ)的部分图象知,3T 5π412=-(π3-)3π4=, ∴T 2πω==π,解得ω=2; 又由函数f (x )的图象经过(5π12,2),∴2=2sin (25π12⨯+φ), ∴5π6+φ=2kππ2+,k∈Z, 即φ=2kππ3-, 又由π2-<φπ2<,则φπ3=-; 综上所述,ω=2、φπ3=-. 故选A .【点睛】本题考查了正弦型函数的图象与性质的应用问题,是基础题.11.C解析:C【解析】分析:利用互斥事件、对立事件的概念直接求解判断即可.详解:在A 中,A 与B 是对立事件,故不正确;在B 中,B 与C 能同时发生,不是互斥事件,所以不正确;在C 中,A 与D 两个事件不能同时发生,但能同时不发生,所以是互斥事件,但不是对立事件,所以是正确的;在D 中,C 与D 能同时发生,不是互斥事件,所以是错误的.综上所述,故选C.点睛:本题主要考查了命题的真假判定,属于基础题,解答时要认真审题,注意互斥事件与对立事件的定义的合理运用,同时牢记互斥事件和对立事件的基本概念是解答的基础.12.A解析:A【解析】【分析】利用双曲线C :()222210,0x y a b a b -=>>,求出a ,b 的关系式,然后求解双曲线的渐近线方程.【详解】双曲线C :()222210,0x y a b a b -=>>的焦点(),0c 到渐近线0bx ay +=,可得:=,可得2b c =,b a =C 的渐近线方程为y =. 故选A .【点睛】本题考查双曲线的简单性质的应用,构建出,a b 的关系是解题的关键,考查计算能力,属于中档题.二、填空题13.【解析】复数其实部为考点:复数的乘法运算实部解析:1-【解析】复数(1)11i i i i +=-=-+,其实部为1-.考点:复数的乘法运算、实部.14.【解析】令函数有两个极值点则在区间上有两个实数根当时则函数在区间单调递增因此在区间上不可能有两个实数根应舍去当时令解得令解得此时函数单调递增令解得此时函数单调递减当时函数取得极大值当近于与近于时要使 解析:.【解析】 ()()()2ln 0,'ln 12f x x x ax x f x x ax =->=+-,令()ln 12,g x x ax =+-Q 函数()()ln f x x x ax =-有两个极值点,则()0g x =在区间()0,∞+上有两个实数根,()112'2ax g x a x x -=-=,当0a ≤时,()'0g x >,则函数()g x 在区间()0,∞+单调递增,因此()0g x =在区间()0,∞+上不可能有两个实数根,应舍去,当0a >时,令()'0g x =,解得12x a =,令()'0g x >,解得102x a<<,此时函数()g x 单调递增,令()'0g x <,解得12x a >,此时函数()g x 单调递减,∴当12x a =时,函数()g x 取得极大值,当x 近于0与x 近于+∞时,()g x →-∞,要使()0g x =在区间()0,∞+有两个实数根,则11ln 022g a a ⎛⎫=> ⎪⎝⎭,解得10,2a <<∴实数a 的取值范围是102a <<,故答案为102a <<. 15.3【解析】作出可行域如图中阴影部分所示由斜率的意义知yx 是可行域内一点与原点连线的斜率由图可知点A (13)与原点连线的斜率最大故yx 的最大值为3考点:线性规划解法解析:【解析】作出可行域如图中阴影部分所示,由斜率的意义知,是可行域内一点与原点连线的斜率,由图可知,点A (1,3)与原点连线的斜率最大,故的最大值为3.考点:线性规划解法16.【解析】【分析】作出立体图利用直角三角形中的三角函数关系求得对应的边长再利用余弦定理求解即可【详解】如图所示在中∵∴在中∵∴在中∴故答案为:【点睛】本题主要考查了解三角形求解实际情景中的角度问题依据 解析:30°【解析】 【分析】作出立体图,利用直角三角形中的三角函数关系求得对应的边长,再利用余弦定理求解cos ACB ∠即可. 【详解】如图所示,在Rt ACD V 中,∵10,45AC m DAC =∠=︒,∴10DC m = 在Rt DCB △中,∵30DBC ∠=︒,∴103BC m =. 在ABC V 中,)22210103103cos 210103ACB +-∠==⨯⨯,∴30ACB ∠=︒.故答案为:30° 【点睛】本题主要考查了解三角形求解实际情景中的角度问题,依据题意正确画出立体图形,确定边的关系再利用余弦定理求解即可.属于基础题.17.4【解析】试题分析:由x-3y+6=0得x=3y-6代入圆的方程整理得y2-33y+6=0解得y1=23y2=3所以x1=0x2=-3所以|AB|=(x1-x2)2+(y1-y2)2=23又直线l 的解析:4 【解析】 试题分析:由,得,代入圆的方程,整理得,解得,所以,所以.又直线的倾斜角为,由平面几何知识知在梯形中,.【考点】直线与圆的位置关系【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系的非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.18.【解析】【分析】先由题意得到必过抛物线的焦点设出直线的方程联立直线与抛物线方程表示出弦长再根据两平行线间的最小距离时最短进而可得出结果【详解】由抛物线的光学性质可得:必过抛物线的焦点当直线斜率存在时 解析:24y x =【解析】 【分析】先由题意得到PQ 必过抛物线的焦点,设出直线PQ 的方程,联立直线PQ 与抛物线方程,表示出弦长,再根据两平行线间的最小距离时,PQ 最短,进而可得出结果. 【详解】由抛物线的光学性质可得:PQ 必过抛物线的焦点(,0)2pF , 当直线PQ 斜率存在时,设PQ 的方程为()2py k x =-,1122(,),(,)P x y Q x y , 由2()22p y k x y px⎧=-⎪⎨⎪=⎩得:222()24p k x px px -+=,整理得2222244)0(8k x k p p x k p -++=,所以21222k p p x x k++=,2124p x x =, 所以2122222k PQ x x p p p k+=++=>; 当直线PQ 斜率不存在时,易得2PQ p =; 综上,当直线PQ 与x 轴垂直时,弦长最短,又因为两平行光线间的最小距离为4,PQ 最小时,两平行线间的距离最小;因此min 24PQ p ==,所求方程为24y x =. 故答案为24y x = 【点睛】本题主要考查直线与抛物线位置关系,通常需要联立直线与抛物线方程,结合韦达定理、弦长公式等求解,属于常考题型.19.或【解析】【分析】做出简图找到球心根据勾股定理列式求解棱锥的高得到两种情况【详解】正三棱锥的外接球的表面积为根据公式得到根据题意画出图像设三棱锥的高为hP 点在底面的投影为H 点则底面三角形的外接圆半径解析:334或93【解析】 【分析】做出简图,找到球心,根据勾股定理列式求解棱锥的高,得到两种情况. 【详解】正三棱锥P ABC -的外接球的表面积为16π,根据公式得到21642,r r ππ=⇒= 根据题意画出图像,设三棱锥的高为h,P 点在底面的投影为H 点,则2,2,2OP r OA r OH h =====-,底面三角形的外接圆半径为AH ,根据正弦定理得到323sin 60= 3.在三角形OAH 中根据勾股定理得到()223413h h -+=⇒=或 三棱锥的体积为:13ABC h S ⨯⨯V 代入数据得到131331333224⨯⨯⨯⨯⨯=或者1319333 3.3224⨯⨯⨯⨯⨯= 故答案为:334或34【点睛】这个题目考查了已知棱锥的外接球的半径,求解其中的一些量;涉及棱锥的外接球的球心的求法,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.20.2025【解析】设这三个数:()则成等比数列则或(舍)则原三个数:152025解析:20 25 【解析】 设这三个数:、、(),则、、成等比数列,则或(舍),则原三个数:15、20、25三、解答题21.(1)见解析(2)24(3)217【解析】 【分析】(1)连接OC ,由BO =DO ,AB =AD ,知AO ⊥BD ,由BO =DO ,BC =CD ,知CO ⊥BD .在△AOC 中,由题设知AO 1CO 3==,AC =2,故AO 2+CO 2=AC 2,由此能够证明AO ⊥平面BCD ;(2)取AC 的中点M ,连接OM 、ME 、OE ,由E 为BC 的中点,知ME ∥AB ,OE ∥DC ,故直线OE 与EM 所成的锐角就是异面直线AB 与CD 所成的角.在△OME 中,121EM AB OE DC 122====,由此能求出异面直线AB 与CD 所成角大小的余弦;(3)设点E 到平面ACD 的距离为h .在△ACD 中,CA CD 2AD 2===,2ACD127S 24222⎛⎫=-= ⎪ ⎪⎝⎭V ,由AO =1,知2CDE 133S 22==V ,由此能求出点E 到平面ACD 的距离. 【详解】(1)证明:连接OC ,∵BO =DO ,AB =AD ,∴AO ⊥BD , ∵BO =DO ,BC =CD ,∴CO ⊥BD .在△AOC 中,由题设知13AO CO ==,AC =2, ∴AO 2+CO 2=AC 2,∴∠AOC =90°,即AO ⊥OC . ∵AO ⊥BD ,BD ∩OC =O ,∴AO ⊥平面BCD .(2)解:取AC 的中点M ,连接OM 、ME 、OE ,由E 为BC 的中点, 知ME ∥AB ,OE ∥DC ,∴直线OE 与EM 所成的锐角就是异面直线AB 与CD 所成的角. 在△OME 中,1211222EM AB OE DC ====,, ∵OM 是直角△AOC 斜边AC上的中线,∴112OM AC ==, ∴111224221cos OEM +-∠==⨯⨯, ∴异面直线AB 与CD 所成角大小的余弦为24(3)解:设点E 到平面ACD 的距离为h .E ACD A CDE V V --=Q ,1133ACD CDE h S AO S ∴=V V ..., 在△ACD 中,22CA CD AD ===,,∴212724222ACDS ⎛⎫=⨯⨯-= ⎪ ⎪⎝⎭V , ∵AO =1,213322CDE S =⨯⨯=V , ∴312127CDE ACDAO S h S ⨯⋅===V V ,∴点E 到平面ACD 的距离为21.【点睛】本题考查点、线、面间的距离的计算,考查空间想象力和等价转化能力,解题时要认真审题,仔细解答,注意化立体几何问题为平面几何问题. 22.(1)12x x ⎧⎫>⎨⎬⎩⎭;(2)(]0,2 【解析】分析:(1)将1a =代入函数解析式,求得()11f x x x =+--,利用零点分段将解析式化为()2,1,2,11,2, 1.x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩,然后利用分段函数,分情况讨论求得不等式()1f x >的解集为12x x⎧⎫⎨⎬⎩⎭; (2)根据题中所给的()0,1x ∈,其中一个绝对值符号可以去掉,不等式()f x x >可以化为()0,1x ∈时11ax -<,分情况讨论即可求得结果.详解:(1)当1a =时,()11f x x x =+--,即()2,1,2,11,2, 1.x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩故不等式()1f x >的解集为12x x⎧⎫⎨⎬⎩⎭. (2)当()0,1x ∈时11x ax x +-->成立等价于当()0,1x ∈时11ax -<成立. 若0a ≤,则当()0,1x ∈时11ax -≥; 若0a >,11ax -<的解集为20x a <<,所以21a≥,故02a <≤. 综上,a 的取值范围为(]0,2.点睛:该题考查的是有关绝对值不等式的解法,以及含参的绝对值的式子在某个区间上恒成立求参数的取值范围的问题,在解题的过程中,需要会用零点分段法将其化为分段函数,从而将不等式转化为多个不等式组来解决,关于第二问求参数的取值范围时,可以应用题中所给的自变量的范围,去掉一个绝对值符号,之后进行分类讨论,求得结果.23.(1)2()210f x x x =-(2)223268,,22535(),,2225210,,2t t t g t t t t t ⎧--≤⎪⎪⎪=-<<⎨⎪⎪-≥⎪⎩【解析】(1)因为()f x 是二次函数,不等式()0f x <的解集是()0,5,所以可设()(5)(0).f x ax x a =->,然后因为-1比5离对称轴的距离远,所以最大值为(-1)=6a,求出a值,从而求出f(x)的解析式.(II )本小题属于二次函数轴定区间动的问题,分三种情况讨论分别求其最小值即可. 解:(1)Q ()f x 是二次函数,且()0f x <的解集是(0,5),∴可设()(5)(0).f x ax x a =->()f x ∴在区间[]1,4-上的最大值是(1)6.f a -=由已知,得612,a =2,a ∴=2()2(5)210().f x x x x x x R ∴=-=-∈(2)由(1)知22525()2102.22f x x x x ⎛⎫∴=-=-- ⎪⎝⎭,开口向上,对称轴为52x = ①当512t +≤,即32t ≤时,()f x 在[],1t t +上是单调递减, ()()()2221101268g t t t t t ∴=+-+=--②当52t ≥时,()f x 在[],1t t +上是单调递减 ()22210210g t t t t t ∴=-=-③当512t t ≤≤+,即3522t ≤≤时,()f x 在对称轴处取得最小值 ()52522g t f ⎛⎫∴==- ⎪⎝⎭24.(1)1;(2)见解析 【解析】 【分析】(1)由条件可得()2f x m x +=-,故有0m x -≥的解集为[11]-,,即x m ≤的解集为[11]-,,进而可得结果;(2)根据()111232323a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭利用基本不等式即可得结果. 【详解】(1)函数()2f x m x =--,m R ∈,故()2f x m x +=-,由题意可得0m x -≥的解集为[11]-,,即x m ≤的解集为[11]-,,故1m =. (2)由a ,b ,R c ∈,且111123m a b c++==, ∴()111232323a b c a b c a b c ⎛⎫++=++++⎪⎝⎭23321112233b c a c a b a a b b c c=++++++++233233692233b c a c a b a a b b c c =++++++≥+=, 当且仅当2332 12233b c a c a b aa b b c c======时,等号成立. 所以239a b c ++≥. 【点睛】本题主要考查带有绝对值的函数的值域,基本不等式在最值问题中的应用,属于中档题. 25.(Ⅰ)3;(Ⅱ)7;(Ⅲ)4【解析】 【分析】(Ⅰ)以B 为坐标原点,BA 所在直线为x 轴,1BB 所在直线为y 轴,建立坐标系,设异面直线AC 与11A B 所成角为α,算出11,AC A B u u u r u u u u r ,再利用cos α=11|cos ,|AC A B 〈〉u u u r u u u u r 计算即可;(Ⅱ)分别求出平面11AA C 的法向量m u r 与平面111B AC 的法向量n r,再利用向量的夹角公式算得cos ,m n 〈〉u r r即可;(Ⅲ)设(,,0)M a b ,由MN ⊥平面111A B C ,得11110MN A B MN A C ⎧⋅=⎪⎨⋅=⎪⎩u u u u v u u u u v u u u u v u u u u v ,进一步得到M 的坐标,再由模长公式计算BM 的长. 【详解】如图所示,建立空间直角坐标系,其中点B 为坐标原点,BA 所在直线为x 轴,1BB 所在直线为y 轴, 由题意,111(0,0,0),B A C A B C ,(Ⅰ)11((AC A B ==-u u u r u u u u r ,所以111111cos ,||||AC A B AC A B AC A B ⋅〈〉===u u ru u u r u u u u r u u u r u u u u r ,设异面直线AC 与11A B 所成角为α,则cos α=11|cos ,|3AC A B 〈〉=u u u r u u u u r, 所以异面直线AC 与11A B. (Ⅱ)易知111(AA AC ==u u u r u u u u r,设平面11AA C 的法向量(,,)m x y z =,则11100m AC m AA ⎧⋅=⎪⎨⋅=⎪⎩u u u u v v u u u v v,即00⎧+=⎪⎨=⎪⎩,令x =z =,所以m =u r,同理,设平面111B AC 的法向量(,,)n x y z =r , 则111100n A C n A B ⎧⋅=⎪⎨⋅=⎪⎩u u u u v v u u u u v v,即00⎧-+=⎪⎨-=⎪⎩,令y =z =n =r,所以2cos ,7||||m n m n m n ⋅〈〉===⋅u r r ur r , 设二面角111A AC B --的大小为θ,则sin 7θ==, 所以二面角111A AC B --的正弦值为7. (Ⅲ)由N 为棱11B C的中点,得,,222N ⎛⎝⎭, 设(,,0)M a b,则MN a b =--⎝⎭u u u u r , 由MN ⊥平面111A B C ,得111100MN A B MN A C ⎧⋅=⎪⎨⋅=⎪⎩u u u u v u u u u v u u u u v u u u u v ,即(0((0a a b ⎧⎫-⋅-=⎪⎪⎪⎪⎝⎭⎨⎫⎫⎪-⋅+-⋅=⎪⎪⎪⎪⎪⎝⎭⎝⎭⎩,解得a b ⎧=⎪⎪⎨⎪=⎪⎩,故M ⎫⎪⎝⎭,因此BM ⎫=⎪⎝⎭u u u u r , 所以线段BM的长为||BM =u u u u r .【点睛】本题主要考查直线与平面平行、直线与平面垂直、直线与平面所成的角等基础知识,考查学生的空间想象能力、运算能力和推理论证能力.26.(1)(1)0f =,(1)0f -=;(2)偶函数,证明见解析;(3)1{|}2x x ≤ 【解析】 试题分析:(1)利用赋值法:令1x y ==得()10f =,令1x y ==-,得()10f -=; (2)令1y =-,结合(1)的结论可得函数()f x 是偶函数;(3)结合函数的奇偶性和函数的单调性脱去f 符号,求解绝对值不等式12x x +≤-可得x 的取值范围是1{|}2x x ≤. 试题解析:(1)令1x y ==得()10f =,令1x y ==-,得()10f -=;(2)令1y =-,对x R ∈得()()()1f x f f x -=-+即()()f x f x -=,而()f x 不恒为0,()f x ∴是偶函数;(3)又()f x 是偶函数,()()f x fx ∴=,当0x >时,()f x 递增,由()()12f x f x +≤-,得()()12,12,f x f x x x x +≤-∴+≤-∴的取值范围是1{|}2x x ≤.。

2020-2021高中三年级数学下期末第一次模拟试题及答案(2)

2020-2021高中三年级数学下期末第一次模拟试题及答案(2)

2020-2021高中三年级数学下期末第一次模拟试题及答案(2)一、选择题1.123{3x x >>是12126{9x x x x +>>成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .即不充分也不必要条件2.()22xxe ef x x x --=+-的部分图象大致是( )A .B .C .D .3.若复数21iz =-,其中i 为虚数单位,则z = A .1+iB .1−iC .−1+iD .−1−i4.已知函数()()sin f x A x =+ωϕ()0,0A ω>>的图象与直线()0y a a A =<<的三个相邻交点的横坐标分别是2,4,8,则()f x 的单调递减区间是( )A .[]6,63k k ππ+,k Z ∈B .[]63,6k k ππ-,k Z ∈C .[]6,63k k +,k Z ∈D .[]63,6k k -,k Z ∈5.如图是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为1214,,A A A L ,下图是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图,那么算法流程图输出的结果是( )A .7B .8C .9D .106.一动圆的圆心在抛物线28y x =上,且动圆恒与直线20x +=相切,则此动圆必过定点( ) A .(4,0) B .(2,0) C .(0,2) D .(0,0) 7.设i 为虚数单位,则(x +i)6的展开式中含x 4的项为( )A .-15x 4B .15x 4C .-20i x 4D .20i x 48.如图,AB 是圆的直径,PA 垂直于圆所在的平面,C 是圆上一点(不同于A 、B )且PA =AC ,则二面角P -BC -A 的大小为( )A .60︒B .30°C .45︒D .15︒9.若θ是ABC ∆的一个内角,且1sin θcos θ8=-,则sin cos θθ-的值为( ) A .3-B .3 C .5-D .5 10.若实数满足约束条件,则的最大值是( )A .B .1C .10D .1211.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)[)20,40,40,60,60,80,[80,100].若低于60分的人数是15人,则该班的学生人数是( )A .45B .50C .55D .12.在△ABC 中,AB=2,AC=3,1AB BC ⋅=u u u r u u u r则BC=______ A .3B .7C.2D .23二、填空题13.在ABC V 中,60A =︒,1b =,面积为3,则sin sin sin a b cA B C++=++________.14.已知实数x ,y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是__________.15.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若3A π=,3a =,b=1,则c =_____________16.函数()23s 34f x in x cosx =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是__________. 17.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________. 18.ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,3c =,2C B =,则ABC V 的面积为______.19.在等腰梯形ABCD 中,已知AB DC P ,2,1,60,AB BC ABC ==∠=o 点E 和点F 分别在线段BC 和CD 上,且21,,36BE BC DF DC ==u u u r u u u r u u u r u u u r 则AE AF ⋅u u u r u u u r的值为 .20.已知四棱锥S ABCD -的三视图如图所示,若该四棱锥的各个顶点都在球O 的球面上,则球O 的表面积等于_________.三、解答题21.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.(1)求直方图的的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由; (3)估计居民月用水量的中位数.22.“微信运动”是手机APP 推出的多款健康运动软件中的一款,大学生M 的微信好友中有400位好友参与了“微信运动”.他随机抽取了40位参与“微信运动”的微信好友(女20人,男20人)在某天的走路步数,经统计,其中女性好友走路的步数情况可分为五个类别:A 、02000:步,(说明:“02000:”表示大于或等于0,小于2000,以下同理),B 、20005000:步,C 、50008000:步,D 、800010000:步,E 、1000012000:步,且A 、B 、C 三种类别的人数比例为1:4:3,将统计结果绘制如图所示的柱形图;男性好友走路的步数数据绘制如图所示的频率分布直方图.(Ⅰ)若以大学生M 抽取的微信好友在该天行走步数的频率分布,作为参与“微信运动”的所有微信好友每天走路步数的概率分布,试估计大学生M 的参与“微信运动”的400位微信好友中,每天走路步数在20008000:的人数;(Ⅱ)若在大学生M 该天抽取的步数在800010000:的微信好友中,按男女比例分层抽取6人进行身体状况调查,然后再从这6位微信好友中随机抽取2人进行采访,求其中至少有一位女性微信好友被采访的概率.23.如图:在ABC ∆中,10a =,4c =,5cos C =-.(1)求角A ;(2)设D 为AB 的中点,求中线CD 的长.24.若不等式2520ax x +->的解集是122x x ⎧⎫<<⎨⎬⎩⎭,求不等式22510ax x a -+->的解集.25.某公司培训员工某项技能,培训有如下两种方式: 方式一:周一到周五每天培训1小时,周日测试 方式二:周六一天培训4小时,周日测试公司有多个班组,每个班组60人,现任选两组(记为甲组、乙组)先培训;甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如表:第一周 第二周 第三周 第四周 甲组 20 25 10 5 乙组8162016()1用方式一与方式二进行培训,分别估计员工受训的平均时间(精确到0.1),并据此判断哪种培训方式效率更高?()2在甲乙两组中,从第三周培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率.26.某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2018年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示(1)由折线图可以看出,可用线性回归模型拟合月利润y (单位:百万元)与月份代码x 之间的关系,求y 关于x 的线性回归方程,并预测该公司2019年3月份的利润;(2)甲公司新研制了一款产品,需要采购一批新型材料,现有,A B 两种型号的新型材料可供选择,按规定每种新型材料最多可使用4个月,但新材料的不稳定性会导致材料损坏的年限不同,现对,A B 两种型号的新型材料对应的产品各100件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表: 使用寿命/材料类型1个月2个月3个月4个月总计如果你是甲公司的负责人,你会选择采购哪款新型材料? 参考数据:6196ii y==∑ 61371i i i x y ==∑参考公式:回归直线方程ˆˆˆybx a =+,其中()()()()1122211ˆ=n niii ii i nniii i x x y y x y nxyb x x xnx ====---=--∑∑∑∑【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 试题分析:因为123{3x x >>12126{9x x x x +>⇒>,所以充分性成立;1213{1x x ==满足12126{9x x x x +>>,但不满足123{3x x >>,必要性不成立,所以选A.考点:充要关系2.A解析:A 【解析】 【分析】根据函数的奇偶性,排除D ;根据函数解析式可知定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1,利用特殊值x=0.01和x=1.001代入即可排除错误选项. 【详解】由函数解析式()22x x e e f x x x --=+-,易知()22x xe ef x x x ---=+-=() f x - 所以函数()22x xe ef x x x --=+-为奇函数,排除D 选项根据解析式分母不为0可知,定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1,当x=0.01时,代入()f x 可得()0f x <,排除C 选项 当x=1.001时,代入()f x 可得()0f x >,排除B 选项 所以选A 【点睛】本题考查了根据函数解析式判断函数的图象,依据主要是奇偶性、单调性、特殊值等,注意图中坐标的位置及特殊直线,属于中档题.3.B解析:B 【解析】 试题分析:22(1i)1i,1i 1i (1i)(1i)z z +===+∴=---+,选B. 【考点】复数的运算,复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,一般考查复数运算与概念或复数的几何意义,也是考生必定得分的题目之一.4.D解析:D 【解析】 【详解】由题设可知该函数的最小正周期826T =-=,结合函数的图象可知单调递减区间是2448[6,6]()22k k k Z ++++∈,即[36,66]()k k k Z ++∈,等价于[]63,6k k -,应选答案D . 点睛:解答本题的关键是充分利用题设中的有效信息“函数()()sin f x A x ωϕ=+(0,0)A ω>>的图象与直线(0)y a a A =<<的三个相邻交点的横坐标分别是2,4,8”.结合图像很容易观察出最小正周期是826T =-=,进而数形结合写出函数的单调递减区间,从而使得问题获解.5.C解析:C 【解析】 【分析】根据流程图可知该算法表示统计14次考试成绩中大于等于90的人数,结合茎叶图可得答案. 【详解】根据流程图所示的顺序,可知该程序的作用是累计14次考试成绩超过90分的次数.根据茎叶图可得超过90分的次数为9. 故选:C .本题主要考查了循环结构,以及茎叶图的认识,解题的关键是弄清算法流程图的含义,属于基础题.6.B解析:B【解析】【分析】设圆和x轴相交于M点,根据圆的定义得到CA=CM=R,因为x=-2,是抛物线的准线,结合抛物线的定义得到M点为焦点.【详解】x+=相切的切点为A,与x轴交点为M,由抛物线的定圆心C在抛物线上,设与直线20x+=为抛物线的准线,故根据抛物线的定义得到该圆必义可知,CA=CM=R,直线202,0.过抛物线的焦点()故选B【点睛】这个题目考查了抛物线的定义的应用以及圆的定义的应用,一般和抛物线有关的小题,很多时可以应用结论来处理的;平时练习时应多注意抛物线的结论的总结和应用.尤其和焦半径联系的题目,一般都和定义有关,实现点点距和点线距的转化.7.A解析:A【解析】试题分析:二项式的展开式的通项为,令,则,故展开式中含的项为,故选A.【考点】二项展开式,复数的运算【名师点睛】本题考查二项式定理及复数的运算,复数的概念及运算也是高考的热点,几乎是每年必考的内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.二项式可以写为,则其通项为,则含的项为.8.C解析:C由条件得:PA⊥BC,AC⊥BC又PA∩AC=C,∴BC⊥平面P AC,∴∠PCA为二面角P-BC-A的平面角.在Rt△P AC中,由P A=AC得∠PCA=45°,故选C.点睛:二面角的寻找主要利用线面垂直,根据二面角定义得二面角的棱垂直于二面角的平面角所在平面.9.D解析:D【解析】∆的一个内角,,又试题分析:θ是ABC,所以有,故本题的正确选项为D.考点:三角函数诱导公式的运用.10.C解析:C【解析】【分析】本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大题,注重了基础知识、基本技能的考查.【详解】在平面直角坐标系内画出题中的不等式组表示的平面区域为以为顶点的三角形区域(包含边界),由图易得当目标函数经过平面区域的点时,取最大值.【点睛】解答此类问题,要求作图要准确,观察要仔细.往往由于由于作图欠准确而影响答案的准确程度,也有可能在解方程组的过程中出错.11.B【解析】根据频率分布直方可知成绩低于60分的有第一、二组数据,在频率分布直方图中,对应矩形的高分别为0.005,0.01,每组数据的组距为20, 则成绩低于60分的频率P=(0.005+0.010)×20=0.3. 又因为低于60分的人数是15人, 所以该班的学生人数是15÷0.3=50. 本题选择B 选项.12.A解析:A 【解析】 【分析】 【详解】2222149||||cos ()122BC AB BC AB BC B AB BC AC +-⋅=-⋅=-+-=-=u u u r u u u r Q|BC ∴故选:A 【点评】本题考查平面向量的数量积运算、余弦定理等知识.考查运算能力,考查数形结合思想、等价转化思想等数学思想方法.二、填空题13.【解析】【分析】由已知利用三角形面积公式可求c 进而利用余弦定理可求a 的值根据正弦定理即可计算求解【详解】面积为解得由余弦定理可得:所以故答案为:【点睛】本题主要考查了三角形面积公式余弦定理正弦定理在解析:3【解析】 【分析】由已知利用三角形面积公式可求c ,进而利用余弦定理可求a 的值,根据正弦定理即可计算求解. 【详解】60A =︒Q ,1b =11sin 1222bc A c ==⨯⨯⨯, 解得4c =,由余弦定理可得:2212cos116214132a b c bc A=+-=+-⨯⨯⨯=,所以13239sin sin sin sin3a b c aA B C A++===++故答案为:2393【点睛】本题主要考查了三角形面积公式,余弦定理,正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.14.6【解析】【分析】画出不等式组表示的可行域由可得平移直线结合图形可得最优解于是可得所求最小值【详解】画出不等式组表示的可行域如图中阴影部分所示由可得平移直线结合图形可得当直线经过可行域内的点A时直线解析:6【解析】【分析】画出不等式组表示的可行域,由32z x y=-可得322zy x=-,平移直线322zy x=-,结合图形可得最优解,于是可得所求最小值.【详解】画出不等式组表示的可行域,如图中阴影部分所示.由32z x y=-可得322zy x=-.平移直线322zy x=-,结合图形可得,当直线322zy x=-经过可行域内的点A时,直线在y轴上的截距最大,此时z取得最小值.由题意得A点坐标为(2,0),∴min326z=⨯=,即32z x y=-的最小值是6.故答案为6. 【点睛】求目标函数(0)z ax by ab =+≠的最值时,可将函数z ax by =+转化为直线的斜截式:a zy x b b =-+,通过求直线的纵截距z b 的最值间接求出z 的最值.解题时要注意:①当0b >时,截距z b 取最大值时,z 也取最大值;截距zb取最小值时,z 也取最小值;②当0b <时,截距z b 取最大值时,z 取最小值;截距zb取最小值时,z 取最大值. 15.2【解析】【分析】根据条件利用余弦定理可建立关于c 的方程即可解出c 【详解】由余弦定理得即解得或(舍去)故填2【点睛】本题主要考查了利用余弦定理求三角形的边属于中档题解析:2 【解析】 【分析】根据条件,利用余弦定理可建立关于c 的方程,即可解出c. 【详解】由余弦定理2222cos a b c bc A =+-得231c c =+-,即220c c --=,解得2c =或1c =-(舍去).故填2.【点睛】本题主要考查了利用余弦定理求三角形的边,属于中档题.16.1【解析】【详解】化简三角函数的解析式可得由可得当时函数取得最大值1解析:1 【解析】 【详解】化简三角函数的解析式,可得()22311cos cos 44f x x x x x =--=-++=2(cos 1x -+, 由[0,]2x π∈,可得cos [0,1]x ∈,当cos x =时,函数()f x 取得最大值1. 17.【解析】【详解】因为所以①因为所以②①②得即解得故本题正确答案为解析:12-【解析】 【详解】 因为,所以,①因为,所以,②①②得,即, 解得, 故本题正确答案为18.【解析】【分析】由已知利用正弦定理二倍角的正弦函数公式可求的值根据同角三角函数基本关系式可求的值利用二倍角公式可求的值根据两角和的正弦函数公式可求的值即可利用三角形的面积公式计算得解【详解】由正弦定 157【解析】 【分析】由已知利用正弦定理,二倍角的正弦函数公式可求cos B 的值,根据同角三角函数基本关系式可求sin B 的值,利用二倍角公式可求sin C ,cos C 的值,根据两角和的正弦函数公式可求sin A 的值,即可利用三角形的面积公式计算得解. 【详解】2b =Q ,3c =,2C B =,∴由正弦定理sin sin b c B C =,可得:23sin sin B C=,可得:233sin sin22sin cos B B B B==, ∴可得:3cos 4B =,可得:27sin 1cos B B =-=, ∴可得:37sin sin22sin cos C B B B ===,21cos cos22cos 18C B B ==-=,()7133757sin sin sin cos cos sin 484816A B C B C B C ∴=+=+=⨯+⨯=, 1157157sin 2322S bc A ∴==⨯⨯=. 157. 【点睛】本题主要考查了正弦定理,同角三角函数基本关系式,二倍角公式,两角和的正弦函数公式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.19.【解析】在等腰梯形ABCD 中由得所以考点:平面向量的数量积 解析:2918【解析】在等腰梯形ABCD 中,由AB DC P ,2,1,60,AB BC ABC ==∠=o得12AD BC ⋅=u u u r u u u r ,1AB AD ⋅=u u u r u u u r,12DC AB =u u u r u u u r ,所以()()AE AF AB BE AD DF ⋅=+⋅+u u u r u u u r u u u r u u u r u u u r u u u r22121111129131231218331818AB BC AD AB AB AD BC AD AB BC AB ⎛⎫⎛⎫=+⋅+=⋅+⋅++⋅=++-=⎪ ⎪⎝⎭⎝⎭u u ur u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .考点:平面向量的数量积.20.【解析】【分析】先还原几何体再从底面外心与侧面三角形的外心分别作相应面的垂线交于O 即为球心利用正弦定理求得外接圆的半径利用垂径定理求得球的半径即可求得表面积【详解】由该四棱锥的三视图知该四棱锥直观图 解析:1015π【解析】 【分析】先还原几何体,再从底面外心与侧面三角形SAB 的外心分别作相应面的垂线交于O ,即为球心,利用正弦定理求得外接圆的半径,利用垂径定理求得球的半径,即可求得表面积. 【详解】由该四棱锥的三视图知,该四棱锥直观图如图,因为平面SAB ⊥平面ABCD ,连接AC,BD 交于E ,过E 作面ABCD 的垂线与过三角形ABS 的外心作面ABS 的垂线交于O ,即为球心,连接AO 即为半径,令1r 为SAB ∆外接圆半径,在三角形SAB 中,SA=SB=3,AB=4,则cos 23SBA ∠=, ∴sin 5SBA ∠=,∴132sin 5r SBA ==∠,∴125r =,又OF=12AD =, 可得2221R r OF =+,计算得,28110112020R =+= , 所以210145S R ππ==. 故答案为101.5π 【点睛】本题考查了三视图还原几何体的问题,考查了四棱锥的外接球的问题,关键是找到球心,属于较难题.三、解答题21.(1) ; (2)36000;(3).【解析】 【分析】本题主要考查频率分布直方图、频率、频数的计算等基础知识,考查学生的分析问题、解决问题的能力. 第(Ⅰ)问,由高×组距=频率,计算每组的频率,根据所有频率之和为1,计算出a 的值;第(Ⅱ)问,利用高×组距=频率,先计算出每人月均用水量不低于3吨的频率,再利用频率×样本容量=频数,计算所求人数;第(Ⅲ)问,将前5组的频率之和与前4组的频率之和进行比较,得出2≤x<2.5,再估计月均用水量的中位数. 【详解】(Ⅰ)由频率分布直方图,可知:月均用水量在[0,0.5)的频率为0.08×0.5=0.04. 同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5)等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1–(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a+0.5×a , 解得a=0.30.(Ⅱ)由(Ⅰ)100位居民月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12. 由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300000×0.12=36000. (Ⅲ)设中位数为x 吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5, 而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5 所以2≤x<2.5.由0.50×(x –2)=0.5–0.48,解得x=2.04. 故可估计居民月均用水量的中位数为2.04吨. 【考点】 频率分布直方图 【名师点睛】本题主要考查频率分布直方图、频率、频数的计算公式等基础知识,考查学生的分析问题、解决问题的能力.在频率分布直方图中,第n 个小矩形的面积就是相应组的频率,所有小矩形的面积之和为1,这是解题的关键,也是识图的基础. 22.(Ⅰ)见解析(Ⅱ)35. 【解析】 【分析】(Ⅰ)所抽取的40人中,该天行走20008000~步的人数:男12人,女14人,由此能求出400位参与“微信运动”的微信好友中,每天行走20008000~步的人数. (Ⅱ)该天抽取的步数在800010000~的人数:男6人,女3人,共9人,再按男女比例分层抽取6人,则其中男4人,女2人,由此能求出其中至少有一位女性微信好友被采访的概率. 【详解】(Ⅰ)由题意,所抽取的40人中,该天行走20008000~步的人数:男12人,女14人, 所以400位参与“微信运动”的微信好友中,每天行走20008000~步的人数约为2640026040⨯=人; (Ⅱ)该天抽取的步数在800010000~的人数中,根据频率分布直方图可知,男生人数所占的频率为0.1520.3⨯=,所以男生的人数为为200.36⨯=人,根据柱状图可得,女生人数为3人,再按男女比例分层抽取6人,则其中男4人,女2人.再从这6位微信好友中随机抽取2人进行采访,基本事件总数2615n C ==种,至少1个女性的对立事件是选取中的两人都是男性,∴其中至少有一位女性微信好友被采访的概率:2426315C P C =-=. 【点睛】本题主要考查了频率分布直方图的应用,以及古典概型及其概率的求解,以及分层抽样等知识的综合应用,其中解答中认真审题,正确理解题意,合理运算求解是解答此类问题的关键,着重考查了运算与求解能力,属于基础题.23.(1)4A π=;(2【解析】 【分析】(1)通过cos C 求出sin C 的值,利用正弦定理求出sin A 即可得角A ;(2)根据()sin sin B A C =+求出sin B 的值,由正弦定理求出边b ,最后在ACD ∆中由余弦定理即可得结果. 【详解】 (1)∵cos C =,∴sin 5C ===. 由正弦定理sin sin a c A C=,即sin A =.得sin A =cos 05C =-<,∴C 为钝角,A 为锐角, 故4A π=.(2)∵()B A C π=-+,∴()sin sin sin cos cos sin B A C A C A C =+=+252510⎛⎫=⨯-+⨯= ⎪ ⎪⎝⎭. 由正弦定理得sin sin b a B A==得b = 在ACD ∆中由余弦定理得:2222cos CD AD AC AD AC A =+-⋅⋅242222=+-⨯=,∴CD =. 【点睛】本题主要考查了正弦定理和余弦定理在解三角形中的应用,考查三角函数知识的运用,属于中档题.24.132x x ⎧⎫-<<⎨⎬⎩⎭【解析】 【分析】由不等式的解集和方程的关系,可知12,2是方程520ax x +-=的两根,利用韦达定理求出a ,再代入不等式22510ax x a -+->,解一元二次不等式即可. 【详解】解:由已知条件可知0a <,且方程520ax x +-=的两根为12,2; 由根与系数的关系得55221a a⎧-=⎪⎪⎨⎪-=⎪⎩解得2a =-.所以原不等式化为2530x x +-<解得132x -<< 所以不等式解集为132x x ⎧⎫-<<⎨⎬⎩⎭【点睛】本题主要考查一元二次不等式的解法,还考查一元二次不等式解集与一元二次方程的关系以及利用韦达定理求值. 25.(1)方式一(2)35【解析】 【分析】(1)用总的受训时间除以60,得到平均受训时间.由此判断出方式一效率更高.(2)利用分层抽样的知识,计算得来自甲组2人,乙组4人.再利用列举法求得“从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率”. 【详解】解:(1)设甲乙两组员工受训的平均时间分别为1t 、2t ,则120525*********1060t ⨯+⨯+⨯+⨯==(小时)2841682012161610.960t ⨯+⨯+⨯+⨯=≈(小时)据此可估计用方式一与方式二培训,员工受训的平均时间分别为10小时和10.9小时,因1010.9<,据此可判断培训方式一比方式二效率更高;(2)从第三周培训后达标的员工中采用分层抽样的方法抽取6人, 则这6人中来自甲组的人数为:610230⨯=, 来自乙组的人数为:620430⨯=, 记来自甲组的2人为:a b 、;来自乙组的4人为:c d e f 、、、,则从这6人中随机抽取 2人的不同方法数有:()()()()(),,,,,,,,,a b a c a d a e a f ,()()()(),,,,,,,b c b d b e b f ,()()(),,,,,c d c e c f ,()()(),,,,,d e d f e f ,共15种,其中至少有1人来自甲组的有:()()()()(),,,,,,,,,a b a c a d a e a f ,()()()(),,,,,,,,b c b d b e b f共9种,故所求的概率93155P ==. 【点睛】本题主要考查平均数的计算,考查分层抽样,考查古典概型的计算方法,属于中档题.26.(1) ˆ29yx =+ , 31百万元;(2) B 型新材料. 【解析】 【分析】(1)根据所给的数据,做出变量,x y 的平均数,求出最小二乘法所需要的数据,可得线性回归方程的系数b ,再根据样本中心点一定在线性回归方程上,求出a 的值,写出线性回归方程;将11x =代入所求线性回归方程,求出对应的y 的值即可得结果; (2)求出A 型新材料对应产品的使用寿命的平均数与B 型新材料对应产品的使用寿命的平均数,比较其大小即可得结果. 【详解】(1)由折线图可知统计数据(),x y 共有6组,即(1,11),(2,13),(3,16),(4,15),(5,20),(6,21), 计算可得1234563.56x +++++==,611191666ii y ==⨯=∑ 所以()1221ˆni i i n i i x y nxybx n x ==-==-∑∑37163.516217.5-⋅⋅=,1ˆˆ62 3.59ˆay bx =-=-⨯=, 所以月度利润y 与月份代码x 之间的线性回归方程为ˆ29y x =+. 当11x =时,211931ˆy=⨯+=. 故预计甲公司2019年3月份的利润为31百万元.(2)A 型新材料对应产品的使用寿命的平均数为1 2.35x =,B 型新材料对应的产品的使用寿命的平均数为2 2.7x =,12x x <Q ∴,应该采购B 型新材料. 【点睛】本题主要考查线性回归方程的求解与应用,属于中档题.求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算,x y 的值;③计算回归系数ˆˆ,ab ;④写出回归直线方程为ˆˆˆybx a =+; 回归直线过样本点中心(),x y 是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.。

2020-2021高中三年级数学下期末一模试题(附答案)

2020-2021高中三年级数学下期末一模试题(附答案)

上单调递减,为奇函数
C.在
3 8
,
8
上单调递增,为偶函数
D.周期为
,图象关于点
3 8
,
0
对称
10.
x2
2 x
5
的展开式中
x4
的系数为
A.10
B.20
C.40
D.80
11.已知 a 为函数 f(x)=x3–12x 的极小值点,则 a=
A.–4
B.–2
C.4
D.2
12.已知长方体的长、宽、高分别是 3,4,5,且它的 8 个顶点都在同一球面上,则这个
2.A
解析:A 【解析】
【分析】
根据函数的奇偶性,排除 D;根据函数解析式可知定义域为 x x 1 ,所以 y 轴右侧虚线
部分为 x=1,利用特殊值 x=0.01 和 x=1.001 代入即可排除错误选项.
【详解】
由函数解析式
f
x
ex ex x2 x 2
,易知
f
x
ex x2
ex x
2
ρcos(θ- )=2.
26.随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现。某运营 公司为了了解某地区用户对其所提供的服务的满意度,随机调查了 40 个用户,得到用户的 满意度评分如下:
用户编号 评分
用户编号 评分
用户编号 评分
用户编号 评分
1
78
2
73
3
81
4
92
5
95
6
85
1 2
.已知
A 是抛
物线 y2 2 px( p 0) 的焦点, F 到抛物线的准线 l 的距离为 1 . 2

2020-2021深圳市高级中学小学三年级数学下期末模拟试题带答案

2020-2021深圳市高级中学小学三年级数学下期末模拟试题带答案

2020-2021深圳市高级中学小学三年级数学下期末模拟试题带答案一、选择题1.从3、4、5中选一个数字作分子,从6、7、8中选一个数字作分母,一共可以组成( )个分数。

A. 3B. 6C. 92.观察已知图形的相同点,想一想,“?”处应填()A. B. C. D.3.小红妈妈的生日是2月29日,她可能是哪一年出生的?()A. 1980年B. 1981年C. 1982年D. 1979年4.2016年全年总共有()天。

A. 360B. 365C. 3665.把一个长10米,宽8米,高6米的长方体分成两个相同的长方体,表面积之和最少增加()平方米。

A. 160B. 96C. 120D. 88 6.100千克玉米糖大概有1万颗,这样的10万颗玉米糖约有( )千克。

A. 1000B. 10000C. 100000D. 10 7.要使□67÷5商是两位数,□里可以填()。

A. 5~9B. 1~5C. 1~48.从地图中,可以看出邮局在书店的()面.A. 东北B. 西北C. 南面9.9.2-6=()A. 8.4B. 4.8C. 3.2D. 0.85 10.学校操场的占地面积大约为()。

A. 6400平方千米B. 6400公顷C. 6400平方米11.4.2-3.6=()A. 0.6B. 2C. 2.9D. 3.6二、填空题12.根据图片回答问题有________不同的搭配方法13.认一认,按要求写出时间。

过2分是________;过15分是________;过2时是________;过10时是________。

14.如果一个长方形苗圃的长增加5米,面积就增加35平方米;如果苗圃的宽减少5米,面积就减少45平方米。

那么苗圃原来面积是________平方米。

15.□1×25,要使积是三位数,□中最大能填________,要使积是四位数,最小能填________.16.下面是李明调查他们班同学最喜欢吃的水果情况。

2020-2021高中三年级数学下期末第一次模拟试卷带答案(14)

2020-2021高中三年级数学下期末第一次模拟试卷带答案(14)

2020-2021高中三年级数学下期末第一次模拟试卷带答案(14)一、选择题1.()22x xe ef x x x --=+-的部分图象大致是( )A .B .C .D .2.已知集合{}{}x -1<x 1Q=x 0x 2P =<<<,,那么P Q=⋃ A .(-1,2) B .(0,1)C .(-1,0)D .(1,2)3.()()31i 2i i --+=( )A .3i +B .3i --C .3i -+D .3i -4.设双曲线2222:1x y C a b-=(00a b >>,)的左、右焦点分别为12F F ,,过1F 的直线分别交双曲线左右两支于点M N ,,连结22MF NF ,,若220MF NF ⋅=u u u u v u u u u v,22MF NF =u u u u v u u u u v ,则双曲线C 的离心率为( ). A 2B 3C 5D 65.某单位有职工100人,不到35岁的有45人,35岁到49岁的有25人,剩下的为50岁以上(包括50岁)的人,用分层抽样的方法从中抽取20人,各年龄段分别抽取的人数为( ) A .7,5,8B .9,5,6C .7,5,9D .8,5,76.已知向量)3,1a =r,b r 是不平行于x 轴的单位向量,且3a b ⋅=r r b =r( )A .312⎫⎪⎪⎝⎭B .13,22⎛⎫ ⎪ ⎪⎝⎭C .133,44⎛⎫⎪ ⎪⎝⎭D .()1,07.设,a b R ∈,“0a =”是“复数a bi +是纯虚数”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.函数()()sin 22f x x πϕϕ⎛⎫=+<⎪⎝⎭的图象向右平移6π个单位后关于原点对称,则函数()f x 在,02π⎡⎤-⎢⎥⎣⎦上的最大值为()A. B.2C .12D .12-9.已知非零向量AB u u u v 与AC u u uv 满足0AB AC BC AB AC ⎛⎫⎪+⋅= ⎪⎝⎭u u u v u u u v u u uv u u u v u u u v 且12AB AC AB AC ⋅=u u u v u u u v u u u v u u u v ,则ABC V 的形状是( ) A .三边均不相等的三角形 B .等腰直角三角形 C .等边三角形D .以上均有可能10.已知复数z 满足()12i z +=,则复数z 的虚部为( ) A .1B .1-C .iD .i -11.设集合{1,2,3,4,5,6}U =,{1,2,4}A =,{2,3,4}B =,则()C U A B ⋃等于( ) A .{5,6}B .{3,5,6}C .{1,3,5,6}D .{1,2,3,4}12.设,a b ∈R ,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则( )A .当101,102b a => B .当101,104b a => C .当102,10b a =-> D .当104,10b a =->二、填空题13.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________ 件. 14.事件,,A B C 为独立事件,若()()()111,,688P A B P B C P A B C ⋅=⋅=⋅⋅=,则()P B =_____.15.已知实数x ,y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是__________.16.如图所示,平面BCC 1B 1⊥平面ABC ,∠ABC =120︒,四边形BCC 1B 1为正方形,且AB =BC =2,则异面直线BC 1与AC 所成角的余弦值为_____.17.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________. 18.已知正三棱锥P ABC -的底面边长为3,外接球的表面积为16π,则正三棱锥P ABC -的体积为________.19.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.20.如图,圆C (圆心为C )的一条弦AB 的长为2,则AB AC ⋅u u u r u u u r=______.三、解答题21.已知平面直角坐标系xoy .以O 为极点,x 轴的非负半轴为极轴建立极坐标系,P 点的极坐标为23,6π⎛⎫⎪⎝⎭,曲线C 的极坐标方程为223sin 1ρρθ+= (1)写出点P 的直角坐标及曲线C 的普通方程;(2)若Q 为C 上的动点,求PQ 中点M 到直线32:2x tl y t=+⎧⎨=-+⎩(t 为参数)距离的最小值.22.已知()11f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若()0,1x ∈时不等式()f x x >成立,求a 的取值范围.23.已知椭圆C 的中心在坐标原点,焦点在x 轴上,它的一个顶点恰好是抛物线214y x =25. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)过椭圆C 的右焦点F 作直线l 交椭圆C 于A 、B 两点,交y 轴于M 点,若1MA AF λ=u u u r u u u r ,2MB BF λ=u u u r u u u r,求12λλ+的值.24.十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民收入也逐年增加.为了更好的制定2019年关于加快提升农民年收入力争早日脱贫的工作计划,该地扶贫办统计了2018年50位农民的年收入并制成如下频率分布直方图:附:参考数据与公式 6.92 2.63≈,若 ()2~,X Nμσ,则①()0.6827P X μσμσ-<+=„;② (22)0.9545P X μσμσ-<+=„;③ (33)0.9973P X μσμσ-<+=„.(1)根据频率分布直方图估计50位农民的年平均收入x (单位:千元)(同一组数据用该组数据区间的中点值表示);(2)由频率分布直方图可以认为该贫困地区农民年收入 X 服从正态分布 ()2,N μσ,其中μ近似为年平均收入2,x σ 近似为样本方差2s ,经计算得:2 6.92s =,利用该正态分布,求:(i )在2019年脱贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?(ii )为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了1000位农民.若每个农民的年收入相互独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?25.在直角坐标平面内,以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A ,B 的极坐标分别为()π42,,5π224⎛⎫ ⎪⎝⎭,,曲线C 的方程为r ρ=(0r >).(1)求直线AB 的直角坐标方程;(2)若直线AB 和曲线C 有且只有一个公共点,求r 的值.26.如图所示,已知正方体1111ABCD A B C D -中,E F ,分别为11D C ,11C B 的中点,AC BD P =I ,11A C EF Q =I .求证:(1)D B F E ,,,四点共面;(2)若1A C 交平面DBEF 于R 点,则P Q R ,,三点共线.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据函数的奇偶性,排除D ;根据函数解析式可知定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1,利用特殊值x=0.01和x=1.001代入即可排除错误选项. 【详解】由函数解析式()22x x e e f x x x --=+-,易知()22x xe ef x x x ---=+-=() f x - 所以函数()22x xe ef x x x --=+-为奇函数,排除D 选项根据解析式分母不为0可知,定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1, 当x=0.01时,代入()f x 可得()0f x <,排除C 选项 当x=1.001时,代入()f x 可得()0f x >,排除B 选项 所以选A 【点睛】本题考查了根据函数解析式判断函数的图象,依据主要是奇偶性、单调性、特殊值等,注意图中坐标的位置及特殊直线,属于中档题.2.A解析:A利用数轴,取,P Q 所有元素,得P Q =U (1,2)-.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.3.B解析:B 【解析】 【分析】先分别对分子和分母用乘法公式化简,再分子分母同时乘以分母的共轭复数,化简即得最后结果. 【详解】 由题意得,复数()()()31i 2i 13i i 13i 3i i ii i--+-+⋅-+===----⋅.故应选B【点睛】本小题主要考查复数的乘法和除法的运算,乘法的运算和实数的运算类似,只需要记住2i 1=-.除法的运算记住的是分子分母同时乘以分母的共轭复数,这一个步骤称为分母实数化,分母实数化的主要目的是将分母变为实数,然后将复数的实部和虚部求出来.属于基础题.4.B解析:B 【解析】 【分析】本道题设2MF x =,利用双曲线性质,计算x ,结合余弦定理,计算离心率,即可. 【详解】结合题意可知,设22,,,MF x NF x MN ===则则结合双曲线的性质可得,21122,2MF MF a MF MN NF a -=+-=代入,解得x =,所以122,NF a NF =+=,01245FNF ∠= 对三角形12F NF 运用余弦定理,得到()()()()()22202222cos45a c a ++-=+⋅,解得ce a== 故选B. 【点睛】本道题考查了双曲线的性质,考查了余弦定理,关键利用余弦定理,解三角形,进而计算x ,即可,难度偏难.5.B解析:B 【解析】分层抽样按比例分配,即可求出各年龄段分别抽取的人数. 【详解】由于样本容量与总体中的个体数的比值为2011005=,故各年龄段抽取的人数依次为14595⨯=,12555⨯=,20956--=.故选:B【点睛】本题考查分层抽样方法,关键要理解分层抽样的原则,属于基础题.6.B解析:B 【解析】 【分析】设()(),0b x y y =≠r,根据题意列出关于x 、y 的方程组,求出这两个未知数的值,即可得出向量b r的坐标.【详解】设(),b x y =r ,其中0y ≠,则a y b ⋅=+=r r由题意得2210x y y y ⎧+=+=≠⎪⎩,解得122x y ⎧=⎪⎪⎨⎪=⎪⎩,即1,22b ⎛= ⎝⎭r . 故选:B. 【点睛】本题考查向量坐标的求解,根据向量数量积和模建立方程组是解题的关键,考查方程思想的应用以及运算求解能力,属于基础题.7.B解析:B 【解析】 【分析】 【详解】当a=0时,如果b=0,此时0a bi +=是实数,不是纯虚数,因此不是充分条件;而如果a bi +已经是纯虚数,由定义实部为零,虚部不为零可以得到a=0,因此是必要条件,故选B【考点定位】本小题主要考查的是充分必要条件,但问题中又涉及到了复数问题,复数部分本题所考查的是纯虚数的定义8.B解析:B【分析】由条件根据函数()sin y A ωx φ=+的图象变换规律,正弦函数的图象的对称性可得3πφk π-+=,k z ∈,由此根据||2ϕπ<求得ϕ的值,得到函数解析式即可求最值. 【详解】函数()()sin 22f x x πϕϕ⎛⎫=+< ⎪⎝⎭的图象向右平移6π个单位后, 得到函数sin 2sin 263ππy x φx φ⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象, 再根据所得图象关于原点对称,可得3πφk π-+=,k z ∈, ∵||2ϕπ<,∴3πϕ=,()sin 23πf x x ⎛⎫=- ⎪⎝⎭,由题意,02x ⎡⎤∈-⎢⎥⎣⎦π,得42,333πππx ⎡⎤-∈--⎢⎥⎣⎦,∴23πsin x ⎡⎛⎫-∈-⎢ ⎪⎝⎭⎣⎦,∴函数()sin 23πf x x ⎛⎫=- ⎪⎝⎭在区间,02π⎡⎤-⎢⎥⎣⎦故选B . 【点睛】本题主要考查函数()sin y A ωx φ=+的图象变换规律,正弦函数的图象的对称性,考查了正弦函数最值的求法,解题的关键是熟练掌握正弦函数的性质,能根据正弦函数的性质求最值,属于基础题.9.C解析:C 【解析】 【分析】AB AB u u u v u u u v 和AC AC u u u vu u uv 分别表示向量AB u u u v 和向量AC u u u v 方向上的单位向量,0AB AC BC AB AC ⎛⎫⎪+⋅=⎪⎝⎭u u u v u u u v u u uv u u u v u u u v 表示A ∠平分线所在的直线与BC 垂直,可知ABC V 为等腰三角形,再由12AB AC AB AC ⋅=u u u v u u u v u u uv u u u v 可求出A ∠,即得三角形形状。

2020-2021深圳市深南中学高中三年级数学下期末模拟试题(带答案)

2020-2021深圳市深南中学高中三年级数学下期末模拟试题(带答案)

2020-2021深圳市深南中学高中三年级数学下期末模拟试题(带答案)一、选择题1.(1+2x 2 )(1+x )4的展开式中x 3的系数为 A .12B .16C .20D .242.甲、乙、丙三人到三个不同的景点旅游,每人只去一个景点,设事件A 为“三个人去的景点各不相同”,事件B 为“甲独自去一个景点,乙、丙去剩下的景点”,则(A |B)P 等于( ) A .49B .29C .12D .133.设双曲线2222:1x y C a b-=(00a b >>,)的左、右焦点分别为12F F ,,过1F 的直线分别交双曲线左右两支于点M N ,,连结22MF NF ,,若220MF NF ⋅=u u u u v u u u u v,22MF NF =u u u u v u u u u v ,则双曲线C 的离心率为( ). A .2B .3C .5D .64.ABC ∆的内角A B C 、、的对边分别是a b c 、、,若2B A =,1a =,3b =,则c =( )A .23B .2C .2D .15.设i 为虚数单位,复数z 满足21ii z=-,则复数z 的共轭复数等于( ) A .1-i B .-1-i C .1+i D .-1+i 6.若,,a b R i ∈为虚数单位,且()a i i b i +=+,则A .1,1a b ==B .1,1a b =-=C .1,1a b ==-D .1,1a b =-=-7.甲、乙、丙,丁四位同学一起去问老师询问成语竞赛的成绩。

老师说:你们四人中有两位优秀,两位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩,根据以上信息,则( ) A .乙、丁可以知道自己的成绩 B .乙可以知道四人的成绩 C .乙、丁可以知道对方的成绩 D .丁可以知道四人的成绩8.已知复数 ,则复数在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限9.如图是一个正方体的平面展开图,则在正方体中直线AB 与CD 的位置关系为( )A .相交B .平行C .异面而且垂直D .异面但不垂直10.如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为A .72B .64C .48D .32 11.若实数满足约束条件,则的最大值是( )A .B .1C .10D .1212.已知抛物线22(0)y px p =>交双曲线22221(0,0)x y a b a b-=>>的渐近线于A ,B 两点(异于坐标原点O 5AOB ∆的面积为32,则抛物线的焦点为( ) A .(2,0)B .(4,0)C .(6,0)D .(8,0)二、填空题13.若不等式|3|4x b -<的解集中的整数有且仅有1,2,3,则b 的取值范围是 14.事件,,A B C 为独立事件,若()()()111,,688P A B P B C P A B C ⋅=⋅=⋅⋅=,则()P B =_____.15.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.16.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_____________. 17.若45100a b ==,则122()a b+=_____________. 18.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若cos 1cos2cos 1cos2b C Cc B B+=+,C是锐角,且27a =,1cos 3A =,则ABC △的面积为______. 19.在体积为9的斜三棱柱ABC —A 1B 1C 1中,S 是C 1C 上的一点,S —ABC 的体积为2,则三棱锥S —A 1B 1C 1的体积为___.20.设函数21()ln 2f x x ax bx =--,若1x =是()f x 的极大值点,则a 取值范围为_______________.三、解答题21.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.(1)求直方图的的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由; (3)估计居民月用水量的中位数.22.已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-2ρcos(θ-)=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程. (2)求经过两圆交点的直线的极坐标方程.23.已知A 为圆22:1C x y +=上一点,过点A 作y 轴的垂线交y 轴于点B ,点P 满足2.BP BA =u u u v u u u v(1)求动点P 的轨迹方程;(2)设Q 为直线:3l x =上一点,O 为坐标原点,且OP OQ ⊥,求POQ ∆面积的最小值.24.某公司培训员工某项技能,培训有如下两种方式: 方式一:周一到周五每天培训1小时,周日测试 方式二:周六一天培训4小时,周日测试公司有多个班组,每个班组60人,现任选两组(记为甲组、乙组)先培训;甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如表:第一周 第二周 第三周 第四周 甲组 20 25 10 5 乙组8162016()1用方式一与方式二进行培训,分别估计员工受训的平均时间(精确到0.1),并据此判断哪种培训方式效率更高?()2在甲乙两组中,从第三周培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率.25.如图,边长为2的正方形ABCD 中,E 、F 分别是AB 、BC 边的中点,将AED V ,DCF V 分别沿DE ,DF 折起,使得A ,C 两点重合于点M .(1) 求证:MD EF ⊥; (2) 求三棱锥M EFD -的体积.26.如图,四棱锥P ABCD -中,//AB DC ,2ADC π∠=,122AB AD CD ===,6PD PB ==,PD BC ⊥.(1)求证:平面PBD ⊥平面PBC ;(2)在线段PC 上是否存在点M ,使得平面ABM 与平面PBD 所成锐二面角为3π?若存在,求CMCP的值;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【解析】 【分析】本题利用二项展开式通项公式求展开式指定项的系数. 【详解】由题意得x 3的系数为314424812C C +=+=,故选A .【点睛】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数.2.C解析:C 【解析】 【分析】这是求甲独自去一个景点的前提下,三个人去的景点不同的概率,求出相应的基本事件的个数,即可得出结果. 【详解】甲独自去一个景点,则有3个景点可选,乙、丙只能在剩下的两个景点选择,根据分步乘法计数原理可得,对应的基本事件有32212⨯⨯=种;另外,三个人去不同景点对应的基本事件有3216⨯⨯=种,所以61(/)122P A B ==,故选C. 【点睛】本题主要考查条件概率,确定相应的基本事件个数是解决本题的关键.3.B解析:B 【解析】 【分析】本道题设2MF x =,利用双曲线性质,计算x ,结合余弦定理,计算离心率,即可. 【详解】结合题意可知,设22,,,MF x NF x MN ===则则结合双曲线的性质可得,21122,2MF MF a MF MN NF a -=+-=代入,解得x =,所以122,NF a NF =+=,01245F NF ∠= 对三角形12F NF 运用余弦定理,得到()()()()()22202222cos45a c a ++-=+⋅,解得ce a== 故选B. 【点睛】本道题考查了双曲线的性质,考查了余弦定理,关键利用余弦定理,解三角形,进而计算x ,即可,难度偏难.4.B解析:B 【解析】1,sin sin sin 22sin cos A B A A A ===cos 2A =,所以22212c c =+-2320,c c -+=求得1c =或 2.c = 若1c =,则三角形为等腰三角形,030,60A C B ===不满足内角和定理,排除. 【考点定位】本题考查正弦定理和余弦定理的应用,考查运算能力和分类讨论思想.当求出cos A =0030,60A B ==,便于三角形的初步定型,也为排除1c =提供了依据.如果选择支中同时给出了1或2,会增大出错率.5.B解析:B 【解析】 【分析】利用复数的运算法则解得1i z =-+,结合共轭复数的概念即可得结果. 【详解】 ∵复数z 满足21ii z =-,∴()()()2121111i i i z i i i i +===---+, ∴复数z 的共轭复数等于1i --,故选B. 【点睛】本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.6.C解析:C 【解析】 【分析】利用复数乘法的运算法则化简原式,利用复数相等的性质可得结果. 【详解】因为()a i i b i +=+, 即1ai b i -+=+,因为,,a b R i ∈为虚数单位,所以1,1a b ==-, 故选C. 【点睛】本题主要考查复数的乘法运算以及复数相等的性质,属于基础题.7.A解析:A【解析】【分析】根据甲的所说的话,可知乙、丙的成绩中一位优秀、一位良好,再结合简单的合情推理逐一分析可得出结果.【详解】因为甲、乙、丙、丁四位同学中有两位优秀、两位良好,又甲看了乙、丙的成绩且还不知道自己的成立,即可推出乙、丙的成绩中一位优秀、一位良好,又乙看了丙的成绩,则乙由丙的成绩可以推出自己的成绩,又甲、丁的成绩中一位优秀、一位良好,则丁由甲的成绩可以推出自己的成绩.因此,乙、丁知道自己的成绩,故选:A.【点睛】本题考查简单的合情推理,解题时要根据已知的情况逐一分析,必要时可采用分类讨论的思想进行推理,考查逻辑推理能力,属于中等题.8.A解析:A【解析】在复平面内对应的点坐标为在第一象限,故选A.9.D解析:D【解析】解:利用展开图可知,线段AB与CD是正方体中的相邻两个面的面对角线,仅仅异面,所成的角为600,因此选D10.B解析:B【解析】【分析】由三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,利用体积公式,即可求解。

2020-2021深圳市南山二外小学三年级数学下期末第一次模拟试卷(含答案)

2020-2021深圳市南山二外小学三年级数学下期末第一次模拟试卷(含答案)

2020-2021深圳市南山二外小学三年级数学下期末第一次模拟试卷(含答案)一、选择题1.袋中有 3 个红球,4 个黄球和5 个白球,小明从中任意拿出6个球,那么他拿出求的颜色搭配情况一共有()种可能.A. 16B. 17C. 18D. 19E. 202.根据如图所给图形的规律,问号处应填什么图形?()A. B. C. D.3.今天是星期二,因为下雨了,所以运动会推迟3天再开,运动会()开。

A. 星期三B. 星期四C. 星期五4.爸爸打算乘9:25的飞机出差。

机场规定,旅客必须提前半小时登机,爸爸最少要在()到达登机口。

A. 9:10B. 9:05C. 9:00D. 8:55 5.有三块铁皮,面积分别是9平方分米、90平方分米和900平方分米。

()块铁皮的面积最接近1平方米。

A. 9平方分米B. 90平方分米C. 900平方分米6.从一张长10米,宽8米的长方形纸上剪一个最大的正方形,剩下图形的面积是()A. 80平方米 B. 64平方米 C. 16平方米7.要使□2×23的积是三位数,□最大填()。

A. 5B. 4C. 38.要使□67÷5商是两位数,□里可以填()。

A. 5~9B. 1~5C. 1~49.屈谱买一支钢笔用去5.8元,买一支自动铅笔用去1.5元,一共花了()元,她给售货员10元,应找回()元.A. 7.3 1.7B. 7.3 2.7C. 6.3 2.7D. 6.3 1.7 10.5-2.7=( )A. 4.3B. 1.3C. 2.3D. 3.311.人民医院在第一实小的西北面,那么第一实小在人民医院的()面.A. 西南B. 东南C. 东北二、填空题12.图形推理;答案为________ .13.一列火车从上午6时到上午10时共行驶了800千米.这列火车每小时行________千米.9月1日前一天是________月________日.14.15平方分米 =________平方厘米 400平方分米=________平方米15.可可看一本漫画书,平均每天看20页,他18天可以看________页.16.每根短跳绳5元,每根长跳绳8元。

2020-2021深圳外国语学校高中三年级数学下期末试题带答案

2020-2021深圳外国语学校高中三年级数学下期末试题带答案

2020-2021深圳外国语学校高中三年级数学下期末试题带答案一、选择题1.设1i 2i 1i z -=++,则||z =A .0B .12C .1 D2.设01p <<,随机变量ξ的分布列如图,则当p 在()0,1内增大时,( )A .()D ξ减小B .()D ξ增大C .()D ξ先减小后增大 D .()D ξ先增大后减小3.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是A .13B .12 C .23 D .56 4.已知非零向量a b r r ,满足2a b r r =,且b a b ⊥r r r (–),则a r 与b r 的夹角为 A .π6 B .π3 C .2π3 D .5π65.ABC ∆的内角A B C 、、的对边分别是a b c 、、,若2B A =,1a =,b =c =( )A .B .2CD .16.设i 为虚数单位,复数z 满足21i i z =-,则复数z 的共轭复数等于( ) A .1-i B .-1-i C .1+i D .-1+i7.函数()f x =的图象关于( ) A .x 轴对称B .原点对称C .y 轴对称D .直线y x =对称 8.已知π,4αβ+=则(1tan )(1tan )αβ++的值是( ) A .-1B .1C .2D .4 9.设,a b R ∈,“0a =”是“复数a bi +是纯虚数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 10.函数()()sin 22f x x πϕϕ⎛⎫=+<⎪⎝⎭的图象向右平移6π个单位后关于原点对称,则函数()f x 在,02π⎡⎤-⎢⎥⎣⎦上的最大值为() A. B.2 C .12 D .12- 11.某校现有高一学生210人,高二学生270人,高三学生300人,用分层抽样的方法从这三个年级的学生中随机抽取n 名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数为( )A .7B .8C .9D .1012.设,a b ∈R ,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则( )A .当101,102b a =>B .当101,104b a => C .当102,10b a =-> D .当104,10b a =->二、填空题13.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______.14.已知实数x ,y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是__________.15.已知函数()sin ([0,])f x x x π=∈和函数1()tan 2g x x =的图象交于,,A B C 三点,则ABC ∆的面积为__________.16.若9()ax x-的展开式中3x 的系数是84-,则a = . 17.高三某班一学习小组的,,,A B C D 四位同学周五下午参加学校的课外活动,在课外活动中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在散步,①A 不在散步,也不在打篮球;②B 不在跳舞,也不在散步;③“C 在散步”是“A 在跳舞”的充分条件;④D 不在打篮球,也不在散步;⑤C 不在跳舞,也不在打篮球.以上命题都是真命题,那么D 在_________.18.已知正三棱锥P ABC -的底面边长为3,外接球的表面积为16π,则正三棱锥P ABC -的体积为________.19.已知1OA =u u u r,OB =u u u r 0OA OB •=u u u r u u u r ,点C 在AOB ∠内,且AOC 30∠=o ,设OC mOA nOB =+u u u r u u u r u u u r ,(,)m n R ∈,则m n =__________. 20.34331654+log log 8145-⎛⎫+= ⎪⎝⎭________. 三、解答题21.如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=o ,求二面角A −PB −C 的余弦值. 22.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.(1)求直方图的的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(3)估计居民月用水量的中位数.23.已知a ,b ,c 分别为ABC ∆三个内角A ,B ,C 的对边,3c asinC ccosA =-. (Ⅰ)求A ;(Ⅱ)若a =2,ABC ∆3,求b ,c .24.已知菱形ABCD 的顶点A ,C 在椭圆2234x y +=上,对角线BD 所在直线的斜率为1.(1)当直线BD 过点(0,1)时,求直线AC 的方程.(2)当60ABC ∠=︒时,求菱形ABCD 面积的最大值.25.如图在三棱锥-P ABC 中, ,,D E F 分别为棱,,PC AC AB 的中点,已知,6,8,5PA AC PA BC DF ⊥===.求证:(1)直线//PA 平面DEF ;(2)平面BDE ⊥平面ABC .26.如图所示,已知正方体1111ABCD A B C D -中,E F ,分别为11D C ,11C B 的中点,AC BD P =I ,11A C EF Q =I .求证:(1)D B F E ,,,四点共面;(2)若1A C 交平面DBEF 于R 点,则P Q R ,,三点共线.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数z ,然后求解复数的模. 详解:()()()()1i 1i 1i 2i 2i 1i 1i 1i z ---=+=++-+i 2i i =-+=, 则1z =,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.D解析:D【解析】【分析】先求数学期望,再求方差,最后根据方差函数确定单调性.【详解】111()0122222p p E p ξ-=⨯+⨯+⨯=+Q , 2222111111()(0)(1)(2)2222224p p D p p p p p ξ-∴=--+--+--=-++, 1(0,1)2∈Q ,∴()D ξ先增后减,因此选D. 【点睛】222111(),()(())().n n ni i i i i i i i i E x p D x E p x p E ξξξξ=====-=-∑∑∑ 3.C解析:C【解析】试题分析:将4种颜色的花种任选2种种在一个花坛中,余下2种种在另一个花坛中,有6种种法,其中红色和紫色的花不在同一个花坛的种数有4种,故所求概率为23,选C. 【考点】古典概型【名师点睛】作为客观题形式出现的古典概型试题,一般难度不大,解答中的常见错误是在用列举法计数时出现重复或遗漏,避免此类错误发生的有效方法是按照一定的标准进行列举. 4.B解析:B【解析】【分析】本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由()a b b -⊥r r r 得出向量,a b r r 的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.【详解】因为()a b b -⊥r r r ,所以2()a b b a b b -⋅=⋅-r r r r r r =0,所以2a b b ⋅=r r r ,所以cos θ=22||122||a b b b a b ⋅==⋅r r r r r r ,所以a r 与b r 的夹角为3π,故选B . 【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.5.B解析:B【解析】1,sin sin sin 22sin cos A B A A A ===cos 2A =,所以22212c c =+-2320,c c -+=求得1c =或 2.c = 若1c =,则三角形为等腰三角形,0030,60A C B ===不满足内角和定理,排除.【考点定位】本题考查正弦定理和余弦定理的应用,考查运算能力和分类讨论思想.当求出cos A =0030,60A B ==,便于三角形的初步定型,也为排除1c =提供了依据.如果选择支中同时给出了1或2,会增大出错率.6.B解析:B【解析】【分析】利用复数的运算法则解得1i z =-+,结合共轭复数的概念即可得结果.【详解】∵复数z 满足21i i z =-,∴()()()2121111i i i z i i i i +===---+, ∴复数z 的共轭复数等于1i --,故选B.【点睛】本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.7.C解析:C【解析】【分析】求函数的定义域,判断函数的奇偶性即可.【详解】解:()f x x=Q 0x ∴≠解得0x ≠()f x ∴的定义域为()(),00,D =-∞+∞U ,D 关于原点对称.任取x D ∈,都有()()f x f x -===, ()f x ∴是偶函数,其图象关于y 轴对称,故选:C .【点睛】本题主要考查函数图象的判断,根据函数的奇偶性的定义判断函数的奇偶性是解决本题的关键.8.C解析:C【解析】【分析】由4παβ+=,得到1tanαβ+=(),利用两角和的正切函数公式化简1tan αβ+=(),即可得到所求式子的值.【详解】由由4παβ+=,得到1tan αβ+=(), 所以11tan tan tan tan tan αβαβαβ++==-() ,即1tan tan tan tan αβαβ+=-, 则1112tan tan tan tan tan tan αβαβαβ++=+++=()() . 故选C .【点睛】本题考查学生灵活运用两角和与差的正切函数公式及特殊角的三角函数值化简求值,是一道基础题.9.B解析:B【解析】【分析】【详解】当a=0时,如果b=0,此时0a bi +=是实数,不是纯虚数,因此不是充分条件;而如果a bi +已经是纯虚数,由定义实部为零,虚部不为零可以得到a=0,因此是必要条件,故选B【考点定位】本小题主要考查的是充分必要条件,但问题中又涉及到了复数问题,复数部分本题所考查的是纯虚数的定义10.B解析:B【解析】【分析】由条件根据函数()sin y A ωx φ=+的图象变换规律,正弦函数的图象的对称性可得3πφk π-+=,k z ∈,由此根据||2ϕπ<求得ϕ的值,得到函数解析式即可求最值. 【详解】函数()()sin 22f x x πϕϕ⎛⎫=+<⎪⎝⎭的图象向右平移6π个单位后, 得到函数sin 2sin 263ππy x φx φ⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象, 再根据所得图象关于原点对称,可得3πφk π-+=,k z ∈, ∵||2ϕπ<,∴3πϕ=,()sin 23πf x x ⎛⎫=- ⎪⎝⎭, 由题意,02x ⎡⎤∈-⎢⎥⎣⎦π,得42,333πππx ⎡⎤-∈--⎢⎥⎣⎦,∴23πsin x ⎡⎛⎫-∈-⎢ ⎪⎝⎭⎣⎦,∴函数()sin 23πf x x ⎛⎫=-⎪⎝⎭在区间,02π⎡⎤-⎢⎥⎣⎦ 故选B .【点睛】本题主要考查函数()sin y A ωx φ=+的图象变换规律,正弦函数的图象的对称性,考查了正弦函数最值的求法,解题的关键是熟练掌握正弦函数的性质,能根据正弦函数的性质求最值,属于基础题. 11.D解析:D【解析】试题分析:因为210:270:3007:9:10,=所以从高二年级应抽取9人,从高三年级应抽取10人.考点:本小题主要考查分层抽样的应用.点评:应用分层抽样,关键是搞清楚比例关系,然后按比例抽取即可.12.A解析:A【解析】【分析】对于B ,令214x λ-+=0,得λ12=,取112a =,得到当b 14=时,a 10<10;对于C ,令x 2﹣λ﹣2=0,得λ=2或λ=﹣1,取a 1=2,得到当b =﹣2时,a 10<10;对于D ,令x 2﹣λ﹣4=0,得λ=1a =,得到当b =﹣4时,a 10<10;对于A ,221122a a =+≥,223113()224a a =++≥,4224319117()14216216a a a =+++≥+=>,当n ≥4时,1n n a a +=a n 12na +>11322+=,由此推导出104a a >(32)6,从而a 1072964>>10. 【详解】 对于B ,令214x λ-+=0,得λ12=, 取112a =,∴2111022n a a ==L ,,<, ∴当b 14=时,a 10<10,故B 错误; 对于C ,令x 2﹣λ﹣2=0,得λ=2或λ=﹣1,取a 1=2,∴a 2=2,…,a n =2<10,∴当b =﹣2时,a 10<10,故C 错误;对于D ,令x 2﹣λ﹣4=0,得λ=取1a =,∴2a =,…,n a =10, ∴当b =﹣4时,a 10<10,故D 错误;对于A ,221122a a =+≥,223113()224a a =++≥, 4224319117()14216216a a a =+++≥+=>, a n +1﹣a n >0,{a n }递增,当n ≥4时,1n n a a +=a n 12na +>11322+=,∴5445109323232aaaaaa⎧⎪⎪⎪⎪⎪⎪⋅⎨⎪⋅⎪⋅⎪⎪⎪⎪⎩>>>,∴104aa>(32)6,∴a1072964>>10.故A正确.故选A.【点睛】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a的可能取值,利用“排除法”求解.二、填空题13.【解析】【分析】结合图形可以发现利用三角形中位线定理将线段长度用坐标表示成圆的方程与椭圆方程联立可进一步求解利用焦半径及三角形中位线定理则更为简洁【详解】方法1:由题意可知由中位线定理可得设可得联立【解析】【分析】结合图形可以发现,利用三角形中位线定理,将线段长度用坐标表示成圆的方程,与椭圆方程联立可进一步求解.利用焦半径及三角形中位线定理,则更为简洁.【详解】方法1:由题意可知||=|2OF OM|=c=,由中位线定理可得12||4PF OM==,设(,)P x y可得22(2)16x y-+=,联立方程221 95x y+=可解得321,22x x=-=(舍),点P在椭圆上且在x轴的上方,求得3,22P⎛-⎝⎭,所以212PFk==方法2:焦半径公式应用解析1:由题意可知|2OF |=|OM |=c =,由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-求得3152P ⎛- ⎝⎭,所以1521512PF k == 【点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、直线与圆的位置关系,利用数形结合思想,是解答解析几何问题的重要途径.14.6【解析】【分析】画出不等式组表示的可行域由可得平移直线结合图形可得最优解于是可得所求最小值【详解】画出不等式组表示的可行域如图中阴影部分所示由可得平移直线结合图形可得当直线经过可行域内的点A 时直线解析:6 【解析】 【分析】画出不等式组表示的可行域,由32z x y =-可得322z y x =-,平移直线322zy x =-,结合图形可得最优解,于是可得所求最小值. 【详解】画出不等式组表示的可行域,如图中阴影部分所示.由32z x y =-可得322z y x =-. 平移直线322z y x =-,结合图形可得,当直线322zy x =-经过可行域内的点A 时,直线在y 轴上的截距最大,此时z 取得最小值. 由题意得A 点坐标为(2,0),∴min 326z =⨯=,即32z x y =-的最小值是6. 故答案为6. 【点睛】求目标函数(0)z ax by ab =+≠的最值时,可将函数z ax by =+转化为直线的斜截式:a zy x b b =-+,通过求直线的纵截距z b 的最值间接求出z 的最值.解题时要注意:①当0b >时,截距z b 取最大值时,z 也取最大值;截距zb 取最小值时,z 也取最小值;②当0b <时,截距z b 取最大值时,z 取最小值;截距zb取最小值时,z 取最大值.15.【解析】【分析】画出两个函数图像求出三个交点的坐标由此计算出三角形的面积【详解】画出两个函数图像如下图所示由图可知对于点由解得所以【点睛】本小题主要考查正弦函数和正切函数的图像考查三角函数图像交点坐 解析:34π 【解析】 【分析】画出两个函数图像,求出三个交点的坐标,由此计算出三角形的面积. 【详解】画出两个函数图像如下图所示,由图可知()()0,0,π,0A C ,对于B 点,由sin 1tan 2y x y x =⎧⎪⎨=⎪⎩,解得π3,3B ⎛⎫ ⎪ ⎪⎝⎭,所以133ππ2ABC S ∆=⨯⨯=.【点睛】本小题主要考查正弦函数和正切函数的图像,考查三角函数图像交点坐标的求法,考查三角函数面积公式,属于中档题.16.1【解析】【分析】先求出二项式的展开式的通项公式令的指数等于求出的值即可求得展开式中的项的系数再根据的系数是列方程求解即可【详解】展开式的的通项为令的展开式中的系数为故答案为1【点睛】本题主要考查二解析:1 【解析】 【分析】先求出二项式9()a x x-的展开式的通项公式,令x 的指数等于4,求出r 的值,即可求得展开式中3x 的项的系数,再根据3x 的系数是84-列方程求解即可. 【详解】9()a x x -展开式的的通项为()992199rr r r r rr a T C x C x a x --+⎛⎫=-=- ⎪⎝⎭, 令9233r r -=⇒=,9()a x x-的展开式中3x 的系数为()339841C a a -=-⇒=,故答案为1. 【点睛】本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1C r n r rr n T a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.17.画画【解析】以上命题都是真命题∴对应的情况是:则由表格知A在跳舞B 在打篮球∵③C在散步是A在跳舞的充分条件∴C在散步则D在画画故答案为画画解析:画画【解析】以上命题都是真命题,∴对应的情况是:则由表格知A在跳舞,B在打篮球,∵③“C在散步”是“A在跳舞”的充分条件,∴C在散步,则D在画画,故答案为画画18.或【解析】【分析】做出简图找到球心根据勾股定理列式求解棱锥的高得到两种情况【详解】正三棱锥的外接球的表面积为根据公式得到根据题意画出图像设三棱锥的高为hP点在底面的投影为H点则底面三角形的外接圆半径3393【解析】 【分析】做出简图,找到球心,根据勾股定理列式求解棱锥的高,得到两种情况. 【详解】正三棱锥P ABC -的外接球的表面积为16π,根据公式得到21642,r r ππ=⇒= 根据题意画出图像,设三棱锥的高为h,P 点在底面的投影为H 点,则2,2,2OP r OA r OH h =====-,底面三角形的外接圆半径为AH ,根据正弦定理得到323sin 60= 3.在三角形OAH 中根据勾股定理得到()223413h h -+=⇒=或 三棱锥的体积为:13ABC h S ⨯⨯V 代入数据得到131331333224⨯⨯⨯⨯⨯=或者1319333 3.3224⨯⨯⨯⨯⨯= 3393【点睛】这个题目考查了已知棱锥的外接球的半径,求解其中的一些量;涉及棱锥的外接球的球心的求法,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.19.3【解析】因为所以从而有因为所以化简可得整理可得因为点在内所以所以则解析:3 【解析】因为30AOC ∠=o,所以cos cos30OC OA AOC OC OA⋅∠===⋅ou u u r u u u r u u u r u u u r,从而有2=u u u r u u u r u u u r.因为1,0OA OB OA OB ==⋅=u u u r u u u r u u u r u u u r=,化简可得222334m m n =+,整理可得229m n =.因为点C 在AOB ∠内,所以0,0m n >>,所以3m n =,则3mn= 20.【解析】试题分析:原式=考点:1指对数运算性质解析:278【解析】 试题分析:原式=344332542727log log 134588-⎡⎤⎛⎫+⨯=+=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 考点:1.指对数运算性质.三、解答题21.(1)见解析;(2)3- 【解析】 【详解】(1)由已知90BAP CDP ∠=∠=︒,得AB ⊥AP ,CD ⊥PD . 由于AB//CD ,故AB ⊥PD ,从而AB ⊥平面P AD . 又AB ⊂平面P AB ,所以平面P AB ⊥平面P AD . (2)在平面PAD 内作PF AD ⊥,垂足为F ,由(1)可知,AB ⊥平面PAD ,故AB PF ⊥,可得PF ⊥平面ABCD .以F 为坐标原点,FA u u u v的方向为x 轴正方向,AB u u u v 为单位长,建立如图所示的空间直角坐标系F xyz -.由(1)及已知可得2,0,02A ⎛⎫ ⎪⎪⎝⎭,20,0,P ⎛⎫⎪ ⎪⎝⎭,2,1,02B ⎛⎫ ⎪ ⎪⎝⎭,2,1,02C ⎛⎫- ⎪ ⎪⎝⎭. 所以22,1,22PC ⎛⎫=-- ⎪ ⎪⎝⎭u u u v ,()2,0,0CB =u u u v ,22,0,22PA ⎛⎫=- ⎪ ⎪⎝⎭u u u v ,()0,1,0AB =u u uv . 设(),,n x y z =r 是平面PCB 的法向量,则0,0,n PC n CB ⎧⋅=⎨⋅=⎩u u uv r u u u v r 即220,2220,x y z x ⎧-+-=⎪⎨⎪=⎩ 可取()0,1,2n =--r.设(),,m x y z r=是平面PAB 的法向量,则0,0,m PA m AB ⎧⋅=⎨⋅=⎩u uu v r u u u v r 即220,220.x z y ⎧-=⎪⎨⎪=⎩可取()1,0,1m =r. 则3cos ,n m n m n m ⋅==-r r r rr r ,所以二面角A PB C --的余弦值为33-. 【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面: ①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角; ③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键. 22.(1) ; (2)36000;(3).【解析】 【分析】本题主要考查频率分布直方图、频率、频数的计算等基础知识,考查学生的分析问题、解决问题的能力. 第(Ⅰ)问,由高×组距=频率,计算每组的频率,根据所有频率之和为1,计算出a 的值;第(Ⅱ)问,利用高×组距=频率,先计算出每人月均用水量不低于3吨的频率,再利用频率×样本容量=频数,计算所求人数;第(Ⅲ)问,将前5组的频率之和与前4组的频率之和进行比较,得出2≤x<2.5,再估计月均用水量的中位数. 【详解】(Ⅰ)由频率分布直方图,可知:月均用水量在[0,0.5)的频率为0.08×0.5=0.04. 同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5)等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1–(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a+0.5×a , 解得a=0.30.(Ⅱ)由(Ⅰ)100位居民月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12. 由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36000. (Ⅲ)设中位数为x 吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5, 而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5 所以2≤x<2.5.由0.50×(x –2)=0.5–0.48,解得x=2.04. 故可估计居民月均用水量的中位数为2.04吨. 【考点】 频率分布直方图 【名师点睛】本题主要考查频率分布直方图、频率、频数的计算公式等基础知识,考查学生的分析问题、解决问题的能力.在频率分布直方图中,第n 个小矩形的面积就是相应组的频率,所有小矩形的面积之和为1,这是解题的关键,也是识图的基础. 23.(1)3A π=(2)b c ==2【解析】 【分析】 【详解】(Ⅰ)由sin cos c C c A =-及正弦定理得sin cos sin sin A C A C C -=由于sin 0C ≠,所以1sin 62A π⎛⎫-= ⎪⎝⎭, 又0A π<<,故3A π=.(Ⅱ)ABC ∆的面积S =1sin 2bc A 故bc =4,而2222cos a b c bc A =+-故22c b +=8,解得b c ==224.(1)20x y ++=(2)【解析】 【分析】 【详解】Ⅰ)由题意得直线BD 的方程为1y x =+. 因为四边形ABCD 为菱形,所以AC BD ⊥. 于是可设直线AC 的方程为y x n =-+.由2234{x y y x n+==-+,得2246340x nx n -+-=. 因为A C ,在椭圆上,所以212640n ∆=-+>,解得n <<. 设A C ,两点坐标分别为1122()()x y x y ,,,, 则1232n x x +=,212344n x x -=,11y x n =-+,22y x n =-+.所以122n y y +=. 所以AC 的中点坐标为344n n ⎛⎫⎪⎝⎭,. 由四边形ABCD 为菱形可知,点344n n ⎛⎫⎪⎝⎭,在直线1y x =+上, 所以3144n n=+,解得2n =-. 所以直线AC 的方程为2y x =--,即20x y ++=.(Ⅱ)因为四边形ABCD 为菱形,且60ABC ∠=o , 所以AB BC CA ==.所以菱形ABCD 的面积2S AC =.由(Ⅰ)可得2223162-+==n AC ,所以2316)S n n ⎛=-+<< ⎝⎭,故当0n =时,有max 16==S 25.(1)证明见解析;(2)证明见解析.【解析】 【分析】(1)本题证明线面平行,根据其判定定理,需要在平面DEF 内找到一条与PA 平行的直线,由于题中中点较多,容易看出//PA DE ,然后要交待PA 在平面DEF 外,DE 在平面DEF 内,即可证得结论;(2)要证两平面垂直,一般要证明一个平面内有一条直线与另一个平面垂直,由(1)可得DE AC ⊥,因此考虑能否证明DE 与平面ABC 内的另一条与AC 相交的直线垂直,由已知三条线段的长度,可用勾股定理证明DE EF ⊥,因此要找的两条相交直线就是,AC EF ,由此可得线面垂直. 【详解】(1)由于,D E 分别是,PC AC 的中点,则有//PA DE ,又PA ⊄平面DEF ,DE ⊂平面DEF ,所以//PA 平面DEF .(2)由(1)//PA DE ,又PA AC ⊥,所以DE AC ⊥,又F 是AB 中点,所以132DE PA ==,142EF BC ==,又5DF =,所以222DE EF DF +=,所以DE EF ⊥,,EF AC 是平面ABC 内两条相交直线,所以DE ⊥平面ABC ,又DE ⊂平面BDE ,所以平面BDE ⊥平面ABC . 【考点】线面平行与面面垂直.26.(1)证明见解析;(2)证明见解析. 【解析】 【分析】(1)由中位线定理可知//EF BD ,故四点共面(2)PQ 是平面11AAC C 与平面DBFE 的交线,可证R 是两平面公共点,故PQ 过R ,得证. 【详解】证明:(1)EF Q 是111D B C ∆的中位线,11//EF B D ∴.在正方体1AC 中,11//B D BD ,//EF BD ∴.,EF BD ∴确定一个平面,即D B F E ,,,四点共面.(2)正方体1AC 中,设11A ACC 确定的平面为α, 又设平面BDEF 为β.11,Q AC Q α∈∴∈Q .又Q EF ∈,Q β∴∈, 则Q 是α与β的公共点,a PQ β∴⋂=.又11,AC R R AC β⋂=∴∈.R a ∴∈,且R β∈,则R PQ ∈,故P Q R ,,三点共线.【点睛】本题主要考查了多点共面及多点共线问题,主要利用平面的基本性质解决,属于中档题.。

2020-2021高中三年级数学下期末第一次模拟试题(及答案)(18)

2020-2021高中三年级数学下期末第一次模拟试题(及答案)(18)

又甲、丁的成绩中一位优秀、一位良好,则丁由甲的成绩可以推出自己的成绩.
因此,乙、丁知道自己的成绩,故选:A.
【点睛】
本题考查简单的合情推理,解题时要根据已知的情况逐一分析,必要时可采用分类讨论的
思想进行推理,考查逻辑推理能力,属于中等题.
7.B
解析:B
【解析】
【分析】
先求出函数 y=g(x)的解析式,再利用三角函数的图像和性质对每一个选项逐一分析判断.
2
,易知
f
x
ex x2
ex
=
x 2
f
x
所以函数
f
x
ex ex x2 x
2
为奇函数,排除
D
选项
根据解析式分母不为 0 可知,定义域为 x x 1 ,所以 y 轴右侧虚线部分为 x=1,
当 x=0.01 时,代入 f x 可得 f x 0 ,排除 C 选项
当 x=1.001 时,代入 f x 可得 f x 0 ,排除 B 选项
4
A.-1
B.1
C.2
D.4
6.甲、乙、丙,丁四位同学一起去问老师询问成语竞赛的成绩。老师说:你们四人中有两
位优秀,两位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看
后甲对大家说:我还是不知道我的成绩,根据以上信息,则( )
A.乙、丁可以知道自己的成绩 C.乙、丁可以知道对方的成绩
(1)由折线图可以看出,可用线性回归模型拟合月利润 y (单位:百万元)与月份代码 x 之间的关系,求 y 关于 x 的线性回归方程,并预测该公司 2019 年 3 月份的利润;
(2)甲公司新研制了一款产品,需要采购一批新型材料,现有 A, B 两种型号的新型材料 可供选择,按规定每种新型材料最多可使用 4 个月,但新材料的不稳定性会导致材料损坏 的年限不同,现对 A, B 两种型号的新型材料对应的产品各100 件进行科学模拟测试,得到

2020-2021高中三年级数学下期末第一次模拟试题带答案(15)

2020-2021高中三年级数学下期末第一次模拟试题带答案(15)

2020-2021高中三年级数学下期末第一次模拟试题带答案(15)一、选择题1.若3tan 4α= ,则2cos 2sin 2αα+=( ) A .6425 B .4825C .1D .16252.从分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数字不大于第二张卡片的概率是( ) A .110B .310C .35D .253.设双曲线2222:1x y C a b-=(00a b >>,)的左、右焦点分别为12F F ,,过1F 的直线分别交双曲线左右两支于点M N ,,连结22MF NF ,,若220MF NF ⋅=u u u u v u u u u v,22MF NF =u u u u v u u u u v ,则双曲线C 的离心率为( ).ABC D4.ABC ∆的内角A B C 、、的对边分别是a b c 、、,若2B A =,1a =,b =c =( )A .B .2CD .15.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为A .2B .2C D .26.若不等式222424ax ax x x +-<+ 对任意实数x 均成立,则实数a 的取值范围是( ) A .(22)-,B .(2)(2)-∞-⋃+∞,, C .(22]-,D .(2]-∞,7.下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程为0.70.35y x =+,则下列结论错误的是( )A .产品的生产能耗与产量呈正相关B .回归直线一定过4.5,3.5() C .A 产品每多生产1吨,则相应的生产能耗约增加0.7吨D .t 的值是3.158.若实数满足约束条件,则的最大值是( )A .B .1C .10D .129.已知锐角三角形的边长分别为2,3,x ,则x 的取值范围是( ) A .513x << B .135x << C .25x <<D .55x <<10.若奇函数()f x 在[1,3]上为增函数,且有最小值0,则它在[3,1]--上 ( ) A .是减函数,有最小值0 B .是增函数,有最小值0 C .是减函数,有最大值0 D .是增函数,有最大值011.设,a b ∈R ,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则( )A .当101,102b a => B .当101,104b a => C .当102,10b a =-> D .当104,10b a =->12.在△ABC 中,AB=2,AC=3,1AB BC ⋅=u u u r u u u r则BC=______ A .3B .7C .2D .23二、填空题13.若双曲线22221x y a b-=()0,0a b >>两个顶点三等分焦距,则该双曲线的渐近线方程是___________.14.函数()22,026,0x x f x x lnx x ⎧-≤=⎨-+>⎩的零点个数是________.15.已知函数21,1()()1a x x f x x a x ⎧-+≤=⎨->⎩,函数()2()g x f x =-,若函数()()y f x g x =-恰有4个不同的零点,则实数a 的取值范围为______. 16.已知样本数据,,,的均值,则样本数据,,,的均值为 .17.已知点()0,1A ,抛物线()2:0C y ax a =>的焦点为F ,连接FA ,与抛物线C 相交于点M ,延长FA ,与抛物线C 的准线相交于点N ,若:1:3FM MN =,则实数a 的值为__________.18.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)19.抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.现有抛物线22(0)y px p =>,如图一平行于x 轴的光线射向抛物线,经两次反射后沿平行x 轴方向射出,若两平行光线间的最小距离为4,则该抛物线的方程为__________.20.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为 ▲三、解答题21.已知直线352:{132x tl y t=+=+(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos ρθ=.(1)将曲线C 的极坐标方程化为直角坐标方程; (2)设点的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求MA MB ⋅的值.22.如图,直三棱柱ABC-A 1B 1C 1中,D,E 分别是AB ,BB 1的中点.(Ⅰ)证明: BC 1//平面A 1CD;(Ⅱ)设AA 1= AC=CB=2,2,求三棱锥C 一A 1DE 的体积.23.已知a ,b ,c 分别为ABC ∆三个内角A ,B ,C 的对边,3c asinC ccosA =-. (Ⅰ)求A ;(Ⅱ)若a =2,ABC ∆3,求b ,c . 24.已知2256x ≤且21log 2x ≥,求函数22()log 22x xf x =⋅的最大值和最小值. 25.已知()11f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若()0,1x ∈时不等式()f x x >成立,求a 的取值范围. 26.设函数()15,f x x x x R =++-∈. (1)求不等式()10f x ≤的解集;(2)如果关于x 的不等式2()(7)f x a x ≥--在R 上恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A . 【考点】同角三角函数间的基本关系,倍角公式.【方法点拨】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系.2.C解析:C 【解析】 【分析】设第一张卡片上的数字为x ,第二张卡片的数字为y ,问题求的是()P x y ≤, 首先考虑分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,有多少种可能,再求出x y ≤的可能性有多少种,然后求出()P x y ≤. 【详解】设第一张卡片上的数字为x ,第二张卡片的数字为y , 分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,共有5525⨯=种情况, 当x y ≤时,可能的情况如下表:()255P x y ≤==,故本题选C .【点睛】本题考查用列举法求概率,本问题可以看成有放回取球问题.3.B解析:B 【解析】 【分析】本道题设2MF x =,利用双曲线性质,计算x ,结合余弦定理,计算离心率,即可. 【详解】结合题意可知,设22,,,MF x NF x MN ===则则结合双曲线的性质可得,21122,2MF MF a MF MN NF a -=+-=代入,解得x =,所以122,NF a NF =+=,01245F NF ∠= 对三角形12F NF 运用余弦定理,得到()()()()()22202222cos45a c a ++-=+⋅,解得ce a== 故选B. 【点睛】本道题考查了双曲线的性质,考查了余弦定理,关键利用余弦定理,解三角形,进而计算x ,即可,难度偏难.4.B解析:B 【解析】1,sin sin sin 22sin cos A B A A A ===cos 2A =,所以22212c c =+-2320,c c -+=求得1c =或 2.c = 若1c =,则三角形为等腰三角形,030,60A C B ===不满足内角和定理,排除. 【考点定位】本题考查正弦定理和余弦定理的应用,考查运算能力和分类讨论思想.当求出cos A =0030,60A B ==,便于三角形的初步定型,也为排除1c =提供了依据.如果选择支中同时给出了1或2,会增大出错率.5.C解析:C 【解析】 【分析】利用正方体1111ABCD A B C D -中,//CD AB ,将问题转化为求共面直线AB 与AE 所成角的正切值,在ABE ∆中进行计算即可. 【详解】在正方体1111ABCD A B C D -中,//CD AB ,所以异面直线AE 与CD 所成角为EAB ∠, 设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以5BE a =,则55tan 22BE a EAB AB a ∠===.故选C.【点睛】求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角;(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.6.C解析:C 【解析】由题意,不等式222424ax ax x x +-<+,可化为2(2)2(2)40a x a x -+--<, 当20a -=,即2a =时,不等式恒成立,符合题意;当20a -≠时,要使不等式恒成立,需2)2204(44(2)0a a a --<⎧⎨∆=+⨯-<⎩n , 解得22a -<<,综上所述,所以a 的取值范围为(2,2]-,故选C . 7.D解析:D 【解析】由题意,x=34564+++=4.5,∵ˆy=0.7x+0.35,∴y=0.7×4.5+0.35=3.5,∴t=4×3.5﹣2.5﹣4﹣4.5=3,故选D.8.C解析:C【解析】【分析】本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大题,注重了基础知识、基本技能的考查.【详解】在平面直角坐标系内画出题中的不等式组表示的平面区域为以为顶点的三角形区域(包含边界),由图易得当目标函数经过平面区域的点时,取最大值.【点睛】解答此类问题,要求作图要准确,观察要仔细.往往由于由于作图欠准确而影响答案的准确程度,也有可能在解方程组的过程中出错.9.A解析:A【解析】试题分析:因为三角形是锐角三角形,所以三角形的三个内角都是锐角,则设边3对的锐角为角α,根据余弦定理得22223cos04xxα+-=>,解得5x>x边对的锐角为β,根据余弦定理得22223cos012xβ+-=>,解得013x<<x的取值范513x<< A.考点:余弦定理.10.D解析:D 【解析】 【分析】 【详解】因为()f x 为奇函数,且在[1,3]上为增函数,且有最小值0, 所以()f x 在[3,1]--上为增函数,且有最大值0,选D.11.A解析:A 【解析】 【分析】 对于B ,令214x λ-+=0,得λ12=,取112a =,得到当b 14=时,a 10<10;对于C ,令x 2﹣λ﹣2=0,得λ=2或λ=﹣1,取a 1=2,得到当b =﹣2时,a 10<10;对于D ,令x 2﹣λ﹣4=0,得12λ±=112a +=,得到当b =﹣4时,a 10<10;对于A ,221122a a =+≥,223113()224a a =++≥,4224319117()14216216a a a =+++≥+=>,当n ≥4时,1n n a a +=a n 12n a +>11322+=,由此推导出104a a >(32)6,从而a 1072964>>10. 【详解】对于B ,令214x λ-+=0,得λ12=, 取112a =,∴2111022n a a ==L ,,<, ∴当b 14=时,a 10<10,故B 错误; 对于C ,令x 2﹣λ﹣2=0,得λ=2或λ=﹣1, 取a 1=2,∴a 2=2,…,a n =2<10, ∴当b =﹣2时,a 10<10,故C 错误; 对于D ,令x 2﹣λ﹣4=0,得λ=取112a +=,∴212a +=,…,12n a +=10, ∴当b =﹣4时,a 10<10,故D 错误;对于A ,221122a a =+≥,223113()224a a =++≥, 4224319117()14216216a a a =+++≥+=>,a n +1﹣a n >0,{a n }递增,当n ≥4时,1n na a +=a n 12na +>11322+=, ∴5445109323232a a a a aa ⎧⎪⎪⎪⎪⎪⎪⋅⎨⎪⋅⎪⋅⎪⎪⎪⎪⎩>>>,∴104a a >(32)6,∴a 1072964>>10.故A 正确. 故选A . 【点睛】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.12.A解析:A 【解析】 【分析】 【详解】2222149||||cos ()122BC AB BC AB BC B AB BC AC +-⋅=-⋅=-+-=-=u u u r u u u r Q|BC ∴故选:A 【点评】本题考查平面向量的数量积运算、余弦定理等知识.考查运算能力,考查数形结合思想、等价转化思想等数学思想方法.二、填空题13.【解析】【分析】由题意知渐近线方程是再据得出与的关系代入渐近线方程即可【详解】∵双曲线的两个顶点三等分焦距∴又∴∴渐近线方程是故答案为【点睛】本题考查双曲线的几何性质即双曲线的渐近线方程为属于基础题解析:y=±【解析】【分析】由题意知,渐近线方程是by xa=±,1223a c=⨯,再据222c a b=+,得出b与a的关系,代入渐近线方程即可.【详解】∵双曲线22221x ya b-=(0,0)a b>>的两个顶点三等分焦距,∴1223a c=⨯,3c a=,又222c a b=+,∴b=∴渐近线方程是by xa=±=±,故答案为y=±.【点睛】本题考查双曲线的几何性质即双曲线22221x ya b-=(0,0)a b>>的渐近线方程为by xa=±属于基础题.14.2【解析】【详解】当x≤0时由f(x)=x2﹣2=0解得x=有1个零点;当x >0函数f(x)=2x﹣6+lnx单调递增则f(1)<0f(3)>0此时函数f(x)只有一个零点所以共有2个零点故答案为:解析:2【解析】【详解】当x≤0时,由f(x)=x2﹣2=0,解得x=1个零点;当x>0,函数f(x)=2x﹣6+lnx,单调递增,则f(1)<0,f(3)>0,此时函数f(x)只有一个零点,所以共有2个零点.故答案为:2.【点睛】判断函数零点个数的方法直接法(直接求零点):令f(x)=0,如果能求出解,则有几个不同的解就有几个零点,定理法(零点存在性定理):利用定理不仅要求函数的图象在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点,图象法(利用图象交点的个数):画出函数f(x)的图象,函数f(x)的图象与x轴交点的个数就是函数f(x)的零点个数;将函数f(x)拆成两个函数h(x)和g(x)的差,根据f(x)=0⇔h(x)=g(x),则函数f(x)的零点个数就是函数y=h(x)和y=g(x)的图象的交点个数,性质法(利用函数性质):若能确定函数的单调性,则其零点个数不难得到;若所考查的函数是周期函数,则只需解决在一个周期内的零点的个数15.【解析】【分析】由函数把函数恰有个不同的零点转化为恰有4个实数根列出相应的条件即可求解【详解】由题意函数且函数恰有个不同的零点即恰有4个实数根当时由即解得或所以解得;当时由解得或所以解得综上可得:实 解析:(]2,3【解析】【分析】由函数()2()g x f x =-,把函数()()y f x g x =-恰有4个不同的零点,转化为()1f x =恰有4个实数根,列出相应的条件,即可求解.【详解】由题意,函数()2()g x f x =-,且函数()()y f x g x =-恰有4个不同的零点, 即()1f x =恰有4个实数根,当1x ≤时,由11a x -+=,即110x a +=-≥,解得2=-x a 或x a =-,所以2112a a a a -≤⎧⎪-≤⎨⎪-≠-⎩,解得13a <?;当1x >时,由2()1x a -=,解得1x a =-或1x a =+,所以1111a a ->⎧⎨+>⎩,解得2a >, 综上可得:实数a 的取值范围为(]2,3.【点睛】本题主要考查了函数与方程的应用,其中解答中利用条件转化为()1f x =,绝对值的定义,以及二次函数的性质求解是解答的关键,着重考查了数形结合思想,以及推理与计算能力,属于中档试题. 16.11【解析】因为样本数据x1x2⋅⋅⋅xn 的均值x=5所以样本数据2x1+12x2+1⋅⋅⋅2xn+1的均值为2x+1=2×5+1=11所以答案应填:11考点:均值的性质解析:【解析】因为样本数据,,,的均值,所以样本数据,,,的均值为,所以答案应填:. 考点:均值的性质.17.【解析】依题意可得焦点的坐标为设在抛物线的准线上的射影为连接由抛物线的定义可知又解得点睛:本题主要考查的知识点是抛物线的定义以及几何性质的应用考查了学生数形结合思想和转化与化归思想设出点在抛物线的准 2【解析】依题意可得焦点F 的坐标为04a ⎛⎫ ⎪⎝⎭,, 设M 在抛物线的准线上的射影为K ,连接MK 由抛物线的定义可知MF MK = 13FM MN =Q ∶∶KN KM ∴=∶ 又01404FN K a a--==-,FN KN K KM ==-4a-∴=-a =点睛:本题主要考查的知识点是抛物线的定义以及几何性质的应用,考查了学生数形结合思想和转化与化归思想,设出点M 在抛物线的准线上的射影为K ,由抛物线的定义可知MF MK =,再根据题设得到KN KM =∶,然后利用斜率得到关于a 的方程,进而求解实数a 的值18.【解析】【分析】首先想到所选的人中没有女生有多少种选法再者需要确定从人中任选人的选法种数之后应用减法运算求得结果【详解】根据题意没有女生入选有种选法从名学生中任意选人有种选法故至少有位女生入选则不同 解析:16【解析】【分析】首先想到所选的人中没有女生,有多少种选法,再者需要确定从6人中任选3人的选法种数,之后应用减法运算,求得结果.【详解】根据题意,没有女生入选有344C =种选法,从6名学生中任意选3人有3620C =种选法,故至少有1位女生入选,则不同的选法共有20416-=种,故答案是16.【点睛】该题是一道关于组合计数的题目,并且在涉及到“至多、至少”问题时多采用间接法,一般方法是得出选3人的选法种数,间接法就是利用总的减去没有女生的选法种数,该题还可以用直接法,分别求出有1名女生和有两名女生分别有多少种选法,之后用加法运算求解.19.【解析】【分析】先由题意得到必过抛物线的焦点设出直线的方程联立直线与抛物线方程表示出弦长再根据两平行线间的最小距离时最短进而可得出结果【详解】由抛物线的光学性质可得:必过抛物线的焦点当直线斜率存在时 解析:24y x =【解析】【分析】先由题意得到PQ 必过抛物线的焦点,设出直线PQ 的方程,联立直线PQ 与抛物线方程,表示出弦长,再根据两平行线间的最小距离时,PQ 最短,进而可得出结果.【详解】由抛物线的光学性质可得:PQ 必过抛物线的焦点(,0)2p F , 当直线PQ 斜率存在时,设PQ 的方程为()2p y k x =-,1122(,),(,)P x y Q x y , 由2()22p y k x y px⎧=-⎪⎨⎪=⎩得:222()24p k x px px -+=,整理得2222244)0(8k x k p p x k p -++=,所以21222k p p x x k++=,2124p x x =, 所以2122222k PQ x x p p p k+=++=>; 当直线PQ 斜率不存在时,易得2PQ p =;综上,当直线PQ 与x 轴垂直时,弦长最短,又因为两平行光线间的最小距离为4,PQ 最小时,两平行线间的距离最小;因此min 24PQ p ==,所求方程为24y x =.故答案为24y x =【点睛】本题主要考查直线与抛物线位置关系,通常需要联立直线与抛物线方程,结合韦达定理、弦长公式等求解,属于常考题型. 20.1:8【解析】考查类比的方法所以体积比为1∶8解析:1:8【解析】考查类比的方法,11111222221111314283S h V S h V S h S h ⋅⨯====,所以体积比为1∶8. 三、解答题21.(1);(2).【解析】【分析】【详解】试题分析:(1)在方程=2cos ρθ两边同乘以极径ρ可得2=2cos ρρθ,再根据222=,cos x y x ρρθ+=,代入整理即得曲线C 的直角坐标方程;(2)把直线的参数方程代入圆的直角坐标方程整理,根据韦达定理即可得到MA MB ⋅的值. 试题解析:(1)=2cos ρθ等价于2=2cos ρρθ①将222=,cos x y x ρρθ+=代入①既得曲线C 的直角坐标方程为 2220x y x +-=,②(2)将352132x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩代入②得253180t t ++=, 设这个方程的两个实根分别为12,,t t则由参数t 的几何意义既知,1218MA MB t t ⋅==.考点:圆的极坐标方程与直角坐标方程的互化及直线参数方程的应用.22.(Ⅰ)见解析(Ⅱ)111632132C A DE V -=⨯⨯⨯⨯= 【解析】试题分析:(Ⅰ)连接AC 1交A 1C 于点F ,则DF 为三角形ABC 1的中位线,故DF ∥BC 1.再根据直线和平面平行的判定定理证得BC 1∥平面A 1CD .(Ⅱ)由题意可得此直三棱柱的底面ABC 为等腰直角三角形,由D 为AB 的中点可得CD ⊥平面ABB 1A 1.求得CD 的值,利用勾股定理求得A 1D 、DE 和A 1E 的值,可得A 1D ⊥DE .进而求得S △A 1DE 的值,再根据三棱锥C-A 1DE 的体积为13•S △A1DE •CD ,运算求得结果 试题解析:(1)证明:连结AC 1交A 1C 于点F ,则F 为AC 1中点又D 是AB 中点, 连结DF ,则BC 1∥DF . 3分因为DF ⊂平面A 1CD ,BC 1不包含于平面A 1CD , 4分所以BC 1∥平面A 1CD . 5分(2)解:因为ABC ﹣A 1B 1C 1是直三棱柱,所以AA 1⊥CD .由已知AC=CB ,D 为AB 的中点,所以CD ⊥AB .又AA 1∩AB=A ,于是CD ⊥平面ABB 1A 1. 8分由AA 1=AC=CB=2,得∠ACB=90°,,,,A 1E=3,故A 1D 2+DE 2=A 1E 2,即DE ⊥A 1D 10分所以三菱锥C ﹣A 1DE 的体积为:==1. 12分 考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积23.(1)3A π=(2)b c ==2【解析】【分析】【详解】(Ⅰ)由3sin cos c a C c A =-及正弦定理得 3sin sin cos sin sin A C A C C -=由于sin 0C ≠,所以1sin 62A π⎛⎫-= ⎪⎝⎭, 又0A π<<,故3A π=. (Ⅱ)ABC ∆的面积S =1sin 2bc A 3故bc =4, 而2222cos a b c bc A =+-故22c b +=8,解得b c ==224.最小值为14-,最大值为2. 【解析】【分析】 由已知条件化简得21log 32x ≤≤,然后化简()f x 求出函数的最值 【详解】由2256x ≤得8x ≤,2log 3x ≤即21log 32x ≤≤ ()()()222231log 1log 2log 24f x x x x ⎛⎫=-⋅-=-- ⎪⎝⎭. 当23log ,2x =()min 14f x =-,当2log 3,x = ()max 2f x =. 【点睛】熟练掌握对数的基本运算性质是转化本题的关键,将其转化为二次函数的值域问题,较为基础.25.(1)12x x ⎧⎫>⎨⎬⎩⎭;(2)(]0,2【解析】分析:(1)将1a =代入函数解析式,求得()11f x x x =+--,利用零点分段将解析式化为()2,1,2,11,2, 1.x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩,然后利用分段函数,分情况讨论求得不等式()1f x >的解集为12x x ⎧⎫⎨⎬⎩⎭; (2)根据题中所给的()0,1x ∈,其中一个绝对值符号可以去掉,不等式()f x x >可以化为()0,1x ∈时11ax -<,分情况讨论即可求得结果.详解:(1)当1a =时,()11f x x x =+--,即()2,1,2,11,2, 1.x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩故不等式()1f x >的解集为12x x ⎧⎫⎨⎬⎩⎭. (2)当()0,1x ∈时11x ax x +-->成立等价于当()0,1x ∈时11ax -<成立. 若0a ≤,则当()0,1x ∈时11ax -≥;若0a >,11ax -<的解集为20x a <<,所以21a ≥,故02a <≤. 综上,a 的取值范围为(]0,2.点睛:该题考查的是有关绝对值不等式的解法,以及含参的绝对值的式子在某个区间上恒成立求参数的取值范围的问题,在解题的过程中,需要会用零点分段法将其化为分段函数,从而将不等式转化为多个不等式组来解决,关于第二问求参数的取值范围时,可以应用题中所给的自变量的范围,去掉一个绝对值符号,之后进行分类讨论,求得结果.26.(1){}|37x x -≤≤;(2)(],9-∞.【解析】【分析】(1)分别在1x ≤-、15x -<<、5x ≥三种情况下去掉绝对值符号得到不等式,解不等式求得结果;(2)将不等式变为()()27a f x x ≤+-,令()()()27g x f x x =+-,可得到分段函数()g x 的解析式,分别在每一段上求解出()g x 的最小值,从而得到()g x 在R 上的最小值,进而利用()min a g x ≤得到结果.【详解】(1)当1x ≤-时,()154210f x x x x =--+-=-≤,解得:31x -≤≤-当15x -<<时,()15610f x x x =++-=≤,恒成立当5x ≥时,()152410f x x x x =++-=-≤,解得:57x ≤≤综上所述,不等式()10f x ≤的解集为:{}37x x -≤≤(2)由()()27f x a x ≥--得:()()27a f x x ≤+- 由(1)知:()42,16,1524,5x x f x x x x -≤-⎧⎪=-<<⎨⎪-≥⎩令()()()22221653,171455,151245,5x x x g x f x x x x x x x x ⎧-+≤-⎪=+-=-+-<<⎨⎪-+≥⎩当1x ≤-时,()()min 170g x g =-=当15x -<<时,()()510g x g >=当5x ≥时,()()min 69g x g ==综上所述,当x ∈R 时,()min 9g x =()a g x ≤Q 恒成立 ()min a g x ∴≤ (],9a ∴∈-∞【点睛】本题考查分类讨论求解绝对值不等式、含绝对值不等式的恒成立问题的求解;求解本题恒成立问题的关键是能够通过分离变量构造出新的函数,将问题转化为变量与函数最值之间的比较,进而通过分类讨论得到函数的解析式,分段求解出函数的最值.。

2020-2021高中三年级数学下期末第一次模拟试题及答案(18)

2020-2021高中三年级数学下期末第一次模拟试题及答案(18)

2020-2021高中三年级数学下期末第一次模拟试题及答案(18)一、选择题1.已知函数()()sin f x A x =+ωϕ()0,0A ω>>的图象与直线()0y a a A =<<的三个相邻交点的横坐标分别是2,4,8,则()f x 的单调递减区间是( )A .[]6,63k k ππ+,k Z ∈B .[]63,6k k ππ-,k Z ∈C .[]6,63k k +,k Z ∈D .[]63,6k k -,k Z ∈2.设01p <<,随机变量ξ的分布列如图,则当p 在()0,1内增大时,( )ξ1 2P12p- 122pA .()D ξ减小B .()D ξ增大C .()D ξ先减小后增大D .()D ξ先增大后减小3.若设a 、b 为实数,且3a b +=,则22a b +的最小值是( ) A .6B .8C .26D .424.函数y =2x sin2x 的图象可能是A .B .C .D .5.已知236a b ==,则a ,b 不可能满足的关系是() A .a b ab += B .4a b +> C .()()22112a b -+-<D .228a b +>6.如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为A .72B .64C .48D .327.已知2tan()5αβ+=,1tan()44πβ-=,则tan()4πα+的值等于( ) A .1318B .322C .1322D .3188.若实数满足约束条件,则的最大值是( )A .B .1C .10D .129.设双曲线22221x y a b-=(0a >,0b >)的渐近线与抛物线21y x =+相切,则该双曲线的离心率等于( ) A 3B .2C 6D 510.已知ABC V 为等边三角形,2AB =,设P ,Q 满足AP AB λ=uu u r uu u r,()()1AQ AC λλ=-∈R u u u r u u u r ,若32BQ CP ⋅=-uu u r uu r ,则λ=( )A .12B .122± C .1102± D .322± 11.已知a R ∈,则“0a =”是“2()f x x ax =+是偶函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件12.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为 A .10B .20C .40D .80二、填空题13.函数()22,026,0x x f x x lnx x ⎧-≤=⎨-+>⎩的零点个数是________.14.事件,,A B C 为独立事件,若()()()111,,688P A B P B C P A B C ⋅=⋅=⋅⋅=,则()P B =_____.15.在ABC V 中,60A =︒,1b =,面积为3,则sin sin sin a b cA B C++=++________.16.已知正三棱锥P ABC -的底面边长为3,外接球的表面积为16π,则正三棱锥P ABC -的体积为________.17.已知集合P 中含有0,2,5三个元素,集合Q 中含有1,2,6三个元素,定义集合P+Q 中的元素为a+b ,其中a ∈P ,b ∈Q ,则集合P+Q 中元素的个数是_____.18.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人,组成4人服务队,要求服务队中至少有1名女生,共有__________种不同的选法.(用数字作答) 19.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为 ▲ 20.在ABC ∆中,若13AB =,3BC =,120C ∠=︒,则AC =_____.三、解答题21.某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:喜欢游泳不喜欢游泳合计男生10女生20合计已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为. (1)请将上述列联表补充完整;(2)并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;(3)已知在被调查的学生中有5名来自甲班,其中3名喜欢游泳,现从这5名学生中随机抽取2人,求恰好有1人喜欢游泳的概率. 下面的临界值表仅供参考:P(K 2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k2.0722.7063.8415.0246.6357.87910.828(参考公式:22n(ad bc)K (a b)(c d)(a c)(b d)-=++++,其中n=a+b+c+d )22.如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=o ,求二面角A −PB −C 的余弦值. 23.已知曲线C 的参数方程为32cos 12sin x y αα=+⎧⎨=-⎩(a 参数),以直角坐标系的原点为极点,x 正半轴为极轴建立极坐标系. (Ⅰ)求曲线C 的极坐标方程;(Ⅱ)若直线l 极坐标方程为1sin 2cos θθρ-=,求曲线C 上的点到直线l 最大距离.24.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 是矩形,1A D 与1AD 交于点E .124AA AB AD ===.(1)证明:AE ⊥平面ECD ;(2)求直线1A C 与平面EAC 所成角的正弦值.25.设椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12.(I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △AP 的方程. 26.已知数列{}n a 与{}n b 满足:*1232()n n a a a a b n N ++++=∈L ,且{}n a 为正项等比数列,12a =,324b b =+. (1)求数列{}n a 与{}n b 的通项公式; (2)若数列{}n c 满足*2211()log log n n n c n N a a +=∈,n T 为数列{}n c 的前n 项和,证明:1n T <.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【详解】由题设可知该函数的最小正周期826T =-=,结合函数的图象可知单调递减区间是2448[6,6]()22k k k Z ++++∈,即[36,66]()k k k Z ++∈,等价于[]63,6k k -,应选答案D .点睛:解答本题的关键是充分利用题设中的有效信息“函数()()sin f x A x ωϕ=+(0,0)A ω>>的图象与直线(0)y a a A =<<的三个相邻交点的横坐标分别是2,4,8”.结合图像很容易观察出最小正周期是826T =-=,进而数形结合写出函数的单调递减区间,从而使得问题获解.2.D解析:D 【解析】 【分析】先求数学期望,再求方差,最后根据方差函数确定单调性. 【详解】111()0122222p p E p ξ-=⨯+⨯+⨯=+Q ,2222111111()(0)(1)(2)2222224p p D p p p p p ξ-∴=--+--+--=-++, 1(0,1)2∈Q ,∴()D ξ先增后减,因此选D. 【点睛】222111(),()(())().nnni i i i i i i i i E x p D x E p x p E ξξξξ=====-=-∑∑∑3.D解析:D 【解析】 【分析】2a b+≤转化为指数运算即可求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021深圳市南山二外高中三年级数学下期末第一次模拟试卷(含答案)一、选择题1.已知2a ib i i+=+ ,,a b ∈R ,其中i 为虚数单位,则+a b =( ) A .-1 B .1 C .2 D .3 2.设是虚数单位,则复数(1)(12)i i -+=( )A .3+3iB .-1+3iC .3+iD .-1+i3.抛掷一枚质地均匀的硬币两次,在第一次正面向上的条件下,第二次反面向上的概率为( ) A .14B .13C .12D .234.已知a r 与b r均为单位向量,它们的夹角为60︒,那么3a b -r r 等于( )A .7B .10C .13D .45.两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为A .12B .512C .14D .166.函数y ()y ()f x f x ==,的导函数的图像如图所示,则函数y ()f x =的图像可能是A .B .C .D .7.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为( ) A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=8.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)[)20,40,40,60,60,80,[80,100].若低于60分的人数是15人,则该班的学生人数是( )A .45B .50C .55D .9.设双曲线22221x y a b-=(0a >,0b >)的渐近线与抛物线21y x =+相切,则该双曲线的离心率等于( ) A .3B .2C .6D .510.已知a R ∈,则“0a =”是“2()f x x ax =+是偶函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件11.已知,m n 是两条不同的直线,α,β是两个不同的平面,给出下列命题:①若m αP ,m n ⊥,则n α⊥; ②若m α⊥,n αP ,则m n ⊥;③若,m n 是异面直线,m α⊂,m βP ,n β⊂,n αP ,则αβ∥; ④若,m n 不平行,则m 与n 不可能垂直于同一平面. 其中为真命题的是( ) A .②③④B .①②③C .①③④D .①②④12.一个几何体的三视图如图所示,其中正视图是一个正三角形,俯视图是一个等腰直角三角形,则该几何体的外接球的表面积为( )A .43π B .83π C .163πD .203π二、填空题13.如图,一辆汽车在一条水平的公路上向正西行驶,到处时测得公路北侧一山顶D 在西偏北的方向上,行驶600m 后到达处,测得此山顶在西偏北的方向上,仰角为,则此山的高度________ m.14.事件,,A B C 为独立事件,若()()()111,,688P A B P B C P A B C ⋅=⋅=⋅⋅=,则()P B =_____.15.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.16.已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是__________. 17.幂函数y=x α,当α取不同的正数时,在区间[0,1]上它们的图像是一族美丽的曲线(如图).设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y=x α,y=x β的图像三等分,即有BM=MN=NA ,那么,αβ等于_____.18.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若cos 1cos2cos 1cos2b C Cc B B+=+,C 是锐角,且27a =,1cos 3A =,则ABC △的面积为______. 19.在体积为9的斜三棱柱ABC —A 1B 1C 1中,S 是C 1C 上的一点,S —ABC 的体积为2,则三棱锥S —A 1B 1C 1的体积为___.20.()sin 5013=oo________________.三、解答题21.已知数列{}n a 满足1112,22n n n a a a ++==+. (1)设2nn na b =,求数列{}n b 的通项公式; (2)求数列{}n a 的前n 项和n S ; (3)记()()211422nnn n n nn c a a +-++=,求数列{}n c 的前n 项和n T .22.某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.()1设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率; ()2设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望. 23.在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m m y k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设()3:cos sin 0l ρθθ+=,M 为l 3与C 的交点,求M 的极径.24.已知函数()()2f x x 2a 1x 2alnx(a 0)=-++>.()1求()f x 的单调区间;()2若()f x 0≤在区间[]1,e 上恒成立,求实数a 的取值范围.25.随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现。

某运营公司为了了解某地区用户对其所提供的服务的满意度,随机调查了40个用户,得到用户的满意度评分如下:4 5 6 7891092958579846386141516171819207697788882768924252627282930749166808374823435363738394081847781768589用系统抽样法从40名用户中抽取容量为10的样本,且在第一分段里随机抽到的评分数据为92.(1)请你列出抽到的10个样本的评分数据;(2)计算所抽到的10个样本的均值x和方差2s;(3)在(2)条件下,若用户的满意度评分在(),x s x s-+之间,则满意度等级为“A 级”。

试应用样本估计总体的思想,根据所抽到的10个样本,估计该地区满意度等级为“A级”的用户所占的百分比是多少?(参考数据:30 5.48,33 5.74,35 5.92≈≈≈)26.如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=23,∠BAD=90°.(Ⅰ)求证:AD⊥BC;(Ⅱ)求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】利用复数除法运算法则化简原式可得2ai b i -=+,再利用复数相等列方程求出,a b 的值,从而可得结果. 【详解】因为22222a i ai i ai b i i i+--==-=+- ,,a b ∈R , 所以2211b b a a ==⎧⎧⇒⎨⎨-==-⎩⎩,则+1a b =,故选B.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.C解析:C 【解析】因为2(1)(12)1223i i i i i i -+=+--=+,故选 C. 考点:本题主要考查复数的乘法运算公式.3.C解析:C 【解析】 【分析】由题意,求得(),()P AB P A 的值,再由条件概率的计算公式,即可求解. 【详解】记事件A 表示“第一次正面向上”,事件B 表示“第二次反面向上”, 则P(AB)=,P(A)=,∴P(B|A)==,故选C.【点睛】本题主要考查了条件概率的计算,其中解答中认真审题,熟记条件概率的计算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.4.A解析:A 【解析】本题主要考查的是向量的求模公式.由条件可知==,所以应选A .5.B解析:B 【解析】记两个零件中恰好有一个一等品的事件为A ,即仅第一个实习生加工一等品(A 1)与仅第二个实习生加工一等品(A 2)两种情况, 则P (A )=P (A 1)+P (A 2)=2 3×14+13×34=512故选B.6.D解析:D 【解析】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x 轴的交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数'()f x 的正负,得出原函数()f x 的单调区间.7.B解析:B 【解析】 【分析】根据渐近线的方程可求得,a b 的关系,再根据与椭圆221123x y +=有公共焦点求得c 即可.【详解】双曲线C 的渐近线方程为2y x =,可知2b a =①,椭圆221123x y +=的焦点坐标为(-3,0)和(3,0),所以a 2+b 2=9②,根据①②可知a 2=4,b 2=5. 故选:B. 【点睛】本题主要考查了双曲线与椭圆的基本量求法,属于基础题型.8.B解析:B 【解析】根据频率分布直方可知成绩低于60分的有第一、二组数据,在频率分布直方图中,对应矩形的高分别为0.005,0.01,每组数据的组距为20, 则成绩低于60分的频率P=(0.005+0.010)×20=0.3. 又因为低于60分的人数是15人, 所以该班的学生人数是15÷0.3=50. 本题选择B 选项.9.D解析:D 【解析】由题意可知双曲线的渐近线一条方程为b y x a =,与抛物线方程组成方程组2,1b y x a y x ⎧=⎪⎨⎪=+⎩消y 得,2210,()40b b x x a a -+=∆=-=,即2()4b a =,所以e == D. 【点睛】双曲线22221x y a b-=(0a >,0b >)的渐近线方程为b y x a =±.直线与抛物线交点问题,直线与抛物线方程组方程组,当直线与抛物线对称轴平行时,直线与抛物线相交,只有一个交点.当直线与抛物线对称轴不平行时,当>0∆时,直线与抛物线相交,有两个交点. 当0∆=时,直线与抛物线相切,只有一个交点. 当∆<0时,直线与抛物线相离,没有交点.10.C解析:C 【解析】因为()2f x x ax =+是偶函数,所以22()()20f x x ax f x x ax ax -=-==+∴=所以0a =.所以“0a =”是“()2f x x ax =+是偶函数”的充要条件.故选C.11.A解析:A 【解析】 【分析】根据空间中点、线、面位置关系,逐项判断即可. 【详解】①若m αP ,m n ⊥,则n 与α位置关系不确定;②若n αP ,则α存在直线l 与n 平行,因为m α⊥,所以m l ⊥,则m n ⊥; ③当m α⊂,m P β,n β⊂,n αP 时,平面α,β平行; ④逆否命题为:若m 与n 垂直于同一平面,则,m n 平行,为真命题. 综上,为真命题的是②③④. 故选A 【点睛】本题主要考查空间中点线面位置关系,熟记线面关系、面面关系,即可求解,属于常考题型.12.C解析:C 【解析】 【分析】根据三视图知几何体是三棱锥,且一侧面与底面垂直,结合图中数据求出三棱锥外接球的半径,从而求出球的表面积公式. 【详解】由三视图知,该几何体是如图所示的三棱锥,且三棱锥的侧面SAC ⊥底面ABC ,高为3SO =;其中1OA OB OC ===,SO ⊥平面ABC ,其外接球的球心在SO 上,设球心为M ,OM x =,根据SM=MB 得到:在三角形MOB 中,MB=21SM 3x x +=-,,213x x +=-, 解得3x =, ∴外接球的半径为3233R =-=;∴三棱锥外接球的表面积为223164()33S ππ=⨯=.故选:C . 【点睛】本题考查了三视图复原几何体形状的判断问题,也考查了三棱锥外接球的表面积计算问题,是中档题.一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.二、填空题13.1006【解析】试题分析:由题设可知在中由此可得由正弦定理可得解之得又因为所以应填1006考点:正弦定理及运用 解析:【解析】试题分析:由题设可知在中,,由此可得,由正弦定理可得,解之得,又因为,所以,应填.考点:正弦定理及运用.14.【解析】【分析】【详解】分析:根据独立事件的关系列出方程解出详解:设因为所以所以所以点睛:本题主要考查相互独立事件的概率的乘法公式及对立事件的概率关系属于中档题 解析:12【解析】 【分析】 【详解】分析:根据独立事件的关系列出方程,解出()P B . 详解:设()()()P A a,P B b,P C c ===, 因为()()()111,,688P A B P B C P A B C ⋅=⋅=⋅⋅=, 所以()()16118118ab b c ab c ⎧=⎪⎪⎪-=⎨⎪⎪-=⎪⎩所以111a ,b ,324c === 所以()1P B 2=点睛:本题主要考查相互独立事件的概率的乘法公式及对立事件的概率关系,属于中档题.15.60【解析】【分析】采用分层抽样的方法从该校四个年级的本科生中抽取一个容量为300的样本进行调查的【详解】∵该校一年级二年级三年级四年级的本科生人数之比为4:5:5:6∴应从一年级本科生中抽取学生人解析:60 【解析】 【分析】采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查的. 【详解】∵该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,∴应从一年级本科生中抽取学生人数为:4300604556⨯=+++.故答案为60.16.【解析】令函数有两个极值点则在区间上有两个实数根当时则函数在区间单调递增因此在区间上不可能有两个实数根应舍去当时令解得令解得此时函数单调递增令解得此时函数单调递减当时函数取得极大值当近于与近于时要使解析:.【解析】()()()2ln 0,'ln 12f x x x ax x f x x ax =->=+-,令()ln 12,g x x ax =+-Q 函数()()ln f x x x ax =-有两个极值点,则()0g x =在区间()0,∞+上有两个实数根,()112'2ax g x a x x-=-=,当0a ≤时,()'0g x >,则函数()g x 在区间()0,∞+单调递增,因此()0g x =在区间()0,∞+上不可能有两个实数根,应舍去,当0a >时,令()'0g x =,解得12x a =,令()'0g x >,解得102x a <<,此时函数()g x 单调递增,令()'0g x <,解得12x a >,此时函数()g x 单调递减,∴当12x a=时,函数()g x 取得极大值,当x 近于0与x 近于+∞时,()g x →-∞,要使()0g x =在区间()0,∞+有两个实数根,则11ln 022g a a ⎛⎫=> ⎪⎝⎭,解得10,2a <<∴实数a 的取值范围是102a <<,故答案为102a <<. 17.【解析】【分析】由条件得MN 则结合对数的运算法则可得αβ=1【详解】由条件得MN 可得即α=loβ=lo 所以αβ=lo·lo=1【点睛】本题主要考查幂函数的性质对数的运算法则及其应用等知识意在考查学生解析:【解析】 【分析】由条件,得M 12,33⎛⎫ ⎪⎝⎭,N 21,33⎛⎫ ⎪⎝⎭,则1221,3333αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,结合对数的运算法则可得αβ=1.【详解】 由条件,得M 12,33⎛⎫ ⎪⎝⎭,N 21,33⎛⎫⎪⎝⎭, 可得1221,3333αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,即α=lo 2313g ,β=lo 1323g .所以αβ=lo 2313g ·lo 1312233·21333lglg g lg lg ==1. 【点睛】本题主要考查幂函数的性质,对数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.18.【解析】【分析】由及三角变换可得故于是得到或再根据可得从而然后根据余弦定理可求出于是可得所求三角形的面积【详解】由得∵∴∴又为三角形的内角∴或又∴于是由余弦定理得即解得故∴故答案为【点睛】正余弦定理解析:【解析】 【分析】 由cos 1cos2cos 1cos2b C C c B B +=+及三角变换可得sin cos sin cos B CC B=,故sin2sin2B C =,于是得到B C =或2B C π+=,再根据1cos 3A =可得B C =,从而b c =,然后根据余弦定理可求出b c ==【详解】由cos 1cos2cos 1cos2b C C c B B +=+,得22sin cos 2cos sin cos 2cos B C CC B B =, ∵cos 0,cos 0C B ≠≠,∴sin cos sin cos B CC B=, ∴sin2sin2B C =, 又,B C 为三角形的内角, ∴B C =或2B C π+=,又1cos 3A =, ∴B C =,于是b c =.由余弦定理得2222cos ,a b c b A =+-即(222223b b b =+-,解得b =,故c =∴11sin 22ABC S bc A ∆===故答案为.正余弦定理常与三角变换结合在一起考查,此类问题一般以三角形为载体,解题时要注意合理利用相关公式和三角形三角的关系进行求解,考查综合运用知识解决问题的能力,属于中档题.19.【解析】【分析】由已知棱柱体积与棱锥体积可得S 到下底面距离与棱柱高的关系进一步得到S 到上底面距离与棱锥高的关系则答案可求【详解】设三棱柱的底面积为高为则再设到底面的距离为则得所以则到上底面的距离为所 解析:1【解析】 【分析】由已知棱柱体积与棱锥体积可得S 到下底面距离与棱柱高的关系,进一步得到S 到上底面距离与棱锥高的关系,则答案可求. 【详解】设三棱柱111ABC A B C -的底面积为'S ,高为h , 则9'9'S h S h==,, 再设S 到底面ABC 的距离为'h ,则1''23S h =,得19'23h h⋅⋅=, 所以'23h h =, 则S 到上底面111A B C 的距离为13h , 所以三棱锥111S A B C -的体积为111'91339S h ⋅=⋅=. 故答案为1. 【点睛】本题考查棱柱、棱锥体积的求法,考查空间想象能力、思维能力与计算能力,考查数形结合思想,三棱锥体积为1V 3S h =n 底,本题是中档题. 20.【解析】【分析】利用弦化切的运算技巧得出然后利用辅助角二倍角正弦以及诱导公式可计算出结果【详解】原式故答案为:【点睛】本题考查利用三角恒等变换思想求非特殊角的三角函数值在计算时要结合角之间的关系选择 解析:1【解析】 【分析】利用弦化切的运算技巧得出()cos10sin 50cos 0sin 5011an10++=⋅o ooooo,然后利用辅助角、二倍角正弦以及诱导公式可计算出结果.原式()2sin 1030sin502sin 40cos 40sin50cos10cos10+===o o o o o oo o()sin 9010sin80cos101cos10cos10cos10-====o oo o o o o . 故答案为:1. 【点睛】本题考查利用三角恒等变换思想求非特殊角的三角函数值,在计算时要结合角之间的关系选择合适的公式化简计算,考查计算能力,属于中等题.三、解答题21.(1)n b n =(2)()1122n n S n +=-+(3)()()()114123312n n n n +++---+⋅ 【解析】 【分析】 【详解】(1)由1122n n n a a ++=+得11n n b b +=+,得n b n =;(2)易得2nn a n =g ,1223112222,212222,n n n n S n S n +=⨯+⨯++⨯=⨯+⨯++⨯L L错位相减得12111222222212nn n n n S n n ++--=+++-⨯=⨯-⨯-L所以其前n 项和()1122n n S n +=-+; (3)()()()()()()()()()()2221111422142121·2?12?12?12nnnnn n n n n nn nn nn n nc n n n n n n +++-++-++-++++===+++()()()()()()1111111111112?21?222?21?2nn n n nn n n n n n n n n ++++⎛⎫⎛⎫---⎛⎫ ⎪=+-+=-+- ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, ()()()()()()2231212231111111*********?22?22?23?2?21?2n n n n n n T n n ++⎡⎤⎛⎫⎛⎫⎛⎫⎡⎤------⎛⎫⎛⎫⎛⎫⎢⎥ ⎪ ⎪ ⎪=-+-++-+-+-++-⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+⎢⎥⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦L L ()()1112113621?2n nn n ++-⎛⎫=-+-- ⎪+⎝⎭或写成()()()11412331?2n n n n +++---+.点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.22.(1)13; (2)()1E X =. 【解析】 【分析】(1)可根据题意分别计算出“从10人中选出2人”以及“2人参加义工活动的次数之和为4”的所有可能情况数目,然后通过概率计算公式即可得出结果;(2)由题意知随机变量X 的所有可能取值,然后计算出每一个可能取值所对应的概率值,写出分布列,求出数学期望值. 【详解】(1)由已知有1123432101()3C C C P A C ⋅+==, 所以事件A 的发生的概率为13; (2)随机变量X 的所有可能的取值为0,1,2;2223342104(0)15C C C P X C ++===;111133342107(1)15C C C C P X C ⋅+⋅===; 11342104(2)15C C P X C ⋅===; 所以随机变量X 的分布列为:数学期望为()0121151515E X =???. 【点睛】本题考查了离散型随机变量的分布列与数学期望的计算问题,能否正确计算出每一个随机变量所对应的的概率是解决本题的关键,考查推理能力,是中档题.23.(1)()2240x y y -=≠(2【解析】(1)消去参数t 得1l 的普通方程()1:2l y k x =-;消去参数m 得l 2的普通方程()21:2l y x k=+. 设(),P x y ,由题设得()()212y k x y x k ⎧=-⎪⎨=+⎪⎩,消去k 得()2240x y y -=≠. 所以C 的普通方程为()2240x y y -=≠.(2)C 的极坐标方程为()()222cos sin 402π,πρθθθθ-=<<≠.联立()()222cos sin 4,cos sin 20ρθθρθθ⎧-=⎪⎨+-=⎪⎩得()cos sin 2cos sin θθθθ-=+.故1tan 3θ=-, 从而2291cos ,sin 1010θθ==. 代入()222cos sin 4ρθθ-=得25ρ=,所以交点M 的极径为5.【名师点睛】本题考查了极坐标方程的求法及应用,重点考查了转化与化归能力.遇到求曲线交点、距离、线段长等几何问题时,求解的一般方法是分别化为普通方程和直角坐标方程后求解,或者直接利用极坐标的几何意义求解.要结合题目本身特点,确定选择何种方程.24.(1)见解析; (2)2e 2ea 2e 2-≥-.【解析】 【分析】()1求函数的导数,利用函数单调性和导数之间的关系,即可求()f x 的单调区间;()2若()0f x ≤在区间[]1,e 上恒成立,则只需求出()f x 的最大值即可,求实数a 的取值范围. 【详解】()()()21f x x 2a 1x 2alnx(a 0)=-++>Q .()()()()22x 2a 1x 2a2x 1x a f'x (x 0)xx-++--∴==>,由得1x a =,2x 1=,当0a 1<<时,在()x 0,a ∈或()x 1,∞∈+时 ,在()x a,1∈时,()f x ∴的单调增区间是()0,a 和()1,∞+,单调减区间是()a,1;当a 1=时,在()x 0,∞∈+时,()f x ∴的单调增区间是()0,∞+;当a 1>时,在()x 0,1∈或()x a,∞∈+时,在()x 1,a ∈时.()f x ∴的单调增区间是()0,1和()a,∞+,单调减区间是()1,a .()2由()1可知()f x 在区间[]1,e 上只可能有极小值点, ()f x ∴在区间[]1,e 上的最大值在区间的端点处取到,即有()()f 112a 10=-+≤且()()2f e e 2a 1e 2a 0=-++≤,解得2e 2ea 2e 2-≥-.即实数a 的取值范围是2e 2ea 2e 2-≥-.【点睛】本题主要考查函数单调性和导数之间的关系,以及不等式恒成立问题,将不等式恒成立转化为求函数的最值是解决本题的关键.25.(1)见解析;(2)均值83x =,方差233s =(3)50% 【解析】 【分析】(1)根据题意,由表格分析可得通过系统抽样分别抽取编号,据此可得样本的评分数据; (2)根据题意,由平均数和方差公式计算可得答案;(3)根据题意,分析评分在(83,即(77.26,88.74)之间的人数,进而计算进而可得答案. 【详解】(1)通过系统抽样抽取的样本编号为:4,8,12,16,20,24,28,32,36,40 则样本的评分数据为:92,84,86,78,89,74,83,78,77,89. (2)由(1)中的样本评分数据可得()1928486788974837877898310x =+++++++++=, 则有()()()()()()()()()()222222222221928384838683788389837483838378837783898310S ⎡⎤=-+-+-+-+-+-+-+-+-+-⎣⎦33=所以均值83x =,方差233s =.(3)由题意知评分在(83即()77.26,88.74之间满意度等级为“A 级”, 由(1)中容量为10的样本评分在()77.26,88.74之间有5人, 则该地区满意度等级为“A 级”的用户所占的百分比约为50.550%10== 【点睛】本题考查系统抽样方法以及数据方差的计算,关键是分析取出的数据,属于基础题.26.(Ⅰ)证明见解析;(Ⅱ)26;(Ⅲ)4.【解析】分析:(Ⅰ)由面面垂直的性质定理可得AD⊥平面ABC,则AD⊥BC.(Ⅱ)取棱AC的中点N,连接MN,ND.由几何关系可知∠DMN(或其补角)为异面直线BC与MD所成的角.计算可得113226MNcosDMNDM∠==.则异面直线BC与MD所成角的余弦值为13.(Ⅲ)连接CM.由题意可知CM⊥平面ABD.则∠CDM为直线CD与平面ABD所成的角.计算可得3CMsin CDMCD∠==.即直线CD与平面ABD所成角的正弦值为3.详解:(Ⅰ)证明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,可得AD⊥平面ABC,故AD⊥BC.(Ⅱ)取棱AC的中点N,连接MN,ND.又因为M为棱AB的中点,故MN∥BC.所以∠DMN(或其补角)为异面直线BC与MD所成的角.在Rt△DAM中,AM=1,故DM22=13AD AM+AD⊥平面ABC,故AD⊥AC.在Rt△DAN中,AN=1,故DN22=13AD AN+.在等腰三角形DMN中,MN=1,可得1132cosMNDMNDM∠==.所以,异面直线BC与MD所成角的余弦值为1326.(Ⅲ)连接CM.因为△ABC为等边三角形,M为边AB的中点,故CM⊥AB,CM3ABC⊥平面ABD,而CM⊂平面ABC,故CM⊥平面ABD.所以,∠CDM为直线CD与平面ABD所成的角.在Rt△CAD中,CD22AC AD+.在Rt△CMD中,3sinCMCDMCD∠==.所以,直线CD与平面ABD3点睛:本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力.。

相关文档
最新文档