高考二项式定理典型例题

合集下载

二项式定理高考题(带答案)

二项式定理高考题(带答案)

1.2018年全国卷Ⅲ理】的展开式中的系数为A. 10B. 20C. 40D. 80【答案】C【解析】分析:写出,然后可得结果详解:由题可得,令,则,所以故选C.2.【2018年浙江卷】二项式的展开式的常数项是___________.【答案】7【解析】分析:先根据二项式展开式的通项公式写出第r+1项,再根据项的次数为零解得r,代入即得结果.详解:二项式的展开式的通项公式为,令得,故所求的常数项为3.【2018年理数天津卷】在的展开式中,的系数为____________.【答案】决问题的关键.4.【山西省两市2018届第二次联考】若二项式中所有项的系数之和为,所有项的系数的绝对值之和为,则的最小值为()A. 2B.C.D.【答案】B5.【安徽省宿州市2018届三模】的展开式中项的系数为__________.【答案】-132【解析】分析:由题意结合二项式展开式的通项公式首先写出展开式,然后结合展开式整理计算即可求得最终结果.详解:的展开式为:,当,时,,当,时,,据此可得:展开式中项的系数为.6.【2017课标1,理6】621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x ++=⋅++⋅+,则6(1)x +展开式中含2x 的项为2226115C x x ⋅=,621(1)x x ⋅+展开式中含2x 的项为44262115C x x x⋅=,故2x 前系数为151530+=,选C.情况,尤其是两个二项式展开式中的r 不同.7.【2017课标3,理4】()()52x y x y +-的展开式中x 3y 3的系数为A .80-B .40-C .40D .80【答案】C 【解析】8.【2017浙江,13】已知多项式()1x +3()2x +2=5432112345x a x a x a x a x a +++++,则4a =________,5a =________.【答案计数.9.【2017山东,理11】已知()13nx +的展开式中含有2x 项的系数是54,则n = .【答案】4【解析】试题分析:由二项式定理的通项公式()1C 3C 3rr r r rr n n x x +T ==⋅⋅,令2r =得:22C 354n ⋅=,解得4n =.【考点】二项式定理10.【2015高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .7 【答案】C【解析】二项式()1nx +的展开式的通项是1C r r r n x +T =,令2r =得2x 的系数是2C n ,因为2x 的系数为15,所以2C 15n =,即2300n n --=,解得:6n =或5n =-,因为n +∈N ,所以6n =,故选C . 【考点定位】二项式定理.【名师点晴】本题主要考查的是二项式定理,属于容易题.解题时一定要抓住重要条件“n +∈N ”,否则很容易出现错误.解本题需要掌握的知识点是二项式定理,即二项式()na b +的展开式的通项是1C k n k k k n ab -+T =. 11.【2015高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )60 【答案】C12.【2015高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式 系数和为( )A.122 B .112 C .102D .92【答案】D【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以73nn C C =,解得10=n ,所以二项式10(1)x +中奇数项的二项式系数和为9102221=⨯.13.【2015高考重庆,理12】53x ⎛+ ⎝的展开式中8x 的系数是________(用数字作答).【答案】52【解析】二项展开式通项为7153521551()()2k k kkk k k T C x C x --+==,令71582k-=,解得2k =,因此8x 的系数为22515()22C =.14.【2015高考广东,理9】在4)1(-x 的展开式中,x 的系数为 . 【答案】6.【解析】由题可知()()44214411r rrrrr r T CC x--+=-=-,令412r-=解得2r =,所以展开式中x 的系数为()22416C -=,故应填入6.【名师点睛】涉及二项式定理的题,一般利用其通项公式求解.15.【2015高考天津,理12】在614x x ⎛⎫- ⎪⎝⎭ 的展开式中,2x 的系数为 .【答案】1516【解析】614x x ⎛⎫- ⎪⎝⎭展开式的通项为6621661144rrr r r r r T C x C x x --+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,由622r -=得2r =,所以222236115416T C x x ⎛⎫=-= ⎪⎝⎭,所以该项系数为1516.16.【2015高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________. 【答案】3【解析】由已知得4234(1)1464x x x x x +=++++,故4()(1)a x x ++的展开式中x 的奇数次幂项分别为4ax ,34ax ,x ,36x ,5x ,其系数之和为441+6+1=32a a ++,解得3a =.【考点定位】二项式定理.17.【2015高考湖南,理6】已知5-的展开式中含32x 的项的系数为30,则a =( )B. C.6 D-6 【答案】D.18.【2015高考上海,理11】在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为(结果用数值表示). 【答案】45【解析】因为10101019102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++⎪ ⎪⎝⎭⎝⎭,所以2x 项只能在10(1)x +展开式中,即为8210C x ,系数为81045.C = 19.(2016年北京高考)在6(12)x -的展开式中,2x 的系数为__________________.(用数字作答) 【答案】60.20.(2016年山东高考)若(a x 2)5的展开式中x 5的系数是—80,则实数a =_______. 【答案】-221.(2016年上海高考)在nx x ⎪⎭⎫ ⎝⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_________ 【答案】11222.(2016年四川高考)设i 为虚数单位,则6(i)x +的展开式中含x 4的项为(A )-15x 4 (B )15x 4 (C )-20i x 4 (D )20i x 4【答案】A23.(2016年天津高考)281()x x-的展开式中x 2的系数为__________.(用数字作答)【答案】56-24.(2016年全国I 高考)5(2x +的展开式中,x 3的系数是 .(用数字填写答案) 【答案】10。

(完整版)二项式定理典型例题解析.docx

(完整版)二项式定理典型例题解析.docx

二项式定理 概 念 篇【例 1】求二项式 ( a - 2b)4 的展开式 . 分析:直接利用二项式定理展开.解:根据二项式定理得(a - 2b)4=C 04 a 4+C 14 a 3( - 2b)+C 24 a 2(- 2b)2+C 34 a( - 2b)3+C 44 ( -2b) 4=a 4 - 8a 3b+24a 2b 2- 32ab 3 +16b 4.说明:运用二项式定理时要注意对号入座,本题易误把- 2b 中的符号“-”忽略 .【例 2】展开 (2x - 32) 5.2x分析一:直接用二项式定理展开式.解法一: (2x -35 05143233 232332x2) =C 5 (2x) +C 5 (2x) (- 2x 2)+C 5 (2x) (-2x 2 ) +C 5 (2x) (- 2x2) +C 54 (2x)( -3) 4+C 55(-3)52x 22x 2=32x 5- 120x 2+180 - 135 + 405-243x4 7 10 .x 8x 32x分析二:对较繁杂的式子,先化简再用二项式定理展开 .解法二: (2x -35(4x 3 3)5 2x 2) =32x10=110 [ C 05 (4x 3)5+C 15 (4x 3 )4(- 3)+C 52 (4x 3)3(- 3)2+C 35 (4x 3)2(- 3)3+C 45 (4x 3)(- 3)4+32xC 55 (-3) 5]1 10 (1024x 15- 3840x 12+5760x 9-4320x 6+1620x 3- 243)=32x=32x 5- 120x 2+180-135+ 405 - 243 .xx 4 8x 732x 10说明:记准、记熟二项式(a+b)n 的展开式是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便.【例 3】在 (x - 3 )10 的展开式中, x 6的系数是.解法一:根据二项式定理可知x 6 的系数是 C 104 .解法二: (x - 3 )10 的展开式的通项是r-r(- 3 )r .T r+1=C 10 x 10令 10- r =6,即 r=4,由通项公式可知含 x 6 项为第 5 项,即 T 4+1 =C 104 x 6(- 3 )4=9C 104 x 6.∴ x 6 的系数为 9C 104 .上面的解法一与解法二显然不同,那么哪一个是正确的呢? 问题要求的是求含x 6 这一项系数,而不是求含x 6 的二项式系数,所以应是解法二正确.如果问题改为求含 x 6 的二项式系数,解法一就正确了,也即是C 104 . 说明:要注意区分二项式系数与指定某一项的系数的差异 .二项式系数与项的系数是两个不同的概念,前者仅与二项式的指数及项数有关, 与二项式无关,后者与二 式、二 式的指数及 数均有关.【例 4】已知二 式(3 x - 2)10,3x(1)求其展开式第四 的二 式系数; (2)求其展开式第四 的系数; (3)求其第四 .分析:直接用二 式定理展开式.解: (3 x -210的展开式的通 是Trx10-r- 2r, ,⋯,)=C 10 (3) ( ) (r=0 10).3x3x 1(1)展开式的第 4 的二 式系数C 103 =120.(2)展开式的第 43 72 3的系数 C 103 (-) =- 77760.3(3)展开式的第 4 - 77760( x )7 1,即- 77760x .x 3明:注意把 (3x - 2) 10写成[ 3 x +(-2)] 10,从而凑成二 式定理的形式 .3x3x【例 5】求二 式( x 2+ 1)10 的展开式中的常数 .2 x分析:展开式中第r +1C 10r(x 2 )10-r (21)r ,要使得它是常数 ,必 使“x ”的指x数 零,依据是x 0=1, x ≠ 0.解: 第 r +1 常数 ,1 rr 20 51 r 5 r- rr() =C 10 x( ) (r =0 , 1,⋯, 10),令 20- r=0,得 r=8.T r +1=C 10 (x )2 2x2∴ T 9=C 108( 1)8= 45 .2256∴第 9 常数 ,其45 .256明:二 式的展开式的某一 常数 ,就是 不含 “ 元”,一般采用令通 T r+1中的 元的指数 零的方法求得常数 .【例 6】(1) 求 (1+2x)7 展开式中系数最大 ;(2)求 (1- 2x)7 展开式中系数最大 .分析:利用展开式的通 公式, 可得系数的表达式,列出相 两 系数之 关系的不等式, 而求出其最大 .解: (1) 第 r+1 系数最大, 有C r 7 2r C r 7 1 2r 1,C r 7 2r C r 7 12r 1,7 !2r7 !2r 1,即 r !(7 r ) !(r 1) !(7 r 1) !7 !2r (r7 ! r2r 1, r !(7 r ) !1) !(7 1) !2 1 ,r 16 ,化 得r8 r 解得3又∵ 0≤ r ≤ 7,∴ r=5.71 r2 .r13.r 13∴系数最大T 6=C 75 25x 5=672x 5.(2)解:展开式中共有 8 ,系数最大 必 正 ,即在第一、三、五、七 四 中取得.又因 (1- 2x)7 括号内的两 中后两 系数的 大于前 系数的 ,故系数最大必在中 或偏右,故只需比T 57两 系数的大小即可C 74 ( 2)4C 73 > 1,所以系数和 T. 6( 2) =1C 7 4C 7最大 第五 ,即T 5=560x 4.明:本例中(1) 的解法是求系数最大 的一般解法,(2) 的解法是通 展开式多 分析,使解 程得到 化,比.【例 7】 (1+2x)n 的展开式中第6 与第7 的系数相等,求展开式中二 式系数最大的 和系数最大的 .分析:根据已知条件可求出n ,再根据 n 的奇偶性确定二 式系数最大的 .解: T 6=C n 5 (2x)5, T 7=C n 6 (2x)6,依 意有 C 5n 25=C n 6 26,解得 n=8. (1+2 x)8 的展开式中,二 式系数最大的 T 5=C n 4 (2x)4=1120x 4.C 7r 2rC 7r 1 2r 1 ,第 r +1 系数最大, 有C 7r 2rC 7r 1 2r 1.∴ 5≤ r ≤6.∴ r =5 或 r =6.∴系数最大的 T 6=1792x 5 ,T 7=1792x 6.明: (1)求二 式系数最大的 , 根据二 式系数的性 ,n 奇数 中 两 的二式系数最大; n 偶数 ,中 一 的二 式系数最大 .(2) 求展开式中系数最大 与求二 式系数最大 是不同的,需根据各 系数的正、化情况,一般采用列不等式,再解不等式的方法求得.用 篇【例 8】若 n ∈N * , (2 +1)n= nnn 、 n ∈Z) ,b n 的()2 a +b (abA. 一定是奇数B. 一定是偶数C.与 b n 的奇偶性相反D.与 a 有相同的奇偶性分析一:形如二 式定理可以展开后考 .解法一:由 ( 2 +1)n =n n ,知 n n2 ) n2 a +b 2 a +b =(1+=C n 0 +C 1n 2 +C n 2 ( 2 )2+C n 3 ( 2 )3+ ⋯ +C n n (2 )n .∴ b n =1+C 2n ( 2 )2+C 4n ( 2 )4+ ⋯∴ b n 奇数 . 答案: A分析二: 的答案是唯一的,因此可以用特殊 法 .解法二: n ∈ N * ,取 n=1 , (2 +1) 1=( 2 +1) ,有 b 1=1 奇数 .取 n=2 , ( 2 +1)2=2 2 +5,有 b 2=5 奇数 .答案: A【例 9】若将 (x+y+z)10 展开 多 式, 合并同 后它的 数()A.11B.33C.55D.66分析: (x+y+z)10 看作二 式[( x y)10z ] 展开 .解:我 把 x+y+z 看成 (x+y)+z ,按二 式将其展开,共有11“ ”,即 (x+y+z)10=10[( x10k10-k ky) z ] =C 10 (x+y) z .k 0,由于“和”中各 z 的指数各不相同,因此再将各个二 式(x+y) 10-k 展开,不同的乘 C 10k (x+y)10-k z k (k=0, 1,⋯, 10)展开后,都不会出 同 .下面,再分 考 每一个乘C 10k (x+y)10-k z k (k=0 , 1,⋯, 10).其中每一个乘 展开后的 数由(x+y)10-k 决定,而且各 中 x 和 y 的指数都不相同,也不会出 同 .故原式展开后的 数11+10+9+⋯ +1=66.答案: D明:化三 式 二 式是解决三 式 的常用方法 .【例 10】求 (| x | +1- 2)3 展开式中的常数 .| x |分析:把原式 形 二 式定理 准形状 .解:∵ (| x | + 1- 2)3=(| x | - 1)6,| x || x |∴展开式的通 是T r+1=C 6r ( | x | )6-r (- 1 )r =(- 1)r C 6r ( | x | )6- 2r .| x |若 T r+1 常数 , 6- 2r =0, r =3.∴展开式的第 4 常数 ,即 T 4=-C 36 =- 20.明: 某些不是二 式,但又可化 二 式的 目,可先化 二 式,再求解 .【例 11】求 ( x - 3 x )9 展开式中的有理 .分析:展开式中的有理 ,就是通 公式中x 的指数 整数的.1127 r解:∵ T r+1=C 9r (x 2 )9-r (- x 3 )r =(- 1)r C 9r x6.令 27r∈ Z ,即 4+3r∈ Z ,且 r=0 , 1, 2,⋯, 9.66∴ r=3 或 r =9.当 r=3 , 27 r =4, T 4=(- 1)3C 39 x 4=- 84x 4. 6当 r=9 ,27 r=3, T 10=( - 1)9C 99 x 3=-x 3.6∴ ( x - 3 x )9的展开式中的有理 是第 4 - 84x 4,第 10 - x 3.明:利用二 展开式的通 T r +1 可求展开式中某些特定 .【例 12】若 (3x - 1)77 7 6 61=a x +a x + ⋯ +a x+a ,求(1)a 1 +a 2 ⋯+a 7; (2)a 1 +a 3 +a 5+a 7;0 2 4 6(3)a +a +a +a .分析:所求 果与各 系数有关可以考 用“特殊 ”法,整体解决 .解: (1)令 x=0, a 0=- 1,令 x=1 , a 7+a 6+ ⋯ +a 1+a 0=27=128.①∴ a 1+a 2+⋯ +a 7=129.(2)令 x=- 1, a 7+a 6+a 5+a 4+a 3+a 2+a 1+a 0=( -4) 7.②由(1) ( 2)得: a 1+a 3+a 5+a 7= 1[ 128- (- 4)7] =8256.22(3)由 (1) (2) 得 a 0 +a 2+a 4+a 6 = 1 [ 128+(-4) 7] =- 8128.2 2明: (1)本解法根据 恒等式特点来用“特殊 ”法, 是一种重要的方法,它用于恒等式 .(2)一般地, 于多 式g(x)=( px+q)n =a 0+a 1x+a 2x 2+a 3x 3+a 4x 4 +a 5x 5+a 6x 6+a 7x 7, g(x)各 的系数和g(1),g(x)的奇数 的系数和1[ g(1)+ g(- 1)],g(x)的偶数 的系数和1[ g(1)22- g (- 1)] .【例 13】 明下列各式(1)1+2C 1n +4C 2n + ⋯ +2n -1C n n 1 +2n C n n =3n ;(2)(C 0n )2+(C 1n ) 2+ ⋯ +(C n n )2=C n 2 n ;(3)C 1n +2C 2n +3C 3n + ⋯ +nC n n =n2n -1.分析: (1)(2) 与二 式定理的形式有相同之 可以用二 式定理,形如数列求和,因此可以研究它的通 求 律 .明: (1)在二 展开式 (a+b)n =C 0n a n +C 1n a n -1b+C 2n a n -2b 2+ ⋯ +C n n 1 ab n -1+C n n b n 中,令 a=1, b=2,得 (1+2) n =1+2C 1n +4C 2n + ⋯ +2n -1C n n 1 +2n C n n ,即1 2+ ⋯ +2n -1n 1 n n =3n.1+2C n +4C nC n +2 C n(2)(1+ x)n (1+x)n =(1+ x) 2n ,12r12r2n.∴ (1+C n x+C n x 2+ ⋯ +C n x r + ⋯ +x n )(1+C n x+C n x 2+ ⋯ +C n x r + ⋯ +x n )=(1+ x)而 Cn 是 (1+ x)2n 的展开式中 x n 的系数,由多 式的恒等定理,得2nC 0n C n n +C 1n C n n 1 + ⋯ +C 1n C n n 1 +C n n C 0n =C n 2n . ∵ C m n =C n n m , 0≤ m ≤ n ,∴ (C n 0 )2+(C 1n )2+ ⋯ +(C n n )2=C 2n n .(3) 法一:令 S=C 1n +2C n 2 +3C n 3 + ⋯ +nC n n . ①令 S=C 1n +2C n 2 + ⋯ +(n - 1)C n n 1 +nC n n =nC n n +(n - 1)C n n 1 + ⋯ +2C n 2 +C 1n=nC n n +(n - 1)C 1n + ⋯ +2C n n 2 +C n n 1 .②由① +②得 2S=nC 1n +nC n2 +nC n3 + ⋯ +nC n n =n(C n n +C 1n +C n2 +C n3+ ⋯ +C n n ) 0123n=n(C n+C n +C n +C n + ⋯ +C n )=n2n.∴ S=n2n-1,即 C 1n +2C n2 +3C 3n + ⋯ +nC n n =n2n-1.法二:察通:kC n k =k n n( n1) !nC n k11 .k ! (n k) !(k1)! (n k) !∴原式 =nC +C n n11 )= n2n-1,12即C n +2C n0121 +nC3+⋯n 101231 +⋯n 1 +nC n 1+nC n n 1+nC n 1=n(C n 1+C n 1+C n 1 +C n 3⋯n n-1+3C n ++nC n =n2 .明:解法二中 kC n k =nC n k11可作性住 .【例 14】求 1.9975精确到 0.001的近似 .分析:准确使用二式定理把 1.997 拆成二之和形式如 1.997=2- 0.003.解: 1.9975=(2- 0.003)5=25- C 15 240.003+C 52 230.0032- C 35 220.0033+⋯≈32-0.24+0.00072 ≈ 31.761.明:利用二式定理行近似算,关是确定展开式中的保留,使其足近似算的精确度 .【例 15】求: 5151-1 能被 7 整除 .分析:了在展开式中出7 的倍数,把51 拆成 7 的倍数与其他数的和(或差 )的形式.明: 5151-1=(49+2) 51-1=C 051 4951+C 151 49502+ ⋯ +C 5051 49· 250+C 5151 251- 1,易知除 C 5151 251- 1 以外各都能被7 整除 .又 251- 1=(2 3)17- 1=(7+1) 17- 1=C0717+C1716+⋯+C167+C17-171717171=7(C 170 716+C 171 715+⋯ +C 1716 ).然能被 7 整除,所以5151- 1 能被 7 整除 .明:利用二式定量明有关多式(数 )的整除,关是将所多式通恒等形二式形式,使其展开后的各均含有除式.新篇【例 16】已知 (x lgx+1) n的展开式的最后三系数之和22,中一20000. 求 x.分析:本看似繁,但只要按二式定理准确表达出来,不求解!解:由已知 C n n +C n n 1 +C n n 2 =22,即 n2+n- 42=0. 又 n∈ N*,∴ n=6.T4中一, T4=C 3lg x 3,即 (xlgx 3lg x=10. 6(x ) =20000)=1000. x两取常用数,有1 lg2x=1, lgx=± 1,∴ x=10 或 x= .10明:当目中已知二展开式的某些或某几之的关系,常利用二式通公式,根据已知条件列出等式或不等式行求解.【例 17】 f(x)=(1+ x)m+(1+ x)n(m, n∈ N* ),若其展开式中关于x 的一次的系数和11, m,n 何,含 x2的系数取最小?并求个最小.分析:根据已知条件得到x2的系数是关于 x 的二次表达式,然后利用二次函数性探最小 .解: C 1m +C 1n =n+m=11. C m2+C n 2 =1(m2-m+n2- n)=m2n211 ,22∵ n∈N *,∴ n=6 或 5, m=5 或 6 , x 2 系数最小,最小 25.明:本 是一道关于二次函数与 合的 合 .【例 18】若 (x+ 1- 2)n 的展开式的常数 -20,求 n.x分析: 中 x ≠ 0,当 x > 0 ,把三 式 (x+1- 2)n化 ( x -1)2n ;当 x < 0 ,xx同理 (x+1-2) n nx - 1 2 n x 的 指数 零, 而解出 n.x=(- 1) () .然后写出通 ,令含x解:当 x > 0 , ( x+ 1- 2)n =(x -1 )2n ,xx其通 T r+1=C 2n r( x )2n -r (-1)r =(- 1)r C 2r n ( x )2n -2r .x令 2n - 2r=0 ,得 n=r ,∴展开式的常数 (- 1)r C 2n n ;当 x < 0 , (x+ 1-2) n =(- 1)n(x -1)2n .同理可得,展开式的常数 (- 1)r C 2n n .xx无 哪一种情况,常数 均 (- 1)r C 2n n .令 (- 1)r C 2n n =20.以 n=1,2, 3,⋯,逐个代入,得n=3.明:本 易忽略x < 0 的情况 .【例 19】利用二 式定理 明(2 n -1 2.) <n31分析:2 不易从二 展开式中得到,可以考 其倒数n 1 .n 12明:欲 (2)n -1 < 21成立,只需 (3)n -1<n1成立 .3n22而 ( 3)n - 1=(1+ 1)n - 1=C n1 +C1n 11+C n 21 ( 1)2+ ⋯ +C n n 11 (1)n -122222=1+ n 1 21 2⋯n 1 1) n -12+C n1 () ++C n 1 (22>n 1.2明:本 目的 明 程中将( 3)n -1化 (1+ 1)n -1,然后利用二 式定理展开式是解2 2决本 的关 .【例 20】求 : 2≤ (1+1) n < 3(n ∈N * ).n1 n 与二 式定理 构相似,用二 式定理展开后分析.分析: (1+)n明:当 n=1 , (1+ 1)n =2.n当 n ≥2 , (1+ 1)n=1+C 1n n又C n k ( 1 )k = n(n 1) (nnk ! n k1 +C n2 1 + ⋯ +C n n ( 1 )n =1+1+C n 2 1 + ⋯ +C n n ( 1 )n> 2.n n 2 n n 2n k 1) ≤ 1 ,k !所以 (1+ 1)n≤ 2+1+ 1 + ⋯ + 1< 2+1 + 1 + ⋯ + 1n2 !3 !n!1 2 2 3 ( n 1) n=2+(1 -1)+(1 - 1 )+ ⋯ +( 1 - 1)22 3 n 1 n=3- 1< 3.n上有 2≤ (1+1)n < 3.n明:在此不等式的 明中,利用二 式定理将二 式展开,再采用放 法和其他有关知 ,将不等式 明到底 .【例 21】求 : 于n ∈N *, (1+ 1) n< (1+ 1)n+1 .nn 1分析: 构都是二 式的形式,因此研究二 展开式的通 是常用方法 .明: (1+1) n展开式的通 Tr1A n rnr+1 =C n n r=r ! n r= 1 n(n 1)(n 2) (n r 1)r ! n r=1 (1-12 r 1 ).r !)(1 -)⋯ (1-nnn(1+1 )n+1展开式的通 T ′ r+1=C n r11 1) r =A n r 1 rn 1( n r !(n 1)=1 n(n 1)(n 2) (n r1)r !n r= 1 (1- 1 )(1- 2)⋯ (1-r1 ).r !n 1n 1n1由二 式展开式的通 可明 地看出 T r+1< T ′ r+1所以 (1+ 1 )n< (1+1)n+1nn 1明:本 的两个二 式中的两 均 正 ,且有一 相同. 明 ,根据 特点,采用比 通 大小的方法完成本 明.【例 22】 a 、 b 、c 是互不相等的正数,且a 、b 、c 成等差数列, n ∈ N * ,求 : a n +c n>2b n .分析: 中 未出 二 式定理的形式,但可以根据a 、b 、c 成等差数列 造条件使用二 式定理 .明: 公差d , a=b - d , c=b+d.a n +c n - 2b n =(b - d)n +( b+d)n - 2b nn1n - 12n - 2 2nn n1n - 12n - 22n=[ b - C n b d+C n bd + ⋯ +(- 1) d ]+[ b +C n bd+C n bd + ⋯ +d ]明:由 a 、 b 、 c 成等差,公差 d ,可得 a=b - d , c=b+d , 就 利用二 式定理 明此 造了可能性 . 即(b - d)n +(b+d) n > 2b n ,然后用作差法改(b - d)n +( b+d)n- 2b n > 0.【例 23】求 (1+2x - 3x 2)6 的展开式中x 5 的系数 .分析:先将 1+2x - 3x 2 分解因式, 把三 式化 两个二 式的 , 即(1+2 x - 3x 2)6 =(1+3x)6 (1- x)6.然后分 写出两个二 式展开式的通 ,研究乘x 5 的系数, 可得到解决.解:原式 =(1+3 x)6(1 -x)6,其中 (1+3x)6 展开式之通T k+1=C k 6 3k x k , (1- x)6 展开式之通 T r+1=C r 6 (- x)r .原式 =(1+3x) 6(1- x)6 展开式的通C 6k C 6r (- 1)r 3k x k+r .要使 k+r =5,又∵ k ∈ {0 , 1, 2, 3, 4, 5, 6} , r ∈{0 , 1,2, 3, 4, 5, 6} ,必k 0, 或 k 1, 或 k 2, 或 k 3, 或 k 4, 或 k 5,r 5r4r 3r2r 1r 0 .故 x 5 系数 C 60 30C 65 (- 1)5+C 16 31 C 64 (- 1)4+C 62 32C 63 ( - 1)3+C 63 33C 62 (- 1)4+C 64 34C 16(- 1)+C 65 35 C 60 (- 1)0=- 168.明:根据不同的 构特征灵活运用二 式定理是本 的关.【例 24】 (2004年全国必修 + 修 1)(x -1)6 展开式中的常数 ()xA.15B.- 15C.20D.- 203r3解析: Trr6-r - rrr 32x) =(- 1) C2,当 r=2 ,3-2=15.r +1=(- 1)C 6 (xxr=0 ,T 3=( -1) C62答案: A【例 25】 (2004 年江 )(2x+ x )4 的展开式中 x 3 的系数是 ()A.6B.12C.24D.48解析:T r +12 rr rx ) 4-r (2x) r =( -1) r r r 2,当 r =2 ,2+ r3- 22=24.=(- 1) C 4 (2 C 4 x2 =3 ,T =( 2) C 4答案: C【例 26】 (2004年福建理 )若 (1- 2x )9展开式的第3288, lim 1 1+ ⋯ +1( +2n)nxxx的 是 ()A.2B.11D.2C.52解析: T r+1=( -1) r C r 9 (2 x )r =(-1) r C r 9 2xr ,当 r =2 , T 3=(- 1)2C 92 22x =288.∴ x= 3.21 112 ∴ lim3 =2.( + 2 + ⋯+n)= nxxx123答案: A【例 27】 (2004 年福建文 )已知 (x - a)8 展开式中常数1120,其中 数 a 是常数,x展开式中各 系数的和是( )A.28B.38C.1 或 38D.1 或 28解析: Tr+1=( -1) rr8 -ra r rr8-2r,当 r=4 , T4 4 =1120,∴ a=± 2.C x() =(- a)C x=(- a) Cx∴有函数 f(x)=(x - a)8.令 x=1, f(1)=1 或 38.x答案: C【 例 28 】(2004 年 天 津 ) 若 (1 - 2x)20040 12 22004 2004=a +a x+a x + ⋯ +ax(x ∈ R) , (a +a )+( a +a)+0 10 2(a 0+a 3)+ ⋯ +(a 0+a 2004)= .(用数字作答 )解析:在函数 f(x)=(1 - 2x)2004中, f(0)= a 0 0 1 2+ ⋯ +a 2004,=1, f(1)=a +a +a=1 (a 0+a 1 )+(a 0+a 2)+( a 0 +a 3 )+⋯+( a 0 +a 2004) =2004a 0 +a 1+a 2+ ⋯ +a 2004=2003a 0 +a 0+a 1+a 2+ ⋯ +a 2004 =2003f(0)+ f(1) =2004.答案: 2004。

二项式定理(习题含答案)

二项式定理(习题含答案)

二项式定理一、 求展开式中特定项 1、在的展开式中,的幂指数是整数的共有( ) A .项 B .项 C .项 D .项 【答案】C 【解析】,,若要是幂指数是整数,所以0,6,12,18,24,30,所以共6项,故选C . 3、若展开式中的常数项为 .(用数字作答) 【答案】10【解】由题意得,令,可得展示式中各项的系数的和为32,所以,解得,所以展开式的通项为,当时,常数项为, 4、二项式的展开式中的常数项为 . 【答案】112【解析】由二项式通项可得,(r=0,1,,8),显然当时,,故二项式展开式中的常数项为112.5、的展开式中常数项等于________. 【答案】.【解析】因为中的展开式通项为,当第一项取时,,此时的展开式中常数为;当第一项取时,,此时的展开式中常数为;所以原式的展开式中常数项等于,故应填. 6、设,则的展开式中常数项是 . 【答案】30x 4567()r r rrr r x C x x C T 6515303303011--+⋅=⎪⎪⎭⎫ ⎝⎛⋅⋅=30......2,1,0=r =r 2531()x x +1x =232n =5n =2531()x x+10515r r r T C x -+=2r =2510C=82)x3488838122rrr r rr r x C xx C --+-=-=)()()(T 2=r 1123=T 41(2)(13)x x--1441(2)(13)x x--4(13)x -4C (3)r r x -204C 1=21x-14C (3)12x -=-12141420sin 12cos 2x a x dx π⎛⎫=-+ ⎪⎝⎭⎰()622x ⎛⋅+ ⎝332=-332,的展开式的通项为,所以所求常数项为.二、 求特定项系数或系数和7、的展开式中项的系数是( )A .B .C .D . 【答案】A【解析】由通式,令,则展开式中项的系数是.8、在x (1+x )6的展开式中,含x 3项的系数是 . 【答案】15【解】的通项,令可得.则中的系数为15. 9、在的展开式中含的项的系数是 . 【答案】-55【解析】的展开式中项由和两部分组成,所以的项的系数为. 10、已知,那么展开式中含项的系数为 . 【答案】135【解析】根据题意,,则中,由二项式定理的通项公式,可设含项的项是,可知,所以系数为. 11、已知,则等于( )A .-5B .5C .90D .180【答案】D 因为,所以等于选D. 12、在二项式 的展开式中,只有第5项的二项式系数最大,则________;展开式中的第4项=_______.6(=6663166((1)2r r r r r rr r T C C x ---+==-⋅⋅3633565566(1)22(1)2T C C --=-⋅⋅+-⋅332=-8()x 62x y 5656-2828-r r r y x C )2(88--2=r 62x y 56)2(228=-C ()61x +16r rr T C x +=2r =2615C =()61x x +3x 6(1)(2)x x -⋅-3x 6(1)(2)x x -⋅-3x 336)(2x C -226)(x -x C -⋅)(3x 552-2636-=-C C dx xn 16e1⎰=nx x )(3-2x 66e 111ln |6e n dx x x=⎰==n x x )(3-1r n r r r n T C a b -+=2x 616(3)r rr r T C x -+=-2r =269135C ⨯=()()()()10210012101111x a a x a x a x +=+-+-++-L 8a 1010(1)(21)x x +=-+-8a 8210(2)454180.C -=⨯=1)2nx =n【答案】,.【解析】由二项式定理展开通项公式,由题意得,当且仅当时,取最大值,∴,第4项为. 13、如果,那么的值等于( )(A )-1 (B )-2 (C )0 (D )2 【答案】A【解析】令,代入二项式,得,令,代入二项式,得,所以,即,故选A .14、(﹣2)7展开式中所有项的系数的和为【答案】-1 解:把x=1代入二项式,可得(﹣2)7=﹣1,15、(x ﹣2)(x ﹣1)5的展开式中所有项的系数和等于 【答案】0解:在(x ﹣2)(x ﹣1)5的展开式中,令x=1,即(1﹣2)(1﹣1)5=0, 所以展开式中所有项的系数和等于0. 16、在的展开式中,所有项的系数和为,则的系数等于 .【答案】【解析】当时,,解得,那么含的项就是,所以系数是-270. 17、设,若,则.【答案】0.81937x -21()(2)33111()()22n r n r r r r r r r nn T C x x C x -++=-⋅=-4n =r n C 8n =119(163)333381()72C x x +-=-7270127(12)x a a x a x a x -=++++017a a a +++1x =7270127(12)x a a x a x a x -=++++70127(12)1a a a a -=++++=-0x =7270127(12)x a a x a x a x -=++++70(10)1a -==12711a a a ++++=-1272a a a +++=-*3)()n n N -∈32-1x 270-1=x ()322--=n5=n x 1()x x C 1270313225-=-⨯⎪⎪⎭⎫ ⎝⎛⨯0(sin cos )k x x dxπ=-⎰8822108)1(x a x a x a a kx ++++=- 1238a a a a +++⋅⋅⋅+=【解析】由,令得:,即再令得:,即所以18、设(5x ﹣)n 的展开式的各项系数和为M ,二项式系数和为N ,若M ﹣N=240,则展开式中x 的系数为 . 【答案】150解:由于(5x ﹣)n 的展开式的各项系数和M 与变量x 无关,故令x=1,即可得到展开式的各项系数和M=(5﹣1)n=4n.再由二项式系数和为N=2n ,且M ﹣N=240,可得 4n ﹣2n =240,即 22n ﹣2n ﹣240=0. 解得 2n =16,或 2n =﹣15(舍去),∴n=4.(5x ﹣)n 的展开式的通项公式为 T r+1=?(5x )4﹣r?(﹣1)r ?=(﹣1)r ??54﹣r ?.令4﹣=1,解得 r=2,∴展开式中x 的系数为 (﹣1)r ??54﹣r =1×6×25=150,19、设,则 .【答案】 【解析】,所以令,得到, 所以 三、 求参数问题20、若的展开式中第四项为常数项,则( )A .B .C .D .(sin cos )(cos sin)k x x dxx x ππ=-=--⎰(cos sin )(cos0sin 0)2ππ=-----=1x =80128(121)a a a a -⨯=++++01281a a a a ++++=0x =80128(120)000a a a a -⨯=+⨯+⨯++⨯01a =12380a a a a +++⋅⋅⋅+=8877108)1(x a x a x a a x ++++=- 178a a a +++=255178a a a +++=87654321a a a a a a a a +-+-+-+-1-=x =82876543210a a a a a a a a a +-+-+-+-2551256-20887654321=-==+-+-+-+-a a a a a a a a a nn =4567【答案】B【解析】根据二项式展开公式有第四项为,第四项为常数,则必有,即,所以正确选项为B. 21、二项式的展开式中的系数为15,则 ( ) A 、5 B 、 6 C 、8 D 、10 【答案】B【解析】二项式的展开式中的通项为,令,得,所以的系数为,解得;故选B . 22、(a +x)4的展开式中x 3的系数等于8,则实数a =________.【答案】2【解析】∵,∴当,即时,. 23、若的展开式中的系数为10,则实数( ) A或1 B .或1 C .2或 D . 【答案】B .【解析】由题意得的一次性与二次项系数之和为14,其二项展开通项公式, ∴或,故选B .24、设,当时,等于( )A .5B .6C .7D .8 【答案】C . 【解析】令,则可得,故选C . 四、 其他相关问题25、20152015除以8的余数为( ) 【答案】7【解析】试题分析:先将幂利用二项式表示,使其底数用8的倍数表示,利用二项式定理展开得到余数.2533333342)21()(---==n nn nxC xx C T 025=-n 5=n )()1(*N n x n ∈+2x =n )()1(*N n x n ∈+k n kn k x C T -+⋅=12=-k n 2-=n k 2x 152)1(22=-==-n n C C n n n 6=n 4r+14T =C r r r a x-43r -=1r =133324T =C 48,2ax ax x a ==∴=()()411x ax ++2x a =53-53-4(1)ax +14r r rr T C a x +=22144101C a C a a +=⇒=53-23(1)(1)(1)(1)n x x x x ++++++⋅⋅⋅++2012n n a a x a x a x =+++⋅⋅⋅+012254n a a a a +++⋅⋅⋅+=n 1x =2312(21)22222225418721n nn n n +-+++⋅⋅⋅+==-=⇒+=⇒=-试题解析:解:∵20152015=2015=?20162015﹣?20162014+?20162013﹣?20162012+…+?2016﹣,故20152015除以8的余数为﹣=﹣1,即20152015除以8的余数为7,。

关于二项式定理的高考题

关于二项式定理的高考题

关于二项式定理的高考题类型一:利用通项公式求展开式中某项的系数的问题1 、(2006 年北京理 10) 在( x - )7 的展开式中, x2 的系数是 。

2 、(2006 年陕西理 14) (3x - )12 展开式中 x -3 的系数为 。

x3、(2005 年广东 13) 已知(x cos9 +1)5 的展开式中 x 2 的系数与 (x+ 5)4 的展开式中 x 3 的4系数相等,则 cos9= 。

4、(2004 年全国 II 13 文)已知 a 为实数, (x + a)10 展开式中 x 7 的系数是-15,则 a = 。

5 、(2006 年安徽理 13) 设常数a >0, (ax 2 + 1 )4 展开式中 x 3 的系数为 3,则x 2lim ( a + a 2 + … a n ) = 。

n)w6、若(|(x 2+ ax1))|6 的二项展开式中的 x 3 系数为 25,则 a = (用数字作答) 。

7 、(2x- 1) 6 展开式中 x 2 的系数为。

( )A . 15B . 60C . 120D . 2408、在(1+ x)n (n =N*)的二次展开式中,若只有 x 5 的系数最大,则 n = ( ) A . 8 B . 9 C . 10 D . 119、(1 + 2x)5 的展开式中 x 2 项的系数..是 。

(用 D 1C 1B数字作答) 1110、已知 (1+ kx 2 )6 (k 是正整数)的展开式中, x 8 的系 E F 数小于 120,则 k = 。

Dx C 11 、 (1+ ) 5 的展开式中 x 2的系数( )2A B2 xA 12A . 10B . 5C .D . 1512 、 |x - | 的二项展开式中, x 2 的系数是(用数字作答) 。

2 x114 、若(x+ )n 的展开式中前三项的系数成等差数,则展开式中 x 4 项的系数为 ( )2xA . 6B . 7C . 8D . 9115 、 (x+ ) 9 展开式中x 3 的系数是 。

二项式定理典型例题(含解答)

二项式定理典型例题(含解答)

二项式定理典型例题典型例题一例1 在二项式nx x ⎪⎭⎫ ⎝⎛+421的展开式中前三项的系数成等差数列,求展开式中所有有理项.分析:典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决.解:二项式的展开式的通项公式为:4324121C 21)(C rn r r n rr n r n r x x x T --+=⎪⎭⎫ ⎝⎛= 前三项的.2,1,0=r 得系数为:)1(8141C ,2121C ,123121-=====n n t n t t nn , 由已知:)1(8112312-+=+=n n n tt t ,∴8=n 通项公式为1431681,82,1,021C +-+==r rr rr T r x T 为有理项,故r 316-是4的倍数,∴.8,4,0=r 依次得到有理项为228889448541256121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类似地,1003)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有典型例题四例4(1)求103)1()1(x x +-展开式中5x 的系数;(2)求6)21(++xx 展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式.解:(1)103)1()1(x x +-展开式中的5x 可以看成下列几种方式得到,然后合并同类项:用3)1(x -展开式中的常数项乘以10)1(x +展开式中的5x 项,可以得到5510C x ;用3)1(x -展开式中的一次项乘以10)1(x +展开式中的4x 项可得到54104410C 3)C )(3(x x x -=-;用3)1(x -中的2x 乘以10)1(x +展开式中的3x 可得到531033102C 3C 3x x x =⋅;用 3)1(x -中的3x 项乘以10)1(x +展开式中的2x 项可得到521022103C C 3x x x -=⋅-,合并同类项得5x 项为:5521031041051063)C C 3C C (x x -=-+-.(2)2121⎪⎪⎭⎫ ⎝⎛+=++x x x x 1251)21(⎪⎪⎭⎫ ⎝⎛+=++x x x x .由121⎪⎪⎭⎫⎝⎛+x x 展开式的通项公式r rrrrr x x T --+=⎪⎭⎫ ⎝⎛=61212121C 1)2(C ,可得展开式的常数项为924C 612=.说明:问题(2)中将非二项式通过因式分解转化为二项式解决.这时我们还可以通过合并项转化为二项式展开的问题来解决.典型例题五例5 求62)1(x x -+展开式中5x 的系数.分析:62)1(x x -+不是二项式,我们通过22)1(1x x x x -+=-+或)(12x x -+展开. 解:方法一:[]6262)1()1(x x x x -+=-+ -+++-+=44256)1(15)1(6)1(x x x x x其中含5x 的项为55145355566C 15C 6C x x x x =+-.含5x 项的系数为6.方法二:[]6262)(1)1(x x x x -+=-+其中含5x 的项为555566)4(15)3(20x x x x =+-+-.∴5x 项的系数为6.方法3:本题还可通过把62)1(x x -+看成6个21x x -+相乘,每个因式各取一项相乘可得到乘积的一项,5x 项可由下列几种可能得到.5个因式中取x ,一个取1得到556C x .3个因式中取x ,一个取2x -,两个取1得到)(C C 231336x x -⋅⋅. 1个因式中取x ,两个取2x -,三个取1得到222516)(C C x x -⋅⋅. 合并同类项为5525161336566)C C C C (C x x =+-,5x 项的系数为6.典型例题六例6 求证:(1)1212C C 2C -⋅=+++n n n n n n n ;(2))12(11C 11C 31C 21C 1210-+=++++++n n nn n n n n . 分析:二项式系数的性质实际上是组合数的性质,我们可以用二项式系数的性质来证明一些组合数的等式或者求一些组合数式子的值.解决这两个小题的关键是通过组合数公式将等式左边各项变化的等数固定下来,从而使用二项式系数性质nn n n n n 2C C C C 210=++++ .解:(1)11C )!()!1()!1()!()!1(!)!(!!C --=+--⋅=--=-⋅=k n kn n k n k n n k n k n k n k n k k ∴左边111101C C C ----+++=n n n n n n n =⋅=+++=-----11111012)C C C (n n n n n n n 右边.(2))!()!1(!)!(!!11C 11k n k n k n k n k k k n --=-⋅+=+11C 11)!()!1()!1(11+++=-++⋅+=k n n k n k n n . ∴左边112111C 11C 11C 11++++++++++=n n n n n n n =-+=++++=+++++)12(11)C C (C 111112111n n n n n n n 右边. 说明:本题的两个小题都是通过变换转化成二项式系数之和,再用二项式系数的性质求解.此外,有些组合数的式子可以直接作为某个二项式的展开式,但这需要逆用二项式定理才能完成,所以需仔细观察,我们可以看下面的例子:求10C 2C 2C 2C 22108107910810109+++++ 的结果.仔细观察可以发现该组合数的式与10)21(+的展开式接近,但要注意:10101099102210110010102C 2C 2C 2C C )21(⋅+⋅++⋅+⋅+=+从而可以得到:)13(21C 2C 2C 21010101099108210-=++++ . 典型例题七例7 利用二项式定理证明:98322--+n n 是64的倍数.分析:64是8的平方,问题相当于证明98322--+n n 是28的倍数,为了使问题向二项式定理贴近,变形1122)18(93++++==n n n ,将其展开后各项含有k 8,与28的倍数联系起来.解:∵98322--+n n 98)18(98911--+=--=++n n n n64)C 8C 8(112111⋅++⋅+=-+-++n n n n n 是64的倍数.说明:利用本题的方法和技巧不仅可以用来证明整除问题,而且可以用此方程求一些复杂的指数式除以一个数的余数.典型例题八例8 展开52232⎪⎭⎫ ⎝⎛-x x .分析1:用二项式定理展开式.解法1:52232⎪⎭⎫ ⎝⎛-x x 2232524150250523)2(23)2(23)2(⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=x x C x x C x x C 分析2:对较繁杂的式子,先化简再用二项式定理展开.解法2:10535232)34(232x x x x -=⎪⎭⎫ ⎝⎛-233254315530510)3()4()3()4()4([321-+-+=x C x C x C x 10742532243840513518012032xx x x x x -+-+-=. 说明:记准、记熟二项式nb a )(+的展开式,是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便.典型例题九例9 若将10)(z y x ++展开为多项式,经过合并同类项后它的项数为( ). A .11 B .33 C .55 D .66 分析:10)(z y x ++看作二项式10])[(z y x ++展开.解:我们把z y x ++看成z y x ++)(,按二项式展开,共有11“项”,即∑=-⋅+=++=++10010101010)(])[()(k k k kz y x C z y x z y x .这时,由于“和”中各项z 的指数各不相同,因此再将各个二项式ky x -+10)(展开,不同的乘积k kk z y x C ⋅+-1010)((10,,1,0 =k )展开后,都不会出现同类项. 下面,再分别考虑每一个乘积k kk z y x C ⋅+-1010)((10,,1,0 =k ).其中每一个乘积展开后的项数由ky x -+10)(决定,而且各项中x 和y 的指数都不相同,也不会出现同类项.故原式展开后的总项数为66191011=++++ ,∴应选D .典型例题十例10 若nx x ⎪⎭⎫⎝⎛-+21的展开式的常数项为20-,求n .分析:题中0≠x ,当0>x 时,把nx x ⎪⎭⎫ ⎝⎛-+21转化为nn x x x x 2121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+;当0<x 时,同理nn n x x x x 21)1(21⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛-+.然后写出通项,令含x 的幂指数为零,解出n . 解:当0>x 时nn x x x x 2121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+,其通项为rn r n r r rn r n r x C xx C T 222221)()1()1()(--+-=-=,令022=-r n ,得r n =, ∴展开式的常数项为n nnC2)1(-;当0<x 时,nn n x x x x 21)1(21⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛-+, 同理可得,展开式的常数项为n n n C 2)1(-.无论哪一种情况,常数项均为nn n C 2)1(-. 令20)1(2-=-nn n C ,以 ,3,2,1=n ,逐个代入,得3=n .典型例题十一例11 1031⎪⎭⎫ ⎝⎛+x x 的展开式的第3项小于第4项,则x 的取值范围是______________. 分析:首先运用通项公式写出展开式的第3项和第4项,再根据题设列出不等式即可. 解: 1031⎪⎭⎫ ⎝⎛+x x 有意义必须0>x ;依题意有43T T <即3373102382101)(1)(⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛x x C x x C .∴31123891012910xx ⨯⨯⨯⨯⨯<⨯⨯(∵0>x ).解得5648980<<x .∴x 的取值范围是⎭⎬⎫⎩⎨⎧<<5648980x x .∴应填:5648980<<x .典型例题十二例12 已知n xx)1(2log +的展开式中有连续三项的系数之比为321∶∶,这三项是第几项?若展开式的倒数第二项为112,求x 的值.解:设连续三项是第k 、1+k 、2+k 项(+∈N k 且1>k ),则有32111∶∶∶∶=+-k n k n k n C C C , 即321!)1)(1(!!)(!!!)1)(1(!∶∶∶∶=--+-+--k n k n k n k n k n k n .∴321)1(1)(1)1)((1∶∶∶∶=+-+--k k k n k k n k n . ∴⎪⎪⎩⎪⎪⎨⎧=-+=+-⇒⎪⎪⎩⎪⎪⎨⎧=-+=+---32)()1(21132)()1(21)1)(()(k n k k n k k n k k k k n k n k n k 14=⇒n ,5=k 所求连续三项为第5、6、7三项.又由已知,1122log 1314=xx C .即82log =x x .两边取以2为底的对数,3)(log 22=x ,3log 2±=x ,∴32=x ,或32-=x .说明:当题目中已知二项展开式的某些项或某几项之间的关系时,常利用二项式通项,根据已知条件列出某些等式或不等式进行求解.典型例题十三例13 nx )21(+的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项. 分析:根据已知条件可求出n ,再根据n 的奇偶性;确定二项式系数最大的项.解:556)2(x C T n =,667)2(x C T n =,依题意有8226655=⇒=n C C n n . ∴8)21(x +的展开式中,二项式系数最大的项为444851120)2(x x C T ==.设第1+r 项系数最大,则有65222211881188≤≤⇒⎪⎩⎪⎨⎧⋅≥⋅⋅≥⋅++--r C C C C r r r r r r r r . ∴5=r 或6=r (∵{}8,,2,1,0 ∈r ).∴系娄最大的项为:561792x T =,671792x T =.说明:(1)求二项式系数最大的项,根据二项式系数的性质,n 为奇数时中间两项的二项式系数最大,n 为偶数时,中间一项的二项式系数最大.(2)求展开式中系数最大项与求二项式系数最大项是不同的,需根据各项系数的正、负变化情况,一般采用列不等式,解不等式的方法求得.典型例题十四例14 设nm x x x f )1()1()(+++=(+∈N n m ,),若其展开式中关于x 的一次项的系数和为11,问n m ,为何值时,含2x 项的系数取最小值?并求这个最小值.分析:根据条件得到2x 的系数关于n 的二次表达式,然后用二次函数性质探讨最小值.解:1111=+=+m n C C n m .211)(21222222-+=-+-=+n m n n m m C C n m499)211(55112211022+-=+-=-=n n n mn .∵+∈N n , ∴5=n 或6,6=m 或5时,2x 项系数最小,最小值为25. 说明:二次函数499)211(2+-=x y 的对称轴方程为211=x ,即5.5=x ,由于5、6距5.5等距离,且对+∈N n ,5、6距5.5最近,所以499)211(2+-n 的最小值在5=n 或6=n 处取得. 典型例题十五例15 若0166777)13(a x a x a x a x ++++=- ,求(1) 721a a a +++ ;(2) 7531a a a a +++;(3) 6420a a a a +++.解:(1)令0=x ,则10-=a ,令1=x ,则128270167==++++a a a a . ①∴129721=+++a a a .(2)令1-=x ,则701234567)4(-=+-+-+-+-a a a a a a a a ②由2②①-得:8256]4128[2177531=--=+++)(a a a a (3)由2②①+得:6420a a a a +++][210123456701234567)()(a a a a a a a a a a a a a a a a +-+-+-+-++++++++=8128])4(128[217-=-+=. 说明:(1)根据问题恒等式特点来用“特殊值”法.这是一种重要方法,它适用于恒等式.(2)一般地,对于多项式nn n x a x a x a a q px x g ++++=+= 2210)()(,)(x g 的各项的系数和为)1(g :)(x g 的奇数项的系数和为)]1()1([21-+g g .)(x g 的偶数项的系数和为)]1()1([21--g g .典型例题十六例16 填空:(1) 3230-除以7的余数_____________;(2) 155555+除以8的余数是___. 分析(1):将302分解成含7的因数,然后用二项式定理展开,不含7的项就是余数.解:3230-3)2(103-=3)8(10-=3)17(10-+=37771010910911010010-++++=C C C C又∵余数不能为负数,需转化为正数。

二项式定理经典题型及详细答案

二项式定理经典题型及详细答案

二项式定理经典考点例析考点1:二项式系数与项的系数1、在28(2x -的展开式中,求: (1)第5项的二项式系数及第5项的系数.(2)2x 的系数.2.若1()nx x+展开式中第2项与第6项的系数相同,则展开式的中间一项的系数为___________.3.已知二项式102)3x求 (1)第四项(2)展开式第四项的二项式系数(3)展开式第四项的系数考点2:二项式定理逆用1、5432(1)5(1)10(1)10(1)5(1)x x x x x -+-+-+-+-=_____________2、5432)12()12(5)12(10)12(10)12(51+-+++-+++-x x x x x =_____________考点3:求二项式展开式中的特定项、某一项【例题】 1、二项式3522()x x-的展开式中5x 的系数___________;2. 二项式43(1)(1x -的展开式中2x 的系数是___________.3.若4(1a +=+(,a b 为有理数),则a b +=___________.4.二项式8(2-展开式中不含4x 项的系数的和为___________.5、二项式53)31()21(x x -+的展开式中4x 的系数___________.【练习】1.二项式4(1)x +的展开式中2x 的系数为___________..2.二项式210(1)x -的展开式中,4x 的系数为___________.3.二项式6展开式中含2x 项的系数为___________. 4.二项式533)1()21(x x -+的展开式中x 的系数___________.、常数项和有理项【例题】 1. 二项式61(2)2x x-的展开式的常数项是___________.2、二项式100的展开式中x 的系数为有理数的项的个数___________.3. 二项式261(1)()x x x x++-的展开式中的常数项为___________.4.二项式5)12(++xx 的展开式中常数项是___________. 【练习】1.8(2x -的展开式中的常数项___________. 2.在261()x x+的展开式中,常数项是___________.3.二项式5)44(++xx 的展开式中常数项是___________. 4.二项式54)31()21(xx -+的展开式中常数项是___________. 考点4:求展开式中的各项系数之和的问题1、已知7270127(12)...x a a x a x a x -=++++.求:(1)0a ; (2)763210a a a a a a ++++++ ;(3)763210a a a a a a -++-+-(4)6420a a a a +++;(5)7531a a a a +++;(6)2753126420)()(a a a a a a a a +++-+++. (7)||||||||||||763210a a a a a a ++++++ .(8)7766321022842a a a a a a ++++++ ;(9)7766321022842a a a a a a ++++++; 2.在二项式9(23)x y -的展开式中,求:(1)二项式系数之和;(2)各项系数之和;(3)所有奇数项系数之和;(4)所有项的系数的绝对值之和.3.利用二项式nn n n n n n n x C x C x C x C C x +++++=+ 432210)1(展开式nn n n n n n n n nn n n n n n n n n n n n n nn n n n n C C C C C C C C C C C C C C C C C C C C C 32842)4(2)3(0)1()2(2)1(3210153142032103210=+++++=+++=+++=-++-+-=+++++-考点5:多项式的展开式最大项问题【例题】1、二项式9)21(x +展开式中,(1)二项式系数的最大项 (2)系数的最大项 2、二项式12)21(x -展开式中(1)求展开式中系数的绝对值最大的项.(2)求展开式中系数最大的项.(3)求展开式中系数最小的项.3、已知()(1)(12)(,)m n f x x x m n N +=+++∈的展开式中含x 项系数为11,求()f x 展开式中2x 项系数的最小值.4、n xx )1(4+展开式中含x 的整数次幂的项的系数之和为__________.【练习】1、2102()x x+的展开式中系数最大的项; 2、求7(12)x -展开式中系数最大的项.3、设x =50(1)x +展开式中第几项最大?4、已知()nx x 2323+展开式中各项系数的和比各项的二项式系数的和大992,(1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项.考点6:含参二次函数求解【例题】1.【特征项】在二项式25()a x x-的展开式中x 的系数是-10,则实数a 的值是___________.2.【常数项】若n的展开式中存在常数项,则n 的值可以是___________.3.【有理项】已知n的展开式中,前三项的系数成等差数列,展开式中的所有有理项________. 4.【特征项】在210(1)x px ++的展开式中,试求使4x 项的系数最小时p 的值.5.【系数最大】已知1(2)2nx +的展开式中,第5项、第6项、第7项的二项式系数成等差数列,求展开式中二项式系数最大的项. 【练习】1.若9()a x x-的展开式中3x 的系数是-84,则a =___________.2.已知2)n x的展开式中第5项系数与第3项的系数比56:3,则该项展开式中2x 的系数_____. 3.若二项式22()nx x-的展开式中二项式系数之和是64,则展开式中的常数项为___________ 4.已知(13)nx +的展开式中,末三项的二项式系数的和等于121,求展开式中系数最大的项.考点7:求解某些整除性问题或余数问题1. 求证22*389()n n n N +--∈能被64整除.2. 9291被100整除所得的余数为_________ 3. 设21(*)n k k N =-∈,则11221777...7nn n n n n n C C C ---+⋅+⋅++⋅被9除所得的余数为_________4. 求证:(1)51511-能被7整除;(2)2332437n n +-+能被64整除.5. 如果今天是星期一,那么对于任意的自然数n ,经过33(275)n n +++天是星期几?考点8:计算近似值1、求60.998的近似值,使误差小于0.001. 2、求51.997精确到的近似值.考点9:有关等式与不等式的证明化简问题1、求121010101010124...2C C C ++++的值. 2、化简:1231248...(2)nnn n n n C C C C -+-++-. 3、求证:01121*(2)!...()(1)!(1)!n nn n n n n n n C C C C C C n N n n -+++=∈-+.4、证明下列等式与不等式(1)123123 (2)nn n n n n C C C nC n -++++=⋅.(2)设,,a b c 是互不相等的正数,且,,a b c 成等差数列,*n N ∈,求证2nnna cb +>. 【练习】1、=++++nn n n n n C C C C 2222210 ;2、=-++-+-nn n n n n n n C C C C C 2)1(22232210 ; 3、求证:12122-⋅=+++n n n n n n nC C C4、求证:nn n n n n n C C C C C 22222120)()()()(=++++5、已知7292222210=++++nn n n n n C C C C ,求n n n n C C C +++ 21考点10:创新型题目1、对于二项式(1-x)1999,有下列四个命题:①展开式中T 1000= -C 19991000x999;②展开式中非常数项的系数和是1;③展开式中系数最大的项是第1000项和第1001项;④当x=2000时,(1-x)1999除以2000的余数是1.其中正确命题的序号是__________.(把你认为正确的命题序号都填上) 2、规定!)1()1(m m x x x C m x +--=,其中x ∈R,m 是正整数,且10=x C ,这是组合数m n C (n 、m 是正整数,且m ≤n )的一种推广.(1) 求315-C的值;(2) 设x >0,当x 为何值时,213)(xxC C 取得最小值(3) 组合数的两个性质;①m n n m n C C -=. ②mn m n m n C C C 11+-=+.是否都能推广到mx C (x ∈R,m 是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.3、对于任意正整数,定义“n的双阶乘n!!”如下:对于n是偶数时,n!!=n·(n-2)·(n-4)……6×4×2;对于n是奇数时,n!!=n·(n-2)·(n-4)……5×3×1.现有如下四个命题:①(2005!!)·(2006!!)=2006!;②2006!!=21003·1003!;③2006!!的个位数是0;④2005!!的个位数是5.正确的命题是________.。

二项式定理十大典型问题及例题

二项式定理十大典型问题及例题

学科教师辅导讲义学员编号: 年 级:高二 课 时 数: 3 学员姓名: 辅导科目:数学 学科教师:教学内容1.二项式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①二项式展开式:右边的多项式叫做()n a b +的二项展开式。

②二项式系数:展开式中各项的系数rnC (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式④通项:展开式中的第1r +项r n r rn C a b -叫做二项式展开式的通项。

用1r n r r r nT C a b -+=表示。

3.注意关键点:①项数:展开式中总共有(1)n +项。

②顺序:注意正确选择a ,b ,其顺序不能更改。

()n a b +与()n b a +是不同的。

③指数:a 的指数从n 逐项减到0,是降幂排列。

b 的指数从0逐项减到n ,是升幂排列。

各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。

4.常用的结论:令1,,a b x == 0122(1)()n r rn nn n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122rnn n n n n n C C C C C ++++++=,变形式1221rnn n n n n C C C C +++++=-。

二项式定理-高考题(含答案)精选全文

二项式定理-高考题(含答案)精选全文

3.(2012·天津高考理科·T5)在 2x2-⎪的二项展开式中,x的系数为(D)5.(2012·重庆高考理科·T4)⎛x+1⎫⎪的展开式中常数项为(B)(A)35精选全文完整版(可编辑修改)学习好资料欢迎下载二项式定理高考真题一、选择题1.(2012·四川高考理科·T1)相同(1+x)7的展开式中x2的系数是(D)(A)42(B)35(C)28(D)212.(2011·福建卷理科·T6)(1+2x)5的展开式中,x2的系数等于(B)(A)80(B)40(C)20(D)10⎛1⎫5⎝x⎭(A)10(B)-10(C)40(D)-404.(2011.天津高考理科.T5)在(x-2)6的二项展开式中,x2的系数为(C)2x(A)-15153(B)(C)-(D)448388⎝2x⎭3535(B)(C)(D)10516846.(2012·重庆高考文科·T4)(1-3x)5的展开式中x3的系数为(A)(A)-270(B)-90(C)90(D)2707.(2013·大纲版全国卷高考理科·T7)(1+x)8(1+y)4的展开式中x2y2的系数是(D)8.(2011·新课标全国高考理科·T8)⎛ x + a ⎫⎪⎛ 2x - 1 ⎫⎪的展开式中各项系数的和为 2,则该展开式中常 ( 12.(2011·湖北高考理科·T11) x - ⎪ 的展开式中含 x 15的项的系数为 17 .)16.(2011·安徽高考理科·T12)设(x - 1)21 = a + a x + a x 2 + + a x 21 ,则17.(2011·广东高考理科·T10) x( x - )7的展开式中, x 4 的系数是___84___ (用数字作答)A.56B.84C.112D.1685 ⎝x ⎭⎝ x ⎭数项为( D )(A )-40 (B )-20 (C )20 (D )409. (2011·重庆高考理科·T4) (1 + 3x) n (其中 n ∈ N 且 n ≥ 6 )的展开式中 x 5 与 x 6 的系数相等,则 n =( B)(A) 6 (B) 7 (C) 8 (D) 910. 2011·陕西高考理科·T4) (4 x - 2- x )6 ( x ∈ R )展开式中的常数项是 (C )(A ) -20(B ) -15(C )15 (D )20二、填空题11. ⎛ 1 ⎫6(2013·天津高考理科·T10) x - ⎪ 的二项展开式中的常数项为 15 .⎝ x ⎭⎛ 1 ⎫18⎝ 3 x ⎭13.(2011·全国高考理科·T13)(1- x )20 的二项展开式中,x 的系数与 x 9 的系数之差为0 .14.(2011·四川高考文科·T13 (x + 1)9 的展开式中 x 3的系数是 84 (用数字作答).15.(2011·重庆高考文科·T11) (1 + 2 x) 6的展开式中 x 4 的系数是240 .0 1 2 21a +a =0 .10112x18.(2011·山东高考理科·T14)若 x-x2⎪⎭19.(2012·大纲版全国卷高考理科·T15)若(x+)n的展开式中第3项与第7项的二项式系数相等,120.(2013·安徽高考理科·T11)若 x+3x⎭x4的系数为7,则实数a=_________。

高考专题 二项式定理(全解析)

高考专题 二项式定理(全解析)

1 / 4二项式定理一、选择题1.(求项的系数)5(2x +的展开式中,4x 的系数是( )A .40B .60C .80D .100【答案】C【解析】5(2x二项展开式的通项为5552155(2)2k k kkk kk T C x C x---+=⋅⋅=⋅⋅.令542k-=,得2k =. 因此,二项展开式中4x 的系数为235280C ⋅=,故选C .2.(知常数项求某一项的系数)若在(a +3x )(1−√x 3)8关于x 的展开式中,常数项为4,则x 2的系数是( ) A .56 B .-56 C .112 D .-112【答案】B【解析】由题意得(1−√x 3)8展开式的通项为T r+1=C 8r (−√x 3)r=(−1)r C 8r x r3,r =0,1,2,⋯,8, ∴(a +3x )(1−√x 3)8展开式的常数项为(−1)0C 8⋅a =a =4, ∴(4+3x )(1−√x 3)8展开式中x 2项为4⋅(−1)6C 86x 63+3x ⋅(−1)3C 83x 33=−56x 2∴展开式中x 2的系数是−56. 故选B3.(直常数项求参数)若6ax ⎛- ⎝展开式的常数项为60,则a 值为( )A .4B .4±C .2D .2±【答案】D【解析】因为6ax ⎛ ⎝展开式的通项为()()3666622166T 11k k k k k k k k k k C a x x C a x -----+=-=-,令3602k -=,则4k =,所以常数项为()44646160C a --=,即21560a =,所以2a =±. 故选D2 / 44.(奇数项系数的和)记6260126(1)(1)(1)...(1)x a a x a x a x -=+++++++,则0246a a a a +++=( )A .81B .365C .481D .728【答案】B【解析】令x=0得1=0126...a a a a ++++,令x=-2得601234563=a a a a a a a -+-+-+,所以0246a a a a +++=1+729=3652. 故选B5.(由系数二项式系数的和求参数)已知n的展开式中,各项系数的和与其各项二项式系数的和之比为64,则n 等于 A .4 B .5 C .6 D .7【答案】C【解析】二项式n的各项系数的和为()1+34n n=,二项式n的各项二项式系数的和为()1+12n n=, 因为各项系数的和与其各项二项式系数的和之比为64,所以4=2642n nn =,6n =,故选C .二、填空题6.(集合关系判断)若)22nx -展开式中只有第六项的二项式系数最大,则展开式中的常数项是____.【答案】180【解析】因为)22nx -展开式中只有第六项的二项式系数最大,所以10n =,展开式的通项公式为5510221101022r rrr rrr r TC xC x---+=⋅⋅⋅=⋅⋅,令5502r-=,解得3 / 42r,所以展开式的常数项为22101280C ⋅=.7.(求系数最大项)61x x ⎛⎫- ⎪⎝⎭的展开式中,系数最大的项为第__________项.【答案】3或5【解析】61x x ⎛⎫- ⎪⎝⎭的展开式中系数与二项式系数只有符号差异,又中间项的二项式系数最大,中间项为第4项其系数为负,则第3,5项系数最大. 8.(二项展开式系数的性质应用)在()()25132x x +-的展开式中,所有的奇次幂的系数和为__________.【答案】478- 【解析】设()()25223456701234567132x x a a x a x a x a x a x a x a x +-=+++++++令1x =,得:0123456716a a a a a a a a =+++++++……① 令1x =-,得:01234567972a a a a a a a a =-+-+-+-……② ①-②得:()13579562a a a a -=+++ 解得:1357478a a a a +++=- 本题正确结果:478-9.(二项式与数列)已知数列{}n a 满足11a k=,k *∈N ,[]n a 表示不超过n a 的最大整数(如[]1,61=,记[]n n b a =,数列{}n b 的前n 项和为n T ).①若数列{}n a 是公差为1的等差数列,则4T =__________; ②若数列{}n a 是公比为1k +的等比数列,则n T =__________.【答案】6 ()211nk kn k+--【解析】①若数列{}n a 是公差为1的等差数列,且11a k =,*2k k N ≥∈,,则11(1,)n a n n n k=+-∈-,所以[]1n n b a n ==-,则401236T =+++=;故填6.4 / 4②若数列{}n a 是公比为1k +的等比数列,且11a k=,*2k k N ≥∈,,则 1112131211(1)(1)n n n n n n n a k k C k C kk k------=⋅+=⋅+++⋅⋅⋅+,则213111n n k n n n b k C k C -----=++⋅⋅⋅+, 221311101(2)(33)()n n k n n n T k k k k C k C -----=+++++++⋅⋅⋅+++⋅⋅⋅+22223332341451[123(1)](1?)(1)n n n n C C C k C C C k---=+++⋅⋅⋅+-++++⋅⋅+++++⋅⋅⋅++⋅⋅⋅+3422(1))2n n n n n n n C k C k C k --=+++⋅⋅⋅+ 223321()n n n n n C k C k C k k =++⋅⋅⋅+ 21[(1)1]n k nk k =+--;故填21[(1)1]n k nk k+--. 10.(二项式与函数)已知二进制和十进制可以相互转化,例如65432108912021212020212=⨯+⨯+⨯+⨯+⨯+⨯+⨯,则十进制数89转化为二进制数为2(1011001).将n 对应的二进制数中0的个数,记为n a (例如:24(100)=,251(110011)=,289(1011001)=,则42a =,512a =,893a =),记()2n a f n =,则2018201820182019(2)(21)(22)...(21)f f f f ++++++-=__________. 【答案】20183【解析】由题意得20182018201820192212221++-,,,,共201920182018222-=个数中所有的数转换为二进制后,总位数都为2019,且最高位都为1而除最高位之外的剩余2018位中,每一位都是0或者1 设其中的数x ,转换为二进制后有k 个0(0k 2018≤≤) ∴()2kf x =在这20182个数中,转换为二进制后有k 个0的数共有2018kC 个 ∴()()()()201820182018201820192018022122 (2)12k kk f f f f C =++++++-=∑由二项式定理,()201820182018201802123k kk C ==+=∑。

二项式定理经典习题(29题)

二项式定理经典习题(29题)

一.选择题(共19小题)1.(ax+y)5的展开式中x2y3项的系数等于80,则实数a=()A.2B.±2C.D.±2.的展开式中x3的系数为()A.5B.﹣5C.15D.﹣153.已知二项式(x+)n的展开式的二项式系数之和为64,则展开式中含x3项的系数是()A.1B.C.D.34.(x﹣1)5展开式中x4项系数为()A.5B.﹣5C.10D.﹣105.的展开式中常数项为()A.﹣240B.﹣160C.240D.1606.(1+x)5展开式中x2的系数为()A.﹣10B.﹣20C.20D.107.的展开式中含x5项的系数是()A.﹣112B.112C.﹣28D.288.的展开式中x3的系数为()A.﹣160B.﹣64C.64D.1609.二项式的展开式中的常数项是()A.﹣15B.15C.20D.﹣2010.若的展开式中常数项为240,则正整数n的值为()A.6B.7C.8D.911.(x﹣1)10的展开式的第6项的系数是()A.B.C.D.12.展开式中的常数项是()A.﹣160B.﹣140C.160D.14013.(x﹣2y﹣1)5的展开式中含x2y2的项的系数为()A.﹣120B.60C.﹣60D.3014.若的展开式中第4项是常数项,则n的值为()A.14B.16C.18D.2015.设n为正整数,(2x2+)n的展开式中存在常数项,则n的最小值为()A.2B.3C.4D.516.在(2x+1)4的展开式中,x2的系数为()A.6B.12C.24D.3617.在的展开式中,的系数为()A.﹣30B.﹣20C.﹣10D.3018.的展开式中,x2的系数等于()A.﹣45B.﹣10C.10D.4519.(x+2y)(x﹣y)5的展开式中x2y4的系数为()A.﹣15B.5C.﹣20D.25二.填空题(共10小题)20.已知(a+x)(1+x)6的展开式中x2的系数为21,则a=.21.展开式中所有奇数项的二项式系数和为32,则展开式中的常数项为.(用数字作答)22.(x﹣2y+1)5展开式中含x2y项的系数为.23.的展开式中项的系数为.24.的展开式中,常数项为(用数字作答).25.(x﹣1)(x+2)8的展开式中x8的系数为(用数字作答).26.在的展开式中,xy7的系数为.27.(x2﹣y)()6的展开式中,其中不含x的项为.28.在的展开式中,常数项等于.(用数字作答)29.(x2+y+3)6中x4y的系数为(用数字作答).。

高中数学二项式定理精选题

高中数学二项式定理精选题

二项式定理精选题23道一.选择题(共6小题) 1.25()x x y ++的展开式中,52x y 的系数为()A .10B .20C .30D .602.621(1)(1)x x++展开式中2x 的系数为()A .15B .20C .30D .353.已知(1)nx +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为()A .122B .112C .102D .924.5()(2)xy x y +-的展开式中的33x y 系数为()A .80-B .40-C .40D .805.252()x x +的展开式中4x 的系数为()A .10B .20C .40D .806.24(12)(1)x x ++的展开式中3x 的系数为()A .12B .16C .20D .24二.多选题(共1小题) 7.已知2((0)na x a+>的展开式中第5项与第7项的二项式系数相等,且展开式的各项系数之和为1024,则下列说法正确的是( )A .展开式中奇数项的二项式系数和为256B .展开式中第6项的系数最大C .展开式中存在常数项D .展开式中含15x 项的系数为45 三.填空题(共12小题) 8.4()(1)ax x ++的展开式中x 的奇数次幂项的系数之和为32,则a=.9.5(2x+的展开式中,3x 的系数是 .(用数字填写答案)10.已知多项式32543212345(1)(2)xx x a x a x a x a x a ++=+++++,则4a =,5a =.11.在5(x -的展开式中,2x 的系数为 .12.831(2)8xx-的展开式中的常数项为 .13.在二项式9)x +展开式中,常数项是 ,系数为有理数的项的个数是 .14.281()x x -的展开式中7x 的系数为 .(用数字作答)15.已知二项式5(2x +,则展开式中3x 的系数为 .16.若1()nx x+的展开式中第3项与第7项的二项式系数相等,则该展开式中21x的系数为 . 17.二项展开式52345012345(12)x a a x a x a x a x a x+=+++++,则4a =,123a a a ++=.18.在61()4x x-的展开式中,2x 的系数为 .19.2521(2)(1)x x+-的展开式的常数项是 .四.解答题(共4小题)20.已知在n的展开式中,第6项为常数项.(1)求n ;(2)求含2x 项的系数; (3)求展开式中所有的有理项.21.在二项式1(2)2nx +的展开式中.(1)若展开式中第5项、第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大的项的系数;(2)若展开式前三项的二项式系数的和等于79,求展开式中系数最大的项.22.已知7270127(12)x a a x a x a x-=+++⋯+,求:(1)1237a a a a +++⋯+;(2)1357a a a a +++; (3)0246a a a a +++;(4)0127||||||||a a a a +++⋯+.23.设二项展开式21*1)()n nC n N -=∈的整数部分为n A ,小数部分为n B .(1)计算11C B ,22C B 的值; (2)求n n C B .二项式定理精选题23道参考答案与试题解析一.选择题(共6小题) 1.25()x x y ++的展开式中,52x y 的系数为()A .10B .20C .30D .60【分析】利用展开式的通项,即可得出结论. 【解答】解:25()x x y ++的展开式的通项为2515()r rrr T C x x y-+=+,令2r =,则23()x x +的通项为23633()k k kkkC x x C x--=,令65k -=,则1k=,25()x x y ∴++的展开式中,52x y 的系数为215330C C =.故选:C .【点评】本题考查二项式定理的运用,考查学生的计算能力,确定通项是关键. 2.621(1)(1)x x++展开式中2x 的系数为()A .15B .20C .30D .35【分析】直接利用二项式定理的通项公式求解即可. 【解答】解:621(1)(1)x x ++展开式中:若221(1)(1)xx-+=+提供常数项1,则6(1)x +提供含有2x 的项,可得展开式中2x 的系数:若21(1)x+提供2x -项,则6(1)x +提供含有4x 的项,可得展开式中2x 的系数:由6(1)x +通项公式可得6r r C x .可知2r =时,可得展开式中2x 的系数为2615C =. 可知4r=时,可得展开式中2x 的系数为4615C =. 621(1)(1)x x++展开式中2x 的系数为:151530+=.故选:C .【点评】本题主要考查二项式定理的知识点,通项公式的灵活运用.属于基础题.3.已知(1)nx +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为()A .122B .112C .102D .92【分析】直接利用二项式定理求出n ,然后利用二项式定理系数的性质求出结果即可. 【解答】解:已知(1)nx +的展开式中第4项与第8项的二项式系数相等,可得37n nC C =,可得3710n=+=.10(1)x +的展开式中奇数项的二项式系数和为:1091222⨯=.故选:D .【点评】本题考查二项式定理的应用,组合数的形状的应用,考查基本知识的灵活运用以及计算能力. 4.5()(2)xy x y +-的展开式中的33x y 系数为()A .80-B .40-C .40D .80【分析】5(2)xy -的展开式的通项公式:555155(2)()2(1)rrr rr r rrr T C x y C xy---+=-=-.令52r -=,3r=,解得3r=.令53r -=,2r=,解得2r=.即可得出.【解答】解:5(2)x y -的展开式的通项公式:555155(2)()2(1)rrrrr r rrr T C x y C xy---+=-=-.令52r -=,3r =,解得3r =. 令53r -=,2r=,解得2r=.5()(2)x y x y ∴+-的展开式中的33x y 系数23332552(1)2140C C =⨯-+⨯⨯=.故选:C .【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题. 5.252()x x +的展开式中4x 的系数为()A .10B .20C .40D .80【分析】由二项式定理得252()x x +的展开式的通项为:251031552()()2rrr r r rr T C x C xx--+==,由1034r -=,解得2r=,由此能求出252()x x +的展开式中4x 的系数.【解答】解:由二项式定理得252()x x +的展开式的通项为:251031552()()2r rr r r rr T C x C xx--+==,由1034r -=,解得2r =,252()xx∴+的展开式中4x 的系数为225240C =.故选:C .【点评】本题考查二项展开式中4x 的系数的求法,考查二项式定理、通项公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题. 6.24(12)(1)x x ++的展开式中3x 的系数为()A .12B .16C .20D .24【分析】利用二项式定理、排列组合的性质直接求解. 【解答】解:24(12)(1)x x ++的展开式中3x 的系数为:3311133414311121112C C C C ⨯⨯⨯⨯+⨯⨯⨯⨯=.故选:A .【点评】本题考查展开式中3x 的系数的求法,考查二项式定理、排列组合的性质等基础知识,考查推理能力与计算能力,属于基础题. 二.多选题(共1小题) 7.已知2((0)na x a+>的展开式中第5项与第7项的二项式系数相等,且展开式的各项系数之和为1024,则下列说法正确的是( )A .展开式中奇数项的二项式系数和为256B .展开式中第6项的系数最大C .展开式中存在常数项D .展开式中含15x 项的系数为45 【分析】由题意得,46n nC C =,再由组合数的性质,求出10n=,再令1x=结合展开式的各项系数之和为1024求出a ,利用二项式的展开式的性质即可判断四个选项. 【解答】解:因为2((0)na x a+>的展开式中第5项与第七项的二项式系数相等,∴4610n n C C n =⇒=,展开式的各项系数之和为1024,10(1)1024a ∴+=,0a >, 1a ∴=,原二项式为:210(x+;其展开式的通项公式为:520210211010()rr rr rr T C x C x--+=⋅⋅=,展开式中奇数项的二项式系数和为:110245122⨯=;故A 错,因为本题中二项式系数和项的系数一样,且展开式有11项,故展开式中第6项的系数最大,B对,令520082r r -=⇒=,即展开式中存在常数项,C 对, 令5201522r r -=⇒=,21045C =,D 对.故选:B C D .【点评】本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的x 赋值,求展开式的系数和,可以简便的求出答案,属于中档题目也是易错题目. 三.填空题(共12小题) 8.4()(1)ax x ++的展开式中x 的奇数次幂项的系数之和为32,则a=3 .【分析】给展开式中的x 分别赋值1,1-,可得两个等式,两式相减,再除以2得到答案. 【解答】解:设4250125()()(1)f x a x x a a x a x a x=++=+++⋯+,令1x =,则0125a a a a f+++⋯+=(1)16(1)a=+,①令1x=-,则0125(1)0a a a a f -+-⋯-=-=.②①-②得,1352()16(1)a a a a ++=+,所以23216(1)a ⨯=+,所以3a=.故答案为:3.【点评】本题考查解决展开式的系数和问题时,一般先设出展开式,再用赋值法代入特殊值,相加或相减.9.5(2x+的展开式中,3x 的系数是 10 .(用数字填写答案)【分析】利用二项展开式的通项公式求出第1r +项,令x 的指数为3,求出r ,即可求出展开式中3x 的系数.【解答】解:5(2x +的展开式中,通项公式为:5552155(2)2r r rr rrr T x C x---+==ð,令532r -=,解得4r=3x∴的系数45210C =.故答案为:10.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题. 10.已知多项式32543212345(1)(2)xx x a x a x a x a x a ++=+++++,则4a =16 ,5a =.【分析】利用二项式定理的展开式,求解x 的系数就是两个多项式的展开式中x 与常数乘积之和,5a 就是常数的乘积. 【解答】解:多项式32543212345(1)(2)xx x a x a x a x a x a ++=+++++,3(1)x +中,x 的系数是:3,常数是1;2(2)x+中x 的系数是4,常数是4,4341416a =⨯+⨯=;5144a =⨯=.故答案为:16;4.【点评】本题考查二项式定理的应用,考查计算能力,是基础题. 11.在5(x-的展开式中,2x 的系数为52.【分析】写出二项展开式的通项,由x 的指数为2求得r 值,则答案可求. 【解答】解:5(x-的二项展开式的通项为103521551(()2rr rrr rr T C xC x--+=⋅⋅-=-⋅⋅.由10322r-=,得2r=.2x∴的系数为22515()22C -⋅=.故答案为:52.【点评】本题考查二项式定理的应用,考查二项式系数的性质,关键是熟记二项展开式的通项,是基础题.12.831(2)8xx-的展开式中的常数项为 28 .【分析】本题可根据二项式的展开式的通项进行计算,然后令x 的指数为0即可得到r 的值,代入r 的值即可算出常数项. 【解答】解:由题意,可知: 此二项式的展开式的通项为:888188833111(2)()2()()(1)288rrr r rrrr r r r T C x C xC xx---+=-=-=-8484rrx--.∴当840r -=,即2r=时,1r T +为常数项.此时22218(1)2T C +=-84228-⨯=.故答案为:28.【点评】本题主要考查二项式的展开式的通项,通过通项中未知数的指数为0可算出常数项.本题属基础题.13.在二项式9)x +展开式中,常数项是1系数为有理数的项的个数是 .【分析】写出二项展开式的通项,由x 的指数为0求得常数项;再由2的指数为整数求得系数为有理数的项的个数.【解答】解:二项式9)x 的展开式的通项为9921992rrrrr rr T C xC x--+==.由0r =,得常数项是11T =当1r=,3,5,7,9时,系数为有理数,∴系数为有理数的项的个数是5个.故答案为:15.【点评】本题考查二项式定理及其应用,关键是熟记二项展开式的通项,是基础题. 14.281()x x -的展开式中7x 的系数为56- .(用数字作答)【分析】利用通项公式即可得出. 【解答】解:281631881()()(1)r rrr r rr T x xx--+=-=-痧,令1637r -=,解得3r =.281()xx∴-的展开式中7x 的系数为338(1)56-=-ð.故答案为:56-.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.15.已知二项式5(2x +,则展开式中3x 的系数为 10 .【分析】由41435(2)10C x x=,可得到答案.【解答】解:41435(2)10C x x=,所以展开式中3x 的系数为10.故答案为:10.【点评】本题考查利用二项式定理求特定项的系数,属于基础题. 16.若1()nx x+的展开式中第3项与第7项的二项式系数相等,则该展开式中21x的系数为56 .【分析】根据第2项与第7项的系数相等建立等式,求出n 的值,根据通项可求满足条件的系数【解答】解:由题意可得,26n nC C =8n ∴=展开式的通项8821881()rrr r rr T C x C xx--+==令822r -=-可得5r=此时系数为5856C =故答案为:56【点评】本题主要考查了二项式系数的性质,以及系数的求解,解题的关键是根据二项式定理写出通项公式,同时考查了计算能力. 17.二项展开式52345012345(12)x a a x a x a x a x a x+=+++++,则4a =80 ,123a a a ++=.【分析】直接利用二项式定理的通项公式,求解即可. 【解答】解:52345012345(12)x a a x a xa x a xa x+=+++++,则4445280a C =⋅=.1223123555222a a a C C C ++=⨯+⨯+3130=.故答案为:80;130.【点评】本题考查二项式定理的应用,只有二项式定理系数以及项的系数的区别,是基本知识的考查.18.在61()4xx-的展开式中,2x 的系数为1516.【分析】在二项展开式的通项公式中,令x 的幂指数等于2,求出r 的值,即可求得2x 的系数. 【解答】解:61()4x x-的展开式的通项公式为66216611()()()44r rrrr rr T C x C xx--+=-=-,令622r -=,解得2r=,∴展开式中2x 的系数为261151616C ⨯=,故答案为:1516.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题. 19.2521(2)(1)x x+-的展开式的常数项是 3 .【分析】把所给的二项式展开,观察分析可得展开式中的常数项的值. 【解答】解:而项式2521235555521864111111(2)(1)(2)(xxC CC C Cxxxxxx+-=+⋅⋅-⋅+, 故它的展开式的常数项为4523C -=,故答案为 3.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题.四.解答题(共4小题)20.已知在1n的展开式中,第6项为常数项.(1)求n ;(2)求含2x 项的系数; (3)求展开式中所有的有理项.【分析】(1)由二项式定理,可得n-的展开式的通项,又由题意,可得当5r=时,x的指数为0,即203n r -=,解可得n 的值,(2)由(1)可得,其通项为10231101()2rr rr T C x-+=-,令x 的指数为2,可得10223r-=,解可得r 的值,将其代入通项即可得答案;(3)由(1)可得,其通项为10231101()2rr rr T C x-+=-,令x 的指数为整数,可得当2r=,5,8时,是有理项,代入通项可得答案.【解答】解:(1)根据题意,可得n-的展开式的通项为112333111()()()22n rrn rrr rr n n T C x x C x---+=-=-,又由第6项为常数项,则当5r =时,203n r -=,即1003n -=,解可得10n=,(2)由(1)可得,10231101()2rr rr T C x-+=-,令10223r-=,可得2r=,所以含2x 项的系数为2210145()24C -=,(3)由(1)可得,10231101()2rrrr T C x-+=-,若1r T +为有理项,则有1023rZ-∈,且010r 剟,分析可得当2r=,5,8时,1023r-为整数,则展开式中的有理项分别为22456345,,48256x x--.【点评】本题考查二项式定理的应用,解题时要区分有理项与常数项,关键是根据二项式定理,写出其展开式的通项. 21.在二项式1(2)2nx +的展开式中.(1)若展开式中第5项、第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大的项的系数;(2)若展开式前三项的二项式系数的和等于79,求展开式中系数最大的项. 【分析】(1)第1k+项的二项式系数为k n C ,由题意可得关于n 的方程,求出n .而二项式系数最大的项为中间项,n 为奇数时,中间两项二项式系数相等;n 为偶数时,中间只有一项.(2)由展开式前三项的二项式系数和等于79,可得关于n 的方程,求出n .而求展开式中系数最大的项时,可通过解不等式组求得,假设1k T +项的系数最大,1k T +项的系数为k r ,则有11k k k k r r r r +-⎧⎨⎩……【解答】解:(1)4652n n nC C C +=,221980n n ∴-+=,7n ∴=或14n=.当7n=时,展开式中二项式系数最大的项是4T 和5T ,4T ∴的系数3471()22C =3352=,5T 的系数4371()22C =470=.当14n=时,展开式中二项式系数最大的项是8T .8T ∴的系数77141()22C =73432=.(2)由01279n n n C C C ++=,可得12n=,设1k T +项的系数最大.12121211(2)()(14)22x x +=+,∴1112121112124444k k k k k kk k C C C C --++⎧⎪⎨⎪⎩……9.410.4k ∴剟,10k ∴=,∴展开式中系数最大的项为11T .121011121()42T C =10101016896xx=.【点评】本题考查二项展开式中二项式系数和与系数和问题,难度较大,易出错.要正确区分这两个概念. 22.已知7270127(12)x a a x a x a x-=+++⋯+,求:(1)1237a a a a +++⋯+;(2)1357a a a a +++; (3)0246a a a a +++;(4)0127||||||||a a a a +++⋯+.【分析】(1)根据所给的等式可得常数项01a =,在所给的等式中,令1x =可得012371a a a a a ++++⋯+=-,从而求得1237a a a a +++⋯+的值.(2)在所给的等式中,分别令1x=、1x=-,可得2个等式,化简这2个等式即可求得1357a a a a +++的值.(3)用①加上②再除以2可得0246a a a a +++的值.(4)在7(12)x +中,令1x=,可得0127||||||||a a a a +++⋯+的值.【解答】解:(1)已知7270127(12)x a a x a x a x-=+++⋯+,∴常数项01a =.在所给的等式中,令1x=可得012371a a a a a ++++⋯+=-,12372a a a a ∴+++⋯+=-.(2)在所给的等式中,令1x =可得012371a a a a a ++++⋯+=-①,令1x=-可得712373a a a a a -+-+⋯-=②,用①减去②再除以2可得13571094a a a a +++=-.(3)用①加上②再除以2可得02461093a a a a +++=.(4)在7(12)x +中,令1x=,可得7127||||||||32187a a a a +++⋯+==.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式的系数和常用的方法是赋值法,属于中档题.23.设二项展开式21*1)()n nC n N -=∈的整数部分为n A ,小数部分为n B .(1)计算11C B ,22C B 的值; (2)求n n C B .【分析】(1)将n 分别用1,2 代替求出1C ,2C ,利用多项式的乘法展开,求出1C ,2C 的小数部分1B ,2B ,求出11C B ,22C B 的值.(2)利用二项式定理表示出n C ,再利用二项式定理表示出211)n -,两个式子相减得到展开式的整数部分和小数部分,求出n n C B 的值.【解答】解:(1)因为211)n n C -=,所以11C =+,12A =,11B =,所以112C B =;又321)10C =+=+,其整数部分220A =,小数部分210B =-,所以228C B =.(2)因为210211222221212121211)n n n n n n n n n n C C C C C ---------=+=++⋯+①而2121122221212121211)n n n n n n n n n C C C C ---------=-+⋯+-②①-②得:2121122324212121211)1)2()n n n n n n n n C C C ---------=++⋯+而211)1n -<-<,所以21211)1)n n n A --=--,211)n nB -=所以2121211)1)2n n n n nC B ---=+-=.【点评】解决二项式的有关问题一般利用二项式定理;解决二项展开式的通项问题常利用的工具是二项展开式的通项公式.。

二项式定理习题精选.

二项式定理习题精选.

二项式定理习题精选一、与通项有关的一些问题例1.在的展开式中,指出:1)第4项的二项式系数,2)第4项的系数,3)求常数项解:展开式的通项为展开式中的第r+1项.1),二项式系数为;2)由1)知项的系数为;3)令6-3r=0, ∴r=2, ∴常数项为.例2.若的展开式中,前三项的系数成等差数列,求展开式中的有理项.分析:通项为,∵前三项的系数为,且成等差,∴即解得:n=8.从而,要使T r+1为有理项,则r能被4整除.例3.1)求的常数项;2)求(x2+3x+2)5的展开式中x的系数.解:1)通项,令6-2r=0,r=3,∴常数项为.2)(x2+3x+2)5=(x+1)5(x+2)5∴展开式中含x项由(x+1)5中常数项乘(x+2)5的一次项与(x+1)5的一次项乘(x+2)5的常数项相加得到,即为,因而其系数为240.例4.(a+b+c)10的展开式中,含a5b3c2的系数为_________.分析:根据多项式相乘的特点,从(a+b+c)10的十个因式中选出5个因式中的a,三个因式中的b,两个因式中的c得到,从而a5b3c2的系数为.小结:三项式的展开,或者转化为二项式展开,或者采用得到二项式定理的方法去解决.例5.(1+x)3+(1+x)4+(1+x)5+……+(1+x)100的展开式中x3的系数为______.分析:(法一)展开式中x3项是由各二项展开式中含x3项合并而形成.因而系数为(法二)不妨先化简多项式,由等比数列求和公式:原式=,要求x3项只要求分子的x4项,因而它的系数为.二、有关二项式系数的问题.例6.(2x+x lgx)8的展开式中,二项式系数最大的项为1120,则x=____.分析:二项式系数最大的为第5项,例7.的展开式中系数最大的项为第_____项.分析:展开式中项的系数不同于二项式系数,只能用数列的分析方法.设第r+1项的系数最大,则解得:,∴r=7,且此时上式两个等号都不能取得,因而第8项系数最大.三、赋值法:例8.已知1)求a0, 2)求a1+a2+a3+a4+a53)求(a0+a2+a4)2-(a1+a3+a5)24)求a1+a3+a55)|a0|+|a1|+……+|a5|分析:1)可以把(1-2x)5用二项式定理展开求解.从另一个角度看,a0为x=0时右式的结果,因而令x=0,∴(1-0)5=a0, ∴a0=1.2)令x=1, 则(1-2)5=a0+a1+a2+a3+a4+a5又a0=1,∴a1+a2+a3+a4+a5=-2.3)令x=1,得a0+a1+a2+……+a5=-1 (*)令x=-1, 得35=a0-a1+a2-a3+a4-a5 (**)因而,(a0+a2+a4)2-(a1+a3+a5)24)联立(*),(**)两方程,解得a1+a3+a5=-122.5)因而|a0|+|a1|+……+|a5|即为(1+2x)5的展开式的所有系数和,∴|a0|+|a1|+……+|a5|=(1+2)5=35=243.小结:①求展开式的系数和只需令x=1可解;②赋值法也需合情合理的转化. 例9.已知,其中b0+b1+b2+……+b n=62, 则n=_________.分析:令x=1,则,由已知,2n+1-2=62,∴2n+1=64,∴n=5.例10.求的展开式中有理项系数的和.分析:研究其通项.显然当r=2k(k∈Z)时为有理项.因而它的有理项系数和即为(2+t)n的奇数项的系数和.设(2+t)n=a0+a1t+a2t2+……+a n t n ,令t=1,即3n=a0+a1+a2+……+a n令t=-1,即1=a0-a1+a2-……+(-1)n a n上两式相加,解得奇数项系数和.四、逆用公式例11.求值S=(x-1)4+4(x-1)3+6(x-1)2+4(x-1)+1解:例12.求值:分析:注意将此式还原成二项展开式的结构原式=五、应用问题例13.求证:32n+2-8n-9能被64整除.证明:能被64整除.例14.9192除以100的余数为________.分析:9192=(90+1)92∴被9192100除的余数为81.小结:若将9192整理成(100-9)92例15.求0.9983的近似值(精确到0.001)解:典型例题例1、已知二项式展开式中,末三项的系数依次成等差数列,求此展开式中所有的有理项。

高考数学精品试题:二项式定理

高考数学精品试题:二项式定理

专题内容:二项式定理一、典型例题例1、已知()()511ax x ++的展开式中3x 的系数为15,则a 的值为( ) A .34 B .13 C .12 D .1 例2、已知二项式()*12N n x n x ⎛⎫-∈ ⎪⎝⎭的展开式中第2项与第3项的二项式系数之比是2:5,则展开式的常数项为( )A .14B .240C .60D .240- 例3、设()5234512345612x a a x a x a x a x a x +=+++++,则5a = ;123a a a ++= 。

二、课堂练习1、91x ⎫⎪⎭展开式中的常数项为( ) A .84 B .84- C .28D .28- 2、在()n x y -的展开式中,第3项与第8项的二项式系数相等,则展开式中系数最大的项是( )A .第6项B .第5项C .第5,6项D .第4,5项 3、若312n x x ⎛⎫+ ⎪⎝⎭的展开式中所有项系数和为81,则该展开式的常数项为( ) A .10 B .8 C .6 D .44、()25y x x x y ⎛⎫ ⎪⎭+⎝+的展开式中33x y 的系数为( ) A.5 B.10 C.15 D.205、若多项式()()()910210019101...11x x a a x a x a x +=+++++++,则9a = ( )A. 9B. 10C. -9D. -10【布置作业】1、的展开式中的中间项为( ) A . B . C . D .2、的展开式中各项的二项式系数之和为32,且各项系数和为243,则展开式中的系数为( ) A .20B .30C .40D .80 3、使()的展开式中含有常数项的最小的( ) A .4B .5C .6D .7 4、二项式的展开式中有理项的个数为( ) A .5 B .6C .7D .8 5、已知,设,则( )A .1023B .1024C .1025D .1026 6、在的展开式中,只有第7项的二项式系数最大,则展开式常数项是( ) A . B . C . D .287、的展开式中的常数项是__________. 8、的展开式中第四项的系数为120,所有奇数项的二项式系数之和为512,则实数a 的值为______.9、的展开式中项的系数为___________(用数字表示).10、已知的展开式中,的系数是240,则实数的值为______. 11、的展开式中所有二项式系数的最大值是_____(用数字作答). 12、已知的展开式中第4项与第8项的二项式系数相等,且展开式的各项系数之和为1024,则该展开式中系数最大的项为_________. 13、若的展开式中第3项与第8项的系数相等,则展开式中二项式系数最大的项为第_______项 14、若二项式的展开式中第项与第项的系数相同,则其常数项是___________. 8312x x ⎛⎫- ⎪⎝⎭35883358x -7-437x --3()n a x x+3x 13n x x x -⎛⎫+ ⎪⎝⎭n +∈N n 102x x ⎛⎫+ ⎪⎝⎭46n n C C =()()()()201234111n n n x a a x a x a x -=+-+-++-12n a a a +++=31()2n x x -552552-28-()51212x x ⎛⎫+- ⎪⎝⎭4n a x x ⎛⎫+ ⎪⎝⎭25(1()2)x x +-4x ()61ax -2x a ()61x +21(0)nax a x ⎛⎫-< ⎪⎝⎭1()n x x +1n x x ⎛⎫+ ⎪⎝⎭()*n ∈N 5615、设a∈Z,且0≤a≤16,若42021+a能被17整除,则a的值为_____.。

二项式定理相关练习题

二项式定理相关练习题

二项式定理相关练习题一、基础题1. 已知 $(x + y)^5$ 的展开式中,$x^2y^3$ 的系数是多少?2. 求 $(a 2b)^4$ 的展开式中,$a^3b$ 的系数。

3. 已知 $(x \frac{1}{x})^6$ 的展开式,求其中 $x^3$ 的系数。

4. 计算 $(3x 4y + 5z)^2$ 的展开式中,$x^2$ 的系数。

5. 已知 $(2x + 3y 4z)^5$ 的展开式,求其中 $y^3z^2$ 的系数。

二、提高题1. 在 $(x + \frac{1}{x})^8$ 的展开式中,求常数项和$x^4$ 的系数。

2. 已知 $(a + b + c)^3$ 的展开式,求其中 $a^2b^2$ 的系数。

3. 计算 $(x^2 + \frac{1}{x})^5$ 的展开式中,$x^3$ 的系数。

4. 在 $(2x 3y + 4z)^4$ 的展开式中,求 $x^2y^2$ 的系数。

5. 已知 $(3a 4b + 5c)^6$ 的展开式,求其中 $a^3b^3c^3$ 的系数。

三、应用题1. 设 $(x + \frac{1}{x})^n$ 的展开式中,常数项为 40,求$n$ 的值。

2. 已知 $(a + b)^n$ 的展开式中,$a^3b^2$ 的系数为 60,求$n$ 的值。

3. 在 $(2x 5y)^7$ 的展开式中,求 $x^5y^2$ 的系数,并判断该系数是奇数还是偶数。

4. 计算 $(x^2 \frac{1}{x})^6$ 的展开式中,$x^4$ 的系数,并说明该系数的正负性。

5. 已知 $(3a + 4b)^n$ 的展开式中,$a^2b^3$ 的系数为 144,求 $n$ 的值。

四、综合题1. 若 $(x \frac{1}{2x})^8$ 的展开式中,$x^4$ 的系数为$70$,求 $x^6$ 的系数。

2. 在 $(a + b)^{10}$ 的展开式中,找出系数最大的项。

高考数学《二项式定理》真题含答案

高考数学《二项式定理》真题含答案

高考数学《二项式定理》真题含答案一、选择题1.(x +1)6的展开式中的第二项为( )A .6xB .15x 2C .6x 5D .15x 4答案:C2.⎝⎛⎭⎫x 2-2x 3 5 的展开式中的常数项为( ) A .80 B .-80C .40D .-40答案:C解析:由二项展开式通项知T k +1=(-2)k C k 5 ·(x 2)5-k ⎝⎛⎭⎫1x 3 k=(-2)k C k 5 x 10-5k ,令10-5k =0,得k =2.∴常数项为T 3=(-2)2C 25 =40.3.(多选)已知(a +2b )n 的展开式中第6项的二项式系数最大,则n 的值可能为( )A .8B .9C .10D .11答案:BCD4.若(x +2)⎝⎛⎭⎫a x -x 5 展开式中的常数项为80,则a =( )A .-2B .2C .±2D .4答案:B解析:⎝⎛⎭⎫a x -x 5 的展开式的通项公式为T k +1=C k 5 ·(-1)k ·a 5-k ·x 2k -5,显然,2k -5为奇数,故(x +2)⎝⎛⎭⎫a x -x 5 展开式中的常数项为C 25 ·a 3=80,所以a =2. 5.若(x -2y )6的展开式中的二项式系数和为S ,x 2y 4的系数为P ,则P S为( ) A .152 B .154C .120D .240答案:B解析:由题意得S =26=64,P =C 46 (-2)4=15×16=240,∴P S =24064 =154. 6.在二项式⎝⎛⎭⎫x +3x n 的展开式中,各项系数之和为A ,各项二项式系数之和为B ,且A +B =72,则展开式中常数项的值为( )A .6B .9C .12D .18答案:B解析:在⎝⎛⎭⎫x +3x n的展开式中令x =1,得A =4n ,各项二项式系数之和为B =2n ,由 4n +2n =72,得n =3,∴⎝⎛⎭⎫x +3x n =⎝⎛⎭⎫x +3x 3 ,其通项为T k +1=C k 3 (x )3-k ⎝⎛⎭⎫3x k =3k C k 3 x 3-3k 2,令3-3k 2=0,得k =1,故展开式的常数项为T 2=3C 13 =9. 7.⎝⎛⎭⎫x +y 2x (x +y )5的展开式中x 3y 3的系数为( ) A .5 B .10C .15D .20答案:C解析:要求⎝⎛⎭⎫x +y 2x (x +y )5的展开式中x 3y 3的系数,只要分别求出(x +y )5的展开式中x 2y 3和x 4y 的系数再相加即可,由二项式定理可得(x +y )5的展开式中x 2y 3的系数为C 35 =10,x 4y 的系数为C 15 =5,故⎝⎛⎭⎫x +y 2x (x +y )5的展开式中x 3y 3的系数为10+5=15.故选C. 8.设S =(x -1)4+4(x -1)3+6(x -1)2+4(x -1)+1,则S =( )A .(x -2)4B .(x -1)4C .x 4D .(x +1)4答案:C解析:S =C 04 (x -1)4+C 14 (x -1)3+C 24 (x -1)2+C 34 (x -1)1+C 44 (x -1)0=(x -1+1)4=x 4.9.(多选)已知(2+x )(1-2x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6,则( )A .a 0的值为2B .a 5的值为16C .a 1+a 2+a 3+a 4+a 5+a 6的值为-5D .a 1+a 3+a 5的值为120答案:ABC解析:对于A ,令x =0,得a 0=2×1=2,故A 正确;对于B ,(1-2x )5的展开式的通项T k +1=C k 5 (-2x )k =(-2)k C k 5 x k ,所以a 5=2×(-2)5C 55 +1×(-2)4C 45 =-64+80=16,故B 正确;对于C ,令x =1,得(2+1)(1-2×1)5=a 0+a 1+a 2+a 3+a 4+a 5+a 6 ①,即a 1+a 2+a 3+a 4+a 5+a 6=-3-a 0=-3-2=-5,故C 正确;对于D ,令x =-1,得(2-1)[1-2×(-1)]5=a 0-a 1+a 2-a 3+a 4-a 5+a 6 ②,由①②解得a 1+a 3+a 5=-123,故D 不正确.综上所述,选ABC.二、填空题10.[2024·全国甲卷(理)](13+x )10的展开式中,各项系数中的最大值为______. 答案:5解析:方法一 二项式(13 +x )10的展开式的通项为T k +1=C k 10 (13)10-k x k . 由⎩⎨⎧Ck 10 (13)10-k >C k -110 (13)11-k ,C k 10 (13)10-k >C k +110 (13)9-k ,解得294 <k <334. 又k ∈N *,所以k =8.所以所求系数的最大值为C 810 (13 )2=5.方法二 展开式中系数最大的项一定在下面的5项中:C 510 (13 )5x 5,C 610 (13)4x 6,C 710 (13 )3x 7,C 810 (13 )2x 8,C 910 (13 )1x 9,计算可得,所求系数的最大值为C 810 (13)2=5. 11.在二项式(2 +x )9的展开式中,常数项是________,系数为有理数的项的个数是______________.答案:162 5解析:该二项展开式的第k +1项为T k +1=C k 9 (2 )9-k x k ,当k =0时,第1项为常数项,所以常数项为(2 )9=162 ;当k =1,3,5,7,9时,展开式的项的系数为有理数,所以系数为有理数的项的个数为5.12.在(x -1x)7的展开式中,系数最大的是第________项. 答案:5解析:二项式⎝⎛⎭⎫x -1x 7的展开式的通项为T k +1=C k 7 ·x 7-k ·(-1)k x -k =(-1)k C k 7 x 7-2k ,故第k +1项的系数为(-1)k C k 7 ,当k =0,2,4,6时,系数为正,因为C 07 <C 67 <C 27 <C 47 ,所以当k =4时,系数最大,是第5项.。

高中试卷-专题28 二项式定理(含答案)

高中试卷-专题28 二项式定理(含答案)

专题28 二项式定理一、单选题1.(2020·北京高三一模)在的展开式中,常数项是( )A .B .C .20D .160【答案】A 【解析】展开式的通项公式为,令,可得,故展开式的常数项为,故选:A.2.(2020·江苏省邗江中学高二期中)在的二项展开式中,含的项的系数是( )A .10B .15C .20D .25【答案】B 【解析】的二项展开式的通项为.令,解得.含的项的系数是.故选:B3.(2020·北京大峪中学高二期中)的展开式的常数项是( )A .B .C .3D .4【答案】D 【解析】612x x æö-ç÷èø160-20-612x x æö-ç÷èø()()()66621662112r r r r rr r r r T C x x C x ----+=××-×=-×××620r -=3r =612x x æö-ç÷èø368160C -×=-10212x x æö+ç÷èø11x 10212x x æö+ç÷èø2102031101011()22r rr r r r r T C x C x x --+æöæö==ç÷ç÷èøèø20311r -=3r =11x 33101152C æö=ç÷èø()522111x x æö+-ç÷èø3-4-展开式中的第项为,当,即时,此时;当,即时,此时.则.故选:D.4.(2020·江苏省邗江中学高二期中)已知,则( )A .B .C .D .【答案】A 【解析】当取 时, 取8个,则,当 取时, 取7个,则,所以 .故选:A5.(2020·北京市鲁迅中学高二月考)的展开式中系数最大的项为( )A .第项B .第项C .第项D .第项【答案】B 【解析】的展开式的通项公式为:,要使系数最大,则r 为偶数,且r 只可能从2,4,6中选,故,且,所以,且,所以,且,经验证:当时,符合,所以的展开式中系数最大的项为第五项,5211x æö-ç÷èø1k +()()52101552111kkkk k k k T C C x x --+æö=-=-ç÷èø2102k -=-4k =()44515C -=2100k -=5k =()55511C -=-514-=()()92100121011...x x a a x a x a x --=++++8a =45-2727-45()1x -1()91-x x 1891a C =-´()1x -x -()91-x x ()278911a C =-´´-()27189911145a C C =-´´--´=-()712x -4578()712x -()()17722+=-=-r rrr r r T C x C x ()()227722---³-rr rr C C ()()227722++-³-rr rr C C ()()()7!7!4!7!2!9!r r r r ´³×--×-()()()7!7!4!7!2!5!r r r r ³´×-+×-()()()41198³---r r r r ()()()()147621³--++r r r r 4r =()712x -6.(2020·阳江市第三中学高二期中)的展开式中,系数最小的项为( )A .第6项B .第7项C .第8项D .第9项【答案】C 【解析】由题设可知展开式中的通项公式为,其系数为,当为奇数时展开式中项的系数最小,则,即第8项的系数最小,应选答案C.7.(2020·辽宁省高三其他(理))已知二项式的展开式中,二项式系数之和等于64,则展开式中常数项等于( )A .240B .120C .48D .36【答案】A 【解析】由题意,解得,则,则二项式的展开式的通项公式为,令即,则.故选:A.8.(2020·扬州市江都区大桥高级中学高二期中)在的展开式中第4项与第8项的系数相等,则展开式中系数最大的项是( )A .第6项B .第5项C .第5、6项D .第6、7项【答案】A 【解析】因为的展开式中每一项的系数和二项式系数相等,第4项与第8项的系数相等所以,所以所以展开式里系数最大的项是第6项()131x -11313()(1)r r r r r r T C x C x +=-=-13(1)r rC -r 13(1)r rC -7r =121(2)n x x+264n=6n =1162211(2(2)n x x x x+=+1621(2)x x +6133622166122rrr r rr T C x C x x ---+æöæö=××=××ç÷ç÷èøèø3302r -=2r =6426622240r r C C -×=×=()nx y +()nx y +37n n C C =10n =二、多选题9.(2020·江苏省扬州中学高二期中)已知的展开式中第5项的二项式系数最大,则n 的值可以为( )A .7B .8C .9D .10【答案】ABC 【解析】∵已知的展开式中第5项的二项式系数最大,则或n =8或n =9故选:ABC .10.(2020·南京市江宁高级中学高二期中)若的展开式中第3项与第8项的系数相等,则展开式中二项式系数最大的项为( )A .第3项B .第4项C .第5项D .第6项【答案】CD 【解析】由题可知,该二项展开式中的项的系数于二项式系数相等,且展开式中第3项与第8项的系数为,又因为其相等,则所以该展开式中二项式系数最大的项为与项即为第5项;第6项.故选:CD11.(2020·福建省南安市侨光中学高二月考)关于的展开式,下列结论正确的是( )A .所有项的二项式系数和为32B .所有项的系数和为0C .常数项为D .二项式系数最大的项为第3项【答案】BC 【解析】解:二项式展开式的通项为()na b +()na b +4n C 7n =1(nx x+27,n n C C 9n =91152-+=91162++=61x x æö-ç÷èø20-61x x æö-ç÷èø()66216611rr r r r r r T C x C x x --+æö=-=-ç÷èø令,解得,则常数项为,故C 正确;且二项式系数最大的项为第4项,故D 错误;二项式系数和;令,得所有项的系数和为0,故A 错误,B 正确;故选:BC12.(2020·江苏省高二期中)下列组合数公式中恒成立的有( )A .B .C .D .【答案】ABD 【解析】对于,因为,,所以,即正确;对于,,故正确;对于,当时,左边,右边,等式不成立,故不正确;对于,因为,等式左边的系数为:,等式右边的系数为:,所以,故正确.故选:ABD620r -=3r =()3346120T C =-=-012345666666666264C C C C C C C ++++++==1x =mn mn nC C -=11m m n n mC nC --=111m mmn n n C C C +++=+()()()()22220122nn nn nn nC C C C C +++×××+=A !!()!mn n C m n m =-!!()![()]!!()!n m n n n C n m n n m m n m -==----m n mn n C C -=AB !(1)!!()!(1)!()!mn n n n mC m m m n m m m n m ×-=×=×-×-×-(1)!(1)![(1)(1)]!n n m n m -=×-×---11m n nC --=BC 1m n ==221C ==1112123C C =+=+=C D 2(1)(1)(1)n n n x x x +×+=+n x 011220nn n n n n n nn n n nC C C C C C C C --×+×+×++×L 001122n n n n n n n n n n C C C C C C C C =×+×+×++×L =0212222()()()()n n n n n C C C C ++++L n x 2nn C ()()()()2222122n n nn n n n C C C C C +++×××+=D三、填空题13.(2020·上海复旦附中高二期中)若,则=__________.【答案】64【解析】在中,令可得,.所以故答案为:64.14.(2020·上海交大附中高三期中)计算:_____.【答案】【解析】由题得原式=.故答案为:15.(2020·山东省高二期中)二项式的展开式中的系数是 【答案】40【解析】依题意,二项式展开式的通项公式为,当,故的系数是.16.(2020·浙江省高三三模)二项式的展开式中,所有二项式系数的和是__________,含x 的项的系数是__________.【答案】128 84 【解析】由题意所有二项式系数的和为,题中二项式展开式通项公式为,令,,6226016(1)x a a x a x a x +=+++×××+0126a a a a +++×××+=6226016(1)x a a x a x a x +=+++×××+1x =()6012611a a a a +=+++×××+60126264a a a a +++×××+==012393n nn n n n C C C C ++++=L 4n 0011223333(13)4n n n nn n n n C C C C ++++=+=L 4n252(x x-4x ()()()52110315522rrrrr r r T C x x C x ---+=×-=-××1034,2r r -==4x ()225240C -×=722x x æö+ç÷èø72128=77317722(2r rrr r r r T C xC x x--+==731r -=2r =所以含x 的项的系数是.故答案为:128;84.四、解答题17.(2020·延安市第一中学高二期中(理))已知,求(1)的值; (2)的值.【答案】(1);(2)1093【解析】(1)令,则;(2)令,则①令,则②由①②得,即18.(2020·北京大峪中学高二期中)已知展开式中的第三项的系数为,求:(1)含的项;(2)二项式系数最大的项.【答案】(1);(2).【解析】(1)展开式的通项为,由于展开式中第三项的系数为,即,即,整理得,,解得,则展开式通项为,227284C =7270127(12)x a a x a x a x -=++++L 017a a a ++¼+0246a a a a +++1-1x =()7017121a a a ++¼=--=1x =-0123672187a a a a a a -+-+¼+-=0x =01a =12372a a a a \+++¼=-+()02462218722185a a a a +++=-=2461092a a a =++0246110921093a a a a \+++=+=1nx x æö+ç÷èø454x 4120x 2521n x x æö+ç÷èø211n rr r rr n r nn T C x C x x --+æö=×=×ç÷èø45245n C =()1452n n -=2900n n --=n N *ÎQ 10n =210110rr r T C x-+=×令,解得,因此,展开式中含的项为;(2)由二项式系数的对称性可知,二项式系数最大的项为.19.(2020·湖北省高二期中)已知的展开式中第4项与第5项的二项式系数相等.(1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项.【答案】(1),;(2).【解析】(1)由题意知,又展开式的通项为:展开式中共有8项,其中二项式系数最大的项为第4,第5项所以,(2)展开式中系数最大的项必须在正的系数项中产生,即在,,,时,也即在,,,中产生,而,, ,故系数最大的项为第5项20.(2020·怀仁市第一中学校高二月考(理))已知(xn 的展开式中的第二项和第三项的系数相等.(1)求n 的值;(2)求展开式中所有的有理项.【答案】(1);(2),,.【解析】2104r -=7r =4x 744810120T C x x =×=5610252T C ==2nx ö-÷ø14280T x -=-525560T x-=525560T x-=34n n C C =7n \=72x ö÷ø()()773221777222rr rrr r r rr r r T C C xC x x ---+æö=-=-=-ç÷èø()793312472280T C xx--=-=-()71254422572560T C xx--=-=0r =2461T 3T 5T 7T 721T x =12384T x =525560T x -=1127448T x -=525560T x-=5n =51T x =2352T x =5516T x=二项式展开式的通项公式为,;(1)根据展开式中的第二项和第三项的系数相等,得,即,解得;(2)二项式展开式的通项公式为,;当时,对应项是有理项,所以展开式中所有的有理项为,,.21.(2020·江西省上高二中高二月考(理))在二项式的展开式中,前三项的系数依次成等差数列.(1)求展开式中的所有有理项;(2)求系数最大的项.【答案】(1),,(2)和【解析】(nx 32112rrn r n rr r nn T C x C x--+æö=××=××ç÷èø()0,1,2r n =×××2121122nn C C æö×=×ç÷èø()111242n n n -=×5n =3521512rrr r T C x -+æö=××ç÷èø()0,1,2r n =×××0,2,4r =00551512T C x x æö=××=ç÷èø22532351522T C x x -æö=××=ç÷èø44565515216T C x x -æö=×=ç÷èøn +(1)∵由题设可知解得n=8或n=1(舍去)当n=8时,通项据题意,必为整数,从而可知r 必为4的倍数,而0≤r≤8∴ r=0,4,8,故x 的有理项为,,(2)设第r+1项的系数t r+1最大,显然t r+1>0,故有≥1且≤1∵, 由≥1得r≤3又∵,由≤1得:r≥2∴ r=2或r=3所求项为和22.(2020·广西壮族自治区钦州一中高二月考(理))已知展开式前三项的二项式系数和为22.(1)求的值;(2)求展开式中的常数项;(3)求展开式中二项式系数最大的项.【答案】(1);(2);(3).【解析】由题意,展开式前三项的二项式系数和为22.1二项式定理展开:前三项二项式系数为:,解得:或舍去.即n 的值为6.2nx æçèn 66032160x (2nx ()()01211222n n n n n C C C n -++=++=6n =7(n =-)2由通项公式,令,可得:.展开式中的常数项为;是偶数,展开式共有7项则第四项最大展开式中二项式系数最大的项为.()36662166(2)2k k k k k k k T C x C x ---+==3602k -=4k =\1264642416260T C x --+==()3n Q .\936363223162160T C x x --+==。

二项式定理典型例题(含解答)

二项式定理典型例题(含解答)

二项式定理典型例题典型例题一例1 在二项式nx x ⎪⎭⎫ ⎝⎛+421的展开式中前三项的系数成等差数列,求展开式中所有有理项. 分析:典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决.解:二项式的展开式的通项公式为:4324121C 21)(C rn r r n rr n r n r x x x T --+=⎪⎭⎫ ⎝⎛= 前三项的.2,1,0=r 得系数为:)1(8141C ,2121C ,123121-=====n n t n t t nn , 由已知:)1(8112312-+=+=n n n tt t ,∴8=n 通项公式为1431681,82,1,021C +-+==r rr rr T r x T 为有理项,故r 316-是4的倍数,∴.8,4,0=r 依次得到有理项为228889448541256121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类似地,1003)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有典型例题四例4(1)求103)1()1(x x +-展开式中5x 的系数;(2)求6)21(++xx 展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式.解:(1)103)1()1(x x +-展开式中的5x 可以看成下列几种方式得到,然后合并同类项: 用3)1(x -展开式中的常数项乘以10)1(x +展开式中的5x 项,可以得到5510C x ;用3)1(x -展开式中的一次项乘以10)1(x +展开式中的4x 项可得到54104410C 3)C )(3(x x x -=-;用3)1(x -中的2x 乘以10)1(x +展开式中的3x 可得到531033102C 3C 3x x x =⋅;用 3)1(x -中的3x 项乘以10)1(x +展开式中的2x 项可得到521022103C C 3x x x -=⋅-,合并同类项得5x 项为:5521031041051063)C C 3C C (x x -=-+-.(2)2121⎪⎪⎭⎫ ⎝⎛+=++x x x x 1251)21(⎪⎪⎭⎫ ⎝⎛+=++x x x x .由121⎪⎪⎭⎫⎝⎛+x x 展开式的通项公式r rrrrr x x T--+=⎪⎭⎫ ⎝⎛=61212121C 1)2(C ,可得展开式的常数项为924C 612=.说明:问题(2)中将非二项式通过因式分解转化为二项式解决.这时我们还可以通过合并项转化为二项式展开的问题来解决.典型例题五例5 求62)1(x x -+展开式中5x 的系数.分析:62)1(x x -+不是二项式,我们通过22)1(1x x x x -+=-+或)(12x x -+展开. 解:方法一:[]6262)1()1(x x x x -+=-+ -+++-+=44256)1(15)1(6)1(x x x x x其中含5x 的项为55145355566C 15C 6C x x x x =+-.含5x 项的系数为6.方法二:[]6262)(1)1(x x x x -+=-+62524232222)()(6)(15)(20)(15)(61x x x x x x x x x x x x -+-+-+-+-+-+=其中含5x 的项为555566)4(15)3(20x x x x =+-+-.∴5x 项的系数为6.方法3:本题还可通过把62)1(x x -+看成6个21x x -+相乘,每个因式各取一项相乘可得到乘积的一项,5x 项可由下列几种可能得到.5个因式中取x ,一个取1得到556C x .3个因式中取x ,一个取2x -,两个取1得到)(C C 231336x x -⋅⋅. 1个因式中取x ,两个取2x -,三个取1得到222516)(C C x x -⋅⋅. 合并同类项为5525161336566)C C C C (C x x =+-,5x 项的系数为6.典型例题六例6 求证:(1)1212C C 2C -⋅=+++n n n n n n n ;(2))12(11C 11C 31C 21C 1210-+=++++++n n nn n n n n . 分析:二项式系数的性质实际上是组合数的性质,我们可以用二项式系数的性质来证明一些组合数的等式或者求一些组合数式子的值.解决这两个小题的关键是通过组合数公式将等式左边各项变化的等数固定下来,从而使用二项式系数性质nn n n n n 2C C C C 210=++++ .解:(1)11C )!()!1()!1()!()!1(!)!(!!C --=+--⋅=--=-⋅=k n kn n k n k n n k n k n k n k n k k ∴左边111101C C C ----+++=n n n n n n n =⋅=+++=-----11111012)C C C (n n n n n n n 右边.(2))!()!1(!)!(!!11C 11k n k n k n k n k k k n --=-⋅+=+11C 11)!()!1()!1(11+++=-++⋅+=k n n k n k n n . ∴左边112111C 11C 11C 11++++++++++=n n n n n n n =-+=++++=+++++)12(11)C C (C 111112111n n n n n n n 右边. 说明:本题的两个小题都是通过变换转化成二项式系数之和,再用二项式系数的性质求解.此外,有些组合数的式子可以直接作为某个二项式的展开式,但这需要逆用二项式定理才能完成,所以需仔细观察,我们可以看下面的例子:求10C 2C 2C 2C 22108107910810109+++++ 的结果.仔细观察可以发现该组合数的式与10)21(+的展开式接近,但要注意:10101099102210110010102C 2C 2C 2C C )21(⋅+⋅++⋅+⋅+=+ 10101091092102C 2C 2C 21021++++⨯+= )C 2C 2C 210(21101099108210+++++=从而可以得到:)13(21C 2C 2C 21010101099108210-=++++ . 典型例题七例7 利用二项式定理证明:98322--+n n 是64的倍数.分析:64是8的平方,问题相当于证明98322--+n n 是28的倍数,为了使问题向二项式定理贴近,变形1122)18(93++++==n n n ,将其展开后各项含有k 8,与28的倍数联系起来.解:∵98322--+n n 98)18(98911--+=--=++n n n n9818C 8C 8C 81211111--+⋅+⋅++⋅+=+-+++n nn n n n n n981)1(88C 8C 8211111--+++⋅++⋅+=-+++n n n n n n n 2111118C 8C 8⋅++⋅+=-+++n n n n n 64)C 8C 8(112111⋅++⋅+=-+-++n n n n n 是64的倍数.说明:利用本题的方法和技巧不仅可以用来证明整除问题,而且可以用此方程求一些复杂的指数式除以一个数的余数.典型例题八例8 展开52232⎪⎭⎫ ⎝⎛-x x .分析1:用二项式定理展开式.解法1:52232⎪⎭⎫ ⎝⎛-x x 2232524150250523)2(23)2(23)2(⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=x x C x x C x x C52554245322352323)2(23)2(⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+x C x x C x x C10742532243840513518012032xx x x x x -+-+-= 分析2:对较繁杂的式子,先化简再用二项式定理展开.解法2:10535232)34(232x x x x -=⎪⎭⎫ ⎝⎛-233254315530510)3()4()3()4()4([321-+-+=x C x C x C x ])3()3()4()3()4(5554134532335-+-+-+C x C x C)243716204320576038401024(321369121510-+-+-=x x x x x x10742532243840513518012032x x x x x x -+-+-=. 说明:记准、记熟二项式nb a )(+的展开式,是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便.典型例题九例9 若将10)(z y x ++展开为多项式,经过合并同类项后它的项数为( ). A .11 B .33 C .55 D .66 分析:10)(z y x ++看作二项式10])[(z y x ++展开.解:我们把z y x ++看成z y x ++)(,按二项式展开,共有11“项”,即∑=-⋅+=++=++10010101010)(])[()(k k k kz y x C z y x z y x .这时,由于“和”中各项z 的指数各不相同,因此再将各个二项式ky x -+10)(展开,不同的乘积k kk z y x C ⋅+-1010)((10,,1,0 =k )展开后,都不会出现同类项. 下面,再分别考虑每一个乘积k kk z y x C ⋅+-1010)((10,,1,0 =k ).其中每一个乘积展开后的项数由ky x -+10)(决定,而且各项中x 和y 的指数都不相同,也不会出现同类项.故原式展开后的总项数为66191011=++++ ,∴应选D .典型例题十例10 若nx x ⎪⎭⎫⎝⎛-+21的展开式的常数项为20-,求n .分析:题中0≠x ,当0>x 时,把nx x ⎪⎭⎫ ⎝⎛-+21转化为nn x x x x 2121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+;当0<x 时,同理nn n x x x x 21)1(21⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛-+.然后写出通项,令含x 的幂指数为零,解出n . 解:当0>x 时nn x x x x 2121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+,其通项为rn r n r r rn r n r x C xx C T 222221)()1()1()(--+-=-=,令022=-r n ,得r n =, ∴展开式的常数项为n nnC2)1(-;当0<x 时,nn n x x x x 21)1(21⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛-+, 同理可得,展开式的常数项为n n n C 2)1(-.无论哪一种情况,常数项均为nn n C 2)1(-. 令20)1(2-=-nn n C ,以 ,3,2,1=n ,逐个代入,得3=n .典型例题十一例11 1031⎪⎭⎫ ⎝⎛+x x 的展开式的第3项小于第4项,则x 的取值范围是______________.分析:首先运用通项公式写出展开式的第3项和第4项,再根据题设列出不等式即可. 解: 1031⎪⎭⎫ ⎝⎛+x x 有意义必须0>x ;依题意有43T T <即3373102382101)(1)(⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛x x C x x C .∴31123891012910xx ⨯⨯⨯⨯⨯<⨯⨯(∵0>x ).解得5648980<<x .∴x 的取值范围是⎭⎬⎫⎩⎨⎧<<5648980x x .∴应填:5648980<<x .典型例题十二例12 已知n xx)1(2log +的展开式中有连续三项的系数之比为321∶∶,这三项是第几项?若展开式的倒数第二项为112,求x 的值.解:设连续三项是第k 、1+k 、2+k 项(+∈N k 且1>k ),则有32111∶∶∶∶=+-k n k n k n C C C , 即321!)1)(1(!!)(!!!)1)(1(!∶∶∶∶=--+-+--k n k n k n k n k n k n .∴321)1(1)(1)1)((1∶∶∶∶=+-+--k k k n k k n k n .∴⎪⎪⎩⎪⎪⎨⎧=-+=+-⇒⎪⎪⎩⎪⎪⎨⎧=-+=+---32)()1(21132)()1(21)1)(()(k n k k n k k n k k k k n k n k n k 14=⇒n ,5=k 所求连续三项为第5、6、7三项.又由已知,1122log 1314=xx C .即82log =x x .两边取以2为底的对数,3)(log 22=x ,3log 2±=x ,∴32=x ,或32-=x .说明:当题目中已知二项展开式的某些项或某几项之间的关系时,常利用二项式通项,根据已知条件列出某些等式或不等式进行求解.典型例题十三例13 nx )21(+的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项.分析:根据已知条件可求出n ,再根据n 的奇偶性;确定二项式系数最大的项.解:556)2(x C T n =,667)2(x C T n =,依题意有8226655=⇒=n C C n n . ∴8)21(x +的展开式中,二项式系数最大的项为444851120)2(x x C T ==.设第1+r 项系数最大,则有65222211881188≤≤⇒⎪⎩⎪⎨⎧⋅≥⋅⋅≥⋅++--r C C C C r r r r r r r r . ∴5=r 或6=r (∵{}8,,2,1,0 ∈r ).∴系娄最大的项为:561792x T =,671792x T =.说明:(1)求二项式系数最大的项,根据二项式系数的性质,n 为奇数时中间两项的二项式系数最大,n 为偶数时,中间一项的二项式系数最大.(2)求展开式中系数最大项与求二项式系数最大项是不同的,需根据各项系数的正、负变化情况,一般采用列不等式,解不等式的方法求得.典型例题十四例14 设nm x x x f )1()1()(+++=(+∈N n m ,),若其展开式中关于x 的一次项的系数和为11,问n m ,为何值时,含2x 项的系数取最小值?并求这个最小值.分析:根据条件得到2x 的系数关于n 的二次表达式,然后用二次函数性质探讨最小值.解:1111=+=+m n C C n m .211)(21222222-+=-+-=+n m n n m m C C n m 499)211(55112211022+-=+-=-=n n n mn .∵+∈N n , ∴5=n 或6,6=m 或5时,2x 项系数最小,最小值为25.说明:二次函数499)211(2+-=x y 的对称轴方程为211=x ,即5.5=x ,由于5、6距5.5等距离,且对+∈N n ,5、6距5.5最近,所以499)211(2+-n 的最小值在5=n 或6=n 处取得.典型例题十五例15 若0166777)13(a x a x a x a x ++++=- ,求(1) 721a a a +++ ;(2) 7531a a a a +++;(3) 6420a a a a +++.解:(1)令0=x ,则10-=a ,令1=x ,则128270167==++++a a a a . ①∴129721=+++a a a .(2)令1-=x ,则701234567)4(-=+-+-+-+-a a a a a a a a ②由2②①-得:8256]4128[2177531=--=+++)(a a a a (3)由2②①+得:6420a a a a +++][210123456701234567)()(a a a a a a a a a a a a a a a a +-+-+-+-++++++++=8128])4(128[217-=-+=. 说明:(1)根据问题恒等式特点来用“特殊值”法.这是一种重要方法,它适用于恒等式.(2)一般地,对于多项式nn n x a x a x a a q px x g ++++=+= 2210)()(,)(x g 的各项的系数和为)1(g :)(x g 的奇数项的系数和为)]1()1([21-+g g .)(x g 的偶数项的系数和为)]1()1([21--g g . 典型例题十六例16 填空:(1) 3230-除以7的余数_____________;(2) 155555+除以8的余数是___. 分析(1):将302分解成含7的因数,然后用二项式定理展开,不含7的项就是余数.解:3230-3)2(103-=3)8(10-=3)17(10-+=37771010910911010010-++++=C C C C2]77[791081109010-+++⨯=C C C又∵余数不能为负数,需转化为正数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二项式定理1.二项式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①二项式展开式:右边的多项式叫做()n a b +的二项展开式。

②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅.③项数:共(1)r +项,是关于a 与b 的齐次多项式④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。

用1r n r r r nT C a b -+=表示。

3.注意关键点:①项数:展开式中总共有(1)n +项。

②顺序:注意正确选择a ,b ,其顺序不能更改。

()n a b +与()n b a +是不同的。

③指数:a 的指数从n 逐项减到0,是降幂排列。

b 的指数从0逐项减到n ,是升幂排列。

各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r nn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。

4.常用的结论:令1,,a b x == 0122(1)()n r rn nn n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122rnn n n n n n C C C C C ++++++=,变形式1221rnn n n n n C C C C +++++=-。

③奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令1,1a b ==-,则0123(1)(11)0n nn n n n n n C C C C C -+-++-=-=,从而得到:0242132111222r r nn n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⨯= ④奇数项的系数和与偶数项的系数和:0011222012012001122202121001230123()()1, (1)1,(1)n n n n n nnn n n n n n n n n n n n n n n n n n n n n a x C a x C a x C a x C a x a a x a x a x x a C a x C ax C a x C a x a x a x a x a x a a a a a a x a a a a a a ----+=++++=+++++=++++=++++=++++=+---------=--+-++=-----令则①令则024135(1)(1),()2(1)(1),()2n nn n nn a a a a a a a a a a a a ----++-++++=+---+++=②①②得奇数项的系数和①②得偶数项的系数和⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n nC 取得最大值。

如果二项式的幂指数n 是奇数时,则中间两项的二项式系数12n nC-,12n nC+同时取得最大值。

⑥系数的最大项:求()n a bx +展开式中最大的项,一般采用待定系数法。

设展开式中各项系数分别为121,,,n A A A +⋅⋅⋅,设第1r +项系数最大,应有112r rr r A A A A +++≥⎧⎨≥⎩,从而解出r 来。

6.二项式定理的十一种考题的解法: 题型一:二项式定理的逆用;例:12321666 .nn n n n n C C C C -+⋅+⋅++⋅=解:012233(16)6666n nn n n n n n C C C C C +=+⋅+⋅+⋅++⋅与已知的有一些差距,123211221666(666)6nn n n n n n n n n n C C C C C C C -∴+⋅+⋅++⋅=⋅+⋅++⋅ 0122111(6661)[(16)1](71)666nn n n n n n n C C C C =+⋅+⋅++⋅-=+-=-题型二:利用通项公式求nx 的系数; 例:在二项式n的展开式中倒数第3项的系数为45,求含有3x 的项的系数? 解:由条件知245n n C -=,即245n C =,2900n n ∴--=,解得9()10n n =-=舍去或,由2102110343411010()()r r rrrr r T C x x C x--+--+==,由题意1023,643r r r --+==解得, 则含有3x 的项是第7项6336110210T C x x +==,系数为210。

题型三:利用通项公式求常数项;例:求二项式210(x 的展开式中的常数项?解:5202102110101()()2r rrrrr r T C x C x --+==,令52002r -=,得8r =,所以88910145()2256T C == 练:求二项式61(2)2x x-的展开式中的常数项? 解:666216611(2)(1)()(1)2()22r r r r r r r r rr T C x C xx ---+=-=-,令620r -=,得3r =,所以3346(1)20T C =-=-题型四:利用通项公式,再讨论而确定有理数项;例:求二项式9展开式中的有理项? 解:12719362199()()(1)r rrrrr r T C x x C x--+=-=-,令276rZ -∈,(09r ≤≤)得39r r ==或, 所以当3r =时,2746r -=,334449(1)84T C x x =-=-, 当9r =时,2736r -=,3933109(1)T C x x =-=-。

题型五:奇数项的二项式系数和=偶数项的二项式系数和;例:若n 展开式中偶数项系数和为256-,求n .解:设n 展开式中各项系数依次设为01,,,n a a a ⋅⋅⋅1x =-令,则有010,n a a a ++⋅⋅⋅=①,1x =令,则有0123(1)2,n n n a a a a a -+-+⋅⋅⋅+-=② 将①-②得:1352()2,n a a a +++⋅⋅⋅=-11352,n a a a -∴+++⋅⋅⋅=- 有题意得,1822562n --=-=-,9n ∴=。

题型六:最大系数,最大项;例:已知1(2)2nx +,若展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大项的系数是多少?解:46522,21980,n n n C C C n n +=∴-+=解出714n n ==或,当7n =时,展开式中二项式系数最大的项是45T T 和34347135()2,22T C ∴==的系数,434571()270,2T C ==的系数当14n =时,展开式中二项式系数最大的项是8T ,7778141C ()234322T ∴==的系数。

例:写出在7()a b -的展开式中,系数最大的项?系数最小的项?解:因为二项式的幂指数7是奇数,所以中间两项(4,5第项)的二项式系数相等,且同时取得最大值,从而有34347T C a b =-的系数最小,43457T C a b =系数最大。

例:若展开式前三项的二项式系数和等于79,求1(2)2n x +的展开式中系数最大的项?解:由01279,n n n C C C ++=解出12n =,假设1r T +项最大,12121211(2)()(14)22x x +=+ 1111212111212124444r r r r r r r r r r r r A A C C A A C C --+++++⎧≥≥⎧⎪∴=⎨⎨≥≥⎪⎩⎩,化简得到9.410.4r ≤≤,又012r ≤≤,10r ∴=,展开式中系数最大的项为11T ,有121010101011121()4168962T C x x ==题型七:含有三项变两项;例:求当25(32)x x ++的展开式中x 的一次项的系数?解法①:2525(32)[(2)3]x x x x ++=++,2515(2)(3)rr r r T C x x -+=+,当且仅当1r =时,1r T +的展开式中才有x 的一次项,此时124125(2)3r T T C x x +==+,所以x 得一次项为1445423C C x 它的系数为1445423240C C =。

解法②:255505145051455555555(32)(1)(2)()(22)x x x x C x C x C C x C x C ++=++=++⋅⋅⋅+++⋅⋅⋅+故展开式中含x 的项为4554455522240C xC C x x +=,故展开式中x 的系数为240.题型八:两个二项式相乘;例:342(12)(1)x x x +-求展开式中的系数. 解:333(12)(2)2,m m mm m x x x +⋅=⋅⋅的展开式的通项是C C444(1)C ()C 1,0,1,2,3,0,1,2,3,4,n n n n n x x x m n -⋅-=⋅-⋅==的展开式的通项是其中 342,02,11,20,(12)(1)m n m n m n m n x x +=======+-令则且且且因此20022111122003434342(1)2(1)2(1)6x C C C C C C ⋅⋅⋅-+⋅⋅⋅-+⋅⋅⋅-=-的展开式中的系数等于.练:2*31(1)(),28,______.nx x x n N n n x+++∈≤≤=已知的展开式中没有常数项且则 解:3431()C C ,n r n r r r n r n n x x x x x---+⋅⋅=⋅展开式的通项为通项分别与前面的三项相乘可得 44142C ,C ,C ,,28r n r r n r r n r n n nx x x n --+-+⋅⋅⋅≤≤展开式中不含常数项 441424,83,72,6, 5.n r n r n r n n n n ∴≠≠+≠+≠≠≠∴=且且,即且且题型九:奇数项的系数和与偶数项的系数和;例:2006(,,,_____.x x S x S ==在的二项展开式中含的奇次幂的项之和为当解:2006123200601232006(x a a x a x a x a x +++++设=-------①2006123200601232006(x a a x a x a x a x --+-++=-------②3520052006200613520052()((a x a x a x a x x x -++++=-①②得2006200620061(()[((]2x S x x x ∴=--+展开式的奇次幂项之和为32006220062006300812,]222x S ⨯==-=-=-当题型十:赋值法;例:设二项式1)nx的展开式的各项系数的和为p ,所有二项式系数的和为s ,若272p s +=,则n 等于多少?解:若20121)n n n a a x a x a x x=+++⋅⋅⋅+,有01n P a a a =++⋅⋅⋅+,02nn n n S C C =+⋅⋅+=,令1x =得4nP =,又272p s +=,即42272(217)(216)0n n n n +=⇒+-=解得216217()n n ==-或舍去,4n ∴=.例:200912320092009120123200922009(12)(),222a a a x a a x a x a x a x x R -=+++++∈++⋅⋅⋅+若则的值为 解:2009200912120022009220091,0,2222222a a a a a a x a a =+++⋅⋅⋅+=∴++⋅⋅⋅+=-令可得 20091202200901, 1.222a a a x a ==++⋅⋅⋅+=-在令可得因而 练:55432154321012345(2),____.x a x a x a x a x a x a a a a a a -=+++++++++=若则 解:0012345032,11,x a x a a a a a a ==-=+++++=-令得令得1234531.a a a a a ∴++++= 题型十一:整除性;例:证明:22*389()n n n N +--∈能被64整除 证:2211389989(81)89n n n n n n +++--=--=+--011121111111888889n n n n n n n n n n C C C C C n +-++++++=++⋅⋅⋅+++--011121118888(1)189n n n n n n C C C n n +-+++=++⋅⋅⋅++++--01112111888n n n n n n C C C +-+++=++⋅⋅⋅+由于各项均能被64整除22*389()64n n n N +∴--∈能被整除。

相关文档
最新文档