等差数列经典试题(含答案) 百度文库

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等差数列选择题
1.已知数列{}n a 的前n 项和为n S ,11
2
a =
,2n ≥且*n ∈N ,满足120n n n a S S -+=,数列1n S ⎧⎫
⎨⎬⎩⎭
的前n 项和为n T ,则下列说法中错误的是( )
A .21
4
a =-
B .
648
211S S S =+ C .数列{}12n n n S S S +++-的最大项为
712
D .1121
n n n n n
T T T n n +-=
++ 2.已知各项不为0的等差数列{}n a 满足2
6780a a a -+=,数列{}n b 是等比数列,且
77b a =,则3810b b b =( )
A .1
B .8
C .4
D .2
3.等差数列{}n a 中,已知14739a a a ++=,则4a =( ) A .13 B .14 C .15 D .16 4.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8
B .10
C .12
D .14
5.已知等差数列{}n a 前n 项和为n S ,且351024a a a ++=,则13S 的值为( ) A .8
B .13
C .26
D .162
6.已知等差数列{}n a 的前n 项和为n S ,且110a =,56S S ≥,下列四个命题:①公差d 的最大值为2-;②70S <;③记n S 的最大值为M ,则M 的最大值为30;④20192020a a >.其真命题的个数是( ) A .4个
B .3个
C .2个
D .1个
7.已知等差数列{}n a 的前n 项和为n S ,若936S S =,则6
12S
S =( ) A .
17
7
B .
83 C .
143
D .
103
8.若两个等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且3221n n S n T n +=+,则12
15
a b =( ) A .
3
2
B .
7059
C .
7159
D .85
9.题目文件
丢失!
10.已知数列{}n a 中,132a =
,且满足()*
1112,22
n n n a a n n N -=+≥∈,若对于任意*
n N ∈,都有
n a n
λ
≥成立,则实数λ的最小值是( ) A .2
B .4
C .8
D .16
11.数学著作《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),问物几何?”现将1到2020共2020个整数中,同时满足“三三数之剩二,五五数之剩三”的数按从小到大的顺序排成一列,构成数列{},n a 则该数列共有( ) A .132项
B .133项
C .134项
D .135项
12.等差数列{}n a 的前n 项和为n S ,已知58a =,36S =,则107S S -的值是( ) A .48
B .60
C .72
D .24
13.冬春季节是流感多发期,某地医院近30天每天入院治疗流感的人数依次构成数列
{}n a ,已知11a =,2
2a
=,且满足()211+-=+-n
n n a a (n *∈N ),则该医院30天入
院治疗流感的共有( )人
A .225
B .255
C .365
D .465
14.等差数列{}n a 的前n 项和为n S ,且132a a +=,422a a -=,则5S =( ) A .21
B .15
C .10
D .6
15.在等差数列{}n a 的中,若131,5a a ==,则5a 等于( ) A .25
B .11
C .10
D .9
16.设等差数列{}n a 的前n 和为n S ,若(
)*
111,m m a a a m m N +-<<->∈,则必有( )
A .0m S <且10m S +>
B .0m S >且10m S +>
C .0m S <且10m S +<
D .0m S >且10m S +<
17.记n S 为等差数列{}n a 的前n 项和,若542S S =,248a a +=,则5a 等于( ) A .6
B .7
C .8
D .10
18.已知等差数列{}n a 中,7916+=a a ,41a =,则12a 的值是( ) A .15
B .30
C .3
D .64
19.在等差数列{}n a 中,520164a a +=,S ,是数列{}n a 的前n 项和,则S 2020=( ) A .2019
B .4040
C .2020
D .4038
20.已知等差数列{}n a 满足48a =,6711a a +=,则2a =( ) A .10
B .9
C .8
D .7
二、多选题
21.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足140(2)n n n a S S n -+=≥,114
a =,则下列说法错误的是( )
A .数列{}n a 的前n 项和为4n S n =
B .数列{}n a 的通项公式为1
4(1)
n a n n =+
C .数列{}n a 为递增数列
D .数列1n S ⎧⎫

⎬⎩⎭
为递增数列22.题目文件丢失!
23.若数列{}n a 满足112,02
121,1
2
n n n n n a a a a a +⎧
≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,则数列{}n a 中的项的值可能为
( ) A .
1
5
B .
25
C .
45
D .
65
24.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件
11a >,66771
1,
01
a a a a -><-,则下列结论正确的是( ) A .01q <<
B .681a a >
C .n S 的最大值为7S
D .n T 的最大值为6T
25.设等差数列{}n a 的前n 项和为n S .若30S =,46a =,则( ) A .2
3n S n n =- B .2392
-=n n n
S
C .36n a n =-
D .2n a n =
26.设{}n a 是等差数列,n S 是其前n 项的和,且56S S <,678S S S =>,则下列结论正确的是( ) A .0d > B .70a =
C .95S S >
D .6S 与7S 均为n S 的最大值
27.{} n a 是等差数列,公差为d ,前项和为n S ,若56S S <,678S S S =>,则下列结论正确的是( ) A .0d <
B .70a =
C .95S S >
D .170S <
28.已知数列{}n a 的前n 项和为,n S 2
5,n S n n =-则下列说法正确的是( )
A .{}n a 为等差数列
B .0n a >
C .n S 最小值为214
-
D .{}n a 为单调递增数列
29.在下列四个式子确定数列{}n a 是等差数列的条件是( )
A .n a kn b =+(k ,b 为常数,*n N ∈);
B .2n n a a d +-=(d 为常数,
*n N ∈);
C .(
)
*
2120n n n a a a n ++-+=∈N ; D .{}n a 的前n 项和2
1
n S n n =++(*n N ∈).
30.公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有( ) A .0d <
B .70a >
C .{}n S 中5S 最大
D .49a a <
【参考答案】***试卷处理标记,请不要删除
一、等差数列选择题 1.D 【分析】
当2n ≥且*
n ∈N 时,由1n n n a S S -=-代入1
20n n n a S S -+=可推导出数列1n S ⎧⎫
⎨⎬⎩⎭
为等差
数列,确定该数列的首项和公差,可求得数列1n S ⎧⎫
⎨⎬⎩⎭
的通项公式,由221a S S =-可判断A
选项的正误;利用n S 的表达式可判断BC 选项的正误;求出n T ,可判断D 选项的正误. 【详解】
当2n ≥且*n ∈N 时,由1n n n a S S -=-, 由120n n n a S S -+=可得11111
2020n n n n n n
S S S S S S ----+=⇒-+=, 整理得
1
112n n S S --=(2n ≥且n +∈N ). 则1n S ⎧⎫
⎨⎬⎩⎭
为以2为首项,以2为公差的等差数列
()12122n n n S ⇒=+-⋅=,12n S n ∴=. A 中,当2n =时,221111
424
a S S =-=
-=-,A 选项正确; B 中,1n S ⎧⎫
⎨⎬⎩⎭
为等差数列,显然有648211S S S =+,B 选项正确; C 中,记()()
1212211221n n n n b S S n n n S ++=+-=
+-++,
()()()
1123111
212223n n n n b S S S n n n ++++=+-=+-+++,
()()()
1111602223223n n n b b n n n n n n ++∴-=
--=-<++++,故{}n b 为递减数列, ()1123max 1117
24612
n b b S S S ∴==+-=
+-=,C 选项正确; D 中,
12n n S =,()()2212
n n n T n n +∴==+,()()112n T n n +∴=++. ()()()()()()111121121
11n n n n T T n n n n n n n n n n n n n n +-=⋅++⋅++=+--+++++222122212n n n n n n T =-++=+-≠,D 选项错误.
故选:D . 【点睛】
关键点点睛:利用n S 与n a 的关系求通项,一般利用11,1
,2n n
n S n a S S n -=⎧=⎨-≥⎩来求解,在变形
过程中要注意1a 是否适用,当利用作差法求解不方便时,应利用1n n n a S S -=-将递推关系转化为有关n S 的递推数列来求解. 2.B 【分析】
根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】
因为各项不为0的等差数列{}n a 满足2
6780a a a -+=,
所以2
7720a a -=,解得72a =或70a =(舍);
又数列{}n b 是等比数列,且772b a ==,
所以3
3810371178b b b b b b b ===.
故选:B. 3.A 【分析】
利用等差数列的性质可得1742a a a +=,代入已知式子即可求解. 【详解】
由等差数列的性质可得1742a a a +=, 所以1474339a a a a ++==,解得:413a =, 故选:A 4.C 【分析】
利用等差数列的通项公式即可求解. 【详解】 {a n }为等差数列,
S 3=12,即1232312a a a a ++==,解得24a =. 由12a =,所以数列的公差21422d a a =-=-=, 所以()()112212n a a n d n n =+-=+-=, 所以62612a =⨯=. 故选:C 5.B 【分析】
先利用等差数列的下标和性质将35102a a a ++转化为()410724a a a +=,再根据
()
11313713132
a a S a +=
=求解出结果.
【详解】
因为()351041072244a a a a a a ++=+==,所以71a =,
又()
1131371313131132
a a S a +=
==⨯=, 故选:B. 【点睛】
结论点睛:等差、等比数列的下标和性质:若(
)*
2,,,,m n p q t m n p q t N +=+=∈,
(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2
m n p q t a a a a a ⋅=⋅=.
6.B 【分析】
设公差为d ,利用等差数列的前n 项和公式,56S S ≥,得2d ≤-,由前n 项和公式,得
728S ≤,同时可得n S 的最大值,2d =-,5n =或6n =时取得,结合递减数列判断
D . 【详解】
设公差为d ,由已知110a =,56S S ≥,得5101061015d d ⨯+≥⨯+,所以2d ≤-,A 正确;
所以7710217022128S d =⨯+≤-⨯=,B 错误;
1(1)10(1)0n a a n d n d =+-=+-≥,解得10
1n d
≤-
+,11100n a a nd nd +=+=+≤,解得10n d
≥-

所以1010
1n d d
-
≤≤-+,当2d =-时,56n ≤≤, 当5n =时,有最大值,此时51010(2)30M =⨯+⨯-=,
当6n =时,有最大值,此时61015(2)30M =⨯+⨯-=,C 正确. 又该数列为递减数列,所以20192020a a >,D 正确. 故选:B . 【点睛】
关键点点睛:本题考查等差数列的前n 项和,掌握等差数列的前n 和公式与性质是解题关
键.等差数列前n 项和n S 的最大值除可利用二次函数性质求解外还可由1
0n n a a +≥⎧⎨≤⎩求得.
7.D 【分析】
由等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列,结合已知条件得633S S =和31210S S =计算得结果. 【详解】
已知等差数列{}n a 的前项和为n S ,∴3S ,63S S -,96S S -,129S S -构成等差数列, 所以()()633962S S S S S ⋅-=+-,且9
3
6S S =,化简解得633S S =. 又
()()()96631292S S S S S S ⋅-=-+-,∴31210S S =,从而
126103
S S =. 故选:D 【点睛】 思路点睛:
(1)利用等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列, (2)()()633962S S S S S ⋅-=+-,且
9
3
6S S =,化简解得633S S =, (3)()()()96631292S S S S S S ⋅-=-+-,化简解得31210S S =. 8.C 【分析】
可设(32)n S kn n =+,(21)n T kn n =+,进而求得n a 与n b 的关系式,即可求得结果. 【详解】
因为{}n a ,{}n b 是等差数列,且
3221
n n S n T n +=+, 所以可设(32)n S kn n =+,(21)n T kn n =+,
又当2n 时,有1(61)n n n a S S k n -=-=-,1(41)n n n b T T k n -=-=-,

1215(6121)71(4151)59
a k
b k ⨯-==⨯-, 故选:C .
9.无
10.A 【分析】 将11122
n n n a a -=
+变形为11221n n n n a a --=+,由等差数列的定义得出2
2n n n a +=,从而得
出()
22n
n n λ+≥,求出()max
22n n n +⎡⎤⎢⎥⎣⎦的最值,即可得出答案. 【详解】 因为2n ≥时,111
22
n n n a a -=
+,所以11221n n n n a a --=+,而1123a = 所以数列{
}
2n
n a 是首项为3公差为1的等差数列,故22n
n a n =+,从而2
2n n
n a +=
. 又因为n a n λ
≥恒成立,即()22n
n n λ+≥恒成立,所以()max 22n n n λ+⎡⎤≥⎢⎥⎣⎦. 由()()()
()()()()
1
*121322,221122n n n
n n n n n n n n n n n +-⎧+++≥⎪⎪∈≥⎨
+-+⎪≥⎪⎩N 得2n = 所以()()2
max
2222222n n n +⨯+⎡⎤
==⎢⎥⎣⎦,所以2λ≥,即实数λ的最小值是2 故选:A 11.D 【分析】
由题意抽象出数列是等差数列,再根据通项公式计算项数. 【详解】
被3除余2且被5除余3的数构成首项为8,公差为15的等差数列,记为{}n a ,则
()8151157n a n n =+-=-,令1572020n a n =-≤,解得:2
135
15
n ≤, 所以该数列的项数共有135项. 故选:D 【点睛】
关键点点睛:本题以数学文化为背景,考查等差数列,本题的关键是读懂题意,并能抽象出等差数列.
【分析】
根据条件列方程组,求首项和公差,再根据107891093S S a a a a -=++=,代入求值. 【详解】
由条件可知1148
32
362a d a d +=⎧⎪
⎨⨯+=⎪⎩
,解得:102a d =⎧⎨=⎩, ()10789109133848S S a a a a a d -=++==+=.
故选:A 13.B 【分析】
直接利用分类讨论思想的应用求出数列的通项公式,进一步利用分组法求出数列的和 【详解】
解:当n 为奇数时,2n n a a +=, 当n 为偶数时,22n n a a +-=, 所以13291a a a ==⋅⋅⋅==,
2430,,,a a a ⋅⋅⋅是以2为首项,2为公差的等差数列,
所以30132924301514
()()1515222552
S a a a a a a ⨯=++⋅⋅⋅++++⋅⋅⋅+=+⨯+⨯=, 故选:B 14.C 【分析】
根据已知条件得到关于首项1a 和公差d 的方程组,求解出1,a d 的值,再根据等差数列前n 项和的计算公式求解出5S 的值. 【详解】
因为1342
22a a a a +=⎧⎨-=⎩,所以122222a d d +=⎧⎨=⎩,所以101a d =⎧⎨=⎩,
所以5154
550101102
S a d ⨯=+=⨯+⨯=, 故选:C. 15.D 【分析】
利用等差数列的性质直接求解. 【详解】 因为131,5a a ==,315529a a a a =+∴=,
故选:D .
【分析】
由等差数列前n 项和公式即可得解. 【详解】
由题意,1110,0m m a a a a ++>+<, 所以1()02m m m a a S +=>,111(1)()
02
m m m a a S ++++=<. 故选:D. 17.D 【分析】
由等差数列的通项公式及前n 项和公式求出1a 和d ,即可求得5a . 【详解】
解:设数列{}n a 的首项为1a ,公差为d , 则由542S S =,248a a +=,
得:111154435242238a d a d a d a d ⨯⨯⎛
⎫+=+ ⎪⎝
⎭+++=⎧⎪⎨⎪⎩


{
11320
24
a d a d +-+=, 解得:
{
123
a d =-=,
51424310a a d ∴=+=-+⨯=.
故选:D. 18.A 【分析】
设等差数列{}n a 的公差为d ,根据等差数列的通项公式列方程组,求出1a 和d 的值,
12111a a d =+,即可求解.
【详解】
设等差数列{}n a 的公差为d ,
则111681631a d a d a d +++=⎧⎨+=⎩,即117831a d a d +=⎧⎨+=⎩ 解得:174
174d a ⎧=⎪⎪⎨⎪=-⎪⎩

所以12117760
111115444
a a d =+=-+⨯==, 所以12a 的值是15, 故选:A 19.B
【分析】
由等差数列的性质可得52012016024a a a a +==+,则
()15202020202016202010102
a a a a S +=
⨯=⨯+可得答案. 【详解】 等差数列{}n a 中, 52012016024a a a a +==+
()12020202052016202010104101040402
a a a a S +===⨯=+⨯⨯ 故选:B
20.A
【分析】
利用等差数列的性质结合已知解得d ,进一步求得2a .
【详解】
在等差数列{}n a 中,设公差为d ,由
467
811a a a =⎧⇒⎨+=⎩444812311a d a d a d =⎧⇒=-⎨+++=⎩,24210a a d ∴=-=. 故选:A
二、多选题
21.ABC
【分析】
数列{}n a 的前n 项和为0n n S S ≠()
,且满足1402n n n a S S n -+=≥(),114a =,可得:1140n n n n S S S S ---+=,化为:
1114n n S S --=,利用等差数列的通项公式可得1n S ,n S ,2n ≥时,()()
111144141n n n a S S n n n n -=-=
-=---,进而求出n a . 【详解】 数列{}n a 的前n 项和为0n n S S ≠()
,且满足1402n n n a S S n -+=≥(),114a =, ∴1140n n n n S S S S ---+=,化为:1
114n n S S --=, ∴数列1n S ⎧⎫⎨⎬⎩⎭
是等差数列,公差为4, ∴()14414n n n S =+-=,可得14n S n
=,
∴2n ≥时,()()
111144141n n n a S S n n n n -=-=-=---, ∴()1(1)41(2)41n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩
, 对选项逐一进行分析可得,A ,B ,C 三个选项错误,D 选项正确.
故选:ABC.
【点睛】 本题考查数列递推式,解题关键是将已知递推式变形为1
114n n S S --=,进而求得其它性质,考查逻辑思维能力和运算能力,属于常考题
22.无
23.ABC
【分析】
利用数列{}n a 满足的递推关系及135
a =,依次取1,2,3,4n =代入计算2345,,,a a a a ,能得到数列{}n a 是周期为4的周期数列,得项的所有可能值,判断选项即得结果.
【详解】
数列{}n a 满足112,02121,12
n n n n n a a a a a +⎧≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,依次取1,2,3,4,...n =代入计算得, 211215a a =-=,32225a a ==,43425a a ==,5413215
a a a =-==,因此继续下去会循环,数列{}n a 是周期为4的周期数列,所有可能取值为:1234,
,,5555. 故选:ABC.
【点睛】
本题考查了数列的递推公式的应用和周期数列,属于基础题.
24.AD
【分析】
分类讨论67,a a 大于1的情况,得出符合题意的一项.
【详解】
①671,1a a >>, 与题设67101
a a -<-矛盾.
②671,1,a a ><符合题意.
③671,1,a a <<与题设67101
a a -<-矛盾. ④ 671,1,a a <>与题设11a >矛盾.
得671,1,01a a q ><<<,则n T 的最大值为6T .
∴B ,C ,错误.
故选:AD.
【点睛】
考查等比数列的性质及概念. 补充:等比数列的通项公式:()1*
1n n a a q
n N -=∈. 25.BC
【分析】
由已知条件列方程组,求出公差和首项,从而可求出通项公式和前n 项和公式
【详解】
解:设等差数列{}n a 的公差为d ,
因为30S =,46a =, 所以113230236
a d a d ⨯⎧+=⎪⎨⎪+=⎩,解得133a d =-⎧⎨=⎩, 所以1(1)33(1)36n a a n d n n =+-=-+-=-,
21(1)3(1)393222
n n n n n n n S na d n ---=+=-+=, 故选:BC
26.BD
【分析】
设等差数列{}n a 的公差为d ,依次分析选项即可求解.
【详解】
根据题意,设等差数列{}n a 的公差为d ,依次分析选项:
{}n a 是等差数列,若67S S =,则7670S S a -==,故B 正确;
又由56S S <得6560S S a -=>,则有760d a a =-<,故A 错误;
而C 选项,95S S >,即67890a a a a +++>,可得()7820a a +>,
又由70a =且0d <,则80a <,必有780a a +<,显然C 选项是错误的.
∵56S S <,678S S S =>,∴6S 与7S 均为n S 的最大值,故D 正确;
故选:BD.
【点睛】
本题考查了等差数列以及前n 项和的性质,需熟记公式,属于基础题.
27.ABD
【分析】
结合等差数列的性质、前n 项和公式,及题中的条件,可选出答案.
【详解】
由67S S =,可得7670S S a -==,故B 正确;
由56S S <,可得6560S S a -=>,
由78S S >,可得8780S S a -=<,
所以876a a a <<,故等差数列{}n a 是递减数列,即0d <,故A 正确;
又()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确; 又因为等差数列{}n a 是单调递减数列,且80a <,所以90a <,
所以()
117179171702a a S a +==<,故D 正确.
故选:ABD.
【点睛】
关键点点睛:本题考查等差数列性质的应用,解题的关键是熟练掌握等差数列的增减性及前n 项和的性质,本题要从题中条件入手,结合公式()12n n n a S S n --≥=,及
()12
n n n a a S +=
,对选项逐个分析,可判断选项是否正确.考查学生的运算求解能力与逻辑推理能力,属于中档题.
28.AD
【分析】 利用11,1,2n n
n S n a S S n -=⎧=⎨-≥⎩求出数列的通项公式,可对A ,B ,D 进行判断,对25,n S n n =-进行配方可对C 进行判断
【详解】
解:当1n =时,11154a S ==-=-,
当2n ≥时,2215[(1)5(1)]26n n n a S S n n n n n -=-=-----=-,
当1n =时,14a =-满足上式,
所以26n a n =-,
由于()122n n a a n --=≥,所以数列{}n a 为首项为4-,公差为2的等差数列, 因为公差大于零,所以{}n a 为单调递增数列,所以A ,D 正确,B 错误, 由于225
255()24
n S n n n =-=--,而n ∈+N ,所以当2n =或3n =时,n S 取最小值,
且最小值为6-,所以C 错误,
故选:AD
【点睛】
此题考查,n n a S 的关系,考查由递推式求通项并判断等差数列,考查等差数列的单调性和前n 项和的最值问题,属于基础题
29.AC
【分析】
直接利用等差数列的定义性质判断数列是否为等差数列.
【详解】
A 选项中n a kn b =+(k ,b 为常数,*n N ∈),数列{}n a 的关系式符合一次函数的形式,所以是等差数列,故正确,
B 选项中2n n a a d +-=(d 为常数,*n N ∈),不符合从第二项起,相邻项的差为同一个常数,故错误;
C 选项中()
*2120n n n a a a n ++-+=∈N ,对于数列{}n a 符合等差中项的形式,所以是等差数列,故正确;
D 选项{}n a 的前n 项和21n S n n =++(*n N ∈),不符合2n S An Bn =+,所以{}n a 不
为等差数列.故错误.
故选:AC
【点睛】
本题主要考查了等差数列的定义的应用,如何去判断数列为等差数列,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.
30.AD
【分析】
先根据题意得1110a a +>,1120a a +<,再结合等差数列的性质得60a >,70a <,0d <,{}n S 中6S 最大,49a a <-,即:49a a <.进而得答案.
【详解】
解:根据等差数列前n 项和公式得:()111111102a a S +=
>,()112121202
a a S +=< 所以1110a a +>,1120a a +<,
由于11162a a a +=,11267a a a a +=+,
所以60a >,760a a <-<,
所以0d <,{}n S 中6S 最大,
由于11267490a a a a a a +=+=+<,
所以49a a <-,即:49a a <.
故AD 正确,BC 错误.
故选:AD.
【点睛】
本题考查等差数列的前n项和公式与等差数列的性质,是中档题.。

相关文档
最新文档