第18届五羊杯初二数学竞赛试题

合集下载

初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。

绝对值方程(组、应用)基本知识及习题(四合一)

绝对值方程(组、应用)基本知识及习题(四合一)

绝对值方程(组、应用)四合一(请做课后的学力训练)≮知识纵横≯四合一早在300多年前法国数学家笛卡尔有一个伟大的设想:首先把宇宙万物的所有问题都转化为数学问题;其次,把所有的数学问题转化为代数问题;最后,把所有的代数问题转化为解方程.虽然笛卡尔“伟大设想”没有实现,但是充分说明了方程的重要性。

一元一次方程是代数方程中最基础的部分,是后续学习的基础,其基本内容包括:解方程、方程的解及其讨论。

解一元一次方程有一般程序化的步骤,我们在解一元一次方程时,既要学会按部就班(严格按步骤)地解方程,又要能随机应变(灵活打乱步骤)解方程。

当方程中的系数是用字母表示时,这样的方程叫含字母系数的方程,含字母系数的一元一次方程总可以化为ax =b 的形式,继续求解时,一般要对字母系数a 、b 进行讨论:1.当a ≠0时,方程有唯一解x=ab 。

2.当a=0且b ≠0时,方程无解。

3.当a=0且b=0时,方程有无数个解。

绝对值是初中数学最活跃的概念之一,能与数学中许多知识关联而生成新的问题,我们把绝对值符号中含有未知数的方程叫含绝对值符号的方程,简称绝对值方程。

解绝对值方程的基本方法有:一是设法去掉绝对值符号,将绝对值方程转化为常见的方程求解;一是数形结合,借助于图形的直观性求解。

前者是通法,后者是技巧。

解绝对值方程时,常常要用到绝对值的几何意义、去绝对值的符号法则、非负数的性质、绝对值常用的基本性质等与绝对值相关的知识、技能与方法。

一次方程组是在一元一次方程的基础上展开的,教材只介绍了二元一次方程组、三元一次方程组的概念、解法,类似地我们可得到四元一次方程组、五元一次方程组等,尽管元数可以增加,但是它们的解法却是一样的。

“消元”是解一次方程组的基本思想,即通过消元把一次方程组转化为一元一次方程来解,而代人法、加减法是消元的两种基本方法。

解一些复杂的方程组(如未知数系数较大、方程个数较多等),需要观察方程组下系数特点,着眼于整体上解决问题,常用到整体叠加、整体叠乘、设元引参、对称处理、换元转化等方法技巧。

第18届“五羊杯”初二数学竞赛试题(含答案)

第18届“五羊杯”初二数学竞赛试题(含答案)

第18届“五羊杯”初二数学竞赛试题(考试时间:90分钟 满分:100分)一、选择题(4选1型,每小题选对得5分,否则得0分,本大题满分50分)1.化简繁分数:111123233(2)---+--+-----=( ).A 、25B .25- C .一2 D 、22.设23x y x y-=+,其中x ,y ≠0,则3333(23)(32)(42)(7)x y x y x y x y ---+--=( ) A .一l B .1 C .14134075 D .14134075-3.已知三个方程构成的方程组2,1,122yz xyz xyzy z yz zx xy yz zx xy===+-+++恰有一组解,,x a y b z c ===,则333a b c ++=( ) A .一1 B .1 C .0 D .174.设324(23)2(321)3a b c d a b c d +-+-+--=-++,则()()()()b c d c d a d a b a b c +-+-+-+-=( )A .16B .一24C .30D .05、杨城同学训练上楼梯赛跑,他每步可上2阶或3阶(但不上1阶,也不上4阶以上).现共有16阶台阶,规定不许踏上第7阶,也不许踏上第13阶.那么杨城有( )种不同的上楼梯方法.(注:两种上楼梯方法,只要有某l 阶楼梯的上法不相同,就算作不同的方法.) A .12 B .14 C .15 D .166.求值:20063—10063一l0003—3000×2006×1006=( ).A .2036216432B .2000000000C .12108216000D .07.已知323x y -=,则23796x y xyxy y x--+-=( ) A .14 B .14- C 、13- D 、138.计算33332461004246100624610082462006+++++++++++++++++++ A .31003 B .31004 C .1334 D .110009.至少有两个数字相同的3位数共有( )个 A .280 B .180 C .252 D .39610.五羊中学从初一到高三级学生中挑选“访贫问苦”志愿者,至少要选出( )名同学,才能做到,不管怎样挑选,以下六个条件至少能满足一个条件: 条件l :初一级至少选3人; 条件2:初二级至少选4人; 条件3:初三级至少选5人; 条件4:高一级至少选8人; 条件5:高二级至少选20人; 条件6:高三级至少选6人.A .47B .46C .41D .40二、填空题(每小题答对得5分,否则得0分.本大题满分50分)11.若P 是两位的正整数,则以下等式中有可能成立的式子的个数是 . A .22006(34)(59)x Px x x ++=-- B 、22006(17)(118)x Px x x ++=-- C 、22006(34)(59)x Px x x --=+- D 、22006(17)(118)x Px x x --=+- E 、22006(1)(2006)x Px x x +-=-+12.分解因式2226773x xy y x y --+++=13.已知2323573(2)2(2)(2)x x A B Cx x x x ++=++----其中A ,B ,C 为常数,则2A+B+C=14.方程组4239x y x x y x ⎧++=⎪⎨++=⎪⎩的解共有 组15.假设一家旅馆共有30个房间,分别编以号码l ~30,现在要在每个房间的钥匙标上数字,为保密起见,要求数字用密码法,使服务员容易识别,而使局外人不易猜到.现在要求密码用两位数,左边的一个数字是原房号除以5所得的余数,右边的一个数字是原房号除以7所得的余数.那么标有36的钥匙所对应的原房号是 号.16、设251098109810(21)x x a x a x a x a x a --=+++++ , 则97531a a a a a ++++=17、若2005200520042004200420042003200311,,2006200620052005200520052004200420052006P Q R =-=-=-则P ,Q ,R 的大小关系是 .(注:写出P ,Q ,R 两两的大小关系)18、有一个正在向上匀速移动的自动扶梯,旅客A 从其顶端往下匀速行至其底端,共走了60级,B 从其底端往上匀速行至其顶端,共走了30级(扶梯行驶,两人也在梯上行走,且每次只跨l 级),且A 的速度(即单位时间所走的级数)是B 的速度的3倍,那么自动扶梯露在外面的级数是19.分数12121212,,,,12380中共有 个分数可以化成混循环小数20.请你自己画图:画一个等边三角形,三个顶点标上A ,B ,C .在三边BC ,CA ,AB 上取三等分点,BC 的三等分点(从B 到C 方向)是P ,Q ;CA 的三等分点(从C 到A 方向)是M ,N 、;AB 的三等分点(从A 到B 方向)是S ,T .连结线段QM ,NS ,TP .在六条 线段PQ ,QM ,MN ,NS ,ST ,TP 上再取三等分点,依次是P 1,P 2(从P 到Q 方向);Q 1,Q 2(从Q 到M 方向);M 1,M 2(从M 到N 方向);N 1,N 2((从N 到S 方向);S 1,S 2(从S 到T 方向);T 1,T 2(从T 到P 方向).连结线段12211221,,,,S M S M TM T Q T Q ;1221122112211221,,,,;,,,,PS P S QS Q N Q N M P M P NP N T N T .所得到的图形中,可以数得出来的三角形,共有 个.。

第十八届”希望杯“全国数学邀请赛初二第一试

第十八届”希望杯“全国数学邀请赛初二第一试

第十八届”希望杯“全国数学邀请赛初二 第一试一、选择题(每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在下面的表格内。

1. 下列运动属于平移的是( )(A )乒乓球比赛中乒乓球的运动. (B )推拉窗的活动窗扇在滑道上的滑行.(C )空中放飞的风筝的运动. (D )篮球运动员投出的篮球的运动.2. 若x =1满足2220mx m x m --=,则m 的值是( )(A )0. (B )1. (C )0或1. (D )任意实数.3. 如图1,将△APB 绕点B 按逆时针方向旋转90后得到△A P B '',若BP=2,那么PP '的长为( )(A ). (B . (C )2 . (D )3.4.已知a 是正整数,方程组48326ax y x y +=⎧⎨+=⎩ 的解满足x >0,y <0,则a 的值是( ) (A )4 . (B )5 . (C )6. (D )4,5,6以外的其它正整数.5.让k 依次取1,2,3,…等自然数,当取到某一个数之后,以下四个代数式:①k+2;②k 2; ③2 k ;④2 k 就排成一个不变的大小顺序,这个顺序是( )(A )①<②<③<④. (B )②<①<③<④.(C) ①<③<②<④. (D) ③<②<①<④.6.已知1个四边形的对角线互相垂直,且两条对角线的长度分别是8和10 , 那么顺次连接这个四边形的四边中点所得的四边形的面积是( )(A )40 . (B ) (C )20. (D )7. Let a be the length of a diagonal of a square, b and c be the length of two diagonals of a rhombus respectively. If ::b a a c =,then the ratio of area of the square and rhombus is ( )(A )1:1. (B )2. (C )1 (D )1:2.(英汉词典:length 长度;diagonal 对角线;square 正方形;rhombus 菱形;respectively 分别地;ratio 比;area 面积)8.直角三角形有一条边长为11,另外两边的长是自然数,那么它的周长等于( ).(A )132. (B )121. (C )120. (D )111.9.若三角形三边的长均能使代数式是2918x x -+的值为零,则此三角形的周长是( ).(A )9或18. (B )12或15 . (C )9或15或18. (D )9或12或15或18.10. 如图2,A 、B 、C 、D 是四面互相垂直摆放的镜子,镜面向内,在镜面D 上放了写有字母“G”的纸片,某人站在M 处可以看到镜面D 上的字母G 在镜面A 、B 、C 中的影像,则下列判断中正确的是( )(A )镜面A 与B 中的影像一致 . (B )镜面B 与C 中的影像一致 .(C )镜面A 与C 中的影像一致 . (D )在镜面B 中的影像是“G”.二、A 组填空题(每小题4分,共40分)11.如图3,在 △BMN 中,BM=6,点A 、C 、D 分别在MB 、BN 、MN 上,且四边形ABCD 是平行四边形,∠NDC=∠MDA ,则平行四边ABCD 的周长是 .12.如果实数a ≠b ,且101101a b a b a b ++=++,那么a b +的值等于 .13.已知a x =M 的立方根,y =x 的相反数,且M =37a -,那么x 的平方根是 .14.如图4,圆柱体饮料瓶的高是12厘米,上、下底面的直径是6厘米.上底面开有一个小孔供插吸管用,小孔距离上底面圆心2厘米,那么吸管在饮料瓶中的长度最多是 厘米.15.小杨在商店购买了a 件甲种商品,b 件乙种商品,共用213元,已知甲种商品每件7元,乙种商品每件19元,那么a b +的最大值是 .16.ABC △ 是边长为D 在三角形内,到边AB 的距离是1,到A 点的距离是2,点E 和点D 关于边AB 对称,点F 和点E 关于边AC 对称,则点F 到BC 的距离是 .17.如图5,小华从M 点出发,沿直线前进10米后,向左转20,再沿直线前进10米后,又向左转20,……,这样下去,他第一次回到出发地M 时,行走了 米.18.关于x 的不等式123x x -+-≤的所有整数解的和是 .19.已知点(1,2)在反比例函数a y x=所确定的曲线上,并且该反比例函数和一次函数1y x =+ 在x b =时的值相等,则b 等于 .20.如图6,大五边形由若干个白色和灰色的多边形拼接而成,这些多边形(不包括大五边形)的所有内角和等于 .三、B 组填空题(每小题8分,共40分,每一题两个空,每空4分)21.解分式方程 225111m x x x +=+--会产生增根,则m = 或 . 22.Let A abcd = be a four-digit number. If 400abcd is a square of an integer, thenA= 或 .(英汉词典:four-digit number 四位数;square 平方、平方数;integer 整数)23.国家规定的个人稿酬纳税办法是:①不超过800元的不纳税;②超过800元而不超过4000元的,超过800元的部分按14%纳税;③超过4000元的按全部稿酬的11%纳税.某人编写了两本书,其中一本书的稿酬不超过4000元,第二本书的稿酬比第一本书多700元,两本书共纳税915元,则两本书的稿酬分别是= 元和 元.24.直线l 交反比例函数y x=的图象于点A ,交x 轴于点B ,点A 、B 与坐标原点o 构成等边三角形,则直线l 的函数解析式为 或 .25.若n 是质数,且分数417n n -+不约分或经过约分后是一个最简分数的平方,则n 或 .。

第12-16届“五羊杯”初中数学竞赛试题

第12-16届“五羊杯”初中数学竞赛试题

第十二届“五羊杯”初中数学竞赛试题初一试题 (1)第十二届“五羊杯”初中数学竞赛试题初二试题 (4)第十二届“五羊杯”初中数学竞赛试题初三试题 (8)第十三届“五羊杯”初中数学竞赛试题初一试题 (13)第十三届“五羊杯”初中数学竞赛试题初二试题 (17)第十三届“五羊杯”初中数学竞赛试题初三试题 (21)2002年第1 4届“五羊杯”数学竞赛初一试题 (27)2002年第1 4届“五羊杯”数学竞赛初二试题 (33)2002年第1 4届“五羊杯”数学竞赛初三试题 (39)2003年第15届“五羊杯”初中数学竞赛初一试题 (43)2003年第15届“五羊杯”初中数学竞赛初二试题 (47)2003年第15届“五羊杯”初中数学竞赛初三试题 (51)2004年第16届“五羊杯”初中数学竞赛初三试题 (57)第十二届“五羊杯”初中数学竞赛试题初一试题(考试时间:90分钟满分:100分)一、选择题(4选l型,选对得5分,否则得0分,本大题满分50分,)1,已知68 9□□□20 312≈690亿(四舍五入),那么其中的三位数□□□有( )种填写的方法.(A)1 000 (B)999 (C)500 (D)4992,8 642 097 53l,6 420 875 319,4 208 653 197,2 086 43l 975,864 219 753的平均数是( ).(A)4 444 455 555 (B)5 555 544 444(C)4 999 999 995 (D)5 999 999 9943.图中一共能数出( )个长方形(正方形也算作长方形)。

(A)64 (B)63 (C)60 (D)484.五羊牌电视机连续两次降价20%后,又再降价10%,或者连续两次降价25%,则前者的售价比后者的售价( ),(A)少2% (B)不多也不少 (C)多5% (D)多2.4%5.甲、乙两人在长400米的直路上来回慢跑,速度分别为3米/秒和2.5米/秒。

第18届五羊杯初中数学竞赛试题

第18届五羊杯初中数学竞赛试题

第18届“五羊杯”初中数学竞赛试题(初三试题 考试时间90分钟,满分100分)一、选择题(4选I 型,每小题选对得5分,否则得0分,本大题满分50分)1、关于x= )A 、B 、C D2、已知2310a a -+=,那么2294921a a a --++=( )A 、3B 、5C 、D 、3、求和:10098S =++=( )A 、15 B C D 4、广州地铁实行分段计价(每相邻两站之间为1个区间,每3个区间为1个段),起价2元,每进入下一段加收1元.地铁一号线沿线站点依次为:广州东站(起点站),体育中心,体育西路,杨箕,东山口,烈士陵园,农讲所,公园前,西门口,陈家祠,长寿路,黄沙,芳村,花地湾,坑口,西朗(终点站).小松、小梅、小柏、小枫四个好朋友分别住在体育中心、烈士陵园、长寿路、花地湾.他们相约搭乘地铁见面,应将见面地点选在哪一站可使四人所花费用最少。

答( )A 、杨箕B 、烈士陵园C 、长寿路D 、烈士陵园和长寿路之间任一站5、设ABC ∆中,边BC 上一点D 满足BC :CD=4,边CA 上一点E 满足CA :AE=5,边AB 上一点F 满足AB :BF=6,那么DEF ∆的面积:ABC ∆的面积=( )A 、37:60B 、61:120C 、59:120D 、23:606、关于x 的含有绝对值的方程212x x --=的不同实数解共有( )个A 、1B 、2C 、3D 、47、设[]x 表示不小于x 的最小整数,如[][][][]3.44,44,3.84, 3.83===-=-.则下列7个结论中,不成立的结论( )①[]x x ≤ ②[]1x x <+ ③[]x x =只有x 为整数才成立 ④[][]22x x +=+⑤[][]22x x -=- ⑥[][]22x x = ⑦[]22x x ⎡⎤=⎢⎥⎣⎦A 、不超过3个B 、恰为4个C 、刚好为5个D 、至少有6个8、下列各式的结果中最小的是( )A 1B 、2CD 、0.89、设n=180180180…18099(前面共有100个180,最后两位是99),那么,n 能够被3,7,9,11和13这5个数中的( )个整除A 、2B 、3C 、4D 、510、定义新运算∆:(1)(2)(1)a b a a a a b ∆=+++++++-,其中b 为正整数.如果 (3)(2)13x x ∆∆=,则x=( )A 、1或138B 、1或0C 、138D 、1二、填空题(每小题答对得5分,否则得0分,本大题满分50分)11、计算,结果表示为循环小数:7(22.07)1445-÷=12、在实数范围内因式分解:432344x x x x +---=13、已知a =,则4325654a a a a -+-+=14、设1234128,10298,1002998,100029998,,a a a a =⨯=⨯=⨯=⨯ 又设123420S a a a a a =+++++,那么S 的各位数字和为15、设,,,a b c d 都是正整数,而且2341a b c d >>>>,则a 的最小值=16、令111111425364797100S +++++=⨯⨯⨯⨯⨯,则1398S +=17、正方形ABCD 的对角线交于点O ,把A 、B 、C 、D 这4点中的每一点都涂上红色、黄色、蓝色或绿色,点O 则涂上红色或黄色,每一点都涂一种颜色,而且线段OA ,OB ,OC ,OD ,AB ,BC ,CD ,DA 中每一条的两个端点的颜色不能相同,那么,一共有 种不同的涂色方法。

初中数学竞赛专题6:因式分解

初中数学竞赛专题6:因式分解

专题6:因式分解第1讲 因式分解赛题练习一、选择题1.(第17届希望杯竞赛题)若22222006200620072007m =+⨯+,则m ( ) A .是完全平方数,还是奇数 B .是完全平方数,还是偶数 C .不是完全平方数,但是奇数D .不是完全平方数,但是偶数2.(第17届希望杯竞赛题)There is a two-placed number 10ab a b =+satisfying that ab ba + is a complete square number ,then total number of those like ab is ( ) A .4B .6C .8D .10(英汉词典:two-placed number 两位数;number 数;to satisfy 满足;complete square 完全平方(数);total 总的,总数)3.(2005年全国初中数学竞赛题)若223894613M x xy y x y =-+-++(x ,y 是实数),则M 的值一定是( ) A .正数B .负数C .零D .整数4.(北京市竞赛题)44a +分解因式的结果是( ) A.()()222222a a a a +--+ B.()()222222a a a a +--- C.()()222222a a a a ++--D.()()222222a a a a ++-+5.(2006年希望杯竞赛题)实数320052005m =-,下列各数中不能整除m 的是( ) A.2006B.2005C.2004D.20036.(2005年武汉市竞赛题)若3234x kx -+被31x -除后余3,则k 的值为( ) A.2B.4C.9D.107.(第13届希望杯竞赛题)已知a b c >>,222M a b b c c a =++,222N ab bc ca =++,则M 与N 的大小关系是( ) A.M N <B.M N >C.M N =D.不能确定8.(美国犹他州竞赛题)322136x x x +-+的因式是( ) A.21x - B.2x + C.3x -D.21x +E.21x +9.(2005年全国初中数学竞赛题)若22389M x xy y =-+-4613x y ++(x 、y 是实数),则M 的值一定是( ) A.正数B.负数C.零D.整数10.(武汉市竞赛题)如果328x ax bx +++有两个因式1x +和2x +,则a b +=( ) A.7 B.8C.15D.21二、填空题11.(第7届五羊杯竞赛题)把()()()()16a b c d b c a d c a b d a b c d abcd ++++--+--+--+因式分解为________.12.(第18届五羊杯竞赛题)在实数范围内分解因式:432344x x x x +---=________. 13.(第18届五羊杯竞赛题)分解因式:2226773x xy y x y --+++=________.14.(2004年全国初中数学竞赛题)已知实数a ,b ,x ,y 满足2a b x y +=+=,5ax by +=,则()()2222ab xy ab x y +++=________.15.(2007年全国初中数学联赛题)若10064a +和20164a +均为四位数,且均为完全平方数,则整数a 的值是________.16.(北京市竞赛题)已知222246140x y z x y z ++-+-+=,则2002()x y z --=__________. 17.(2004年广西竞赛题)已知()22210x y x y +--+=,则()999x y +=__________.18.(北京市竞赛题)1~100若存在整数n ,使2x x n +-能分解为两个整系数一次式的乘积,这样的n 有____________个.19.(郑州市竞赛题)分解因式:22423a b a b -+++=_______________________________________. 20.(2004年河南省竞赛题)分解因式:229643x x y y --+-=_______________________________. 21.(第16届希望杯竞赛题)分解因式:()()221ab a b a b +-++=_____________________________. 22.(2004年全国初中数学竞赛题)已知实数a 、b 、x 、y 满足2a b x y +=+=,5ax by +=,则()()2222ab xy ab x y +++=___________________.23.(第15届江苏省竞赛题)已知26x x +-是多项式43221x x ax bx a b +-+++-的因式,则a =___________,b =___________.24.(第18届五羊杯竞赛题)在实数范围内分解因式:432344x x x x +---=___________. 25.(大连市第8届育英杯竞赛题)分解因式:()()112x x y y xy -++-=____________. 三、解答题26.(1991年黄冈初中数学竞赛题)已知a 是自然数,且3221215a a a +-+表示质数,求这个质数.27.(1999年天津市数学竞赛题)当k 为何值时,多项式222352x xy ky x y -++-+能分解成两个一次因式的积?28.(第9届华杯赛总决赛题)计算;()()()()()()()()()()444444444476415642364316439643641164196427643564++++++++++.29.(第10届希望杯竞赛题)272-1能被500与600之间的若干整数整除,请找出三个这样的整数,它们是________.30.(第10届希望杯竞赛题)若233x x x k +-+有一个因式是x +1,求k 的值.31.(第6届希望杯竞赛题)计算:2211100.010.01101001000⎛⎫⎛⎫++++- ⎪ ⎪⎝⎭⎝⎭.32.(第9届五羊杯竞赛题)当n =1,x =2时,求多项式51n n x x ++的两个因式的和.33.(2000年美国犹他州中学数学竞赛题)如果328x ax bx +++有两个因式x +1和x +2,求a +b 的值.34.(第5届美国数学邀请赛试题)计算:()()()()()()()()()()44444444441032422324343244632458324432416324283244032452324++++++++++.35.(第37届美国中学生数学竞赛题)设543269569106910695691N =+⨯+⨯+⨯+⨯+.问:有多少个正整数是N 的因数?36.(第9届莫斯科奥林匹克试题)证明:对任何整数x 和y ,343223453515412x x y x y x y xy y +--++的值都不会等于33.37.(第37届美国中学生数学竞赛题)已知b ,c 是整数,二次三项式2x bx c ++既是42625x x ++的一个因式,也是4234285x x x +++的一个因式,求当x =1时,2x bx c ++的值.38.(祖冲之杯竞赛题)分解因式:32539x x x ++-.39.(北京市竞赛题)证明恒等式:()244422()2a b a b a ab b +++=++.40.(江苏省竞赛题)已知x 、y 为正偶数,且2296x y xy +=,求22x y +的值.41.(希望杯竞赛题)分解因式:()()()2221x y xy x y xy +-+-+-.42.(第12届五羊杯竞赛题)分解因式:()()42424310x x x x +-+++.43(2006年希望杯培训题)计算:32322007220072005200720072008-⨯-+-.44.(太原市竞赛题)已知关于x 、y 的二次式22754324x xy ay x y ++-+-可分解为两个一次因式的乘积,求a 的值.45.(2005年莫斯科市竞赛题)对方程22222004a b a b ++=,求出至少一组整数解.46.(2006年创新杯培训题)已知n 是正整数,且4216100n n -+是质数,求n .47.(2006年全国初中数学竞赛题)计算 (252)(472)(692)(8112)(200420072)(142)(362)(582)(7102)(200320062)⨯+⨯+⨯+⨯+⨯⨯⨯+⨯+⨯+⨯+⨯+⨯⨯⨯+48.计算:(1)(第15届希望杯竞赛题)2220034004200320024008200320042003300520032003200520053005-⨯+⨯-⨯-⨯-⨯+⨯;(2)(第九届华杯赛竞赛题)()()()()()()()()()()444444444476415642364316439643641164196427643564++++++++++49.分解因式: (1)4464a b +; (2)4224x x y y ++; (3)()2222(1)x x x x ++++;(4)(昆明市竞赛题)()()()24c a b c a b ----;(5)(第15届希望杯竞赛题)432234232a a b a b ab b ++++; (6)(重庆市竞赛题)32256x x x +--.50.(重庆市竞赛题)分解因式: (1)224443x x y y --+-; (2)343115x x -+.问题解决例1.分解因式:()()()3332332125x y x y x y -+---=______. 例2.把下列各式分解因式: (1)()()22525312x x x x ++++-; (2)()()()()21236x x x x x +++++; (3)()()()()211x y x y xy xy xy +++++-.例3.阅读理解:观察下列因式分解的过程: (1)244x xy x y -+-原式()()()()()()24444x xy x y x x y x y x y x =-+-=-+-=-+. (2)2222a b c bc --+原式()()()()222222a b c bc a b c a b c a b c =-+-=--=+--+.第(1)题分组后能直接提公因式,第(2)题分组后能直接运用公式.仿照上述分解因式的方法,把下列各式分解因式: (1)2a ab ac bc -+-; (2)22244x y z yz --+.例4.分解因式:326116x x x +++.例5.把下列各式分解因式: (1)261110y y --; (2)22823x xy y --.数学冲浪 知识技能广场1.分解因式:(1)()()22162x x x ---=______; (2)()()4a b a b ab --+=______; (3)276ax ax a -+=______. 2.分解因式:(1)3222a ab a b +-=______;(2)()()21211x x ---+=______; (3)2221a ab b -+-=______; (4)2244x y x --+=______. 3.分解因式:(1)323412x x x +--=______; (2)()()2223238x xx x +-+-=______.4.若()()23x x m x x n ++=-+对x 恒成立,则n =______.5.把多项式22344x y xy x --分解因式的结果是( ). A.()34xy x y x --B.()22x x y --C.()2244x xy y x --D.()2244x xy y x --++6.()()()()()()656565323322134x x x x x x x xx +-+++-+++-与下列哪一个式子相同( ).A.()()653421x x x -+ B.()()653423x x x -+ C.()()653421x x x --+D.()()653423x x x --+7.把多项式22243x y x y ----因式分解之后,正确的结果是( ) A.()()31x y x y ++-- B.()()13x y x y +--+ C.()()31x y x y +--+D.()()13x y x y ++--8.已知212x ax +-能分解成两个整系数的一次因式的乘积,则符合条件的整数a 的个数是( ) A.3个B.4个C.6个D.8个9.先阅读以下材料,然后解答问题.分解因式:()()()()mx nx my ny mx nx my ny x m n y m n +++=+++=+++=()()m n x y ++;也可以()()()()()()mx nx my ny mx my nx ny m x y n x y m n x y +++=+++=+++=++. 以上分解因式的方法称为分组分解法. 请用分组分解法分解因式:3322a b a b ab -+-.10.分解因式:(1)22463a b a b -+-;(2)222944a b bc c -+-; (3)()()()2a c a c b b a +-+-; (4)()()221212x x x x ++++-; (5)()22223122331x x x x -+-+-; (6)()()()213512x x x -+++.思维方法天地11.分解因式:()()()()()12345x x x x x x ++++++=______. 12.分解因式:()()()33322x y x y -----=______.13.已知()()()()1931131713171123x x x x -----可因式分解为()()8ax b x c ++,其中a ,b ,c 均为整数,则a b c ++=______.14.已知1x -得多项式33x x k -+的一个因式,那么k =______;将这个多项式分解因式,得______. 15.44a +分解因式的结果是( ).A.()()222222a a a a +--+B.()()222222a a a a +---C.()()222222aa a a ++-- D.()()222222aa a a ++-+16.实数320052005m =-,下列各数中不能整除m 的是( ) A.2006B.2005C.2004D.200317.已知3a b -=,5b c +=-,则代数式2ac bc a ab -+-的值为( ) A.15-B.2-C.6-D.618.已知a ,b ,c 是ABC ∆的三边长,且满足()222220a b c b a c ++-+=,则此三角形是( ). A.等腰三角形 B.等边三角形 C.直角三角形 D.不能确定19.分解因式:(1)224443x x y y --+-;(2)()()()2221x y xy x y xy +-+-+-; (3)343115x x -+; (4)32539x x x ++-.应用探究乐园20.已知在ABC ∆中,三边长a ,b ,c 满足等式222166100a b c ab bc --++=.求证:2a c b +=.21.下金蛋的鸡法国数学家费马(1601-1665)一生中提出了不少猜想,最著名的是“费马大定理”:关于x ,y ,z 的方程n n n x y z +=(n 为大于2的整数)没有正整数解.直到350年之后,这个猜想才由英国数学家怀尔斯(1953— )于1994年证明.德国数学家希尔伯特(1862-1943)将费马大定理称为“一只会下金蛋的鸡”,因为在攻克它的漫漫征程中,不但引出了许多数学概念和方法,而且促进了一些新的分支的创立和发展.这些远比证明定理本身更重要!不过费马的猜想并不总是正确的.他考察了12215+=,222117+=,3221257+=,422165537+=,发现结果都是素数(也称质数),于是猜想:对任意正整数n ,221n+(即()221n+)都是素数.瑞士数学家欧拉(1707-1783)指出,5221+并不是素数.我国数学家华罗庚(1910—1985)在他的著作《数论导引》中给出一种简明的证法:设72a =,5b =,可算得()524442111ab a a b +=++-,可见5221+必有除1和本身以外的约数______(填较简单的一个,用含a ,b 的式子表示),即5221+能被______整除(填入具体数值),所以不是素数.第2讲 因式分解的应用赛题练习1.(2004年重庆市竞赛题)已知2310x x x +++=,则220041x x x ++++的值为( )A.0B.1C.1-D.20042.(第19届江苏省竞赛题)若432237x x ax x b -+++能被22x x +-整除,则:a b 的值是 ( ) A.2-B.12-C.6D.43.(第14届希望杯竞赛题)若1x y +=-,则43222234585x x y x y x y xy xy y ++++++的值为( ) A.0B.1-C.1D.34.(第17届江苏省竞赛题)a 、b 、c 是正整数,a b >,且27a ab ac bc --+=,则a c -的值为( ) A.1-B.1-或7-C.1D.1或75.(中学生智能通讯赛试题)设()()322320042003200420052003200220012002a -⨯+=⨯--,()()322320052004200520062004200320022003b -⨯+=⨯--,则a 、b 的大小关系是( ) A.a b >B.a b =C.a b <D.不能确定6.(湖北省竞赛题)设a 是正数,且21a a -=,那么224a a-的值为( ) A.3-B.1C.3D.57.(2005年全国初中数学竞赛题)已知2221114834441004A ⎛⎫=⨯+++⎪---⎝⎭,则与A 最接近的正整数是( ) A.18B.20C.24D.258.(2007年全国初中数学竞赛题)方程323652x x x y y ++=-+的整数解(),x y 的个数是( ) A.0B.1C.3D.无穷多9.(第17届希望杯竞赛题)若22222006200620072007m =+⨯+,则m ( ) A.是完全平方数,还是奇数 B.是完全平方数,还是偶数 C.不是完全平方数,但是奇数D.不是完全平方数,但是偶数10.(2002年全国初中数学联赛题)若22m n =+,22()n m m n =+≠,则332m mn n -+的值为( ) A.1B.0C.1-D.2-11.(2003年全国初中数学联赛题)满足等式2003=的正整数对(),x y 的个数是( )A.1B.2C.3D.412.(第14届希望杯竞赛题)已知54410a a b a a b --+--=,且231a b -=,则33a b +的值为___________.13.(全国初中数学竞赛题)已知a 、b 、x 、y 满足2a b x y +=+=,5ax by +=,则()()2222ab xy ab x y +++=___________.14.(第17届希望杯竞赛题)A 、n 都是自然数,且21526A n n =++是一个完全平方数,则n =_____________.15.(四川省竞赛题)对一切大于2的正整数n ,数5354n n n -+的最大公约数是____________. 16.(2001年全国初中数学联赛题)一个正整数,若分别加上100和168,则可得到两个完全平方数,这个正整数为___________.17.(第9届华杯赛试题)a 、b 、c 是正整数,并且满足等式12004abc ab ac bc a b c +++++++=,那么a b c ++的最小值是__________.18.(祖冲之杯竞赛题)整数a 、b 满足6910303ab a b =-+,则a b +=___________.19.(第18届五羊杯竞赛题)若P 是两位的正整数,则以下等式中有可能成立的式子的个数是______________.①22006(34)(59)x Px x x ++=--; ②22006(17)(118)x Px x x ++=--; ③22006(34)(59)x Px x x --=+-; ④22006(17)(118)x Px x x --=+-; ⑤22006(1)(2006)x Px x x +-=-+.20.(2001年全国初中数学联赛题)若214x xy y ++=,228y xy x ++=,则x y +的值为___________. 21.(2005年四川省竞赛题)对于一个正整数n ,如果能找到正整数a 、b ,使得n a b ab =++,则称n 为一个“好数”,例如31111=++⨯,3就是一个“好数”,那么,在1~20这20个正整数中,好数有___________个.22.(2004年北京市竞赛题)已知x 、y 为正整数,且满足22222341x y x y +=+,则22x y +__________. 23.(第10届希望杯竞赛题)7221-能被500与600之间的若干整数整除,请找出3个这样的整数,它们是__________.24.(2008年天津市竞赛题)已知4个实数a 、b 、c 、d ,且a b ≠,c d ≠.若4个关系式:22a ac +=,22b bc +=,24c ac +=,24d ad +=同时成立,则6232a b c d +++的值为___________. 25.(五城市联赛题)若a 是自然数,则4239a a -+是质数还是合数?给出你的证明.26.(全国初中数学联赛题)某校在向“希望工程”捐款活动中,甲班的m 个男生和11个女生的捐款总数与乙班的9个男生和n 个女生的捐款总数相等,都是()911145mn m n +++元,已知每人的捐款数相同,且都是整数,求每人的捐款数.27.(2006年俄罗斯萨温市竞赛题)(1)证明:19992000200120032004200536⨯⨯⨯⨯⨯+是一个完全平方数.(2)证明:数848497n n ++-对于任何自然数n 都能被20整除.28.(江苏省竞赛题)(1)证明:791381279--能被45整除;(2)证明:当n 为自然数时,()221n +形式的数不能表示为两个整数的平方差;(3)计算:44444444441111124681044444111111357944444⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭29.(2005年太原市竞赛题)二次三项式22x x n --能分解为两个整系数一次因式的乘积. (1)若130n ≤≤,且n 是整数,则这样的n 有多少个? (2)当2005n ≤时,求最大的整数n .30.(重庆市竞赛题)按下面规则扩充新数:已有两数a 、b ,可按规则c ab a b =++扩充一个新数,在a 、b 、c 三个数中任取两数,按规则又可扩充一个新数,…,每扩充一个新数叫做一次操作.现有数1和4. (1)求按上述规则操作三次得到扩充的最大新数; (2)能否通过上述规则扩充得到新数1999,并说明理由.问题解决例1.方程2270xy x y --+=的整数解(x y ≤)为______. 例2.1621-能分解成n 个质因数的乘积,n 的值是( ). A.6 B.5 C.4 D.3例3.计算:(1)2220034004200320024008200320042003300520032003200520053005-⨯+⨯-⨯-⨯-⨯+⨯;(2)()()()()()()()()()()444444444476415642364316439643641164196427643564++++++++++. 例4.设9310382a =+-,证明:a 是37的倍数.例5.已知n 是正整数,且4216100n n -+是质数,求n 的值.例6.(1)实数x ,y 满足221252810x xy y y ++-+=,则22x y -=______.(2)在平面直角坐标系中,满足不等式2222x y x y +≤+的整数点坐标(),x y 的个数为( ). A.10B.9C.7D.5数学冲浪 知识技能广场1.设y ax =,若代数式()()()23x y x y y x y +-++化简的结果为2x ,则a =______.2.如图,有三种卡片,其中边长为a 的正方形卡片1张,边长分别为a ,b 的长方形卡片6张,边长为b 的正方形卡片9张,用这16张卡片拼成一个正方形,则这个正方形的边长为______. 3.如果实数x ,y 满足方程组1,2225,x y x y ⎧-=-⎪⎨⎪+=⎩那么22x y -的值为______.4.已知2m ≥,2n ≥,且m ,n 均为正整数,如果将n m 进行如下方式的“分解”,那么下列三个叙述:(1)在52的“分解”中最大的数是11; (2)在34的“分解”中最小的数是13;(3)若3m 的“分解”中最小的数是23,则m 等于5. 其中正确的是______.5.若实数x ,y ,z 满足()()()240x z x y y z ----=,则下列式子一定成立的是( ) A.0x y z ++= B.20x y z +-= C.20y z x +-=D.20z x y +-=6.边长为a ,b 的矩形的周长为14,面积为10,则22a b ab +的值为( ) A.140B.70C.55D.247.设n 为某一自然数,代入代数式3n n -计算其值时,四个学生算出了下列四个结果,其中正确的结果是( ). A.5814B.5841C.8415D.84518.a ,b ,c 是正整数,a b >,27a ab ac bc --+=,则a c -等于( ) A.1- B.1-或7- C.1 D.1或79.计算:(1)32322004220042002200420042005-⨯-+-; (2)44444444441111124681044444111111357944444⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.10.选取二次三项式()20ax bx c a ++≠中的两项,配成完全平方式的过程叫配方. ①选取二次项和一次项配方:()224222x x x -+=--;②选取二次项和常数项配方:(()22424x x x x -+=+,或((32424x x x x -+=-+;③选取一次项和常数项配方:22242x x x -+=-.根据上述材料,解决下面的问题.(1)写出284x x -+的两种不同形式的配方;(2)已知22330x y xy y ++-+=,求y x 的值.思维方法天地11.若两个不等实数m ,n 满足22m m a -=,22n n a -=,225m n +=,则实数a 的值为______. 12.已知a ,b ,x ,y 满足2a b x y +=+=,5ax by +=,则()()2222a b xy ab x y +++=______. 13.整数x ,y 满足方程283xy x y ++=,则x y +=______.14.A ,n 都是自然数,且21526A n n =++是一个完全平方数,则n =______. 15.若22222006200620072007m =+⨯+,则m ( ). A.是完全平方数,还是奇数 B.是完全平方数,还是偶数 C.不是完全平方数,但是奇数D.不是完全平方数,但是偶数16.设n 为某一正整数,代入代数式2n n -计算其值时,四个学生算出了下列四个结果,其中仅有一个是正确的,则这个正确的结果是( ) A.7770B.7775C.7776D.777917.方程222334x xy y ++=的整数解(),x y 的组数为( ). A.3B.4C.5D.618.黑板上写有1,12,…,1100共100个数字,每次操作先从黑板上的数中选取两个数a ,b ,然后删去a ,b ,并在黑板上写上数a b ab ++,则经过99次操作后黑板上剩下的数是( ). A.2012B.101C.100D.9919.已知()()222012a b c b a c +=+=,且a b ≠,求()2c a b +的值.20.计算:()()()()()()()()()()424242424242424242422214416618881010133155177199111111++++++++++++++++++++.应用探究乐园21.当我们看到下面这个数学算式333337133713503724613724++==++时,大概会觉得算题的人错用了运算法则吧,因为我们知道3333a b a bc d c d++≠++,但是,如果你动手计算一下,就会发现上式并没有错,不仅如此,我们还可以写出任意多个这种等式:333331313232++=++,333352525353++=++,333373737474++=++,3333107107103103++=++,…,你能发现以上等式的规律吗?22.按下面规则扩充新数:已有两数a ,b ,可按规则c ab a b =++扩充一个新数,在a ,b ,c 三个数中任取两数,按规则又可扩充一个新数……每扩充一个新数叫做一次操作.现有数1和4. (1)求按上述规则操作三次得到扩充的最大新数; (2)能否通过上述规则扩充得到新数1999,并说明理由.。

2018-2019学年度第二学期八年级数学知识竞赛试题(含答案)

2018-2019学年度第二学期八年级数学知识竞赛试题(含答案)

2018~2019学年度第二学期八年级数学竞赛试题一、选择题(本大题共5小题,每小题4分,共20分)1.下面四个所给的选项中,能折成如图给定的图形的是()A.B.C.D.2.如果(x﹣1)(x+3)(x﹣4)(x﹣8)+m是一个完全平方式,则m是()A.±196 B.﹣196 C.196 D.以上都不对3.一天有个年轻人来到李老板的店里买了一件礼物,这件礼物成本是18元,标价是21元.结果是这个年轻人掏出100元要买这件礼物.李老板当时没有零钱,用那100元向街坊换了100元的零钱,找给年轻人79元.但是街坊后来发现那100元是假钞,李老板无奈还了街坊100元.现在问题是:李老板在这次交易中到底损失()A.179元B.97 C.100元D.118元4.如图,已知AB∥EF,∠BAC=p,∠ACD=x,∠CDE=y,∠DEF=q,则用p、q、y来表示x.得()A.x=p+y﹣q+180°B.x=2p+2q﹣y+90°C.x=p+q+y D.x=p+q﹣y+180°5.已知直线l1:y=kx+b与直线l2:y=﹣x+m都经过C(﹣,),直线l1交y轴于点B(0,4),交x轴于点A,直线l2交y轴于点D,P为y轴上任意一点,连接PA、PC,有以下说法:①方程组的解为;②△BCD为直角三角形;③S△ABD=3;④当PA+PC的值最小时,点P的坐标为(0,1).其中正确的说法个数有()A.4个B.3个C.2个D.1个6.已知a=2255,b=3344,c=5533,则a ,b ,c 的大小关系(从小到大排列,用“<”连接) 。

7.若|x ﹣y +6|+(y +8)2=0,则xy= 。

8.若的值为 。

9. 如果a 、b 为定值,关于x 的方程,无论k 为任何值,它的根总是1,则2a ﹣b= 。

10.符号“f ”表示一种运算,它对一些数的运算结果如下:(1)f (1)=0,f (2)=1,f (3)=2,f (4)=3,…;(2)f ()=2,f ()=3,f ()=4,f ()=5,…利用以上规律计算:f (2015)﹣f ()= 。

第二十一届“五羊杯”初中数学竞赛初二试题+答案

第二十一届“五羊杯”初中数学竞赛初二试题+答案

第二十一届“五羊杯”初中数学竞赛初二试题(考试时间90分钟,满分100分)一、选择题(4选1型,共10小题,每小题选对得5分,否则得O 分.本题满分50分).1.计算:()=--+137137A .2/23;B .2;C .2D .222.己知x ,y ,z 是正整数,且222z y x =+,则下列结论正确的是( ).A .茗是4的倍数,y 不是4的倍数;B .x 不是4的倍数,y 是4的倍数;C .x 和y 都不是4的倍数;D .工和y 至少有一个是4的倍数,3.若02223=+++x x x ,则 ++--20062008x x2009200720053241x x x x x x x +++++++++-- 的值为( )A.1;B.0;C. -1;D.2.4.若有一个公共角的两个三角形被称为一对“共角三角形”,则图1中以角曰为公共角的“共角三角形”有( )对.A.6;B.9;C.12;D.15.5.己知三角形的三条边a ,b ,c 的长都为整数,且a ≤b <c .如果b=8,则这样的三角形有( )个.A .21;B .28;C .49;D .54.6.设a ,b ,c 均为正数,若a cbc b a b a c +<+<+则a ,b ,c 三个数的大小关系是( ). A .c <a <b ; B .b <c <a ; C .a <b <c ; D.c <b <a .7.晚会上,工作人员在礼堂四周挂了一串彩色的气球,个数超过5000个,其排列的规则如下:红黄黄蓝绿红蓝绿红黄黄蓝绿红蓝绿红黄黄蓝绿红蓝绿红黄黄……那么第2009个气球的颜色为( ).A .红;B .黄;C .蓝;D .绿.8.己知方程组⎪⎩⎪⎨⎧=+=+n x y mn x n 2720092,(其中m 是偶数,n 是奇数)有两组整数解⎩⎨⎧==⎩⎨⎧==q y p x b y a x 2211,,若令M =a+b ,N=p+q ,那么下列说法正确的是( ).A .M ,N 中有一个是偶数,一个是奇数;B .M ,N 两个都是偶数; C. M ,N 两个都是奇数; D .M ,N 的奇偶性不能确定.9.假设△表示运算符号并定义a △b =axb-2b ,如果c △d =X ,d △c=Y ,e △c=Z ,且有O <c <d <e ,则( ).A .X=Y <Z ;B .X >Y >Z ; C.X <Y <Z ; D .X >Y ,Y <Z10.有一摞208张的卡片,贝贝拿着它,从最上面的一张开始,按如下的顺序进行操作:把上面的第一张卡片拿掉,把下一张卡片放到这摞卡片的最下面;再把原来第三张卡片拿掉,把下一张卡片放到最下面,反复这样地做,直到手中只剩下一张卡片.那么剩下的这张卡片是原来那一摞卡片中的第( )张?A.208;B.128;C.104;D.160.二、填空题(共10小题,每小题答对得5分,否则得O 分,本题满分50分).11.分解因式:=-+---333)()()(z y z x y x __________________________________。

第18届希望杯全国数学竞赛初二决赛试题与答案--WORD

第18届希望杯全国数学竞赛初二决赛试题与答案--WORD

第十八届“希望杯”全国数学邀请赛初二 第二试年4月15日 上午8:30至10:30一、 选择题(本大题共10小题,每小题4分,菜40分。

)以下每题的四个选项中,仅有一个是正确的,请将正确答案的英文字母写在每题后面的圆括号内。

1、红丝带是关注艾滋病防治问题的国际性标志,人胶将红丝带剪成小段,并用别针将折叠好的红丝带加紧在胸前,如图1所示,红丝带重叠部分形成的图形是( )(A )正方形 (B )矩形 C )菱形 (D )梯形2、设a 、b 、C 是不为零的实数,那么||||||a b c x a b c =+-的值有( ) (A )3种 (B )4种 (C )5种 (D )6种3、ABC ∆的边长分别是21a m =-,21b m =+,()20c m m =>,则ABC ∆是( ) (A )等边三角形 (B )钝角三角形 (C )直角三角形(D )锐角三角形4、古人用天干和地支记序,其中天干有10个;甲乙丙丁戊己庚辛壬癸,地支有12个;子丑寅卯辰巳午未申酉戌亥,将天干的10个汉字和地支的12个汉字对应排列成如下两行; 甲乙丙丁戊己庚辛壬癸甲乙丙丁戊己庚辛壬癸甲乙丙丁……子丑寅卯辰巳午未申酉戌亥子丑寅卯辰巳午未申酉戌亥……从左向右数,第1列是甲子,第2列是乙丑,第3列是丙寅……,我国的农历纪年就是按这个顺序得来的,如公历年是农历丁亥年,那么从今年往后,农历纪年为甲亥年的那一年在公历中( )(A )是, (B )是2031年, (C )是2043年,(D )没有对应的年号5、实数 a 、b 、m 、n 满足a<b, -1<n<m, 若1a mb M m +=+,1a nb N n+=+, 则M 与N 的大小关系是( )(A )M>N (B)M=N (C)M<N (D)无法确定的。

6、若干个正方形和等腰直角三角形拼接成如图2所示的图形,若最大的正方形的边长是7cm ,则正方形A 、B 、C 、D 的面积和是( )(A )214cm (B )242cm (C )249cm (D )264cm7cmDC B A7、已知关于x 的不等式组230320a x a x +>⎧⎨-≥⎩恰有3个整数解,则a 的取值范围是( ) (A )23≤a ≤32 (B)43≤a ≤32 (C)43<a ≤32 (D)43≤a <328 、The number of intersection point of the graphs of function||k y x= and function (0)y kx k =≠ is( ) (A)0 (B)1 (C)2 (D)0 or 2.9、某医药研究所开发一种新药,成年人按规定的剂量限用,服药后每毫升血液中的含药量y (毫克)与时间t (小时)之间的函数关系近似满足如图3所示曲线,当每毫升血液中的含药量不少于0.25毫克时治疗有效,则服药一次治疗疾病有效的时间为( )(A )16小时 (B )7158小时 (C )151516小时 (D )17小时 图3y=m/ty=ktO t (小时)y(毫克)4321110、某公司组织员工一公园划船,报名人数不足50人,在安排乘船时发现,每只船坐6人,就剩下18人无船可乘;每只船坐10人,那么其余的船坐满后内参有一只船不空也不满,参加划船的员工共有( )(A )48人 (B )45人 (C )44人 (D )42人二、填空题(本大题共10小题,每小题4分,共40分)11、已知a b c ⋅⋅o 为ABC ∆三边的长,则化简|a b c -+|+2()a b c -+的结果是___12、自从扫描隧道显微镜发明后,世界上便诞生了一间新科学,这就是“纳米技术”,已知1毫米微米,1微米纳米,那么纳米的长度用科学记数法表示为__米。

八年级数学竞赛例题专题讲解5:和差化积--因式分解的应用初二数学试题试卷

八年级数学竞赛例题专题讲解5:和差化积--因式分解的应用初二数学试题试卷

⼋年级数学竞赛例题专题讲解5:和差化积--因式分解的应⽤初⼆数学试题试卷专题05 和差化积——因式分解的应⽤阅读与思考:因式分解是代数变形的有⼒⼯具,在以后的学习中,因式分解是学习分式、⼀元⼆次⽅程等知识的基础,其应⽤主要体现在以下⼏个⽅⾯:1.复杂的数值计算; 2.代数式的化简与求值; 3.简单的不定⽅程(组); 4.代数等式的证明等.有些多项式分解因式后的结果在解题中经常⽤到,我们应熟悉这些结果: 1. 4224(22)(22)xx x x x +=++-+;2. 42241(221)(221)xx x x x +=++-+;3. 1(1)(1)ab a b a b ±±+=±±;4.1(1)(1)ab a b a b ±-=± ;5. 3332223()()ab c abc a b c a b c ab bc ac ++-=++++---.例题与求解【例1】已知0≠ab ,2220aab b +-=,那么22a ba b-+的值为___________ .(全国初中数学联赛试题)解题思路:对已知等式通过因式分解变形,寻求a ,b 之间的关系,代⼊关系求值.【例2】a ,b ,c 是正整数,a >b ,且27a ab ac bc --+=,则a c -等于( ).A . -1B .-1或-7C .1 D.1或7(江苏省竞赛试题)解题思路:运⽤因式分解,从变形条件等式⼊⼿,在字母允许的范围内,把⼀个代数式变换成另⼀个与它恒等的代数式称代数式的恒等变形,它是研究代数式、⽅程和函数的重要⼯具,换元、待定系数、配⽅、因式分解⼜是恒等变形的有⼒⼯具.求代数式的值的基本⽅法有; (1)代⼊字母的值求值; (2)代⼊字母间的关系求值; (3)整体代⼊求值.【例3】计算:(1) 32321997219971995199719971998--+- (“希望杯”邀请赛试题)(2)444444444411111(2)(4)(6)(8)(10)4444411111(1)(3)(5)(7)(9)44444++++++++++ (江苏省竞赛试题)解题思路:直接计算,则必然繁难,对于(1),不妨⽤字母表⽰数,通过对分⼦、分母分解因式来探求解题思路;对于(2),可以先研究41()4x +的规律.【例4】求下列⽅程的整数解.(1)64970xy x y +--=; (上海市竞赛试题)(2)222522007x xy y ++=. (四川省竞赛试题)解题思路:不定⽅程、⽅程组没有固定的解法,需具体问题具体分析,观察⽅程、⽅程组的特点,利⽤整数解这个特殊条件,从分解因式⼊⼿.解不定⽅程的常⽤⽅法有:(1)穷举法; (2)配⽅法; (3)分解法; (4)分离参数法.⽤这些⽅程解题时,都要灵活地运⽤质数合数、奇数偶数、整除等与整数相关的知识.【例5】已知3a b +=,2ab =,求下列各式的值: (1) 22a b ab +; (2) 22a b +; (3)2211a b+.解题思路:先分解因式再代⼊求值.【例6】⼀个⾃然数a 恰等于另⼀个⾃然数b 的⽴⽅,则称⾃然数a 为完全⽴⽅数,如27=33,27就是⼀个完全⽴⽅数.若a =19951993×199519953-19951994×199519923,求证:a 是⼀个完全⽴⽅数.(北京市竞赛试题)解题思路:⽤字母表⽰数,将a 分解为完全⽴⽅式的形式即可.能⼒训练A 级1. 如图,有三种卡⽚,其中边长为a 的正⽅形卡⽚1张,边长分别为a ,b 的长⽅形卡⽚6张,边长为b 的正⽅形卡⽚9张,⽤这16张卡⽚拼成⼀个正⽅形,则这个正⽅形的边长为 ________.(烟台市初中考试题)babbaa2.已知223,4x y x y xy +=+-=,则4433x y x y xy +++的值为__________.(江苏省竞赛试题)3.⽅程25510x xy x y --+-=的整数解是__________.(“希望杯”邀请赛试题)4. 如果2(1)1x m x -++是完全平⽅式,那么m 的值为__________.(海南省竞赛试题)5. 已知22230xxy y -+=(0≠xy ),则x yy x+的值是( ). A .2,122 B .2 C .122 D .12,22-- 6.当1x y -=,43322433xxy x y x y xy y ---++的值为( ).A . -1B .0C .2D .17.已知a b c >>,22222M a b b c c a N ab bc ca =++=++,,则M 与N 的⼤⼩关系是( ).A . M <NB .M >NC .M =ND .不能确定(“希望杯”邀请赛试题)8.n 为某⼀⾃然数,代⼊代数式3n n -中计算其值时,四个同学算出如下四个结果,其中正确的结果只能是( ).A . 388944B .388945C .388954D .388948(五城市联赛试题)9.计算:(1) 3331999100099919991000999--?? (北京市竞赛试题)(2) 333322223111122222311111++ (安徽省竞赛试题)10. ⼀个⾃然数a 恰好等于另⼀个⾃然数b 的平⽅,则称⾃然数a 为完全平⽅数,如64=82,64就是⼀个完全平⽅数,若a =19982+19982×19992+19992,求证:a 是⼀个完全平⽅数.(北京市竞赛试题)11.已知四个实数a ,b ,c ,d ,且a b ≠,c d ≠,若四个关系式224,b 4a ac bc +=+=,82=+ac c ,28d ad +=,同时成⽴.(1)求a c +的值;(2)分别求a ,b ,c ,d 的值.(湖州市竞赛试题)B 级1.已知n 是正整数,且4216100n n -+是质数,那么n ____________ .(“希望杯”邀请赛试题)2.已知三个质数,,m n p 的乘积等于这三个质数的和的5倍,则2n p ++=________ .(“希望杯”邀请赛试题)3.已知正数a ,b ,c 满⾜3ab a b bc b c ac c a ++=++=++=,则(1)(1)(1)a b c +++=_________ . (北京市竞赛试题)4.在⽇常⽣活中如取款、上⽹等都需要密码,有⼀种⽤“因式分解”法产⽣的密码,⽅便记忆.原理是:如对于多项式4 4xy -,因式分解的结果是22()()()x y x y x y -++,若取x =9,y=9时,则各个因式的值是:22()0,()18,()162x y x y x y -=+=+=,于是就可以把“018162”作为⼀个六位数的密码,对于多项式324x xy -,取x =10,y =10时,⽤上述⽅法产⽣的密码是:__________.(写出⼀个即可).(浙江省中考试题)5.已知a ,b ,c 是⼀个三⾓形的三边,则444222222222a b c a b b c c a ++---的值( ).A .恒正B .恒负C .可正可负D .⾮负(太原市竞赛试题)6.若x 是⾃然数,设4322221y x x x x =++++,则( ).A . y ⼀定是完全平⽅数B .存在有限个x ,使y 是完全平⽅数C . y ⼀定不是完全平⽅数D .存在⽆限多个x ,使y 是完全平⽅数7.⽅程2223298xxy x --=的正整数解有( )组.A .3B .2C .1D .0 (“五⽺杯”竞赛试题)8.⽅程24xy x y -+=的整数解有( )组.B .4C .6D .8(”希望杯”邀请赛试题)9.设N =695+5×694+10×693+10×692+5×69+1.试问有多少个正整数是N 的因数?(美国中学⽣数学竞赛试题)10.当我们看到下⾯这个数学算式333337133713503724372461++==++时,⼤概会觉得算题的⼈⽤错了运算法则吧,因为我们知道3333a b a bc d c d++≠++.但是,如果你动⼿计算⼀下,就会发现上式并没有错,不仅如此,我们还可以写出任意多个这种算式:333331313232++=++,333352525353++=++,333373737474++=++,3333107107103103++=++,…你能发现以上等式的规律吗?11.按下⾯规则扩充新数:已有a ,b 两数,可按规则c ab a b =++扩充⼀个新数,⽽以a ,b ,c 三个数中任取两数,按规则⼜可扩充⼀个新数,…每扩充⼀个新数叫做⼀次操作. 现有数1和4,求:(1) 按上述规则操作三次得到扩充的最⼤新数;(2) 能否通过上述规则扩充得到新数1999,并说明理由.(重庆市竞赛试题)12.设k ,a ,b 为正整数.k 被22,ab 整除所得的商分别为m ,16+m .(1)若a ,b 互质,证明22a b -与22,a b 互质;(2)当a ,b 互质时.求k 的值;( 3)若a ,b 的最⼤公约数为5,求k 的值.(江苏省竞赛试题)。

初中数学竞赛专题4:整式

初中数学竞赛专题4:整式

3、选择题则第二周工资总额与第一周工资总额相比([9](江苏省“数学文化节”试题)有甲、乙两种糖果,原价分别为每千克调查,将两种糖果按甲种糖果m kg 与乙种糖果n kg 的比例混合,取得了较好的销售效果.现在糖果价格有了调整:甲种糖果单价上涨 c%,乙种糖果单价下跌 d%,但按原比例混合的糖果单价恰好不变,那么m等于().nAac A .bd[10]如图①,将一个边长为 a 的正方形纸片剪去两个小矩形,得到一个“专题4:整式33 7 9 11,4313 15 17 19, ”,右m 分裂后,其中有 个奇数是 2013,A.43B.44C.45D.46[3]若一个两位数恰等于它的各位数字之和的4倍,则这个两位数称为“巧数” 两位数的个数是()。

A.82B.84C.86D.88[4]已知a b 0,ab ,则化简baa 2 ab 2 得( b)。

A. 2aB. 2bC. 4D. 4⑸已知2ab3, 2 c6 , 2 12 , 则a , b , c 的关系是()A. 2b a cB. 2b a cC. 2b a cD. a大于[2] 则m 的值是(,则不是“巧数”的第二周每小时工资增加小王第一周每小时工资为 a 元,工作b 小时, [1]1时,代数式2ax 3bx 8的值为18,那么,代数式9b6a 2A.28B.-28C.32D.-3231的正整数m 的三次幕可“分裂”成若干个连续奇数的和,如2 3 5 =,10%,工作总时间减少 10%,A.增加1%B.减少1%C.减少1.5% [7]已知有理数 a,b, c 在数轴上的位置如图D.不变丄b所示,且|a | |b|,则代数式|a | | c a| |c b| | b| 的值为()。

A. 2cB. 0C. 2cD. 2a 2b 2c [8]当x 1时, ax b 1的值为-2,贝U a b 1 1 a b 的值为(A.-16B.-8C.8D.16a 元和b 元.根据柜台组D .虫ac ”的图案,如图②所示,再将剪下的两个小矩形拼成一个新的矩形,如图③所示,则新矩形的周长可表示为(3A. 2a 3b D. 4a 10bB. 4a 8bC.2a 4b[11]已知a, b ,c满足a 2 2b 7 , 2b 2c21 , c 6a 17 , 则a bA.2B.3C.4D.5[12]把255,443 ,533, 622这4个数从小到大排列, 正确的是()55 44 33 22 55 33 22 44A. 2 3 5 6B. 2 5 6 3亠55 22 33 44 55 22 44 33C. 2 6 5 3D. 2 6 3 5[13]若a m. n b 2 2n 2ma b 5 3ab , 则mn的值为(( )A.3B. 2C.1D.[14]已知a 31 4181 , b 27 , c 961, 则a , b,c的大小关系;是(是().A. a b cB. a c bC. a b cD.b[15](第15届希望杯竞赛题)式子a b c d 去括号后是().A. a b c dB. a b c dC. a b c dD.[16] (2007 年浙江省竞赛题)若 3 x 2 x x 1 0,则x2725x 川 1x是()c的值等于(3c aa b c1 x III 26xx27的值-1[17]已知25x 2000,80y 20001丄等于yA.2B.1C ED.-2[18]乘积539422的结果的位数是(A.41B.61C.51D.47[19](五羊杯竞赛题)老师报出一个五位数,同学们将它的顺序倒排后得到的五位数减去原数,生甲、乙、丙、丁的结果分别是34567, 34056, 23456,34956,老师判定4个结果中只有1 个正确, 答对的是().A •甲B .乙C .丙26 [20]若x x 212 11 10a12x aux aexIII ax a o, 则a i2 a10 a s a6 a4 a2 ( )A. 32B.0C.32D.64[21](第16届希望杯竞赛题)有三组数为X1,X2, X3 ;y1 , y2, y3 ;乙, Z2 , Z3 .它们的平均数分别是 a , b , c,那么为y z , x? y2 Z2 , x3 y3 Z3的平均数是()•[22](第17届江苏省初中数学竞赛题)下列四个数中可以写成100个连续自然数之和的是(A . 1627384950 B. 2345678910 C. 3579111300 D. 4692581470[23](第17届江苏省初中数学竞赛题)若代数式 23x 2x 6的值为8, 则代数式-x2 x 1的值为2[24](第18届五羊杯竞赛题)计算:2.5 3 2 (2 9 8 1 4.5 4).409[25]( 安徽省竞赛题果对于某一特定范任意允许值,2X |1 3x 1 9x| |1 10x的值恒为一常数,则此值为().[26](第17届希望杯竞赛题)已知a, b, c都是整数,m a b\ |bA . m 一定是奇数B . m 一定是偶数C.仅当a, b, c同奇或同偶时, m是偶数 D . m的奇偶性不能确定[27](重庆市竞赛题)给出两列数: 3, 5, 乙9,…,2001 和1, 6, 11, 16, 21,…,2001 , 同时出现在这两列数中的数的个数为().A . 199B .200 C .201D . 202[28](第17届江苏省初中数学竞赛题)用min a,b表示a , b两数中的较小者,用max a,b表示a , b两数中的较大者. 例如:min 3,5 3 , max 3,5 5 ;min 3,3 3 , max 5,5 5 .设a , b ,c ,d 是互不相等的自然数,min a,b p , min c,d q , max p,q x , max a,b m , max c,d n ,D . x y 和x y 都有可能[36]把2009表示成两个整数的平方差的形式,则不同的表示法有(2002 2002x y , b , c , d 从小到大排列的顺序是( ).A . abedmin m,n y ,则()•A . 0B . 1C .1D . 2004[30](第17 届五 羊杯 竞 赛题)已知 有 理 数a ,b , e , d 满足3a 2005 3b 20273e 2822 d 32820 , 那么().A . a e b dB . b d a eC . e a b dD . d b a e( ).[31](第15届希望杯竞赛题)当x31时,代数式2ax 3bx 8的值为18,这时,代数式9b 6a2A . 2B .2C . 4D . 4[33] ( 2004年河北省竞赛题)已知2a3 b,2 e6 , 2 12 2002,则x2002y , b ,e 的关系是( )A . 2ba eB.2b a eC . 2b a eD . a b e[34]如果a 2b 3e 12,且 2.2a b2e ab be ea ,贝U.23a b e的值是 ()A.12B.14C.16D.18[35]如果x 2 2y 1, x y 3,那么3x 3y 的值为()[32] ( 2005年广西竞赛题)如果).A.2B.3C.4D.5[29] ( 2004年重庆初中数学决赛题)已知1 XX2 x 30,则 1 XX 2 x 32004x的值为A . 28B . 28C . 32D . 32 ―—,那么2 a 2 bb 2的值等于(1 a 1 bA.16 种B.14 种C.12 种D.10 种[37](北京市迎春杯竞赛题)已知 2 219x 143xy 19y 2005 , b 344, c 533, d622,那么[38] ( 2004年河北省竞赛题)若x 123456789 小关系是().123456786, y 123456788 123456787,则 x , y 大D .不能确定[44]当克拉拉计算自己各科测试成绩的总分时,无意识地将某一科分数的十位与个位交换了位置, 则最有可能是错误的总分与正确的总分相差的分数是( )A.45B.46C.47D.48E.49[45] 一根铁丝对折,再对折,对折n 次之后n 2,从中间剪断,这根铁丝被剪成()段。

2018年初中数学联赛(初二年级)试题参考答案和评分标准

2018年初中数学联赛(初二年级)试题参考答案和评分标准
2018 年初中数学联赛(初二年级)试题参考答案及评分标准
说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设 7 分和 0 分两档;第二试各题, 请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在 评卷时请参照本评分标准划分的档次,给予相应的分数.
有满足条件的数组 (a,b, c) .
解 因为 (ab 1)(bc 1)(ca 1) (abc)2 abc(a b c) ab bc ca 1,且 abc 整除
(ab 1)(bc 1)(ca 1) ,所以,存在正整数 k 使得 ab bc ca 1 kabc,则 k 1 1 1 1 . a b c abc
(2)若 q 2 ,则可得 29 p 43 p3 9 ,此式一边为奇数一边为偶数,没有整数解. 综上可知 p 2, q 7 ,所以 p q 9 .
2.已知实数 a,b, c 满足 a b b c c a ,则 (a b)(b c)(c a)
2018 2019 2020
2050 M
A.60.
B.61.
C.62.
D.63.
【答】B.
因为 M 1 33 ,所以 1 2018 61 5 .
2018
M 33
33
又M ( 1 1 1 )( 1 1 1 )
2018 2019
2030 2031 2032
2050
二、(本题满分 25 分)若实数 x, y, z 满足 x y z 6 , xyz 1 2(xy yz zx) , (x 3)3
( y 3)3 (z 3)3 3 ,求 xyz .

第18届“五羊杯”初一数学竞赛试题(含答案)

第18届“五羊杯”初一数学竞赛试题(含答案)

第18届“五羊杯”初一数学竞赛试题(考试时间:90分钟 满分:100分)一、选择题(每小题5分,共50分)1、已知有理数,,,a b c d 满足20069153268a b c d ====,那么( ) A 、a b c d >>> B 、a b c d <<<C 、9153268a b c d +>+>+>+D 、9153268a b c d +=+=+=+ 2、计算:2.6×0.000093-(0.0003×3.1-9300×0.000000074)=( ) A 、0.0013764 B 、0.0004836 C 、0.00186 D 、03、计算:564 2.5322981 4.54⨯÷+⨯÷=⨯÷+⨯÷( )A 、52B 、103C 、209D 、4094、已知有理数,,,A B x y 满足0A B +≠,且():()(2):()A B A B x y x y +-=+-,那么:()A A B +=( )A .3:(2)x x y +B .3:(42)x x y +C .:()x x y +D .2:(2)x x y + 5.2006和3007的最大公约数是( ). A .1 B .7 C .11 D .13 6.531172006200620065315⨯+⨯+⨯ 的计算结果是一个( ).A .无限循环小数B .有限小数C .无限不循环小数D .整数7、把17写成a b c ++的形式,其中,,a b c 是整数,0a b c <<<,共有( )种写法.A .15B .16C .17D .188.设整数n 满足0<n<1000,n=11×,a a 也是整数,而且n 的各位数字和恰好也是a ,那么这样的n ( ).A .至少有3个B .恰有2个C .刚好有1个D .不存在 9.关于x 的一元一次方程20062008201020122005200720092011x x x---+=+的解( ).A 、是一个大于1000的数B 、是一个两位的自然数C 、是一个大于0且小于2的数D 、不存在10、设A、B、C、D为大于的整数,满足算式14.451212ABCD=+++,那么A+B+C+D=()A、9B、10C、11D、12二、填空题(每小题答对得5分,否则得0分,本大题满分50分)11、A是整数,A>0,且2006-A是一个完全立方数,则A的最小值是12、如果五羊牌越野汽车的车牌号码为“AB12”这种类型,即开头两个是英文字母(可以相同),后面两个是阿拉伯数字(可以相同),那么,这样的车牌号码一共有个13、如果3456789200634567892008,4567892006345678920064A B==,C=1,D=0,那么A、B、C、D的大小顺序(从小到大)是14、如果A、B、C是三个质数,而且A-B=B-C=14,那么这样的A、B、C组成的数组(A,B,C)共有组15、如图是2008年6月的日历,杨小武该月每周都要参加一次足球训练,日程安排是:星期日、星期一和星期六安排去一次,星期三去两次。

模拟“五羊杯”初中数学竞赛初二试题(附详细解答)

模拟“五羊杯”初中数学竞赛初二试题(附详细解答)

模拟“五羊杯”初中数学竞赛初二试题(考试时间:90分钟;满分100分)一. 选择题(4选1型,每小题选对得5分,否则得0分.本大题满分50分).1. 【原创】化简:25)4(95.025.11)25.0(5.035.26---+--+-=( ). A. -1; B. 0; C. 1; D. 1325. 2. 【原创】已知实数z y x ,,满足022********=+---++z y x z y x ,则=-x z y ( ).A. 23;B. 32; C. 1; D. -1. 3. 【原创】满足不等式组⎪⎪⎩⎪⎪⎨⎧+≥+-+<-+97172373416x x x x x 的所有整数x 的个数为( ). A. 4; B. 6; C. 9; D. 11.4. 1已知:032=-+n n ,那么代数式2019423-+n n 的值是( ).A. -2009;B. 2009;C. -2010;D. 2010.5. 2如下图,多边形ABCDEFGHIJ 的相邻两边互相垂直,要求出它的周长,至少需要知道( )条边的边长。

A. 3;B. 4;C. 5;D. 6.6. 320102010被11除的余数是( ).A. 1;B. 2;C. 4;D. 6. 1模仿97年度“希望杯”全国数学邀请赛初二试题中的第6题自编而成 2 模仿第十九届“五羊杯”初中数学竞赛初一试题中的第6题自编而成 3 模仿97年度太原市初中数学竞赛第一试第4题自编而成7. 4设1233+--=Θb a ab b a ,b a ,是任意实数,则=ΘΘΘΘΘΘΘ)11451041937833()10003100310313(( ). A. 3101510+⨯; B. 101015⨯; C. 310159+⨯; D. 91015⨯.8. 5如果c b a <<,z y x <<,且0,,≠z y x ,那么在四个代数式:①zc y b x a ++; ②y c z b x a ++;③z c x b y a ++;④y c x b z a ++中,哪一个的值最小?( ) A. ①; B. ②; C. ③; D. ④.9. 6打字员小张连续打字20分钟,打了3609个字符,已测得他在第一分钟打了120个字符,在最后一分钟打了98个字符. 如果测算他每一分钟所打字符的个数,则以下结论不成立的是( ).A. 必有连续2分钟打了至少377个字符;B. 必有连续3分钟打了至少566个字符;C. 必有连续6分钟打了至少1131个字符;D. 必有连续9分钟打了至少1697个字符.10. 7空间中八个点(任意三点不共线)两两连线,用红绿两色染这些线段,其中点A 连出的线段都是红色的. 那么,以这八个点为顶点的三角形中,三边同色的三角形的个数至少为( ).A. 13;B. 14;C. 15;D. 16.二. 填空题(每小题填对得5分,否则得0分.本大题满分50分).1. 8已知p 是质数,并且37+p 也是质数,则=-3811p _______. 2. 【原创】设9位自然数m=______________2201091xy ,m 是88的倍数,则m=_______. 3. 9某校初二三个班同学举行羽毛球混合双打表演,要求每班都派出一名男生和一名女生,规定同班的男女生不能配对.如果派出的男生分别是甲、乙、丙、丁,派出的女生分别是A 、B 、C 、D.第一场:甲和A 对丙和C ;第二场:丙和B 对甲和C ;第三场:丁和A 对乙和丙的同班女生.那么,甲、乙、丙、丁的同班女生分别是__________. 4模仿第十九届“五羊杯”初中数学竞赛初二试题中的第8题自编而成 5 改编自《数学竞赛培训教程(初中册)第38页例2 6 改编自第十二届“五羊杯”初中数学竞赛初二试题第10题 7 改编自《中学数学》2010年5月数学奥林匹克初中训练题129第6题 8 改编自96年度北京市初中数学竞赛初二试题第1题 9 模仿98年度北京市初一年级“迎春杯”数学竞赛试题填空题第1题自编而成4.10某个两位数___ab ,它的平方数的末两位数也是___ab ,那么___ab 为__________. 5. 11某校初中二年级同学中,有45人参加了数学竞赛,有40人参加了英语竞赛,有38人参加了语文竞赛,其中参加数学和英语两科的共有15人,参加英语和语文两科的共有20人,参加数学和语文两科的共有19人.已知参加竞赛的同学中有114的同学得了奖,则得奖的共有______人. 6. 12用一个正方形去盖住边长为3,4,5的直角三角形,那么正方形的边长不得少于_______.7. 13计算9997959319753175311⨯⨯⨯+⋯⋯+⨯⨯⨯+⨯⨯⨯=_________. 8. 14万人瞩目的世博会在上海开幕了。

2018八年级数学竞赛试题(含答案)

2018八年级数学竞赛试题(含答案)

八年级数学竞赛试卷考试时间:100分钟 总分:150分姓名: 班级: 得分:一、选择题(每题5分,共50分)1、下列各式成立的是( )A .a-b+c=a-(b+c )B .a+b-c=a-(b-c )C .a-b-c=a-(b+c )D .a-b+c-d=(a+c )-(b-d )2、已知一次函数y=kx+b 的图象(如图6),当y <0时,x 的取值范围是((A )x >0(B )x <0 (C )x <1 (D )x >1 3、在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100100°角对应相等的角是 ( )A.∠AB.∠BC.∠CD.∠B 或∠C4、某校八(2)班的全体同学喜欢的球类运动用图7所示的扇形统计图来表示,下面说法正确的是( )A 、从图中可以直接看出喜欢各种球类的具体人数;B 、从图中可以直接看出全班的总人数;C 、从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况;D 、从图中可以直接看出全班同学现在喜欢各种球类的人数的大小关系5、已知一次函数y=mx+│m+1│的图像与y 轴交于点(0,3),且y 随x 的增大而减小,则m 的值为( ).A .2B .-4C .-2或-4D .2或-46、设y=ax 15+bx 13+cx 11-5(a 、b 、c 为常数),已知当x=7时,y=7,则x= -7时,y 的值等于( )A 、-7B 、-17C 、17D 、不确定7、已知b>a>0,a 2+b 2=4ab ,则ba b a -+等于( ). A .-21B . 3C .2D .-38、将一个正方形分割成n 个小正方形(n>1),则n 不可能取( ).A .4B .5C .8D .99、若x 取整数,则使分式1-2x 36x +的值为整数的x 值有( ). (A)3个 (B)4个 (C)6个 (D)8个10、已知1x ,2x ,3x 的平均数为5,1y ,2y ,3y 的平均数为7,则1123x y +,2223x y +,3323x y +的平均数为( )(A)31 (B)313 (C)935 (D)17二、填空题(每题8分,共40分)11、点O 为线段 A B 上一点, ∠AOC = 10︒ , ∠COD = 50︒ ,则 ∠BOD = 或A O B12、已知 m >0 ,且对任意整数 k ,2018123k m+均为整数,则 m 的最大值为 . 13、已知某三角形的三条高线长 a ,b ,c 为互不相等的整数,则 a + b + c 的最小值 为 .14、如果用四则运算的加、减、除法定义一种新的运算,对于任意实数x 、y 有则=15、如图5所示,圆的周长为4个单位长度,在圆的4等分点处标上0,1,2,3.先让圆周上数字0所对应的数与数轴上的数-1所对应的点重合,再让数轴按逆时针方向绕在该圆上,那么数轴上的数-2007将与圆周上的数字_________重合.二、简答题(每题20分,共60分) 16、现有两种理财方式供王老师选择.方案一:购买一款分红产品,前三年每年 年初交 10 万元,第 6 年年初返 6 万元,以后每年处返1.5 万元;方案二:购 买一款年利率 5%,满一年计息的储蓄产品,第一年初存款10 万元,接下来 两年每年年初追加本金 10 万元,并将之前的本息全部续存.请问哪个选择更划算?请说明理由.(参考数据:1.054 + 1.053 + 1.052 =3.47563125 )y x yx y x -+=*()()31*191211**017、一筐苹果,若分给全班同学每人3个,则还剩下25 个;若全班同学一起吃,其中5个同学每人每天吃1个,其他同学每人每天吃2个,则恰好用若干天吃完.问筐里最多共有多少个苹果?18、如图所示,有一张长为3、宽为1的长方形纸片,现要在这张纸片上画两个小长方形,使小长方形的每条边都与大长方形的一边平行,并且每个小长方形的长与宽之比也都为3:1,然后把它们剪下,这时,所剪得的两张小长方形纸片的周长之和有最大值.求这个最大值.八年级答案:一、C CADB BDBBA二、11、120度或者140度12、2/3 13、9 14、163/113 15、2 三、1617、18、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第18届“五羊杯”初二数学竞赛试题
(考试时间:90分钟 满分:100分)
一、选择题(4选1型,每小题选对得5分,否则得0分,本大题满分50分)
1.化简繁分数:111123233(2)
3(2)
---+-
-+-------=( ). A 、25 B .25
- C .一2 D 、2
2.设23x y x y
-=+,其中x ,y ≠0,则3333(23)(32)(42)(7)x y x y x y x y ---+--=( ) A .一l B .1 C .
14134075 D .14134075-
3.已知三个方程构成的方程组2,1,122yz xyz xyz y z yz zx xy yz zx xy
===+-+++ 恰有一组解,,x a y b z c ===,则333a b c ++=( )
A .一1
B .1
C .0
D .17
4.设324
(23)2(321)3a b c d a b c d +-+-+--=-++,则 ()()()()b c d c d a d a b a b c +-+-+-+-=( )
A .16
B .一24
C .30
D .0
5、杨城同学训练上楼梯赛跑,他每步可上2阶或3阶(但不上1阶,也不上4阶以上).现共有16阶台阶,规定不许踏上第7阶,也不许踏上第13阶.那么杨城有( )种不同的上楼梯方法.(注:两种上楼梯方法,只要有某l 阶楼梯的上法不相同,就算作不同的方法.)
A .12
B .14
C .15
D .16
6.求值:20063—10063一l0003—3000×2006×1006=( ).
A .2036216432
B .2000000000
C .12108216000
D .0
7.已知323x y -=,则23796x y xy xy y x
--+-=( ) A .
14 B .14
- C 、13- D 、13 8.计算 3333246100424610062461008
2462006
+++++++++++++++++++A .31003 B .31004 C .1334 D .11000
9.至少有两个数字相同的3位数共有( )个
A .280
B .180
C .252
D .396
10.五羊中学从初一到高三级学生中挑选“访贫问苦”志愿者,至少要选出( )名同学,才能做到,不管怎样挑选,以下六个条件至少能满足一个条件:
条件l :初一级至少选3人;
条件2:初二级至少选4人;
条件3:初三级至少选5人;
条件4:高一级至少选8人;
条件5:高二级至少选20人;
条件6:高三级至少选6人.
A .47
B .46
C .41
D .40
二、填空题(每小题答对得5分,否则得0分.本大题满分50分)
11.若P 是两位的正整数,则以下等式中有可能成立的式子的个数是 .
A .22006(34)(59)x Px x x ++=--
B 、2
2006(17)(118)x Px x x ++=--
C 、22006(34)(59)x Px x x --=+-
D 、22006(17)(118)x Px x x --=+-
E 、22006(1)(2006)x Px x x +-=-+
12.分解因式2226773x xy y x y --+++=
13.已知2323573(2)2(2)(2)
x x A B C x x x x ++=++---- 其中A ,B ,C 为常数,则2A+B+C=
14.方程组4239x y x x y x ⎧++=⎪⎨++=⎪⎩
的解共有 组
15.假设一家旅馆共有30个房间,分别编以号码l ~30,现在要在每个房间的钥匙标上数字,为保密起见,要求数字用密码法,使服务员容易识别,而使局外人不易猜到.现在要求密码用两位数,左边的一个数字是原房号除以5所得的余数,右边的一个数字是原房号除以7所得的余数.那么标有36的钥匙所对应的原房号是 号.
16、设251098109810(21)x x a x a x a x a x a --=+++++,
则97531a a a a a ++++=
17、若2005200520042004200420042003200311,,2006200620052005200520052004200420052006P Q R =-=-=- 则P ,Q ,R 的大小关系是 .(注:写出P ,Q ,R 两两的大小关系)
18、有一个正在向上匀速移动的自动扶梯,旅客A 从其顶端往下匀速行至其底端,共走了60级,B 从其底端往上匀速行至其顶端,共走了30级(扶梯行驶,两人也在梯上行走,且每次只跨l 级),且A 的速度(即单位时间所走的级数)是B 的速度的3倍,那么自动扶梯露在外面的级数是
19.分数12121212,,,,12380
中共有 个分数可以化成混循环小数
20.请你自己画图:画一个等边三角形,三个顶点标上A ,B ,C .在三边BC ,CA ,AB 上取三等分点,BC 的三等分点(从B 到C 方向)是P ,Q ;CA 的三等分点(从C 到A 方向)是M ,N 、;AB 的三等分点(从A 到B 方向)是S ,T .连结线段QM ,NS ,TP .在六条 线段PQ ,QM ,MN ,NS ,ST ,TP 上再取三等分点,依次是P 1,P 2(从P 到Q 方向);Q 1,Q 2(从Q 到M 方向);M 1,M 2(从M 到N 方向);N 1,N 2((从N 到S 方向);S 1,S 2(从S 到T 方向);T 1,T 2(从T 到P 方向).连结线段12211221,,,,S M S M TM T Q T Q ;
1221122112211221,,,,;,,,,PS P S QS Q N Q N M P M P NP N T N T .所得到的图形中,可以数得出来的三角形,共有 个.。

相关文档
最新文档