2018年高考数学总复习 统计与统计案例
2018版高考数学复习统计与统计案例教师用书理
第十章⎪⎪⎪ 统计与统计案例第一节 统 计突破点(一) 随机抽样1.简单随机抽样(1)定义:设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2)最常用的简单随机抽样的方法:抽签法和随机数法. 2.系统抽样在抽样时,将总体分成均衡的几个部分,然后按照事先确定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样方法叫做系统抽样(也称为机械抽样).3.分层抽样在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.4.三种抽样方法的比较本节主要包括2个知识点: 1.随机抽样; 2.用样本估计总体.1.抽签法的步骤第一步,将总体中的N个个体编号;第二步,将这N个号码写在形状、大小相同的号签上;第三步,将号签放在同一不透明的箱中,并搅拌均匀;第四步,从箱中每次抽取1个号签,连续抽取k次;第五步,将总体中与抽取的号签的编号一致的k个个体取出.2.随机数法的步骤第一步,将个体编号;第二步,在随机数表中任选一个数开始;第三步,从选定的数开始,按照一定抽样规则在随机数表中选取数字,取足满足要求的数字就得到样本的号码.[例1] (1)以下抽样方法是简单随机抽样的是( )A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见D.用抽签方法从10件产品中选取3件进行质量检验(2)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )C.02 D.01[解析] (1)选项A、B不是简单随机抽样,因为抽取的个体间的间隔是固定的;选项C 不是简单随机抽样,因为总体的个体有明显的层次;选项D是简单随机抽样.(2)由题意知前5个个体的编号为08,02,14,07,01.[答案] (1)D (2)D系统抽样系统抽样的步骤(1)先将总体的N 个个体编号;(2)确定分段间隔k (k ∈N *),对编号进行分段.当Nn (n 是样本容量)是整数时,取k =N n; (3)在第1段用简单随机抽样确定第1个个体编号l (l ≤k );(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(l +k ),再加k 得到第3个个体编号(l +2k ),依次进行下去,直到获取整个样本.[例2] (1)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( )A .11B .12C .13D .14(2)中央电视台为了解观众对《中国好歌曲》的意见,准备从502名现场观众中抽取10%进行座谈,现用系统抽样的方法完成这一抽样,则在进行分组时,需剔除________个个体,抽样间隔为________.[解析] (1)由系统抽样定义可知,所分组距为84042=20,每组抽取一人,因为包含整数个组,所以抽取个体在区间[481,720]的数目为(720-480)÷20=12.(2)把502名观众平均分成50组,由于502除以50的商是10,余数是2,所以每组有10名观众,还剩2名观众,采用系统抽样的方法抽样时,应先用简单随机抽样的方法从502名观众中抽取2名观众,这2名观众不参加座谈;再将剩下的500名观众编号为1,2,3,…,500,并均匀分成50段,每段含50050=10个个体.所以需剔除2个个体,抽样间隔为10.[答案] (1)B (2)2 10 [易错提醒]用系统抽样法抽取样本,当N n不为整数时,取k =⎣⎢⎡⎦⎥⎤N n ,即先从总体中用简单随机抽样的方法剔除(N -nk )个个体,且剔除多余的个体不影响抽样的公平性.分层抽样进行分层抽样的相关计算时,常利用以下关系式巧解:(1)样本容量n 总体的个数N =该层抽取的个体数该层的个体数; (2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.[例3] (1)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( )类别 人数 老年教师 900 中年教师 1 800 青年教师 1 600 合计4 300A .90B .100C .180D .300 (2)(2016·东北三校联考)某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3∶5∶7,现用分层抽样的方法抽出容量为n 的样本,其中甲种产品有18件,则样本容量n =( )A .54B .90C .45D .126(3)某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(单位:人).篮球组 书画组 乐器组高一 45 30 a高二151020兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a 的值为________.[解析] (1)设该样本中的老年教师人数为x ,由题意及分层抽样的特点得x 900=3201 600,故x =180.(2)依题意得33+5+7×n =18,解得n =90,即样本容量为90.(3)由题意知1245+15=3045+15+30+10+a +20,解得a =30.[答案] (1)C (2)B (3)30 [方法技巧]分层抽样的解题策略(1)分层抽样中分多少层,如何分层要视具体情况而定,总的原则是:层内样本的差异要小,两层之间的样本差异要大,且互不重叠.(2)为了保证每个个体等可能入样,所有层中每个个体被抽到的可能性相同. (3)在每层抽样时,应采用简单随机抽样或系统抽样的方法进行抽样. (4)抽样比=样本容量总体容量=各层样本数量各层个体数量.能力练通 抓应用体验的“得”与“失”1.[考点一]某工厂的质检人员对生产的100件产品,采用随机数法抽取10件检查,对100件产品采用下面的编号方法①1,2,3,…,100; ②001,002,…,100; ③00,01,02,…,99; ④01,02,03,…,100. 其中正确的序号是( ) A .②③④ B .③④ C .②③D .①②解析:选C 根据随机数法编号可知,①④编号位数不统一.2.[考点三]为了调查老师对微课堂的了解程度,某市拟采用分层抽样的方法从A ,B ,C 三所中学抽取60名教师进行调查,已知A ,B ,C 三所学校中分别有180,270,90名教师,则从C 学校中应抽取的人数为( )A .10B .12C .18D .24解析:选A 根据分层抽样的特征,从C 学校中应抽取的人数为90180+270+90×60=10.3.[考点二]某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号学生在样本中,那么样本中还有一个学生的学号是( )A .10B .11C .12D .16解析:选D 从被抽中的3名学生的学号中可以看出学号间距为13,所以样本中还有一个学生的学号是16,故选D.4.[考点三]某市有A 、B 、C 三所学校,共有高三文科学生1 500人,且A 、B 、C 三所学校的高三文科学生人数成等差数列,在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为120的样本,进行成绩分析,则应从B 校学生中抽取________人.解析:设A、B、C三所学校高三文科学生人数分别为x,y,z,由题知x,y,z成等差数列,所以x+z=2y,又x+y+z=1 500,所以y=500,用分层抽样方法抽取B校学生人数为1201 500×500=40.答案:405.[考点二]为了了解本班学生对网络游戏的态度,高三(6)班计划在全班60人中展开调查,根据调查结果,班主任计划采用系统抽样的方法抽取若干名学生进行座谈,为此先对60名学生进行编号为:01,02,03,…,60,已知抽取的学生中最小的两个编号为03,09,则抽取的学生中最大的编号为________.解析:由最小的两个编号为03,09可知,抽取时的分段间隔是6.即抽取10名同学,其编号构成首项为3,公差为6的等差数列,故最大编号为3+9×6=57.答案:57突破点(二) 用样本估计总体1.频率分布直方图和茎叶图(1)作频率分布直方图的步骤①求极差(即一组数据中最大值与最小值的差);②决定组距与组数;③将数据分组;④列频率分布表;⑤画频率分布直方图.(2)频率分布折线图和总体密度曲线①频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.②总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.(3)茎叶图的优点茎叶图的优点是可以保留原始数据,而且可以随时记录,这对数据的记录和表示都能带来方便.2.样本的数字特征(1)众数、中位数、平均数①标准差:样本数据到平均数的一种平均距离,一般用s 表示,s = 1nx 1-x2+x 2-x2+…+x n -x2].②方差:标准差的平方s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x i (i =1,2,3,…,n )是样本数据,n 是样本容量,x 是样本平均数.③方差与标准差相比,都是衡量样本数据离散程度的统计量,但方差因为对标准差进行了平方运算,夸大了样本的偏差程度.(3)平均数、方差公式的推广若数据x 1,x 2,…,x n 的平均数为x ,方差为s 2,则数据mx 1+a ,mx 2+a ,…,mx n +a 的平均数为m x +a ,方差为m 2s 2.[例1] (1)(2016·山东高考)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A .56B .60C .120D .140(2)某地政府调查了工薪阶层1 000人的月工资收入,并根据调查结果画出如图所示的频率分布直方图,为了了解工薪阶层对月工资收入的满意程度,要用分层抽样的方法从调查的1 000人中抽出100人做电话询访,则(30,35](百元)月工资收入段应抽出________人.[解析] (1)由频率分布直方图知200名学生每周的自习时间不少于22.5小时的频率为1-(0.02+0.10)×2.5=0.7,则这200名学生中每周的自习时间不少于22.5小时的人数为200×0.7=140,故选D.(2)月工资收入落在(30,35](百元)内的频率为1-(0.02+0.04+0.05+0.05+0.01)×5=1-0.85=0.15,所以(30,35](百元)月工资收入段应抽出100×0.15=15(人).[答案] (1)D (2)15 [方法技巧]1.绘制频率分布直方图时需注意的两点(1)制作好频率分布表后,可以利用各组的频率之和是否为1来检验该表是否正确; (2)频率分布直方图的纵坐标是频率组距,而不是频率.2.与频率分布直方图计算有关的两个关系式 (1)频率组距×组距=频率; (2)频数样本容量=频率,此关系式的变形为频数频率=样本容量,样本容量×频率=频数.茎叶图1(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一; (2)重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置上的数据. 2.茎叶图通常用来记录两位数的数据,可以用来分析单组数据,也可以用来比较两组数据.通过茎叶图可以确定数据的中位数,数据大致集中在哪个茎,数据是否关于该茎对称,数据分布是否均匀等.[例2] 某良种培育基地正在培育一小麦新品种A ,将其与原有的一个优良品种B 进行对照试验,两种小麦各种植了25亩,所得亩产数据(单位:千克)如下.品种A:357,359,367,368,375,388,392,399,400,405,412,414,415,421,423,423,427,430,430, 434,443,445,445,451,454品种B:363,371,374,383,385,386,391,392,394,394,395,397,397,400,401,401,403,406,407, 410,412,415,416,422,430(1)作出数据的茎叶图;(2)通过观察茎叶图,对品种A与B的亩产量及其稳定性进行比较,写出统计结论.[解] (1)画出茎叶图如图所示:(2)通过观察茎叶图可以看出:①品种A的亩产平均数(或均值)比品种B高;②品种A 的亩产标准差(或方差)比品种B大,故品种A的亩产稳定性较差.[方法技巧]茎叶图问题的求解策略(1)由于茎叶图完全反映了所有的原始数据,解决由茎叶图给出的统计图表问题时,要充分对这个图表提供的样本数据进行相关的计算或者是对某些问题作出判断.(2)茎叶图不能直接反映总体的分布情况,这就需要通过茎叶图数据求出样本数据的数字特征,进一步估计总体情况.样本的数字特征1应用中,需先计算数据的平均数,分析平均水平,再计算方差(标准差),分析稳定情况.2.若给出图形,一方面可以由图形得到相应的样本数据,计算平均数、方差(标准差);另一方面,可以从图形直观分析样本数据的分布情况,大致判断平均数的范围,并利用数据的波动性比较方差(标准差)的大小.考法(一) 与频率分布直方图交汇命题[例3] (2016·北京高考)某市居民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费.从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图.(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(2)假设同组中的每个数据用该组区间的右端点值代替.当w=3时,估计该市居民该月的人均水费.[解] (1)由用水量的频率分布直方图,知该市居民该月用水量在区间[0.5,1],(1,1.5],(1.5,2],(2,2.5],(2.5,3]内的频率依次为0.1,0.15,0.2,0.25,0.15.所以该月用水量不超过3立方米的居民占85%,用水量不超过2立方米的居民占45%.依题意,w至少定为3.(2)由用水量的频率分布直方图及题意,得居民该月用水费用的数据分组与频率分布表如下:组号12345678分组[2,4](4,6](6,8](8,10](10,12](12,17](17,22](22,27] 频率0.10.150.20.250.150.050.050.054×0.1+6×0.15+8×0.2+10×0.25+12×0.15+17×0.05+22×0.05+27×0.05=10.5(元).[方法技巧]频率分布直方图与众数、中位数、平均数的关系(1)最高的小长方形底边中点的横坐标为众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.考法(二) 与茎叶图交汇命题[例4] (1)如图所示的茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的中位数为17,乙组数据的平均数为17.4,则x,y的值分别为( )甲组乙组9099 y 6 1 6 6 x 629A.7,8 B .5,7 C .8,5D .7,7(2)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:8 7 7941x91则7个剩余分数的方差为________.[解析] (1)甲组数据的中位数为17, 故y =7, 乙组数据的平均数为3×10+20++6+6+x +5=17.4,解得x =7.(2)由图可知去掉的两个数是87,99,所以87+90×2+91×2+94+90+x =91×7,解得x =4.s 2=17[(87-91)2+(90-91)2×2+(91-91)2×2+(94-91)2×2]=367.[答案] (1)D (2)367[易错提醒]在使用茎叶图时,一定要观察所有的样本数据,弄清楚这个图中数字的特点,不要漏掉了数据,也不要混淆茎叶图中茎与叶的含义.考法(三) 与优化决策问题交汇[例5] 甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如下表所示:甲 乙 丙 丁 平均环数x 8.3 8.8 8.8 8.7 方差s 23.53.62.25.4) A .甲 B .乙 C .丙D .丁[解析] 由题目表格中数据可知,丙平均环数最高,且方差最小,说明成绩好,且技术稳定,选C.[答案] C [方法技巧]利用样本的数字特征解决优化决策问题的依据(1)平均数反映了数据取值的平均水平;标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定;标准差、方差越小,数据的离散程度越小,越稳定.(2)用样本估计总体就是利用样本的数字特征来描述总体的数字特征.能力练通 抓应用体验的“得”与“失”1.[考点一]在样本的频率分布直方图中,共有7个小长方形,若中间一个小长方形的面积等于其他6个小长方形的面积的和的14,且样本容量为80,则中间一组的频数为( )A .0.25B .0.5C .20D .16解析:选D 设中间一组的频数为x ,依题意有x 80=14⎝ ⎛⎭⎪⎫1-x 80,解得x =16.2.[考点二]在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.131415⎪⎪⎪⎪0 0 3 4 5 6 6 8 8 8 91 1 12 2 23 34 45 5 56 67 80 1 2 2 3 3 3若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是( )A .3B .4C .5D .6解析:选B 35÷7=5,因此可将编号为1~35的35个数据分成7组,每组有5个数据,在区间[139,151]上共有20个数据,分在20÷5=4个小组中,每组取1人,共取4人.3.[考点一]某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],则图中x 的值等于( )A .0.12B .0.012C .0.18D .0.018解析:选D 依题意,0.054×10+10×x +0.01×10+0.006×10×3=1,解得 x =0.018. 4.[考点三·考法二如图是某学校举行的运动会上七位评委为某体操项目打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )798 4 4 6 4 793A .84,4.84B .84,1.6C .85,1.6D .85,4解析:选C 依题意,所剩数据的平均数是80+15×(4×3+6+7)=85,所剩数据的方差是15×[3×(84-85)2+(86-85)2+(87-85)2]=1.6. 5.[考点三·考法三甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):.解析:x -甲=x -乙=9,s 2甲=15×[(9-10)2+(9-8)2+(9-9)2+(9-9)2+(9-9)2]=25,s 2乙=15×[(9-10)2+(9-10)2+(9-7)2+(9-9)2+(9-9)2]=65>s 2甲,故甲更稳定.答案:甲6.[考点三·考法一(2016·四川高考)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x (吨),一位居民的月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a 的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由; (3)若该市政府希望使85%的居民每月的用水量不超过标准x (吨),估计x 的值,并说明理由.解:(1)由频率分布直方图可知,月均用水量在[0,0.5)中的频率为0.08×0.5=0.04.同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]中的频率分别为0.08,0.20,0.26,0.06,0.04,0.02.由0.04+0.08+0.5×a +0.20+0.26+0.5×a +0.06+0.04+0.02=1,解得a =0.30. (2)由(1)知100位居民每人的月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计全市30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.(3)因为前6组的频率之和为0.04+0.08+0.15+0.20+0.26+0.15=0.88>0.85,而前5组的频率之和为0.04+0.08+0.15+0.20+0.26=0.73<0.85,所以 2.5≤x <3.由0.30×(x -2.5)=0.85-0.73,解得x =2.9.所以,估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准. 7.[考点三·考法二某车间20名工人年龄数据如下表:(1)求这20(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差.解:(1)由题可知,这20名工人年龄的众数是30,极差是40-19=21. (2)这20名工人年龄的茎叶图如图所示:(3)这20名工人年龄的平均数为x =120(19+3×28+3×29+5×30+4×31+3×32+40)=30,∴这20名工人年龄的方差为s 2=120∑20 i =1 (x i -x )2=112+6×22+7×12+5×02+10220=25220=12.6.[全国卷5年真题集中演练——明规律]1.(2016·全国丙卷)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是( )A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个解析:选D 由图形可得各月的平均最低气温都在0 ℃以上,A正确;七月的平均温差约为10 ℃,而一月的平均温差约为5 ℃,故B正确;三月和十一月的平均最高气温都在10 ℃左右,基本相同,C正确;故D错误.2.(2013·新课标全国卷Ⅰ)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是( )A.简单随机抽样 B.按性别分层抽样C.按学段分层抽样 D.系统抽样解析:选C 由于该地区的中小学生人数比较多,不能采用简单随机抽样,排除选项A;由于小学、初中、高中三个学段的学生视力差异性比较大,可采取按照学段进行分层抽样,而男女生视力情况差异性不大,不能按照性别进行分层抽样,排除B和D.故选C.3.(2014·新课标全国卷Ⅰ)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?解:(1)如图所示:(2)质量指标值的样本平均数为x=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为s2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定.4.(2014·新课标全国卷Ⅱ)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.解:(1)由所给茎叶图知,50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75.50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为66+682=67,所以该市的市民对乙部门评分的中位数的估计值是67. (2)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为550=0.1,850=0.16,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16.(3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.5.(2013·新课标全国卷Ⅰ)为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间: 0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4 服用B 药的20位患者日平均增加的睡眠时间: 3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?A 药解:(1)设A 药观测数据的平均数为x ,B 药观测数据的平均数为y -.由观测结果可得 x -=120×(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5)=2.3,y -=120×(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)=1.6.由以上计算结果可得x ->y -,因此可看出A 药的疗效更好. (2)由观测结果可绘制如下茎叶图:从以上茎叶图可以看出,A 药疗效的试验结果有10的叶集中在茎2,3上,而B 药疗效的试验结果有710的叶集中在茎0,1上,由此可看出A 药的疗效更好.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.某学校为了了解某年高考数学的考试成绩,在高考后对该校1 200名考生进行抽样调查,其中有400名文科考生,600名理科考生,200名艺术和体育类考生,从中抽取120名考生作为样本,记这项调查为①;从10名家长中随机抽取3名参加座谈会,记这项调查为②,则完成①,②这两项调查宜采用的抽样方法依次是( )A .分层抽样法,系统抽样法B .分层抽样法,简单随机抽样法C .系统抽样法,分层抽样法D .简单随机抽样法,分层抽样法解析:选B 在①中,文科考生、理科考生、艺术和体育类考生会存在差异,采用分层抽样法较好;在②中,抽取的样本个数较少,宜采用简单随机抽样法.2.某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二780人、高三n 人中,抽取35人进行问卷调查.已知高二被抽取的人数为13,则n =( )A .660B .720C .780D .800解析:选B 由已知条件,抽样比为13780=160,从而35600+780+n =160,解得n =720.3.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A .93B .123C .137D .167解析:选C 初中部的女教师人数为110×70%=77,高中部的女教师人数为150×(1-。
【小初高学习]2018年高考数学 专题49 统计与统计案例黄金解题模板
专题49 统计与统计案例【高考地位】统计与统计案例是高考的热点,高考对该内容的考查主要体现了以下两个特点:一是覆盖面广,几乎所有的统计考点都有所涉及,说明统计的任何环节都不能遗漏;二是考查力度加大. 在高考各种题型均有出现如选择题、填空题和解答题,其试题难度属中档题.【方法点评】类型一变量间的相互关系使用情景:变量间的相互关系解题模板:第一步根据题意画出散点图并判断两变量之间是正相关还是负相关;第二步计算样本中心点并代入公式进行计算;第三步得出变量间的相互关系——线性回归方程.例1. 一次考试中,五名学生的数学、物理成绩如下表所示:(1)请在所给的直角坐标系中画出它们的散点图;(2)并求这些数据的线性回归方程=bx+a.附:线性回归方程中,其中,为样本平均值,线性回归方程也可写为.【答案】(1)详见解析(2)=0.75x+20.25.考点:回归方程与散点图;点评:(1)把所给的五组数据作为五个点的坐标描到直角坐标系中,得到散点图;(2)根据所给的数据先做出数据的平均数,即样本中心点,根据最小二乘法做出线性回归方程的系数,写出线性回归方程.【变式演练1】年年岁史诗大剧《芈月传》风靡大江南北,影响力不亚于以前的《甄嬛传》,某记者调查了大量《芈月传》的观众,发现年龄段与爱看的比例存在较好的线性相关关系,年龄在的爱看比例分别为,现用这个年龄段的中间值代表年龄段,如代表代表,根据前四个数据求得关于爱看比例的线性回归方程为,由此可推测的值为()A. B. C. D.【答案】B【解析】由题意可知:前四个数据的,代入线性回归方程,得,当时,代入线性回归方程,故选B.点睛:本题主要考查了线性回归方程及相关问题,属于中档题,线性回归直线方程按最小二乘法计算时,必过这组数据的中心点,所以求回归直线方程中参数时,只需代入中心点即可,线性回归方程的用途是用来预测估算的,因此预测时只需代入相应的,即可得到预估值.【变式演练2】某车间加工零件的数量与加工时间的统计数据如表:零件数加工时间现已求得上表数据的回归方程中的值为,则据此回归模型可以预测,加工个零件所需要的加工时间约为()A.分钟 B.分钟 C.分钟 D.分钟【答案】C考点:回归直线方程.【变式演练3【2018山西省实验中学模拟】某电子产品的成本价格由两部分组成,一是固定成本,二是可变成本,为确定该产品的成本.进行5次试验,收集到的数据如表:由最小二乘法得到回归方程,则__________.【答案】68【解析】,所以,得。
2018版高考数学大一轮复习第十章统计与统计案例10.2统计图表用样本估计总体教师用书文北师大版.
1
一条折线,称之为频率折线图.
(4) 当样本数据较少时, 用茎叶图表示数据的效果较好, 它没有信息的缺失, 而且可以随时记
录,方便表示与比较.
【知识拓展】
1.频率分布直方图的特点
(1) 频率分布直方图中相邻两横坐标之差表示组距,纵坐标表示
频率
频率
组距 ,频率=组距× 组距 .
(2) 频率分布直方图中各小长方形的面积之和为
则甲组平均数为
= 17.4.
5
而乙组平均数为 16.8 ,所以甲组成绩较好.
2.在本例 (2) 条件下:①求乙组数据的中位数、众数;②求乙组数据的方差.
解 ①由茎叶图知,乙组中五名学生的成绩为 9,15,18,18,24.
故中位数为 18,众数为 18.
②
s
2=
1 [(9
5
- 16.8)
2+ (15 -16.8)
B. 91.5 和 92
C. 91 和 91.5
D. 92 和 92
答案 A
解析 这组数据由小到大排列为 87,89,90,91,92,93,94,96 ,
91+92 ∴中位数是 2 = 91.5 ,
平均数
x
=
87+89
+
90+
91+ 8
92+
93+
94+
96 =
91.5.
2.(2015 ·陕西 ) 某中学初中部共有 110 名教师, 高中部共有 150 名教师, 其性别比例如图所
∴为使 80%以上的居民在该月的用水价格为 4 元 / 立方米, w至少定为 3.
(2) 当 w= 3 时,该市居民该月的人均水费估计为
(0.1 ×1+0.15 ×1.5 +0.2 ×2+0.25 ×2.5 +0.15 ×3) ×4+0.15 ×3×4+[0.05 ×(3.5 -
2018版高考数学大一轮复习第十章统计与统计案例10.2用样本估计总体教师用书文新人教版
2018版高考数学大一轮复习 第十章 统计与统计案例 10.2 用样本估计总体教师用书 文 新人教版1.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差). (2)决定组距与组数. (3)将数据分组. (4)列频率分布表. (5)画频率分布直方图.2.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图. (2)总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线. 3.茎叶图统计中还有一种被用来表示数据的图叫做茎叶图,茎是指中间的一列数,叶就是从茎的旁边生长出来的数. 4.标准差和方差(1)标准差是样本数据到平均数的一种平均距离. (2)标准差:s =1n[ x 1-x 2+ x 2-x 2+…+ x n -x 2].(3)方差:s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2](x n 是样本数据,n 是样本容量,x是样本平均数). 【知识拓展】1.频率分布直方图的特点(1)频率分布直方图中相邻两横坐标之差表示组距,纵坐标表示频率组距,频率=组距×频率组距.(2)频率分布直方图中各小长方形的面积之和为1,因为在频率分布直方图中组距是一个固定值,所以各小长方形高的比也就是频率比.(3)频率分布表和频率分布直方图是一组数据频率分布的两种形式,前者准确,后者直观.2.平均数、方差的公式推广(1)若数据x1,x2,…,x n的平均数为x,那么mx1+a,mx2+a,mx3+a,…,mx n+a的平均数是m x+a.(2)数据x1,x2,…,x n的方差为s2.①数据x1+a,x2+a,…,x n+a的方差也为s2;②数据ax1,ax2,…,ax n的方差为a2s2.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( √)(2)一组数据的众数可以是一个或几个,那么中位数也具有相同的结论.( ×)(3)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.( √)(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.( ×)(5)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数.( √)(6)在频率分布直方图中,众数左边和右边的小长方形的面积和是相等的.( ×)1.(教材改编)若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A.91.5和91.5 B.91.5和92C.91和91.5 D.92和92答案 A解析这组数据由小到大排列为87,89,90,91,92,93,94,96,∴中位数是91+922=91.5,平均数x =87+89+90+91+92+93+94+968=91.5.2.(2015·陕西)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A .93B .123C .137D .167 答案 C解析 由题干扇形统计图可得该校女教师人数为110×70%+150×(1-60%)=137.故选C. 3.一个容量为66的样本,数据的分组及各组的频数如下: [11.5,15.5)2;[15.5,19.5)4;[19.5,23.5)9; [23.5,27.5)18;[27.5,31.5)11;[31.5,35.5)12; [35.5,39.5)7;[39.5,43.5)3.根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是( ) A.16 B.13 C.12 D.23 答案 B解析 由已知,样本容量为66,而落在[31.5,43.5)内的样本数为12+7+3=22,故所求概率为2266=13.4.(2016·江苏)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________. 答案 0.1解析 x =4.7+4.8+5.1+5.4+5.55=5.1,则方差s 2=15[(4.7-5.1)2+(4.8-5.1)2+(5.1-5.1)2+(5.4-5.1)2+(5.5-5.1)2]=0.1.5.为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有________株树木的底部周长小于100 cm.答案24解析底部周长在[80,90)的频率为0.015×10=0.15,底部周长在[90,100)的频率为0.025×10=0.25,样本容量为60,所以树木的底部周长小于100 cm的株数为(0.15+0.25)×60=24.题型一频率分布直方图的绘制与应用例1 (2016·北京)某市居民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费.从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(2)假设同组中的每个数据用该组区间的右端点值代替.当w=3时,估计该市居民该月的人均水费.解(1)如图所示,用水量在[0.5,3)的频率的和为(0.2+0.3+0.4+0.5+0.3)×0.5=0.85. ∴用水量小于等于3立方米的频率为0.85,又w为整数,∴为使80%以上的居民在该月的用水价格为4元/立方米,w至少定为3.(2)当w=3时,该市居民该月的人均水费估计为(0.1×1+0.15×1.5+0.2×2+0.25×2.5+0.15×3)×4+0.15×3×4+[0.05×(3.5-3)+0.05×(4-3)+0.05×(4.5-3)]×10=7.2+1.8+1.5=10.5(元).即该市居民该月的人均水费估计为10.5元.思维升华(1)明确频率分布直方图的意义,即图中的每一个小矩形的面积是数据落在该区间上的频率,所有小矩形的面积和为1.(2)对于统计图表类题目,最重要的是认真观察图表,从中提炼有用的信息和数据.(2015·课标全国Ⅱ)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.A地区用户满意度评分的频率分布直方图图①B地区用户满意度评分的频数分布表(1)在图②中作出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均数及分散程度(不要求计算出具体值,给出结论即可).B地区用户满意度评分的频率分布直方图图②(2)根据用户满意度评分,将用户的满意度分为三个等级:估计哪个地区用户的满意度等级为不满意的概率大?说明理由.解(1)如图所示.通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均数高于A地区用户满意度评分的平均数;B地区用户满意度评分比较集中,而A 地区用户满意度评分比较分散.(2)A地区用户的满意度等级为不满意的概率大.记C A表示事件:“A地区用户的满意度等级为不满意”;C B表示事件:“B地区用户的满意度等级为不满意”.由直方图得P(C A)的估计值为(0.01+0.02+0.03)×10=0.6,P(C B)的估计值为(0.005+0.02)×10=0.25.所以A地区用户的满意度等级为不满意的概率大.题型二茎叶图的应用例2 (1)(2015·山东)为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为( )A.①③ B.①④ C.②③ D.②④(2)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( ) A .2,5 B .5,5 C .5,8 D .8,8 答案 (1)B (2)C解析 (1)甲地5天的气温为26,28,29,31,31, 其平均数为x 甲=26+28+29+31+315=29;方差为s 2甲=15[(26-29)2+(28-29)2+(29-29)2+(31-29)2+(31-29)2]=3.6;标准差为s 甲= 3.6.乙地5天的气温为28,29,30,31,32, 其平均数为x 乙=28+29+30+31+325=30;方差为s 2乙=15[(28-30)2+(29-30)2+(30-30)2+(31-30)2+(32-30)2]=2;标准差为s 乙= 2. ∴x 甲<x 乙,s 甲>s 乙.(2)由茎叶图及已知得x =5,又乙组数据的平均数为16.8,即9+15+10+y +18+245=16.8,解得y =8. 引申探究1.本例(2)中条件不变,试比较甲、乙两组哪组成绩较好. 解 由原题可知x =5,则甲组平均数为9+12+15+24+275=17.4.而乙组平均数为16.8,所以甲组成绩较好.2.在本例(2)条件下:①求乙组数据的中位数、众数;②求乙组数据的方差. 解 ①由茎叶图知,乙组中五名学生的成绩为9,15,18,18,24. 故中位数为18,众数为18.②s 2=15[(9-16.8)2+(15-16.8)2+(18-16.8)2×2+(24-16.8)2]=23.76.思维升华 茎叶图的优缺点由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失,第二点是茎叶图便于记录和表示.其缺点是当样本容量较大时,作图较烦琐.(1)某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示,以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是( )(2)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为( ) A.1169 B.367 C .36 D.677答案 (1)A (2)B解析 (1)由于频率分布直方图的组距为5,排除C 、D ,又[0,5),[5,10)两组各一人,排除B ,应选A.(2)由题意知87+94+90+91+90+90+x +917=91,解得x =4.所以s 2=17[(87-91)2+(94-91)2+(90-91)2+(91-91)2+(90-91)2+(94-91)2+(91-91)2] =17(16+9+1+0+1+9+0)=367. 题型三 用样本的数字特征估计总体的数字特征例3 (1)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:则成绩较为稳定(方差较小)的那位运动员成绩的方差为________. 答案 2解析 x 甲=15(87+91+90+89+93)=90,x 乙=15(89+90+91+88+92)=90,s 2甲=15[(87-90)2+(91-90)2+(90-90)2+(89-90)2+(93-90)2]=4,s 2乙=15[(89-90)2+(90-90)2+(91-90)2+(88-90)2+(92-90)2]=2.(2)甲、乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图.①分别求出两人得分的平均数与方差;②根据图和上面算得的结果,对两人的训练成绩作出评价. 解 ①由图象可得甲、乙两人五次测试的成绩分别为 甲:10分,13分,12分,14分,16分;乙:13分,14分,12分,12分,14分.x 甲=10+13+12+14+165=13;x 乙=13+14+12+12+145=13,s 2甲=15[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4;s 2乙=15[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8.②由s 2甲>s 2乙,可知乙的成绩较稳定.从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.思维升华 平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.(2016·全国乙卷)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得以下柱状图:记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数. (1)若n =19,求y 与x 的函数解析式;(2)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值;(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件? 解 (1)当x ≤19时,y =3 800;当x >19时,y =3 800+500(x -19)=500x -5 700. 所以y 与x 的函数解析式为y =⎩⎪⎨⎪⎧3 800,x ≤19,500x -5 700,x >19(x ∈N ).(2)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故n 的最小值为19.(3)若每台机器在购机的同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3 800元,20台的费用为4 300元,10台的费用为4 800元,因此这100台机器在购买易损零件上所需费用的平均数为1100(3 800×70+4 300×20+4 800×10)=4 000(元), 若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4 000元,10台的费用为4 500元,因此这100台机器在购买易损零件上所需费用的平均数为1100(4 000×90+4 500×10)=4 050(元). 比较两个平均数可知,购买1台机器的同时应购买19个易损零件.9.高考中频率分布直方图的应用考点分析 频率分布直方图是高考考查的热点,考查频率很高,题型有选择题、填空题,也有解答题,难度为低中档.用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用.在计数和计算时一定要准确,在绘制小矩形时,宽窄要一致.通过频率分布表和频率分布直方图可以对总体作出估计.频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.典例 (12分)(2016·四川)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(3)估计居民月均用水量的中位数.规范解答解(1)由频率分布直方图可知,月均用水量在[0,0.5)的频率为0.08×0.5=0.04.同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.[3分]由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a+0.5×a,解得a=0.30.[5分](2)由(1)知,100位居民月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.[8分](3)设中位数为x吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5.而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5.所以2≤x<2.5.由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.[12分]1.(2017·铁岭月考)在某次测量中得到的A样本数据如下:42,43,46,52,42,50,若B样本数据恰好是A样本数据每个都减5后所得数据,则A,B两样本的下列数字特征对应相同的是( )A.平均数 B.标准差 C.众数 D.中位数答案 B解析由B样本数据恰好是A样本数据每个都减5后所得数据,可得平均数、众数、中位数分别是原来结果减去5,即与A样本不相同,标准差不变,故选B.2.(2016·山东)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A.56 B.60 C.120 D.140答案 D解析设所求人数为N,则N=2.5×(0.16+0.08+0.04)×200=140,故选D. 3.(2017·北京西城区质检)下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为( )A.0.2 B.0.4C.0.5 D.0.6答案 B解析10个数据落在区间[22,30)内的数据有22,22,27,29,共4个,因此,所求的频率为410=0.4.故选B.4.(2016·西安模拟)某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其平均数和方差分别为x和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的平均数和方差分别为( )A.x,s2+1002B.x+100,s2+1002C.x,s2D.x+100,s2答案 D解析x1+x2+…+x1010=x,y i=x i+100,所以y1,y2,…,y10的平均数为x+100,方差不变,故选D.5.如图是某青年歌手大奖赛上七位评委为甲、乙两名选手打出的分数的茎叶图(其中m为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a1、a2,则一定有( )A.a1>a2B.a2>a1C.a1=a2D.a1,a2的大小与m的值有关答案 B解析去掉一个最高分和一个最低分后,甲选手叶上的数字之和是20,乙选手叶上的数字之和是25,故a2>a1.故选B.6.(2016·北京朝阳区期末)在一段时间内有2 000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90 km/h~120 km/h,试估计2 000辆车中,在这段时间内以正常速度通过该处的汽车约有( )A.30辆B.300辆C.170辆D.1 700辆答案 D解析 以正常速度通过该处的汽车频率为1-(0.01+0.005)×10=0.85,所以以正常速度通过该处的汽车约有0.85×2 000=1 700(辆).7.样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均数为1,则样本方差为________. 答案 2解析 由题意可知样本的平均数为1, 所以a +0+1+2+35=1,解得a =-1,所以样本的方差为15[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2. 8.从某小学随机抽取100名学生,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a =____________.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为________.答案 0.030 3解析 ∵小矩形的面积等于频率,∴除[120,130)外的频率和为0.700,∴a =1-0.70010=0.030.由题意知,身高在[120,130),[130,140),[140,150]内的学生分别为30人,20人,10人,∴由分层抽样可知抽样比为1860=310,∴在[140,150]中选取的学生应为3人.9.若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为________. 答案 16解析 若x 1,x 2,…,x n 的标准差为s ,则ax 1+b ,ax 2+b ,…,ax n +b 的标准差为as .由题意s =8,则上述标准差为2×8=16.10.某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].则(1)图中的x=________;(2)若上学所需时间不少于1小时的学生可申请在学校住宿,则该校600名新生中估计有________名学生可以申请住宿.答案(1)0.012 5 (2)72解析(1)由频率分布直方图知20x=1-20×(0.025+0.006 5+0.003+0.003),解得x=0.012 5.(2)上学时间不少于1小时的学生的频率为0.12,因此估计有0.12×600=72(人)可以申请住宿.11.某校高一某班的某次数学测试成绩(满分为100分)的茎叶图和频率分布直方图都受了不同程度的破坏,但可见部分如图,据此解答下列问题:(1)求分数在[50,60]的频率及全班人数;(2)求分数在[80,90]之间的频数,并计算频率分布直方图中[80,90]间的矩形的高.解(1)分数在[50,60]的频率为0.008×10=0.08.由茎叶图知,分数在[50,60]之间的频数为2,所以全班人数为20.08=25.(2)分数在[80,90]之间的频数为25-2-7-10-2=4,频率分布直方图中[80,90]间的矩形的高为425÷10=0.016.12.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得到如下频数分布表:(1)作出这些数据的频率分布直方图;(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表); (3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定? 解 (1)如图所示:(2)质量指标值的样本平均数为x =80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100. 质量指标值的样本方差为s 2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定.。
2018届高考理科数学《第11章统计与统计案例》11-3
高考总复习· 数学理科(RJ)
第十一章 统计与统计案例
2×2列联表
y1
x1 x2 a c
y2
b d
总计
a+b c+d
总计
a+c
b+d
a+b+c+d
高考总复习· 数学理科(RJ)
第十一章 统计与统计案例
高考总复习· 数学理科(RJ)
第十一章 统计与统计案例
【思考辨析】
判 断 下 面 结 论 是 否 正 确 ( 请 在 括 号 中 打 “√” 或
高考总复习· 数学理科(RJ)
第十一章 统计与统计案例
4.(2017· 湖南三校联考 ) 某产品在某零售摊位的零售价
x(单位:元)与每天的销售量y(单位:个)的统计资料如下表
所示:
x
16
“×”) (1) 相关关系与函数关系都是一种确定性的关系,也是 一种因果关系.( )
(2)“ 名师出高徒 ” 可以解释为教师的教学水平与学生 的水平成正相关关系.( )
(3) 只有两个变量有相关关系,所得到的回归模型才有
预测价值.(
)
高考总复习· 数学理科(RJ)
第十一章 统计与统计案例
(4)某同学研究卖出的热饮杯数 y 与气温 x(℃)之间的关系, 得 回归方程^ y=-2.352x+147.767,则气温为 2 ℃时,一定可卖出 143 杯热饮.( )
个变量的这种相关关系称为负相关.
高考总复习· 数学理科(RJ)
第十一章 统计与统计案例
(3)线性相关关系、回归直线 一条直线附近 , 如果散点图中点的分布从整体上看大致在 _____________ 就称这两个变量之间具有线性相关关系,这条直线叫做回归 直线. 2.回归方程 (1)最小二乘法 距离的平方和最小 求回归直线,使得样本数据的点到它的 _________________ 的方法叫做最小二乘法.
江苏2018届高考数学总复习专题11.2统计与统计案例试题含解析
专题11.2 统计与统计案例【三年高考】1. 某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取▲ 件.【答案】18【解析】应从丙种型号的产品中抽取30060181000⨯=件,故答案为18.【考点】分层抽样【名师点睛】在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i∶N i=n∶N.2.【2016江苏】已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是 . 【答案】0.1【考点】方差【名师点睛】本题考查的是总体特征数的估计,重点考查了方差的计算,本题有一定的计算量,属于简单题.认真梳理统计学的基础理论,特别是系统抽样和分层抽样、频率分布直方图、方差等,针对训练近几年的江苏高考类似考题,直观了解本考点的考查方式,强化相关计算能力.3.【2015江苏高考,2】已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________. 【答案】6【解析】46587666x+++++==【考点定位】平均数4. 【2017课标3,理3】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳【答案】A【解析】【考点】 折线图【名师点睛】将频率分布直方图中相邻的矩形的上底边的中点顺次连结起来,就得到一条折线,我们称这条折线为本组数据的频率折线图,频率分布折线图的的首、尾两端取值区间两端点须分别向外延伸半个组距,即折线图是频率分布直方图的近似,他们比频率分布表更直观、形象地反映了样本的分布规律.5. 【2017山东,理5】为了研究某班学生的脚长(单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与之间有线性相关关系,设其回归直线方程为ˆˆˆybx a =+.已知101225i i x ==∑,1011600i i y ==∑,ˆ4b =.该班某学生的脚长为24,据此估计其身高为(A )160 (B )163 (C )166 (D )170【答案】C【解析】试题分析:由已知22.5,160,160422.570,42470166x y a y ==∴=-⨯==⨯+= ,选C.【考点】线性相关与线性回归方程的求法与应用.【名师点睛】(1)判断两个变量是否线性相关及相关程度通常有两种方法:(1)利用散点图直观判断;(2)将相关数据代入相关系数公式求出,然后根据的大小进行判断.求线性回归方程时在严格按照公式求解时,一定要注意计算的准确性.6. 【2017课标1,文2】为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A .x 1,x 2,…,x n 的平均数B .x 1,x 2,…,x n 的标准差C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数【答案】B【解析】 试题分析:刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B【考点】样本特征数【名师点睛】众数:一组数据出现次数最多的数叫众数,众数反应一组数据的多数水平; 中位数:一组数据中间的数,(起到分水岭的作用)中位数反应一组数据的中间水平; 平均数:反应一组数据的平均水平;方差:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差.在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.标准差是方差的算术平方根,意义在于反映一个数据集的离散程度.7. 【2017山东,文8】如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为A. 3,5B. 5,5C. 3,7D. 5,7【答案】A【解析】【考点】茎叶图、样本的数字特征【名师点睛】由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失,第二点是茎叶图便于记录和表示.其缺点是当样本容量较大时,作图较繁琐. 利用茎叶图对样本进行估计是,要注意区分茎与叶,茎是指中间的一列数,叶是从茎的旁边生长出来的数.8.【2016高考新课标3理数改编】某旅游城市为向游客介绍本地的气温情况,绘制了一年中︒,B 月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15C︒.下面叙述不正确的是.点表示四月的平均最低气温约为5C︒以上②七月的平均温差比一月的平均温差大①各月的平均最低气温都在0C︒的月份有5个③三月和十一月的平均最高气温基本相同④平均气温高于20C【答案】④【解析】︒均在虚线框内,所以各月的平均最低气温都在0℃以上,①正确;由试题分析:由图可知0C图可在七月的平均温差大于7.5C ︒,而一月的平均温差小于7.5C ︒,所以七月的平均温差比一月的平均温差大,②正确;由图可知三月和十一月的平均最高气温都大约在5C ︒,基本相同,③正确;由图可知平均最高气温高于20℃的月份有3个或2个,所以④不正确. 考点:1、平均数;2、统计图.【易错警示】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选②.9.【2016高考上海理数】某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米).【答案】1.76【解析】试题分析:将这6位同学的身高按照从矮到高排列为:1.69,1.72,1.75,1.77,1.78,1.80,这六个数的中位数是1.75与1.77的平均数,显然为1.76.考点:中位数的概念.【名师点睛】本题主要考查中位数的概念,是一道基础题目.从历年高考题目看,涉及统计的题目,往往不难,主要考查考生的视图、用图能力,以及应用数学解决实际问题的能力. 10.2016高考北京文数】某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店①第一天售出但第二天未售出的商品有______种;②这三天售出的商品最少有_______种.【答案】①16;②29C BA139142考点: 统计分析【名师点睛】本题将统计与实际情况结合,创新味十足,是能力立意的好题,关键在于分析商品出售的所有可能的情况,分类讨论做到不重复不遗漏,另外,注意数形结合思想的运用.11.【2015高考重庆,文4改编】重庆市2013年各月的平均气温(°C)数据的茎叶图如下 08 9 12 5 8 20 0 3 3 8 3 1 2则这组数据中的中位数是 .【答案】20【解析】由茎叶图可知总共12个数据,处在正中间的两个数是第六和第七个数,它们都是20,由中位数的定义可知:其中位数就是20.12.【2015高考陕西,文2改编】某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为 .(高中部)(初中部)男男女女60%70%【答案】137 【解析】由图可知该校女教师的人数为11070%150(160%)7760137⨯+⨯-=+=.13.【2015高考湖北,文2改编】我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为 石.【答案】169【解析】设这批米内夹谷的个数为x ,则由题意并结合简单随机抽样可知,282541534x =,即281534169254x =⨯≈. 14.【2015高考广东,文12】已知样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,则样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为 .【答案】11【解析】因为样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,所以样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为2125111x +=⨯+=,所以答案应填:11.15.【2015高考北京,文14】高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是 ;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是 .【答案】乙;数学【解析】①由图可知,甲的语文成绩排名比总成绩排名靠后;而乙的语文成绩排名比总成绩排名靠前,故填乙.②由图可知,比丙的数学成绩排名还靠后的人比较多;而总成绩的排名中比丙排名靠后的人数比较少,所以丙的数学成绩的排名更靠前,故填数学.16.【2015高考北京,文17】某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(I )估计顾客同时购买乙和丙的概率;(II )估计顾客在甲、乙、丙、丁中同时购买中商品的概率;(III )如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大? (Ⅲ)与(Ⅰ)同理,可得:顾客同时购买甲和乙的概率可以估计为2000.21000=,顾客同时购买甲和丙的概率可以估计为1002003000.61000++=,顾客同时购买甲和丁的概率可以估计为1000.11000=,所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大. 16.【2015高考广东,文17】某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图2.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户?【解析】(1)由()0.0020.00950.0110.01250.0050.0025201x ++++++⨯=得:0.0075x =,所以直方图中x 的值是0.0075(2)月平均用电量的众数是2202402302+=,因为()0.0020.00950.011200.450.5++⨯=<,所以月平均用电量的中位数在[)220,240内,设中位数为a ,由()()0.0020.00950.011200.01252200.5a ++⨯+⨯-=得:224a =,所以月平均用电量的中位数是224(3)月平均用电量为[)220,240的用户有0.01252010025⨯⨯=户,月平均用电量为[)240,260的用户有0.00752010015⨯⨯=户,月平均用电量为[)260,280的用户有0.0052010010⨯⨯=户,月平均用电量为[]280,300的用户有0.0025201005⨯⨯=户,抽取比例11125151055==+++,所以月平均用电量在[)220,240的用户中应抽取12555⨯=户【2018年高考命题预测】概率统计试题在试卷中的题型仍是填空题型,纵观近几年高考数学试卷中,概率与统计是必考题,而且是基础题,有时以直方图或茎叶图提供问题的背景信息,预测2018年仍会出现此类题,因此掌握概率与统计的基础知识是学习的关键.【2018年高考考点定位】本知识点主要是:随机抽样常以选择、填空题考查分层抽样,难度较低.在用样本估计总体中,会读图、识图,会从频率分布直方图中分析样本的数字特征(众数、中位数、平均数等);重视茎叶图;要重视线性回归方程,不仅会利用公式求,还要能分析其特点(正相关、负相关、回归方程过样本点中心);重视独立性检验( 2×2列联表).【考点1】抽样方法、总体分布的估计【备考知识梳理】1.简单随机抽样:一般地,设一个总体的个体数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.2.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样.3.总体:在数理统计中,通常把被研究的对象的全体叫做总体.4.频率分布:用样本估计总体,是研究统计问题的基本思想方法,样本中所有数据(或数据组)的频数和样本容量的比,就是该数据的频率.所有数据(或数据组)的频率的分布变化规律叫做样本的频率分布.可以用样本频率表、样本频率分布条形图或频率分布直方图来表示.【规律方法技巧】分层抽样的步骤:(1)分层;(2)按比例确定每层抽取个体的个数;(3)各层抽样(方法可以不同);(4)汇合成样本.解决总体分布估计问题的一般程序如下:(1)先确定分组的组数(最大数据与最小数据之差除以组距得组数);(2)分别计算各组的频数及频率(频率=总数频数);(3)画出频率分布直方图,并作出相应的估计.【考点针对训练】1.某小区共有1000户居民,现对他们的用电情况进行调查,得到频率分布直方图如图所示,则该小区居民用电量的中位数为 ,平均数为 .【答案】155;156.8【解析】根据中位数的定义知中位数由200.005200.0150.0200.5m ⨯+⨯+⨯=,解得5m =,所以中位数为:1505155+=;平均数为:1200.0051400.0151600.0201800.0052000.0032200.002156.8⨯+⨯+⨯+⨯+⨯+⨯=,所以答案为:155;156.8.2.某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图.(1)求直方图中的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户? 【解析】(1)由()0.0020.00950.0110.01250.0050.0025201x ++++++⨯=得:0.0075x =,所以直方图中的值是0.0075.(2)月平均用电量的众数是2202402302+=;因为()0.0020.00950.011200.450.5++⨯=<,所以月平均用电量的中位数在[)220,240内,设中位数为,由()()0.0020.00950.011200.01252200.5a ++⨯+⨯-=得:224a =,所以月平均用电量的中位数是224.【考点2】相关性、最小二乘估计与统计案例 【备考知识梳理】1.相关性(1)通常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的散点图.(2)从散点图上,如果变量之间存在某种关系,这些点会有一个集中的大致趋势,这种趋势通常可以用一条光滑的曲线来近似,这样近似的过程称为曲线拟合.(3)若两个变量x 和y 的散点图中,所有点看上去都在一条直线附近波动,则称变量间是线性相关,若所有点看上去都在某条曲线(不是一条直线)附近波动,称此相关是非线性相关. 如果所有的点在散点图中没有显示任何关系,则称变量间是不相关的. 2.回归方程 (1)最小二乘法如果有n 个点(x 1,y 1),(x 2,y 2),…,(x n ,y n ),可以用表达式[y 1-(a +bx 1)]2+[y 2-(a +bx 2)]2+…+[y n -(a +bx n )]2来刻画这些点与直线y =a +bx 的接近程度,使得上式达到最小值的直线y =a +bx 就是我们所要求的直线,这种方法称为最小二乘法. (2)回归方程方程y =bx +a 是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的回归方程,其中a ,b 是待定参数.∑∑∑∑=-=--=--=-Λ--=---=ni ni i ni ii ni ixn xy x n yx x xy y x xb 12211121)())((,-Λ-Λ-=x b y a3.回归分析(1)定义:对具有相关关系的两个变量进行统计分析的一种常用方法. (2)样本点的中心对于一组具有线性相关关系的数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归直线y =bx +a 的斜率和截距的最小二乘法估计分别为:∑∑∑∑=-=--=--=-Λ--=---=ni ni i ni ii ni ixn xy x n yx x xy y x xb 12211121)())((,-Λ-Λ-=x b y a ).其中x =1n ∑i =1nx i ,y =1n ∑i =1ny i ,(x ,y )称为样本点的中心.(3)相关系数①1()()nniii x x y y x yn x yr -------==∑∑r >0时,表明两个变量正相关;当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系. 4.独立性检验(1)设A ,B 为两个变量,每一个变量都可以取两个值,变量A :A 1,A 2=A 1;变量B :B 1,B 2=B 1. 2×2列联表构造一个随机变量2()()()()()n ad bc K a b c d a c b d -=++++其中d c b a n +++=为样本容量.(2)独立性检验:利用随机变量来判断“两个变量有关联”的方法称为独立性检验. (3)当数据量较大时,在统计中,用以下结果对变量的独立性进行判断①当χ2≤2.706时,没有充分的证据判定变量A ,B 有关联,可以认为变量A ,B 是没有关联的;②当χ2>2.706时,有90%的把握判定变量A ,B 有关联; ③当χ2>3.841时,有95%的把握判定变量A ,B 有关联; ④当χ2>6.635时,有99%的把握判定变量A ,B 有关联.【规律方法技巧】1.“相关关系与函数关系”的区别:函数关系是一种确定性关系,体现的是因果关系;而相关关系是一种非确定性关系,体现的不一定是因果关系,可能是伴随关系.2.三点提醒: 一是回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.二是根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.三是独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释.3.正确理解计算b ,a 的公式和准确的计算是求线性回归方程的关键.回归直线方程y =bx +a 必过样本点中心(x ,y ).在分析两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程来估计和预测.4.利用独立性检验,能够帮助我们对日常生活中的实际问题作出合理的推断和预测.独立性检验就是考察两个分类变量是否有关系,并能较为准确地给出这种判断的可信度,具体做法是根据公式22()()()()()n ad bc K a b c d a c b d -=++++,计算2K 值,2K 值越大,说明“两个变量有关系”的可能性越大. 【考点针对训练】1.已知x 、y 的取值如下表所示,若y 与x 线性相关,且yˆ=0.95x +,则=____________.【答案】6.2 【解析】244310=+++=x ,5.447.68.43.42.2=+++=y ,样本中心点,在回归直线上,所以代入aˆ295.05.4+⨯=,所以6.2ˆ=a 2.为大力提倡“厉行节约,反对浪费”,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:附:22n(ad bc )K (a b )(c d )(a c )(b d )-=++++参照附表,在如下结论:A .在犯错误的概率不超过l %的前提下,认为“该市居民能否做到‘光盘’与性别有关”B .在犯错误的概率不超过l %的前提下,认为“该市居民能否做到‘光盘’与性别无关”C .有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”D .有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关” 中正确的是 . 【答案】C【解析】由表计算得:22100(45153010)==3.0355457525K ⨯-⨯⨯⨯⨯,所以有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”,填C .【两年模拟详解析】1. 【苏北三市(连云港、徐州、宿迁)2017届高三年级第三次调研考试】已知一组数据3,6,9,8,4,则该组数据的方差是__________. 【答案】 (或5.2)【解析】2. 【2016-2017学年度苏锡常镇四市高三教学情况调研(二)】下表是一个容量为10的样本数据分组后的频数分布.若利用组中值近似计算本组数据的平均数x ,则x 的值为 .【答案】19.7 【解析】3. 【南京市、盐城市2017届高三年级第一次模拟】已知样本数据12345,,,,x x x x x 的方差23s =,则样本数据123452,2,2,2,2x x x x x 的方差为 ▲ . 【答案】12【解析】由题意得方差为2224312s =⨯=4. 【2017年第三次全国大联考江苏卷】已知样本7,8,9,,x y 的平均数为,且60xy =,则此样本的方差为_____________. 【答案】2 【解析】因为78985x y++++=,所以16x y +=,而60xy =,所以610x y =⎧⎨=⎩或106x y =⎧⎨=⎩,从而样本的方差为22221[(1)01(2)2]25⨯-+++-+=.5. 【2017年高考原创押题预测卷02(江苏卷)】某人次上班途中所花的时间(单位:分钟)分别为9,11,10,8,12,则这组数据的标准差为_______. 【答案】2【解析】因为这组数据的平均数是10591110812=++++=x ,所以其方差25)109()1011()1010()108()1012(222222=-+-+-+-+-=s ,故所求这组数据的标准差2=s .6. 【淮安、宿迁、连云港、徐州苏北四市2016届高三第二次调研】交通部门对某路段公路上行驶的汽车速度实施监控,从速度在h km /9050-的汽车中抽取150辆进行分析,得到数据的频率分布直方图如图所示,则速度在h km /70以下的汽车有 辆.)【答案】75【解析】由频率分布直方图得,速度在h km /70以下的汽车所占频率为(0.020.03)100.5+⨯=,则速度在h km /70以下的汽车有1500.575⨯=辆7.【江苏省清江中学数学模拟试卷】某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有 根在棉花纤维的长度大于25mm.【答案】40【解析】(0.0550.0250.015)10040⨯+⨯+⨯⨯=.8.【扬州市2015—2016学年度第一学期期末检测试题】某学校从高三年级共800名男生中随机抽取50名测量身高. 据测量被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[)160155,、第二组[)165160,、……、第八组[]195190,. 按上述分组方式得到的频率分布直方图的一部分如图所示,估计这所学校高三年级全体男生身高180cm 以上(含180cm )的人数为 .【答案】144【解析】由图得,身高180cm 以上(含180cm )的频率为()150.0080.0160.0420.060.18-⨯++⨯+=,则人数为8000.18144⨯=9.【南京市、盐城市2016届高三年级第一次模拟考试数学】某校高一年级有学生400人,高二年级有学生360人,现采用分层抽样的方法从全校学生中抽出55人,其中从高一年级学生中抽出20人,则从高三年级学生中抽取的人数为 . 【答案】17【解析】高一高二人数之比为10:9,因此高二抽出的人数为18人,高三抽出的人数为55-20-18=17人10.【苏州市2016届高三年级第一次模拟考试】若一组样本数据9,8,x ,10,11的平均数为10,则该组样本数据的方差为 . 【答案】2【解析】由题意得12x =,因此方差为221(12201)25++++=11.【江苏省扬州中学2015—2016学年第二学期质量检测】在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h ~120km/h ,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有________辆.【答案】1700【解析】2000(0.0350.030.02)101700⨯++⨯=12.【南京市、盐城市2016届高三年级第二次模拟考试】如图所示,一家面包销售店根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图.若一个月以30天计算,估计这家面包店一个月内日销售量不少于150个的天数为 .【答案】【解析】950)002.0004.0(30=⨯+⨯13.【江苏省南京市2016届高三年级第三次学情调研适应性测试】一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则月收入在[2500,3000)范围内的应抽出人.【答案】25⨯⨯=【解析】由题意得:0.00055001002514.【南京市2016届高三年级第三次模拟考试】甲、乙两位选手参加射击选拔赛,其中连续5轮比赛的成绩(单位:环)如下表:则甲、乙两位选手中成绩最稳定的选手的方差是.【答案】0.02【一年原创真预测】1. 以下四个命题中:R的值判断模型的拟合效果, 2R越大,模型的拟合效果越①在回归分析中,可用相关指数2好;②两个随机变量的线性相关性越强,相关系数的绝对值越接近于1;③若数据123,,n x x x x 的方差为1,则1232,2,22n x x x x 的方差为2;④对分类变量与y 的随机变量2k 的观测值k 来说,k 越小,判断“x 与y 有关系”的把握程度越大.其中真命题的个数为 . 【答案】2【入选理由】本题考查特称命题真假的判断,回归分析,相关系数,独立性检验等基础知识,意在考查考生转化能力,分析问题解决问题的能力,运算求解能力.此类知识属于高考冷门问题,近年高考有所重视,应多注意,故选此题.2.某单位为了了解某办公楼用电量y (度)与气温x (oC)之间的关系,随机统计了四个工作日的用电量与当天平均气温,并制作了对照表:得到的回归方程为a bx y+=ˆ,则a 0,b 0. 【答案】>,<【解析】依题意,画散点图知,两个变量负相关,所以0<b ,0>a .【入选理由】本题考查考查散点图、线性回归方程等基础知识,意在考查考生分析问题解决问题的能力,运算求解能力.近年高考加强了对线性回归方程的考查,应多注意,故选此题. 3.2015国际滑联世界花样滑冰锦标赛于3月23日至29日在上海举行,为调查市民喜欢这项赛事是否与年龄有关,随机抽取了55名市民,得到如下数据表:。
2018版高考数学一轮复习课件:重点强化课5 统计与统计案例
上一页
返回首页
下一页
第二十一页,编辑于星期六:二十二点 三十分。
高三一轮总复习
重点 3 统计的应用
(2016·全国卷Ⅰ)某公司计划购买 1 台机器,该种机器使用三年后即被 淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个 200 元.在机器使用期间,如果备件不足再购买,则每个 500 元.现需决策在购买 机器时应同时购买几个易损零件,为此搜集并 整理了 100 台这种机器在三年使用期内更换的 易损零件数,得下面柱状图:
B [当 0≤x≤3 时,1≤x+1≤4, 所以,0≤log2(x+1)≤2. 当-1≤x<0 时,0<-x≤1⇒1<2-x≤2, 所以,0<2-x-1≤1. 因此输出值 y 的取值范围为[0,2].]
上一页
返回首页
下一页
第八页,编辑于星期六:二十二点 三十分。
高三一轮总复习
[规律方法] 1.完善程序框图:结合初始条件和输出结果,分析控制循环的变 量应满足的条件或累加、累乘的变量的表达式.
(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为 x 1, x 2,估计 x 1 - x 2 的值.
上一页
返回首页
下一页
第十九页,编辑于星期六:二十二点 三十分。
高三一轮总复习
[解] (1)设甲校高三年级学生总人数为 n. 由题意知3n0=0.05,解得 n=600.2 分 样本中甲校高三年级学生数学成绩不及格人数为 5,据此估计甲校高三年级这 次联考数学成绩的及格率为 1-350×100%≈83%.5 分
上一页
返回首页
下一页
第二十页,编辑于星期六:二十二点 三十分。
高三一轮总复习
最新-2018届高考数学 总复习阶段性测试题十 统计、统
阶段性测试题十(统计、统计案例)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题共50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2018·太原一模)下列关系中,是相关关系的为( )①学生的学习态度与学习成绩之间的关系;②教师的执教水平与学生的学习成绩之间的关系;③学生的身高与学生的学习成绩之间的关系;④家庭的经济条件与学生的学习成绩之间的关系.A.①②B.①③C.②③D.②④[答案] A[解析]学生的学习成绩与学生的学习态度和教师的执教水平是相关的,与学生的身高和家庭经济条件不相关.2.(2018·杭州一模)现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是( )A.①简单随机抽样,②系统抽样,③分层抽样B.①简单随机抽样,②分层抽样,③系统抽样C.①系统抽样,②简单随机抽样,③分层抽样D.①分层抽样,②系统抽样,③简单随机抽样[答案] A[解析]①总体较少,宜用简单随机抽样;②已分段,宜用系统抽样;③各层间差异较大,宜用分层抽样.3.(2018·重庆文)从一堆苹果中任取10只,称得它们的质量如下(单位:克):125 120 122 118 130 114 116 95 120 134则样本数据落在[114.5,124.5)内的频率为( )A.0.2 B.0.3C .0.4D .0.5[答案] C[解析] 该题考查频率的计算公式.属基础题.在[114.5,124.5)范围内的频数m =4,样本容量n =10,∴所求频率410=0.4.4.(2018·长春十校联考)在抽查某批产品尺寸的过程中,样本尺寸数据的频率分布表如下,则b 等于( )C .0.25D .0.3[答案] A[解析] 由表可知,产品总数为100.05=200,∴m =200-(10+30+40+80+20)=20,∴100.05=20b,b =0.1,故选A. 5.(2018·合肥调研)“毒奶粉”事件引起了社会对食品安全的高度重视,各级政府加强了对食品安全的检查力度.某市工商质检局抽派甲、乙两个食品质量检查组到管辖区域内的商店进行食品质量检查.表示甲、乙两个检查组每天检查到的食品种类的茎叶图如图.则甲、乙两个检查组每天检查到的食品种数的中位数的和是( )A.56 B .57 C .58D .59[答案] B[解析] 根据中位数的定义知,甲检查组每天检查到的食品种数的中位数为32,乙检查组每天检查到的食品种数的中位数为25,故甲、乙两个检查组每天检查到的食品种数的中位数的和是32+25=57.选B.6.(文)(2018·沈阳一模)某学校在校学生2000人,为了迎接“2018年沈阳全运会”,学校举行了“迎全运”跑步和登山比赛,每人都参加且每人只参加其中一项比赛,各年级参加比赛的人数情况如下表:其中a :b :c =2:5:3,全校参加登山的人数占总人数的4.为了了解学生对本次活动的满意程度,按分层抽样的方法从中抽取一个200人的样本进行调查,则高三年级参加跑步的学生中应抽取( )A .15人B .30人C .40人D .45人[答案] D[解析] 由题意,全校参加跑步的人数占总人数的34,高三年级参加跑步的总人数为34×2000×310=450(人),由分层抽样的特征得高三年级参加跑步的学生中应抽取110×450=45(人).(理)某班有48名学生,在一次考试中统计出平均分数为70,方差为75,后来发现有2名同学的成绩有误,甲实得80分却记为50分,乙实得70分却记为100分,更正后平均分和方差分别是( )A .70,25B .70,50C .70,1.18D .65,25[答案] B[解析] 易得x -没有改变,x -=70,而s 2=148[(x 21+x 22+…+502+1002+…+x 248)-48x -2]=75,s ′2=148[(x 21+x 22+…802+702+…+x 248)-48x -2]=148[(75×48+48x -2-12500+11300)-48x -2] =75-120048=75-25=50.7.为了宣传6月6日世界爱眼日的到来,某学校随机抽查了该校100名高三学生的视力情况,得到频率分布直方图如下图,由于不慎将部分数据丢失,但知道后5组频数和为62,设视力在4.6到4.8之间的学生数为a ,最大频率为0.32,则a 的值为( )A .64B .54C .48D .27[答案] B[解析] 前两组中的频数为100×(0.18+0.11)=16,因为后五组频数和为62,所以前三组为38.所以第三组为22,又最大频率为0.32的最大频数为0.32×100=32,∴a =22+32=54. 8.(2018·北京模拟)甲、乙两名学生在5次数学考试中的成绩统计如茎叶图所示,若x甲、x 乙分别表示甲、乙两人的平均成绩,则下结论正确的是( )A.x 甲>x 乙,乙比甲稳定B.x 甲>x 乙,甲比乙稳定C.x 甲<x 乙,乙比甲稳定D.x 甲<x 乙,甲比乙稳定 [答案] A[解析] 由茎叶图知,x 甲=74+82+88+91+955=86,x 乙=77+77+78+86+925=82.∴x 甲>x 乙,s 2甲=54,s 2乙=36.4,s 2甲>s 2乙,∴乙比甲稳定.9.(2018·山东理)某产品的广告费用x 与销售额y 的统计数据如下表根据上表可得回归方程y =b x +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为( )A .63.6万元B .65.5万元C .67.7万元D .72.0万元[答案] B[解析] ∵x -=4+2+3+54=72,y -=49+26+39+544=42,又y ^=b ^x +a ^必过(x -,y -), ∴42=72×9.4+a ^,∴a ^=9.1.∴线性回归方程为y ^=9.4x +9.1.∴当x =6时,y ^=9.4×6+9.1=65.5(万元).[点评] 本小题考查了对线性回归方程的理解及应用,求解的关键是明确线性回归方程必过样本中心点(x -,y -),同时考查计算能力.10.(2018·深圳第一次调研)统计某校1000名学生的数学测试成绩,得到样本频率分布直方图如下图所示,若满分为100分,规定不低于60分为及格,则及格率是( )A .20%B .25%C .6%D .80%[答案] D[解析] 根据频率分布直方图,得出不及格的频率为(0.015+0.018)×10=0.2,故及格率为0.8×100%=80%.第Ⅱ卷(非选择题 共100分)二、填空题(本大题共5个小题,每小题5分,共25分,把正确答案填在题中横线上) 11.(2018·上饶一模)某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:由表中数据得线性回归方程y =bx +a 中b =-2,预测当气温为-4℃时,用电量的度数约为________.[答案] 68[解析] x -=10,y -=40,回归方程过点(x -,y -), ∴40=-2×10+a . ∴a =60. ∴y ^=-2x +60.令x =-4,∴y ^=(-2)×(-4)+60=68.12.将容量为n 的样本中的数据分成6组,绘制频率分布直方图,若第一组至第六组数据的频率之比为 2 ∶3 ∶4 ∶6 ∶4 ∶1,且前三组数据的频数之和等于27,则n 等于________.[答案] 60[解析] 本题主要考查频率分布直方图等知识. 2+3+42+3+4+6+4+1×n =27,解得n =60.13.(文)(2018·山东文)某高校甲、 乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为________.[答案] 16[解析] 考查分层抽样.解答此题必须明确“每个个体被抽到的概率相同”及“每层以相同比例抽取”.所有学生数为150+150+400+300=1000人,则抽取比例为401000=125, 所以应在丙专业抽取400×125=16人.(理)(2018·天津理)一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为________.[答案] 12[解析] 本题主要考查分层抽样的定义,由于男、女运动员比例4 ∶3,而容量为21的样本,因此每份为3人,故抽取男运动员为12人.14.(2018·杭州期末)某中学为了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3000名学生在该次数学考试中成绩小于60分的学生数是________.[答案] 600[解析] 由直方图易得数学考试中成绩小于60分的频率为(0.002+0.018+0.012)×10=0.2,所以所求分数小于60分的学生数为3000×0.2=600.15.(2018·广东文)为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x (单位:小时)与当天投篮命中率y 之间的关系:小李这5天的平均投篮命中率为________;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为________.[答案] 0.5 0.53[解析] 本题主要考查线性回归方程以及运算求解能力.利用公式求系数利用回归方程统计实际问题.小李这5天的平均投篮命中率y =0.4+0.5+0.6+0.6+0.45=0.5,可求得小李这5天的平均打篮球时间x =3.根据表中数据可求得b ^=0.01,a ^=0.47,故回归直线方程为y ^=0.47+0.01x ,将x =6代入得6号打6小时篮球的投篮命中率约为0.53.三、解答题(本大题共6个小题,共75分,解答应写出文字说明,证明过程或演算步骤) 16.(本小题满分12分)(2018·洛阳调研)对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如下表.(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、中位数、标准差,并判断选谁参加比赛更合适.[解析](1)画茎叶图,中间数为数据的十位数从这个茎叶图上可以看出,甲、乙的得分情况都是分布均匀的,只是乙更好一些;乙的中位数是33.5,甲的中位数是33.因此乙发挥比较稳定,总体得分情况比甲好.(2)根据公式得:x甲=33,x乙=33;s甲=3.96,s乙=3.35;甲的中位数是33,乙的中位数是33.5.综合比较,选乙参加比赛较为合适.17.(本小题满分12分)(2018·许昌一模)为研究是否喜欢饮酒与性别之间的关系,在某地区随机抽取290人,得到如下列联表:[解析]由列联表中的数据得χ2=-2146×144×225×65≈11.953.∵χ2≈11.953>6.635.∴有99%的把认握为“是否喜欢饮酒与性别有关”.即有超过90%的把握认为饮酒与性别有关.18.(本小题满分12分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关? (3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.附:K 2=n ad -bc 2a +bc +d a +cb +d[解析] 本题综合考查了统计的知识,主要涉及抽样方法、独立性检验等内容,知识覆盖面广,难度不大,主要体现了新课标下数学知识的结合点,题目定位属于中档题,在解题时要抓住样本特征,适当选择.(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估计值为70500=14%.(2)K 2=-2200×300×70×430≈9.967.由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关. (3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.19.(本小题满分12分)高三年级有500名学生,为了了解数学学科的学习情况,现从中随机抽出若干名学生在一次测试中的数学成绩,制成如下频率分布表:(1)根据上面图表,①②③④处的数值分别为________、________、________、________; (2)在所给的坐标系中画出[85,155]的频率分布直方图;(3)根据题中信息估计总体平均数,并估计总体落在[129,155]中的频率.[解析] (1)随机抽出的人数为120.300=40,由统计知识知④处应填1;③处应填440=0.1;②处应填1-0.180-0.1-0.275-0.300-0.200-0.180=0.025;①处应填0.025×40=1.(2)频率分布直方图如图.(3)利用组中值算出平均数:90×0.025+100×0.18+110×0.2+120×0.3+130×0.275+140×0.1+150×0.18=122.5;总体落在[129,155]上的频率为610×0.275+0.1+0.18=0.315.20.(本小题满分13分)(2018·珠海一模)在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按照5天一组分组统计,绘制了频率分布直方图(如图所示).已知从左到右各长方形的高的比为2 ∶3 ∶4 ∶6 ∶4 ∶1,第三组的频数为12,请回答下列问题:(1)本次活动共有多少件作品参加评比? (2)哪组上交的作品数最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率较高?[解析] (1)依题意知第三组的频率为 42+3+4+6+4+1=15,又因为第三组的频数为12, ∴本次活动的参评作品数为1215=60(件). (2)根据频率分布直方图,可以看出第四组上交的作品数量最多,共有60×62+3+4+6+4+1=18(件).(3)第四组的获奖率是1018=59,第六组上交的作品数量为 60×12+3+4+6+4+1=3(件),∴第六组的获奖率为23=69>59,显然第六组的获奖率较高.21.(本小题满分14分)(2018·安徽文)某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y =bx +a ; (2)利用(1)中所求的直线方程预测该地2018年的粮食需求量.温馨提示:若(x 1,y 1),(x 2,y 2),…,(x n ,y n )为样本点,y ^=bx +a 为回归直线,则x -=1n ∑i =1nx i ,y -=1n ∑i =1ny i ,b =∑i =1nx i -x-y i -y-∑i =1nx i -x-2=∑i =1nx i y i -n x -y-∑i =1nx 2i -n x -2,a =y --b x -.说明:若对数据作适当的预处理,可避免对大数字进行运算.[解析] 由所给数据分析,年需求量与年份之间是近似直线上升,可对数据进行预处理如下表x =0,y =3.2,∑i =15x i y i =-4×(-21)+(-2)×(-11)+2×19+4×29=260,∑i =15x 2i =16+4+0+4+16=40, ∴b =∑i =15x i y i -5x -y-∑i =15x 2i -5x -2=26040=6.5,∴a ^=y -b x =3.2, ∴所求回归直线方程y -257=6.5(x -2018)+3.2 即y =6.5(x -2018)+260.2(2)当x =2018时,y =6.5(2018-2018)+260.2=299.2万吨≈300万吨 故预测2018年粮食需求量约为300万吨.。
江苏专用2018年高考数学总复习专题11.2统计与统计案例试题含解析201710013148
专题11.2 统计与统计案例【三年高考】1. 某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取▲ 件.【答案】18【解析】应从丙种型号的产品中抽取30060181000⨯=件,故答案为18.【考点】分层抽样【名师点睛】在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i∶N i =n∶N.2.【2016江苏】已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是 .【答案】0.1【考点】方差【名师点睛】本题考查的是总体特征数的估计,重点考查了方差的计算,本题有一定的计算量,属于简单题.认真梳理统计学的基础理论,特别是系统抽样和分层抽样、频率分布直方图、方差等,针对训练近几年的江苏高考类似考题,直观了解本考点的考查方式,强化相关计算能力. 3.【2015江苏高考,2】已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________. 【答案】6【解析】46587666x+++++==【考点定位】平均数4. 【2017课标3,理3】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳【答案】A【解析】【考点】 折线图【名师点睛】将频率分布直方图中相邻的矩形的上底边的中点顺次连结起来,就得到一条折线,我们称这条折线为本组数据的频率折线图,频率分布折线图的的首、尾两端取值区间两端点须分别向外延伸半个组距,即折线图是频率分布直方图的近似,他们比频率分布表更直观、形象地反映了样本的分布规律.5. 【2017山东,理5】为了研究某班学生的脚长(单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与之间有线性相关关系,设其回归直线方程为ˆˆˆybx a =+.已知101225i i x ==∑,1011600i i y ==∑,ˆ4b =.该班某学生的脚长为24,据此估计其身高为(A )160 (B )163 (C )166 (D )170【答案】C【解析】试题分析:由已知22.5,160,160422.570,42470166x y a y ==∴=-⨯==⨯+= ,选C.【考点】线性相关与线性回归方程的求法与应用.【名师点睛】(1)判断两个变量是否线性相关及相关程度通常有两种方法:(1)利用散点图直观判断;(2)将相关数据代入相关系数公式求出,然后根据的大小进行判断.求线性回归方程时在严格按照公式求解时,一定要注意计算的准确性.6. 【2017课标1,文2】为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A .x 1,x 2,…,x n 的平均数B .x 1,x 2,…,x n 的标准差C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数【答案】B【解析】 试题分析:刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B【考点】样本特征数【名师点睛】众数:一组数据出现次数最多的数叫众数,众数反应一组数据的多数水平; 中位数:一组数据中间的数,(起到分水岭的作用)中位数反应一组数据的中间水平; 平均数:反应一组数据的平均水平;方差:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差.在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.标准差是方差的算术平方根,意义在于反映一个数据集的离散程度.7. 【2017山东,文8】如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为A. 3,5B. 5,5C. 3,7D. 5,7【答案】A【解析】【考点】茎叶图、样本的数字特征【名师点睛】由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失,第二点是茎叶图便于记录和表示.其缺点是当样本容量较大时,作图较繁琐. 利用茎叶图对样本进行估计是,要注意区分茎与叶,茎是指中间的一列数,叶是从茎的旁边生长出来的数.8.【2016高考新课标3理数改编】某旅游城市为向游客介绍本地的气温情况,绘制了一年中︒,B 月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15C︒.下面叙述不正确的是.点表示四月的平均最低气温约为5C︒以上②七月的平均温差比一月的平均温差大①各月的平均最低气温都在0C︒的月份有5个③三月和十一月的平均最高气温基本相同④平均气温高于20C【答案】④【解析】︒均在虚线框内,所以各月的平均最低气温都在0℃以上,①正确;由试题分析:由图可知0C图可在七月的平均温差大于7.5C ︒,而一月的平均温差小于7.5C ︒,所以七月的平均温差比一月的平均温差大,②正确;由图可知三月和十一月的平均最高气温都大约在5C ︒,基本相同,③正确;由图可知平均最高气温高于20℃的月份有3个或2个,所以④不正确. 考点:1、平均数;2、统计图.【易错警示】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选②.9.【2016高考上海理数】某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米).【答案】1.76【解析】试题分析:将这6位同学的身高按照从矮到高排列为:1.69,1.72,1.75,1.77,1.78,1.80,这六个数的中位数是1.75与1.77的平均数,显然为1.76.考点:中位数的概念.【名师点睛】本题主要考查中位数的概念,是一道基础题目.从历年高考题目看,涉及统计的题目,往往不难,主要考查考生的视图、用图能力,以及应用数学解决实际问题的能力.10.2016高考北京文数】某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店①第一天售出但第二天未售出的商品有______种;②这三天售出的商品最少有_______种.【答案】①16;②29C BA139142考点: 统计分析【名师点睛】本题将统计与实际情况结合,创新味十足,是能力立意的好题,关键在于分析商品出售的所有可能的情况,分类讨论做到不重复不遗漏,另外,注意数形结合思想的运用.11.【2015高考重庆,文4改编】重庆市2013年各月的平均气温(°C)数据的茎叶图如下 08 9 12 5 8 20 0 3 3 8 3 1 2则这组数据中的中位数是 .【答案】20【解析】由茎叶图可知总共12个数据,处在正中间的两个数是第六和第七个数,它们都是20,由中位数的定义可知:其中位数就是20.12.【2015高考陕西,文2改编】某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为 .(高中部)(初中部)男男女女60%70%【答案】137 【解析】由图可知该校女教师的人数为11070%150(160%)7760137⨯+⨯-=+=.13.【2015高考湖北,文2改编】我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为 石.【答案】169【解析】设这批米内夹谷的个数为x ,则由题意并结合简单随机抽样可知,282541534x =,即281534169254x =⨯≈. 14.【2015高考广东,文12】已知样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,则样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为 .【答案】11【解析】因为样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,所以样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为2125111x +=⨯+=,所以答案应填:11.15.【2015高考北京,文14】高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是 ;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是 .【答案】乙;数学【解析】①由图可知,甲的语文成绩排名比总成绩排名靠后;而乙的语文成绩排名比总成绩排名靠前,故填乙.②由图可知,比丙的数学成绩排名还靠后的人比较多;而总成绩的排名中比丙排名靠后的人数比较少,所以丙的数学成绩的排名更靠前,故填数学.16.【2015高考北京,文17】某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(I )估计顾客同时购买乙和丙的概率;(II )估计顾客在甲、乙、丙、丁中同时购买中商品的概率;(III )如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大? (Ⅲ)与(Ⅰ)同理,可得:顾客同时购买甲和乙的概率可以估计为2000.21000=,顾客同时购买甲和丙的概率可以估计为1002003000.61000++=,顾客同时购买甲和丁的概率可以估计为1000.11000=,所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大. 16.【2015高考广东,文17】某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图2.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户?【解析】(1)由()0.0020.00950.0110.01250.0050.0025201x ++++++⨯=得:0.0075x =,所以直方图中x 的值是0.0075(2)月平均用电量的众数是2202402302+=,因为()0.0020.00950.011200.450.5++⨯=<,所以月平均用电量的中位数在[)220,240内,设中位数为a ,由()()0.0020.00950.011200.01252200.5a ++⨯+⨯-=得:224a =,所以月平均用电量的中位数是224(3)月平均用电量为[)220,240的用户有0.01252010025⨯⨯=户,月平均用电量为[)240,260的用户有0.00752010015⨯⨯=户,月平均用电量为[)260,280的用户有0.0052010010⨯⨯=户,月平均用电量为[]280,300的用户有0.0025201005⨯⨯=户,抽取比例11125151055==+++,所以月平均用电量在[)220,240的用户中应抽取12555⨯=户【2018年高考命题预测】概率统计试题在试卷中的题型仍是填空题型,纵观近几年高考数学试卷中,概率与统计是必考题,而且是基础题,有时以直方图或茎叶图提供问题的背景信息,预测2018年仍会出现此类题,因此掌握概率与统计的基础知识是学习的关键.【2018年高考考点定位】本知识点主要是:随机抽样常以选择、填空题考查分层抽样,难度较低.在用样本估计总体中,会读图、识图,会从频率分布直方图中分析样本的数字特征(众数、中位数、平均数等);重视茎叶图;要重视线性回归方程,不仅会利用公式求,还要能分析其特点(正相关、负相关、回归方程过样本点中心);重视独立性检验( 2×2列联表).【考点1】抽样方法、总体分布的估计【备考知识梳理】1.简单随机抽样:一般地,设一个总体的个体数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.2.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样.3.总体:在数理统计中,通常把被研究的对象的全体叫做总体.4.频率分布:用样本估计总体,是研究统计问题的基本思想方法,样本中所有数据(或数据组)的频数和样本容量的比,就是该数据的频率.所有数据(或数据组)的频率的分布变化规律叫做样本的频率分布.可以用样本频率表、样本频率分布条形图或频率分布直方图来表示.【规律方法技巧】分层抽样的步骤:(1)分层;(2)按比例确定每层抽取个体的个数;(3)各层抽样(方法可以不同);(4)汇合成样本.解决总体分布估计问题的一般程序如下:(1)先确定分组的组数(最大数据与最小数据之差除以组距得组数);(2)分别计算各组的频数及频率(频率=总数频数);(3)画出频率分布直方图,并作出相应的估计.【考点针对训练】1.某小区共有1000户居民,现对他们的用电情况进行调查,得到频率分布直方图如图所示,则该小区居民用电量的中位数为 ,平均数为 .【答案】155;156.8【解析】根据中位数的定义知中位数由200.005200.0150.0200.5m ⨯+⨯+⨯=,解得5m =,所以中位数为:1505155+=;平均数为:1200.0051400.0151600.0201800.0052000.0032200.002156.8⨯+⨯+⨯+⨯+⨯+⨯=,所以答案为:155;156.8.2.某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图.(1)求直方图中的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户? 【解析】(1)由()0.0020.00950.0110.01250.0050.0025201x ++++++⨯=得:0.0075x =,所以直方图中的值是0.0075.(2)月平均用电量的众数是2202402302+=;因为()0.0020.00950.011200.450.5++⨯=<,所以月平均用电量的中位数在[)220,240内,设中位数为,由()()0.0020.00950.011200.01252200.5a ++⨯+⨯-=得:224a =,所以月平均用电量的中位数是224.【考点2】相关性、最小二乘估计与统计案例 【备考知识梳理】1.相关性(1)通常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的散点图.(2)从散点图上,如果变量之间存在某种关系,这些点会有一个集中的大致趋势,这种趋势通常可以用一条光滑的曲线来近似,这样近似的过程称为曲线拟合.(3)若两个变量x 和y 的散点图中,所有点看上去都在一条直线附近波动,则称变量间是线性相关,若所有点看上去都在某条曲线(不是一条直线)附近波动,称此相关是非线性相关. 如果所有的点在散点图中没有显示任何关系,则称变量间是不相关的. 2.回归方程 (1)最小二乘法如果有n 个点(x 1,y 1),(x 2,y 2),…,(x n ,y n ),可以用表达式[y 1-(a +bx 1)]2+[y 2-(a +bx 2)]2+…+[y n -(a +bx n )]2来刻画这些点与直线y =a +bx 的接近程度,使得上式达到最小值的直线y =a +bx 就是我们所要求的直线,这种方法称为最小二乘法. (2)回归方程方程y =bx +a 是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的回归方程,其中a ,b 是待定参数.∑∑∑∑=-=--=--=-Λ--=---=n i ni i ni ii ni ixn x yx n yx x xy y x xb 12211121)())((,-Λ-Λ-=x b y a3.回归分析(1)定义:对具有相关关系的两个变量进行统计分析的一种常用方法. (2)样本点的中心对于一组具有线性相关关系的数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归直线y =bx +a 的斜率和截距的最小二乘法估计分别为:∑∑∑∑=-=--=--=-Λ--=---=ni ni i ni i i ni ixn xy x n yx x x y y x xb 12211121)())((,-Λ-Λ-=x b y a ).其中x =1n ∑i =1n x i ,y =1n ∑i =1ny i ,(x ,y )称为样本点的中心.(3)相关系数①1()()nniii x x y y x yn x yr -------==∑∑r >0时,表明两个变量正相关;当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系. 4.独立性检验(1)设A ,B 为两个变量,每一个变量都可以取两个值,变量A :A 1,A 2=A 1;变量B :B 1,B 2=B 1. 2×2列联表构造一个随机变量2()()()()()n ad bc K a b c d a c b d -=++++其中d c b a n +++=为样本容量.(2)独立性检验:利用随机变量来判断“两个变量有关联”的方法称为独立性检验. (3)当数据量较大时,在统计中,用以下结果对变量的独立性进行判断①当χ2≤2.706时,没有充分的证据判定变量A ,B 有关联,可以认为变量A ,B 是没有关联的;②当χ2>2.706时,有90%的把握判定变量A ,B 有关联; ③当χ2>3.841时,有95%的把握判定变量A ,B 有关联; ④当χ2>6.635时,有99%的把握判定变量A ,B 有关联.【规律方法技巧】1.“相关关系与函数关系”的区别:函数关系是一种确定性关系,体现的是因果关系;而相关关系是一种非确定性关系,体现的不一定是因果关系,可能是伴随关系. 2.三点提醒: 一是回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.二是根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.三是独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释.3.正确理解计算b ,a 的公式和准确的计算是求线性回归方程的关键.回归直线方程y =bx +a 必过样本点中心(x ,y ).在分析两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程来估计和预测.4.利用独立性检验,能够帮助我们对日常生活中的实际问题作出合理的推断和预测.独立性检验就是考察两个分类变量是否有关系,并能较为准确地给出这种判断的可信度,具体做法是根据公式22()()()()()n ad bc K a b c d a c b d -=++++,计算2K 值,2K 值越大,说明“两个变量有关系”的可能性越大. 【考点针对训练】1.已知x 、y 的取值如下表所示,若y 与x 线性相关,且yˆ=0.95x +,则=____________.【答案】6.2 【解析】244310=+++=x ,5.447.68.43.42.2=+++=y ,样本中心点,在回归直线上,所以代入aˆ295.05.4+⨯=,所以6.2ˆ=a2.为大力提倡“厉行节约,反对浪费”,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表: 附:22n(ad bc )K (a b )(c d )(a c )(b d )-=++++参照附表,在如下结论:A .在犯错误的概率不超过l %的前提下,认为“该市居民能否做到‘光盘’与性别有关”B .在犯错误的概率不超过l %的前提下,认为“该市居民能否做到‘光盘’与性别无关”C .有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”D .有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关” 中正确的是 . 【答案】C【解析】由表计算得:22100(45153010)==3.0355457525K ⨯-⨯⨯⨯⨯,所以有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”,填C .【两年模拟详解析】1. 【苏北三市(连云港、徐州、宿迁)2017届高三年级第三次调研考试】已知一组数据3,6,9,8,4,则该组数据的方差是__________. 【答案】 (或5.2)【解析】2. 【2016-2017学年度苏锡常镇四市高三教学情况调研(二)】下表是一个容量为10的样本数据分组后的频数分布.若利用组中值近似计算本组数据的平均数x ,则x 的值为 .【答案】19.7 【解析】3. 【南京市、盐城市2017届高三年级第一次模拟】已知样本数据12345,,,,x x x x x 的方差23s =,则样本数据123452,2,2,2,2x x x x x 的方差为 ▲ . 【答案】12【解析】由题意得方差为2224312s =⨯=4. 【2017年第三次全国大联考江苏卷】已知样本7,8,9,,x y 的平均数为,且60xy =,则此样本的方差为_____________. 【答案】2【解析】因为78985x y++++=,所以16x y +=,而60xy =,所以610x y =⎧⎨=⎩或106x y =⎧⎨=⎩,从而样本的方差为22221[(1)01(2)2]25⨯-+++-+=.5. 【2017年高考原创押题预测卷02(江苏卷)】某人次上班途中所花的时间(单位:分钟)分别为9,11,10,8,12,则这组数据的标准差为_______. 【答案】2【解析】因为这组数据的平均数是10591110812=++++=x ,所以其方差25)109()1011()1010()108()1012(222222=-+-+-+-+-=s ,故所求这组数据的标准差2=s .6. 【淮安、宿迁、连云港、徐州苏北四市2016届高三第二次调研】交通部门对某路段公路上行驶的汽车速度实施监控,从速度在h km /9050-的汽车中抽取150辆进行分析,得到数据的频率分布直方图如图所示,则速度在h km /70以下的汽车有 辆.)【答案】75【解析】由频率分布直方图得,速度在h km /70以下的汽车所占频率为(0.020.03)100.5+⨯=,则速度在h km /70以下的汽车有1500.575⨯=辆7.【江苏省清江中学数学模拟试卷】某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有 根在棉花纤维的长度大于25mm.【答案】40【解析】(0.0550.0250.015)10040⨯+⨯+⨯⨯=.8.【扬州市2015—2016学年度第一学期期末检测试题】某学校从高三年级共800名男生中随机抽取50名测量身高. 据测量被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[)160155,、第二组[)165160,、……、第八组[]195190,. 按上述分组方式得到的频率分布直方图的一部分如图所示,估计这所学校高三年级全体男生身高180cm 以上(含180cm )的人数为 .【答案】144【解析】由图得,身高180cm 以上(含180cm )的频率为()150.0080.0160.0420.060.18-⨯++⨯+=,则人数为8000.18144⨯=9.【南京市、盐城市2016届高三年级第一次模拟考试数学】某校高一年级有学生400人,高二年级有学生360人,现采用分层抽样的方法从全校学生中抽出55人,其中从高一年级学生中抽出20人,则从高三年级学生中抽取的人数为 . 【答案】17【解析】高一高二人数之比为10:9,因此高二抽出的人数为18人,高三抽出的人数为55-20-18=17人10.【苏州市2016届高三年级第一次模拟考试】若一组样本数据9,8,x ,10,11的平均数为10,则该组样本数据的方差为 . 【答案】2【解析】由题意得12x =,因此方差为221(12201)25++++=11.【江苏省扬州中学2015—2016学年第二学期质量检测】在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h ~120km/h ,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有________辆.【答案】1700【解析】2000(0.0350.030.02)101700⨯++⨯=12.【南京市、盐城市2016届高三年级第二次模拟考试】如图所示,一家面包销售店根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图.若一个月以30天计算,估计这家面包店一个月内日销售量不少于150个的天数为 .【答案】【解析】950)002.0004.0(30=⨯+⨯13.【江苏省南京市2016届高三年级第三次学情调研适应性测试】一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则月收入在[2500,3000)范围内的应抽出 人.【答案】25【解析】由题意得:0.000550010025⨯⨯=14.【南京市2016届高三年级第三次模拟考试】甲、乙两位选手参加射击选拔赛,其中连续5轮比赛的成绩(单位:环)如下表:0.0005300035000.00030.0004200015000.00020.0001400025001000月收入(元)频率/组距(第6题)则甲、乙两位选手中成绩最稳定的选手的方差是 . 【答案】0.02【一年原创真预测】 1. 以下四个命题中:①在回归分析中,可用相关指数2R 的值判断模型的拟合效果, 2R 越大,模型的拟合效果越好; ②两个随机变量的线性相关性越强,相关系数的绝对值越接近于1; ③若数据123,,n x x x x 的方差为1,则1232,2,22n x x x x 的方差为2;④对分类变量与y 的随机变量2k 的观测值k 来说,k 越小,判断“x 与y 有关系”的把握程度越大.其中真命题的个数为 . 【答案】2【入选理由】本题考查特称命题真假的判断,回归分析,相关系数,独立性检验等基础知识,意在考查考生转化能力,分析问题解决问题的能力,运算求解能力.此类知识属于高考冷门问题,近年高考有所重视,应多注意,故选此题.2.某单位为了了解某办公楼用电量y (度)与气温x (oC)之间的关系,随机统计了四个工作日的用电量与当天平均气温,并制作了对照表:得到的回归方程为a bx y+=ˆ,则a 0,b 0. 【答案】>,<【解析】依题意,画散点图知,两个变量负相关,所以0<b ,0>a .【入选理由】本题考查考查散点图、线性回归方程等基础知识,意在考查考生分析问题解决问题的能力,运算求解能力.近年高考加强了对线性回归方程的考查,应多注意,故选此题. 3.2015国际滑联世界花样滑冰锦标赛于3月23日至29日在上海举行,为调查市民喜欢这项赛事是否与年龄有关,随机抽取了55名市民,得到如下数据表:(I )判断是否有99.5%的把握认为喜欢这项赛事与年龄有关?(II )用分层抽样的方法从喜欢这项赛事的市民中随机抽取6人作进一步调查,将这6位市民作为一个样本,从中任选2人,求恰有1位“大于40岁”的市民和1位“20岁至40岁”的市民的概率.下面的临界值表供参考:(参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)【解析】(I )由公式得()2255202010511.9787.87930252530K ⨯-⨯=≈>⨯⨯⨯,所以有99.5%的把握认为喜欢这项赛事与年龄有关.(II )设所抽样本中有m 个“大于40岁”市民,则62030m =,解得4m =,所以样本中有4个“大于40岁”市民,同理可得样本中有2个“20岁至40岁”的市民,他们分别记作123412,,,,,,B B B B C C 从中任选2人的基本事件有{}{}{}{}{}{}{}12131411122324,,,,,,,,,,,,,,B B B B B B BC B C B B B B。
2018高考数学(理)专题突破—统计与统计案例
统计与统计案例【考点梳理】 1.抽样方法抽样方法包括简单随机抽样、系统抽样、分层抽样,三种抽样方法都是等概率抽样,体现了抽样的公平性,但又各有其特点和适用范围. 2.统计中的四个数据特征(1)众数:在样本数据中,出现次数最多的那个数据.(2)中位数:样本数据中,将数据按大小排列,位于最中间的数据.如果数据的个数为偶数,就取中间两个数据的平均数作为中位数.(3)平均数:样本数据的算术平均数,即x =1n (x 1+x 2+…+x n ). (4)方差与标准差.s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],s =1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. 3.直方图的两个结论 (1)小长方形的面积=组距×频率组距=频率. (2)各小长方形的面积之和等于1. 4.回归分析与独立性检验(1)回归直线y ^=b ^x +a ^经过样本点的中心点(x ,y ),若x 取某一个值代入回归直线方程y ^=b ^x +a ^中,可求出y 的估计值. (2)独立性检验对于取值分别是{x 1,x 2}和{y 1,y 2}的分类变量X 和Y ,其样本频数列联表是:则K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )(其中n =a +b +c +d 为样本容量).【题型突破】题型一、抽样方法【例1】(1)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( )A.90B.100(2)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________. 【答案】(1)C (2)4【解析】(1)设该样本中的老年教师人数为x ,由题意及分层抽样的特点得x900=3201 600,故x =180.(2)依题意,可将编号为1~35号的35个数据分成7组,每组有5个数据. 在区间[139,151]上共有20个数据,分在4个小组内,每组抽取1人,共抽取4人.【类题通法】1.解决此类题目的关键是深刻理解各种抽样方法的特点和适用范围.但无论哪种抽样方法,每一个个体被抽到的概率都是相等的,都等于样本容量与总体容量的比值.2.在系统抽样的过程中,要注意分段间隔,需要抽取n个个体,样本就需要分成n个组,则分段间隔即为Nn(N为样本容量),首先确定在第一组中抽取的个体的号码数,再从后面的每组中按规则抽取每个个体.【对点训练】(1)为规范学校办学,某省教育厅督察组对某所高中进行了抽样调查.抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应是()A.13B.19C.20D.51(2)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.【答案】(1)C(2)18【解析】(1)由系统抽样的原理知,抽样的间隔为52÷4=13,故抽取的样本的编号分别为7,7+13,7+13×2,7+13×3,即7号,20号,33号,46号.∴样本中还有一位同学的编号为20号.(2)因为样本容量n=60,样本总体N=200+400+300+100=1 000,所以抽取比例为nN=601000=350.题型二、用样本估计总体【例2】某班男女生各10名同学最近一周平均每天的锻炼时间(单位:分钟)用茎叶图记录如下:假设每名同学最近一周平均每天的锻炼时间是互相独立的.①男生每天锻炼的时间差别小,女生每天锻炼的时间差别大;②从平均值分析,男生每天锻炼的时间比女生多;③男生平均每天锻炼时间的标准差大于女生平均每天锻炼时间的标准差;④从10个男生中任选一人,平均每天的锻炼时间超过65分钟的概率比同样条件下女生锻炼时间超过65分钟的概率大.其中符合茎叶图所给数据的结论是()A.①②③B.②③④C.①②④D.①③④【答案】C【解析】由茎叶图知,男生每天锻炼时间差别小,女生差别大,①正确.男生平均每天锻炼时间超过65分钟的概率P1=510=12,女生平均每天锻炼时间超过65分钟的概率P2=410=25,P1>P2,因此④正确.设男生、女生两组数据的平均数分别为x甲,x乙,标准差分别为s甲,s乙.易求x甲=65.2,x乙=61.8,知x甲>x乙,②正确.又根据茎叶图,男生锻炼时间较集中,女生锻炼时间较分散,∴s甲<s乙,③错误,因此符合茎叶图所给数据的结论是①②④.【例3】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.【解析】(1)由频率分布直方图知,月均用水量在[0,0.5)中的频率为0.08×0.5=0.04.同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5)中的频率分别为0.08,0.20,0.26,0.06,0.04,0.02.由0.04+0.08+0.5×a+0.20+0.26+0.5×a+0.06+0.04+0.02=1,解得a=0.30.(2)由(1)可知,100位居民每人月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率,可以估计全市30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.(3)因为前6组的频率之和为0.04+0.08+0.15+0.20+0.26+0.15=0.88>0.85,而前5组的频率之和为0.04+0.08+0.15+0.20+0.26=0.73<0.85.所以2.5≤x<3.由0.3×(x-2.5)=0.85-0.73,解得x=2.9.所以,估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准.【类题通法】1.平均数与方差都是重要的数字特征,是对数据的一种简明描述,它们所反映的情况有着重要的实际意义.平均数、中位数、众数描述数据的集中趋势,方差和标准差描述数据的波动大小.2.在例3中,抓住频率分布直方图各小长方形的面积之和为1,这是求解的关键;本题易混淆频率分布条形图和频率分布直方图,误把频率分布直方图纵轴的几何意义当成频率,导致样本数据的频率求错.【对点训练】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…[80,90],并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.【解析】(1)根据频率分布直方图可知,样本中分数不小于70的频率为(0.02+0.04)×10=0.6,所以样本中分数小于70的频率为1-0.6=0.4.所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计为0.4. (2)根据题意,样本中分数不小于50的频率为(0.01+0.02+0.04+0.02)×10=0.9,分数在区间[40,50)内的人数为100-100×0.9-5=5.所以总体中分数在区间[40,50)内的人数估计为400×5100=20.(3)由题意可知,样本中分数不小于70的学生人数为(0.02+0.04)×10×100=60,所以样本中分数不小于70的男生人数为60×12=30.所以样本中的男生人数为30×2=60,女生人数为100-60=40,男生和女生人数的比例为60∶40=3∶2.所以根据分层抽样原理,总体中男生和女生人数的比例估计为3∶2.题型三、回归分析与独立性检验【例3】(1)某新闻媒体为了了解观众对央视《开门大吉》节目的喜爱与性别是否有关系,随机调查了观看该节目的观众110名,得到如下的列联表:性别有关”. 参考附表:(参考公式:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d )(2)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1~7分别对应年份2008~2014.①由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; ②建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注:参考数据:∑7i =1y i =9.32,∑7i =1t i y i =40.17,∑7i =1 (y i -y )2=0.55,7≈2.646.回归方程y ^=a ^+b ^t 中斜率和截距的最小二乘估计公式分别为:【答案】(1) 99%【解析】(1)分析列联表中数据,可得K 2的一个观测值k =110×(40×30-20×20)260×50×60×50≈7.822>6.635,所以有99%的把握认为“喜爱《开门大吉》节目与否和性别有关”. (2) ①由折线图中的数据和附注中参考数据得 t =4,∑7i =1(t i -t )2=28,∑7i =1 (y i -y )2=0.55. ∑7i =1 (t i -t )(y i -y )=∑7i =1t i y i -t ∑7i =1y i =40.17-4×9.32=2.89,所以r ≈ 2.890.55×2×2.646≈0.99.因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.②由y =9.327=1.331及(1)得b ^=∑7i =1 (t i -t )(y i -y )∑7i =1 (t i -t )2=2.8928≈0.103, a ^=y -b ^t ≈1.331-0.103×4≈0.92. 所以,y 关于t 的回归方程为y ^=0.92+0.10t .将2016年对应的t =9代入回归方程得:y ^=0.92+0.10×9=1.82. 所以预测2016年我国生活垃圾无害化处理量约为1.82亿吨. 【类题通法】1.求回归直线方程的关键及实际应用(1)关键:正确理解计算b ^,a ^的公式和准确地计算.(2)实际应用:在分析实际中两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程估计和预测变量的值. 2.独立性检验的关键(1)根据2×2列联表准确计算K 2,若2×2列联表没有列出来,要先列出此表. (2)K 2的观测值k 越大,对应假设事件H 0成立(两类变量相互独立)的概率越小,H 0不成立的概率越大. 【对点训练】(1)某医疗研究所为了检验某种血清能起到预防感冒的作用,把500名使用血清的人与另外500名未使用血清的人一年中的感冒记录作比较,利用2×2列联表计算得K 2的观测值k ≈3.918. 附表:A.95%B.5%C.97.5%D.2.5%(2)某市春节期间7家超市的广告费支出x i (万元)和销售额y i (万元)数据如下:②用对数回归模型拟合y 与x 的关系,可得回归方程y ^=12ln x +22,经计算得出线性回归模型和对数模型的R 2分别约为0.75和0.97,请用R 2说明选择哪个回归模型更合适,并用此模型预测A 超市广告费支出为8万元时的销售额.参数数据及公式:x =8,y =42,∑7i =1x i y i =2 794,∑7i =1x 2i =708,【答案】(1) B【解析】(1) ∵k ≈3.918>3.841,且P (K 2≥k 0=3.841)=0.05,根据独立性检验思想“这种血清能起到预防感冒的作用”出错的可能性不超过5%.(2) ①∵x =8,y =42,∑7i =1x i y i =2 794,∑7i =1x 2i =708.因此a ^=y -b ^x =42-1.7×8=28.4.所以,y 关于x 的线性回归方程是y ^=1.7x +28.4.②∵0.75<0.97,∴对数回归模型更合适.^=12ln 8+22=36ln 2+22=36×0.7+22=47.2万元. 当x=8时,y∴广告费支出8万元时,预测A超市销售额为47.2万元.。
2018年高中数学一轮总复习 统计案例 课件(全国理数)
n
(3)通过求Q= yi-bxi-a2的最小值而得到回归直线的方 i=1
法,即使得样本数据的点到回归直线的距离的平方和最小,这一 方法叫做最小二乘法.
(4)相关系数: 当 r>0 时,表明两个变量_正__相__关__;当 r<0 时,表明两个 变量_负__相__关__. r 的绝对值越接近于 1,表明两个变量的线性相关性_越__强_;r 的绝对值越接近于 0,表明两个变量之间_几__乎__不__存__在__线__性__相__关__关__ _系__.通常|r|大于_0_.7_5__时,认为两个变量有很强的线性相关性.
解析:由散点图可以看出两个变量所构成的点在一条直线 附近,所以线性相关关系较强,且应为正相关,所以回归 直线方程的斜率应为正数,且从散点图观察,回归直线方 程的斜率应该比 y=x 的斜率要小一些,综上可知应选 B. 答案:B
2018
第二节 统计案例
本节主要包括 2 个知识点: 1.回归分析; 2.独立性检验.
基础联通
突破点(一) 回归分析
抓主干知识的“源”与“流”
1.变量间的相关关系 (1)常见的两变量之间的关系有两类:一类是函数关系,另 一类是相关关系;与函数关系不同,相关关系是一种_非__确__定__性__ 关系. (2)从散点图上看,点散布在从左下角到右上角的区域内, 两个变量的这种相关关系称为_正__相__关__,点散布在左上角到右 下角的区域内,两个变量的相关关系为负__相__关__.
关系数的比较,正确的是
()
A.r2<r4<0<r3<r1 B.r4<r2<0<r1<r3
C.r4<r2<0<r3<r1 D.r2<r4<0<r1<r3
2018版高考数学(全国人教B版理)大一轮复习讲义:第十章统计与统计案例第3讲含解析
基础巩固题组(建议用时:40分钟)一、选择题1.两个变量y与x的回归模型中,分别选择了4个不同模型,它们的相关指数R2如下,其中拟合效果最好的模型是()A。
模型1的相关指数R2为0。
98B.模型2的相关指数R2为0.80C。
模型3的相关指数R2为0。
50D。
模型4的相关指数R2为0.25解析相关指数R2越大,拟合效果越好,因此模型1拟合效果最好.答案A2.已知变量x与y正相关,且由观测数据算得样本平均数x=3,y=3.5,则由该观测数据算得的线性回归方程可能是( )A.错误!=0.4x+2.3B.错误!=2x-2.4C。
错误!=-2x+9。
5 D。
错误!=-0.3x+4。
4解析因为变量x和y正相关,则回归直线的斜率为正,故可以排除选项C和D.因为样本点的中心在回归直线上,把点(3,3。
5)的坐标代入检验,A满足。
答案A3.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为错误!=0。
85x-85.71,则下列结论中不正确的是()A.y与x具有正的线性相关关系B。
回归直线过样本点的中心(x,y)C.若该大学某女生身高增加1 cm,则其体重约增加0。
85 kgD.若该大学某女生身高为170 cm,则可断定其体重必为58.79 kg 解析∵0。
85>0,∴y与x正相关,∴A正确;∵回归直线经过样本点的中心(x,y),∴B正确;∵Δy=0。
85(x+1)-85.71-(0.85x-85.71)=0.85,∴C正确.答案D4.通过随机询问110名性别不同的学生是否爱好某项运动,得到如下的列联表:计算得,χ2=110×(40×30-20×20)260×50×60×50≈7。
8。
参照附表,得到的正确结论是()A.有99%以上的把握认为“爱好该项运动与性别有关”B.有99%以上的把握认为“爱好该项运动与性别无关”C.有95%的把握认为“爱好该项运动与性别有关”D.有95%的把握认为“爱好该项运动与性别无关”解析根据独立性检验的定义,由χ2≈7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节 统计与统计案例考纲解读1. 理解随机抽样的必要性和重要性。
2. 会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法。
3. 了解分布的意义和作用,会列频率分布表,会画出频率分布直方图、频率折线图、茎叶图,理解它们各自的特点。
4. 理解样本数据标准差的意义和作用,会计算数据标准差。
5. 能从样本的频率分布估计总体分布,会用样本的基本数字牲估计总体的基本数字特征,理解用样本估计总体的思想。
6. 会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题。
7. 会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系。
8. 了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。
9. 了解常见的统计方法,并能应用这些方法解决一些实际问题。
(1)独立性检验了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用。
(2)回归分析了解回归分析的基本思想、方法及其简单应用。
命题趋势探究1. 本节内容是高考必考内容,以选择题、填空题为主。
2. 命题内容为:(1)三种抽样(以分层抽样为主);(2)频率分布表和频率分布直方图的制作、识图及运用。
(1)(2)有结合趋势,考题难度中下。
3. 统计案例为新课标教材新增内容,考查考生解决实际问题的能力。
知识点精讲 一、抽样方法三种抽样方式的对比,如表13-7所示。
(1)样本平均值:11ni i x x n ==∑。
(2)样本众数:样本数据中出现次数最多的那个数据。
(3)样本中位数:将数据按大小排列,位于最中间的数据或中间两个数据的平均数。
(4)样本方差:()2211ni i s x x n ==-∑。
众数、中位数、平均数都是描述一组数据集中趋势的量,方差是用来描述一组数据波动情况的特征数。
三、频率分布直方图的解读 (1)频率分布直方图的绘制①由频率分布表求出每组频数n i ;②求出每组频率ii n P N=(n 为样本容量); ③列出样本频率分布表; ④画出样本频率分布直方图,直方图横坐标表示各组分组情况,纵坐标为每组频率与组距比值,各小长方形的面积即为各组频率,各小长方形的面积总和为1。
(2)样本估计总体步骤:总体→抽取样本→频率分布表→频率分布直方图→估计总体频率分布。
样本容量越大,估计越精细,样本容量无限增大,频率分布直方图无限无限趋近概率分布密度曲线。
(3)用样本平均数估计总体平均数,用样本标准差估计总体标准差。
公式:aX b ax b +=+,s 2(aX +b )=a 2s 2(X )。
四、线性回归线性回归是研究不具备确定的函数关系的两个变量之间的关系(相关关系)的方法。
对于一组具有线性相关关系的数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归方程y bx a =+的求法为()()()1122211n ni i i i i i n ni ii i x x y y x y nx y b x x x nx a y bx====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑ 其中,11n i i x x n ==∑,11ni i y y n ==∑,(x ,y )称为样本点的中心。
步骤:画散点图,如散点图中的点基本分布在一条直线附近,则这条直线叫这两个变量的回归直线,直线斜率k >0,称两个变量正相关;k <0,称两个变量负相关。
五、独立性独立性检验是判断两个分类变量是否存在相关关系的案例分析方法。
步骤为列出2⨯2列联表(如表13-8所示),求出()()()()()22n ad bc K a b c d a c b d -=++++,并判断:表若K 21212若10.828≥K 2>6.635,有99%把握称“A 取A 1或A 2”对“B 取B 1,B 2”有关系;若6.635≥K 2>3.841,有95%把握称“A 取A 1或A 2”对“B 取B 1,B 2”有关系;若K 2≤3.841,没有把握称A 与B 相关。
题型归纳及思路提示 题型181 抽样方式 思路提示根据所抽取的对象与要求,若抽取的对象中有明显差异,考虑用分层抽样,否则选择简单随机抽样或系统抽样。
当总体中的个体较少时,常采用简单随机抽样;当总体中的个体较多时,常采用系统抽样。
例13.16(2012天津理9)某地区有小学150所,中学75所,大学25所。
现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调査,应从小学中抽取 所学校,中学中抽取 所学校。
解析:本地区共有学校150+75+25=250(所),所以从小学中应抽取1503018250⨯=(所),从中学中抽取75309250⨯=(所)。
变式1 (2012山东理4)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9。
抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C 。
则抽到的人中,做问卷B 的人数为( )。
A. 7B. 9C. 10D. 15变式2 某校共有学生2000名,各年级男、女生人数如表13-9所示,已知在全校学生中任取一名,抽到二年级女生的概率为0.19,现用分层抽样的方法,在全校抽取64名学生,则应在三年级抽取的学生人数为( )。
表13-9一年级 二年级 三年级女生 373x y 男生 377 370z 变式3 某企业三月中旬生产A ,B ,C 三种产品其3000件,根据分层抽样的结果,企业统计员制作了统计表格,如表13-10所示,由于不小心,表格中的A ,C 产品的有的有关数据被污染看不清楚,统计员记得A 产品样本容量比C 产品的样本容量多10,由此可得C 产品数量为_______。
表13-10产品类型A B C 产品数量(件) 1300 产品样本数量(件) 130题型182 样本分析——用样本估计总体 思路提示对样本进行分析并用样本估计总体,包括用样本数字特征估计总体数字特征和用样本的频率分布估计总体的频率分布。
在进行样本分析时,应从统计图表中获取数据。
体现在以下几个方面:(1)在频率分布直方图中,长方形面积=组距⨯频率组距=频率,即随机变量的概率;(2)对于频数、频率、样本容量,已知其二必可求第三个;(3)随机变量在各组数据内的频数之和为样本容量。
例13.17(2013广东理17)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图13-16所示,其中茎为十位数,叶为个位数。
17920153013-16图(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人;(3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率。
分析:阅读茎叶图得出样本数据,利用平均数公式计算出样本均值。
(2)根据样本算出优秀工人的比例,再估计12人中优秀工人的个数。
(3)用组合数公式求出所有可能的组合的个数和符合条件“恰有1名优秀工人”的组合的个数,利用古典概型概率公式进行计算。
解析:(1)由茎叶图可知,样本数据为17,19,20,21,25,30,则样本均值171920212530226x +++++==,故样本均值为22。
(2)日加工零件个数大于样本均值的工人有2名,故优秀工人的频率为2163=,该车间12名工人中优秀工人大约有21246⨯=(名),故该车间约有4名优秀工人。
(3)记“恰有1名优秀工人”为事件A ,其包含的基本事件个数为C 14C 18=32,所有基本事件的总数为C 212=66,由古典概型概率公式,得()32166633P A ==。
所以恰有1名优秀工人的概率为1633。
变式1 (2012陕西理6)从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图13-17所示),设甲乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则( )。
865088400102875220233780031244831423813-17甲乙图 A. x 甲<x 乙,m 甲>m 乙B. x 甲<x 乙,m 甲<m 乙 C .x 甲>x 乙,m 甲>m 乙D. x 甲>x 乙,m 甲<m 乙变式2 某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验。
选取两大块地,每大块地分成n 小块地,在总共2n 小块地中,随机选n 小块地种植品种甲,另外n 小块地种植品种乙。
(1)假设n =4,在第一大块地中,种植品种甲的小块地的数目记为X ,求X 的分布列和数学期望;(2)试验时每大块地分成8小块,即n =8,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位:kg/hm 2)如表13-11所示。
表品种甲 403 397 390 404 388 400 412 406该种植哪一品种?附:样本数据x 1,x 2,…,x n 的样本方差[()()()]2222121n s x x x x x x n=-+-++-,其中x 为样本平均数。
例13.18某次有1000人参加的数学摸底考试,其成绩的频率分布直方图如图13-18所示,规定85分及其以上为优秀。
(1)表13-12所示的是这次考试成绩的频数分布表,求正整数a ,b 的值;(2)优秀的学生人数;(3)在(2)中抽取的40名学生中,要随机选取2名学生参加座谈会,记“其中成绩为优秀的人数”为X ,求X 的分布列与数学期望。
解析:(1)由频率分布直方图可知,a =0.4⨯5⨯1000=200,b =0.02⨯5⨯1000=100。
(2)设抽取的40人中成绩为优秀的学生人数为x ,则350300100401000x ++=,解得x =30,即其中成绩为优秀的学生人数为30名。
(3)依题意,随机变量X 的可能取值为:0,1,2。
且()210240C 30C 52P X ===,()111010240C C 51C 13P X ===, ()220240C 292C 52P X ===,所以X 的分布列为:数学期望为()30125213522E X =⨯+⨯+⨯=。
变式1 某班50名同学在一次百米测试中的成绩全部介于13秒和19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒; 第二组,成绩大于等于14秒且小于15秒; ……第六组,成绩大于等于18且小于19秒。
如图13-19所示是由上述分组方法得到的频率分布直方图,设成绩小于17秒的学生占全班总人数的百分比为x ,成绩大小等于15秒且小于17秒的学生人数为y ,则从频率分布直方图中可分析出x 和y 分别为( )。