指数与指数函数.板块二.学生版

合集下载

高一指数与指数函数学生版

高一指数与指数函数学生版

指数与指数函数一、基础知识 1.分数指数幂(1)规定:正数的正分数指数幂的意义是m na =na m (a >0,m ,n ∈N +,且n >1);正数的负分数指数幂的意义是m na-=a >0,m ,n ∈N +,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)幂的运算性质:a m a n =a m +n ,(a m )n =a mn ,(ab )n =a n b n ,其中a >0,b >0,m ,n ∈R . 2.指数函数的图像与性质 【知识拓展】 1.指数函数图像画法的三个关键点:(1,a ),(0,1), (-1,1a).2.指数函数的图像与底数大小的比较如图是指数函数(1)y =a x ,(2)y =b x ,(3)y =c x ,(4)y =d x 的图像,底数a ,b ,c ,d 与1之间的大小关系为c >d >1>a >b .由此我们可得到以下规律:在第一象限内,指数函数y =a x (a >0,且a ≠1)的图像越高,底数越大. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)na n=(na )n=a .( ) (2)分数指数幂m na 可以理解为mn 个a 相乘.()2142(3)(1)(1)-=-=( )(4)函数y =a -x 是R 上的增函数.( )(5)函数21x y a +=(a >1)的值域是(0,+∞).( ) (6)函数y =2x -1是指数函数.( )二.基础练习1.(教材改编)若函数f (x )=a x (a >0,且a ≠1)的图像经过点P (2,12),则f (-1)等于( )A.22 B. 2 C.14D .4 2.(2016·青岛模拟)已知函数f (x )=a x -2+2的图像恒过定点A ,则A 的坐标为( ) A .(0,1) B .(2,3)C .(3,2)D .(2,2)3.已知113344333(),(),(),552a b c ---===则a ,b ,c 的大小关系是( )A .c <a <bB .a <b <cC .b <a <cD .c <b <a(1)定义域:R4.计算:1103437()()826-⨯-+=________.5.函数y =8-23-x (x ≥0)的值域是________三、典型例题 题型一 指数幂的运算例1化简下列各式:122.5053(1)[(0.064)]π;--41233322338(2)(-4a a ba ab a --÷+跟踪训练1.计算:220.533342(1)(3)(5)(0.008);8925---+⨯ (2)已知11223,x x -+=计算:x 2+x -2-7x +x -1+3.题型二 指数函数的图像及应用例2 (1)已知实数a ,b 满足等式2 017a =2 018b ,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b .其中不可能成立的关系式有( ) A .1个 B .2个C .3个D .4个(2)已知函数f (x )=|2x -1|,a <b <c 且f (a )>f (c )>f (b ),则下列结论中,一定成立的是( ) A .a <0,b <0,c <0B .a <0,b ≥0,c >0C .2-a <2c D .2a +2c <2(1)函数f (x )=a x-b的图像如图,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0(2)(2016·衡水模拟)若曲线|y |=2x +1与直线y =b 没有公共点,则b 的取值范围是________.题型三 指数函数的性质及应用 命题点1 指数函数单调性的应用例3 (1)(2016·威海模拟)下列各式比较大小正确的是( )A .1.72.5>1.73B .0.6-1>0.62 C .0.8-0.1>1.250.2 D .1.70.3<0.93.1(2)(2016·陕西西安七十中期中)解关于x 的不等式311x xa a-+≤(其中a >0且a ≠1). 命题点2 复合函数的单调性 例4 (1)已知函数()|2|2x m f x -=(m 为常数),若f (x )在区间[2,+∞)上是增函数,则m 的取值范围是________.(2)函数2211()()2xx f x -++=的单调减区间为_______________.引申探究函数f (x )=4x -2x +1的单调增区间是________.命题点3 函数的值域(或最值) 例5 (1)函数y =⎝⎛⎭⎫14x -⎝⎛⎭⎫12x+1在区间[-3,2]上的值域是________.(2)如果函数y =a 2x +2a x -1(a >0,且a ≠1)在区间[-1,1]上的最大值是14,则a 的值为________.思维升华(1)在利用指数函数性质解决相关综合问题时,要特别注意底数a 的取值范围,并在必要时进行分类讨论;(2)与指数函数有关的指数型函数的定义域、值域(最值)、单调性、奇偶性的求解方法,要化归于指数函数来解. 跟踪训练3(1)已知函数f (x )=⎩⎪⎨⎪⎧-(12)x ,a ≤x <0,-x 2+2x ,0≤x ≤4的值域是[-8,1],则实数a 的取值范围是( )A .(-∞,-3]B .[-3,0)C .[-3,-1]D .{-3}(2)已知函数f (x )=2x-12x ,函数g (x )=⎩⎪⎨⎪⎧f (x ),x ≥0,f (-x ),x <0,则函数g (x )的最小值是________.易错典例 (2016·日照模拟)已知函数22x x y b a +=+(a ,b 为常数,且a >0,a ≠1)在区间[-32,0]上有最大值3,最小值52, 则a ,b 的值分别为________.2,2或23,32【答案】【思考辨析】×××××× 二、1 B 2 B 3 D 4。

《5.2 指数函数》学历案-中职数学高教版21基础模块下册

《5.2 指数函数》学历案-中职数学高教版21基础模块下册

《指数函数》学历案(第一课时)一、学习主题本节课的主题是中职数学课程中的《指数函数》。

我们将围绕指数函数的定义、性质及图像等方面进行学习和探究,帮助学生建立对指数函数的基本认识和掌握其基本应用。

二、学习目标1. 理解指数函数的定义,掌握其基本形式。

2. 了解指数函数的性质,包括单调性、值域等。

3. 掌握指数函数图像的绘制方法,能够根据函数表达式绘制大致图像。

4. 学会利用指数函数解决简单的实际问题。

三、评价任务1. 通过课堂提问和小组讨论,评价学生对指数函数定义及性质的掌握情况。

2. 通过学生独立绘制指数函数图像的过程及结果,评价其图像绘制技能。

3. 通过解决实际问题的作业,评价学生对指数函数应用能力的掌握程度。

四、学习过程1. 导入新课:通过复习之前学过的幂的概念,引导学生理解指数函数的来源及基本形式。

2. 定义与性质:通过教师讲解及课件演示,使学生明确指数函数的定义,并理解其基本性质,如单调性、值域等。

3. 图像绘制:通过具体实例,指导学生掌握指数函数图像的绘制方法,并尝试自己绘制。

4. 实际应用:结合实际问题,引导学生运用指数函数解决实际问题,如放射性物质衰变等。

5. 课堂小结:总结本节课的重点内容,强调指数函数的重要性及其在实际生活中的应用。

五、检测与作业1. 课堂检测:通过课堂小测验,检测学生对指数函数定义及性质的掌握情况。

2. 作业布置:布置相关练习题,包括指数函数的简单计算、图像绘制及实际问题解决等,要求学生独立完成并提交。

3. 作业评价:教师批改作业,了解学生掌握情况,并进行针对性指导。

六、学后反思1. 反思教学方法:教师反思本节课的教学过程,总结优点及不足,为今后的教学提供借鉴。

2. 反思学生学习情况:教师通过观察学生课堂表现、作业完成情况等,了解学生学习情况,进行个性化指导。

3. 学生自我反思:学生回顾本节课的学习过程,总结自己的收获及不足,为今后的学习制定改进措施。

通过本节课的学习,学生应该能够更加深入地理解指数函数的概念和性质,掌握其基本应用。

专题09 指数与指数函数(学生版)高中数学53个题型归纳与方法技巧总结篇

专题09 指数与指数函数(学生版)高中数学53个题型归纳与方法技巧总结篇

【考点预测】1.指数及指数运算(1)高中数学53个题型归纳与方法技巧总结篇专题09指数与指数函数根式的定义:一般地,如果n x a =,那么x 叫做a 的n 次方根,其中(1n >,)n N *∈,n 称为根指数,a 称为根底数.(2)根式的性质:当n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.当n 为偶数时,正数的n 次方根有两个,它们互为相反数.(3)指数的概念:指数是幂运算(0)n a a ≠中的一个参数,a 为底数,n 为指数,指数位于底数的右上角,幂运算表示指数个底数相乘.(4)有理数指数幂的分类①正整数指数幂()n n a a a a a n N *=⋅⋅⋅⋅∈个;②零指数幂01(0)a a =≠;③负整数指数幂1(0nn aa a-=≠,)n N *∈;④0的正分数指数幂等于0,0的负分数指数幂没有意义.(5)有理数指数幂的性质①+(0m n m n a a a a >=,m ,)n Q ∈;②()(0m n m n a a a >=,m ,)n Q ∈;③()(0mm mab a a b >=,0b >,)m Q ∈(0mn a a >=,m ,)n Q ∈.2.指数函数⑥既不是奇函数,也不是偶函数【方法技巧与总结】1.指数函数常用技巧(1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论.(2)当01a <<时,x →+∞,0y →;a 的值越小,图象越靠近y 轴,递减的速度越快.当1a >时x →+∞,0y →;a 的值越大,图象越靠近y 轴,递增速度越快.(3)指数函数x y a =与1()xy a=的图象关于y 轴对称.【题型归纳目录】题型一:指数运算及指数方程、指数不等式题型二:指数函数的图像及性质题型三:指数函数中的恒成立问题题型四:指数函数的综合问题【典例例题】题型一:指数运算及指数方程、指数不等式例1.(2022·四川凉山·三模(文))计算:)2ln31e 1lg 4lg 0.254-⎛⎫+-++= ⎪⎝⎭______.例2.(2022·河北邯郸·一模)不等式10631x x x --≥的解集为___________.例3.(2022·陕西·榆林市教育科学研究所模拟预测(理))甲、乙两人解关于x 的方程220x x b c -+⋅+=,甲写错了常数b ,得到的根为2x =-或x =217log 4,乙写错了常数c ,得到的根为0x =或1x =,则原方程的根是()A .2x =-或2log 3x =B .1x =-或1x =C .0x =或2x =D .1x =-或2x =例4.(2022·全国·高三专题练习(文))已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()4322x x f x a =-⨯+.则关于x 的不等式()6f x ≤-的解集为()A .(,2]-∞-B .(,1]-∞-C .[)()2,00,2- D .[)()2,02,-⋃+∞例5.(2022·全国·高三专题练习)化简:(1)126016(2018)449-⎛⎫+--⨯ ⎪⎝⎭(2111332ab a b -⎫⎪⎭a >0,b >0).(3)312211122211111a a aa a a a a -+--++++-.【方法技巧与总结】利用指数的运算性质解题.对于形如()f x a b =,()f x a b >,()f x a b <的形式常用“化同底”转化,再利用指数函数单调性解决;或用“取对数”的方法求解.形如20xx a Ba C ++=或2)00(x x a Ba C ++ 的形式,可借助换元法转化二次方程或二次不等式求解.题型二:指数函数的图像及性质例6.(2022·浙江绍兴·模拟预测)函数2()()-+=-x xx m f x a a ,的图象如图所示,则()A .0,01<<<m aB .0,1<>m aC .0,01m a ><<D .0,1>>m a 例7.(2022·全国·高三专题练习)函数()21xf x m =--恰有一个零点,则m 的取值范围是()A .()1,+∞B .{}()01,∞⋃+C .{}[)01,∞⋃+D .[)1,+∞例8.(2022·四川省泸县第二中学模拟预测(文))函数()11e xf x -=+,下列关于函数()f x 的说法错误的是()A .函数()f x 的图象关于原点对称B .函数()f x 的值域为()0,1C .不等式()12f x >的解集是()0,∞+D .()f x 是增函数例9.(2022·河南·三模(文))已知()1f x -为定义在R 上的奇函数,()10f =,且()f x 在[)1,0-上单调递增,在[)0,∞+上单调递减,则不等式()250xf -<的解集为()A .()22,log 6B .()()2,12,log 6-∞⋃C .()2log 6,+∞D .()()21,2log 6,⋃+∞例10.(2022·新疆阿勒泰·三模(理))函数11x y a -=+图象过定点A ,点A 在直线()31,0mx ny m n +=>>上,则121m n+-最小值为___________.例11.(2022·北京·高三专题练习)已知()212221x x xf x a +=+-+(其中a R ∈且a 为常数)有两个零点,则实数a 的取值范围是___________.例12.(2022·全国·高三专题练习)已知函数()22x x f x k -=+⋅(k 为常数,k ∈R )是R 上的奇函数.(1)求实数k 的值;(2)若函数()y f x =在区间[]1,m 上的值域为15,4n ⎡⎤⎢⎥⎣⎦,求m n +的值.【方法技巧与总结】解决指数函数有关问题,思路是从它们的图像与性质考虑,按照数形结合的思路分析,从图像与性质找到解题的突破口,但要注意底数对问题的影响.题型三:指数函数中的恒成立问题例13.(2022·北京·高三专题练习)设()f x 是定义在R 上的偶函数,且当0x ≤时,()2xf x -=,若对任意的[],1x m m ∈+,不等式()()2f x f x m -≥恒成立,则正数m 的取值范围为()A .m 1≥B .1mC .01m <<D .01m <≤例14.(2022·北京·高三专题练习)已知函数()33x xf x -=-.(1)利用函数单调性的定义证明()f x 是单调递增函数;(2)若对任意[]1,1x ∈-,()()24f x mf x ⎡⎤+≥-⎣⎦恒成立,求实数m 的取值范围.例15.(2022·全国·高三专题练习(文))已知函数()3(21xf x a a =-+为实常数).(1)讨论函数()f x 的奇偶性,并说明理由;(2)当()f x 为奇函数时,对任意[]1,6x ∈,不等式()2xuf x ≥恒成立,求实数u 的最大值.例16.(2022·全国·高三专题练习(文))已知函数1()421x x f x a +=-+ .(1)若函数()f x 在[0x ∈,2]上有最大值8-,求实数a 的值;(2)若方程()0f x =在[1x ∈-,2]上有解,求实数a 的取值范围.例17.(2022·全国·高三专题练习)已知函数2()f x x =,1()2xg x m⎛⎫=- ⎪⎝⎭(1)当[1,3]x ∈-时,求()f x 的值域;(2)若对[]0,2x ∀∈,()1g x 成立,求实数m 的取值范围;(3)若对[]10,2x ∀∈,2[1,3]x ∃∈-,使得12()()g x f x 成立,求实数m 的取值范围.【方法技巧与总结】已知不等式能恒成立求参数值(取值范围)问题常用的方法:(1)函数法:讨论参数范围,借助函数单调性求解;(2)分离参数法:先将参数分离,转化成求函数的值域或最值问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.题型四:指数函数的综合问题例18.(2022·天津河西·二模)已知定义在R 上的函数()f x 满足:①()2()0f x f x -+=;②()()20f x f x ---=;③在[]1,1-上的解析式为()[](]πcos ,1,021,0,1x x f x x x ⎧∈-⎪=⎨⎪-∈⎩,则函数()f x 与函数1()2xg x ⎛⎫= ⎪⎝⎭的图象在区间[]3,3-上的交点个数为()A .3B .4C .5D .6例19.(2022·北京·二模)若函数()()223,02,0xx f x x x a⎧+≤⎪=⎨-<≤⎪⎩的定义域和值域的交集为空集,则正数a 的取值范围是()A .(]0,1B .()0,1C .()1,4D .()2,4例20.(2022·甘肃省武威第一中学模拟预测(文))已知函数()4sin 22x x f x =++,则124043202220222022f f f ⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭______.例21.(2022·全国·高三专题练习)已知函数()f x 的定义域为R ,满足()()121f x f x +=-,且当(]1,1x ∈-时,()12x f x -=,则()2020f =______.例22.(2022·辽宁·建平县实验中学模拟预测)已知函数()221010,231,2x x x f x x x --⎧-≤⎪=⎨-->⎪⎩,则不等式()()10f x f x +-<的解集为___________.例23.(2022·江西·二模(文))设函数()2,111,12x a x f x x x --⎧≤⎪=⎨-+>⎪⎩,若()1f 是函数()f x 的最大值,则实数a 的取值范围为_______.【过关测试】一、单选题1.(2022·北京通州·模拟预测)已知函数1()33xxf x ⎛⎫=- ⎪⎝⎭,则()f x ()A .是偶函数,且在R 是单调递增B .是奇函数,且在R 是单调递增C .是偶函数,且在R 是单调递减D .是奇函数,且在R 是单调递减2.(2022·安徽淮南·二模(理))1947年,生物学家Max Kleiber 发表了一篇题为《body size and metabolicrate 》的论文,在论文中提出了一个克莱伯定律:对于哺乳动物,其基础代谢率与体重的34次幂成正比,即340F c M =,其中F 为基础代谢率,M 为体重.若某哺乳动物经过一段时间生长,其体重为原来的10倍,则基础代谢率1.7783≈)()A .5.4倍B .5.5倍C .5.6倍D .5.7倍3.(2022·陕西·西安中学模拟预测(文))英国著名数学家布鲁克-泰勒以微积分学中将函数展开成无穷级数的定理著称于世.在数学中,泰勒级数用无限连加式来表示一个函数,泰勒提出了适用于所有函数的泰勒级数,并建立了如下指数函数公式:23e 126!nxx x x x n =+++++++ ,其中R,N x n ∈∈的近似值为(精确到0.01)()A .1.63B .1.64C .1.65D .1.664.(2022·河南洛阳·二模(文))已知函数()()1331,1log 52,1x x f x x x +⎧-≥⎪=⎨-+-<⎪⎩,且()2f m =-,则()6f m +=()A .26B .16C .-16D .-265.(2022·四川成都·三模(理))若函数()9x f x =0x ,则()0091xx -=().A .13B .1CD .26.(2022·河南·开封高中模拟预测(文))若关于x 的不等式()221xxa x ⋅>+∈R 有实数解,则实数a 的取值范围是()A .()1,+∞B .()2,+∞C .[)1,+∞D .[)2,+∞7.(2022·四川·内江市教育科学研究所三模(理))已知函数()f x 满足:对任意x ∈R ,1122f x f x ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭.当[1,0)x ∈-时,()31x f x =-,则()3log 90=f ()A .19B .19-C .1727D .1727-8.(2022·上海宝山·二模)关于函数131()(22xx f x x =-⋅和实数,m n 的下列结论中正确的是()A .若3m n -<<,则()()f m f n <B .若0m n <<,则()()f m f n <C .若()()f m f n <,则22m n <D .若()()f m f n <,则33m n <二、多选题9.(2022·湖南·模拟预测)在同一直角坐标系中,函数x y a =与()log 2a y x =-的图象可能是()A .B .C .D .10.(2022·全国·模拟预测)已知0a b >>,下列选项中正确的为()A 1=,则1a b -<B .若221a b -=,则1a b -<C .若22=1a b -,则1a b -<D .若22log log 1a b -=,则1a b -<11.(2022·广东肇庆·模拟预测)若a b >,则下列不等式中正确的有()A .0a b ->B .22a b>C .ac bc>D .22a b >12.(2022·全国·模拟预测)已知函数14sin ,01()2,1x x x f x x x -<≤⎧=⎨+>⎩,若存在三个实数,使得()()()123f x f x f x ==,则()A .123x x x ++的取值范围为()2,3B .()23x f x 的取值范围为5,23⎛⎫ ⎪⎝⎭C .123x x x 的取值范围为51,362⎛⎫⎪⎝⎭D .()13x f x 的取值范围为1,23⎛⎫⎪⎝⎭三、填空题13.(2022·安徽淮北·一模(理))2log142-⎛⎫++= ⎪⎝⎭___________.14.(2022·四川·模拟预测(理))已知两个条件:①,,()()()a b f a b f a f b ∈+=⋅R ;②()f x 在(0,)+∞上单调递减.请写出一个同时满足以上两个条件的函数____________.15.(2022·河南·模拟预测(文))函数()1423x x f x +=-+在1,2⎛⎤-∞ ⎥⎝⎦的值域为______.16.(2022·山西·二模(理))已知函数()322x xx f x -=-给出下列结论:①()f x 是偶函数;②()f x 在()0, +上是增函数;③若0t >,则点()(),t f t 与原点连线的斜率恒为正.其中正确结论的序号为______.四、解答题17.(2022·全国·高三专题练习)由于突发短时强降雨,某小区地下车库流入大量雨水.从雨水开始流入地下车库时进行监测,已知雨水流入过程中,地下车库积水量y (单位:3m )与时间t (单位:h )成正比,雨停后,消防部门立即使用抽水机进行排水,此时y 与t 的函数关系式为25ty k ⎛⎫=⨯ ⎪⎝⎭(k 为常数),如图所示.(1)求y 关于t 的函数关系式;(2)已知该地下车库的面积为25602m ,当积水深度小于等于0.05m 时,小区居民方可入内,那么从消防部门开始排水时算起,至少需要经过几个小时以后,小区居民才能进入地下车库?18.(2022·全国·高三专题练习)(1)计算:1294⎛⎫- ⎪⎝⎭(﹣9.6)0﹣22327283--⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭;(2)已知1122a a-+=3,求22112a a a a --++++的值.19.(2022·全国·高三专题练习)已知a >0,且a ≠1,若函数y =|ax -2|与y =3a 的图象有两个交点,求实数a 的取值范围.20.(2022·全国·高三专题练习)设函数()(0x x f x ka a a -=->且1)a ≠是定义域为R 的奇函数;(1)若()10f >,判断()f x 的单调性并求不等式(2)(4)0f x f x ++->的解集;(2)若()312f =,且22()4()x xg x a a f x -=+-,求()g x 在[1,)+∞上的最小值.21.(2022·北京·高三专题练习)定义在D 上的函数()f x ,如果满足:对任意,x D ∈存在常数0,M >都有()M f x M -≤≤成立,则称()f x 是D 上的有界函数,其中M 称为函数()f x 的上界.已知()422x x f x a =+⋅-.(1)当2a =-时,求函数()f x 在()0,∞+上的值域,并判断函数()f x 在()0,∞+上是否为有界函数﹐请说明理由﹔(2)若函数()f x 在(),0-∞上是以2为上界的有界函数,求实数a 的取值范围.22.(2022·全国·高三专题练习)已知函数()(0,0,1,1)x x f x a b a b a b =+>>≠≠.(1)设12,2a b ==,求方程()2f x =的根;(2)设12,2a b ==,若对任意x ∈R ,不等式()()26f x f x m ≥-恒成立,求实数m 的最大值;(3)若01,1a b <<>,函数()()2g x f x =-有且只有1个零点,求ab 的值.。

02-4.1 指数与指数函数-4.1.2 指数函数的性质与图象高中数学必修第二册人教B版

02-4.1 指数与指数函数-4.1.2 指数函数的性质与图象高中数学必修第二册人教B版
( > 0且 ≠ 1)的图象有两个公共点,则的取值可以是(
1
A.
2
2
B.
3
5
C.
6
BC
)
D.1
【解析】当 > 1时,函数 = | − 1| + 1的图象如图 D 4.1.2 − 2(1)所示,则由图
可知1 < 2 <
1
2,解得
2
< < 1,与 > 1矛盾;
当0 < < 1时,函数 = | − 1| + 1的图象如
【解析】函数 = |3 − 1|的图象是由函数 = 3 的图象向下平移一个单位长度后,
再把位于轴下方的图象沿轴翻折到轴上方得到的,函数图象如图4.1.2-5所示.
图4.1.2-5
当 = 0或 ≥ 1时,直线 = 与函数 = |3 − 1|的图象有唯一的交点,即方程
|3 − 1| = 有一解.
() = 1 − 3 的值域是( A
A.(−∞, 1)
)
B.(−∞, 1]
C.[0,1)
D.[0,1]
【解析】由指数函数的性质,可得3 > 0,所以1 − 3 < 1,即()的值域是
(−∞, 1).
例2-3 (2024·广东省深圳外国语学校段考)已知1 =
则在同一平面直角坐标系内,它们的图象为 ( A
数函数,则 =___.
【解析】∵ 函数() = 2 ⋅ 3 和() = 2−(+3) 都是指数函数,∴ 2 = 1,
1
2
1
2
−( + 3) = 0,解得 = , = −3,则 = ( )−3 = 8.
例5 (2024·云南省昆明市西南联大研究院附属学校期末)若指数函数()的图象经过

学而思高中数学指数与指数函数.板块二.学生版

学而思高中数学指数与指数函数.板块二.学生版

题型一 指数函数的定义与表示【例1】 求下列函数的定义域(1)32xy -= (2)213x y += (3)512xy ⎛⎫= ⎪⎝⎭(4)()10.7xy =【例2】 求下列函数的定义域、值域⑴112x y -= ; ⑵3x y -=; ⑶2120.5x x y +-=【例3】 求下列函数的定义域和值域:1.xa y -=1 2.31)21(+=x y【例4】 求下列函数的定义域、值域(1)110.4x y -=; (2)513x y -=. (3)21x y =+典例分析板块二.指数函数【例5】 求下列函数的定义域(1)13xy =;(2)51y x =-【例6】 已知指数函数()(0,x f x a a =>且1)a ≠的图象经过点(3,π),求(0)f ,(1)f ,(3)f -的值.【例7】 若1a >,0b >,且22b b a a -+=b b a a --的值为( )A 6B .2或2-C .2-D .2题型二 指数函数的图象与性质【例8】 已知1a b c >>>,比较下列各组数的大小:①___bca a ;②1ba ⎛⎫⎪⎝⎭1ca ⎛⎫ ⎪⎝⎭;③11___b ca a ;④__a abc .【例9】 比较下列各题中两个值的大小:⑴ 2.51.7,31.7; ⑵ 0.10.8-,0.20.8-; ⑶ 0.31.7, 3.10.9.【例10】 比较下列各题中两个值的大小(1)0.80.733,(2)0.10.10.750.75-, (3) 2.7 3.51.01 1.01,(4) 3.3 4.50.990.99,【例11】 已知下列不等式,比较m 、n 的大小(1) 22m n<(2)0.20.2m n >(3)()01m n a a a <<<(4)()1m n a a a >>【例12】 图中的曲线是指数函数x y a =的图象,已知a 4133,,,3105四个值,则相应于曲线1234,,,c c c c 的a 依次为_______________.c 4c 3c 2c 1P 4P 3P 2P 11Oy x【例13】 已知51a -=函数()x f x a =,若实数m n ,满足()()f m f n >,则m n ,的大小关系为 .【例14】 设424a 312b =6c a ,b ,c 的大小关系是【例15】 若对[1,2]x ∈,不等式22x m +>恒成立,求实数m 的取值范围.【例16】 判断函数11()3x y -=的单调性.【例17】 函数||()x f x e =( )A .是奇函数,在(,0]-∞上是减函数B .是偶函数,在(,0]-∞上是减函数C .是奇函数,在[0,)+∞上是增函数D .是偶函数,在(,)-∞+∞上是增函数【例18】 已知函数f (x )为偶函数,当()0x ∈+∞,时,()12x f x +=-,求当()0x ∈-∞,时,()f x 的解析式.【例19】 证明函数x a y =和x a y -= )10(≠>a a 且的图象关于y 轴对称。

2023年高考数学总复习第二章 函数概念与基本初等函数第5节:指数与指数函数(学生版)

2023年高考数学总复习第二章 函数概念与基本初等函数第5节:指数与指数函数(学生版)

2023年高考数学总复习第二章函数概念与基本初等函数第5节指数与指数函数考试要求1.了解指数函数模型的实际背景;2.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算;3.理解指数函数的概念及其单调性,掌握指数函数图像通过的特殊点,会画底数为2,3,10,12,13的指数函数的图像;4.体会指数函数是一类重要的函数模型.1.根式的概念及性质(1)概念:式子na 叫作根式,其中n 叫作根指数,a 叫作被开方数.(2)性质:(na )n =a (a 使na 有意义);当n 为奇数时,na n =a ,当n 为偶数时,na n =|a |,a ≥0,a ,a <0.2.分数指数幂规定:正数的正分数指数幂的意义是a mn =na m (a >0,m ,n ∈N +,且n >1);正数的负分数指数幂的意义是a -mn =1na m(a >0,m ,n ∈N +,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.3.指数幂的运算性质实数指数幂的运算性质:a r a s =a r +s ;(a r )s =a rs ;(ab )r =a r b r ,其中a >0,b >0,r ,s ∈R .4.指数函数及其性质(1)概念:函数y =a x (a >0,且a ≠1)叫作指数函数,其中指数x 是自变量,函数的定义域是R ,a 是底数.(2)指数函数的图像与性质a >10<a <1图像定义域R 值域(0,+∞)性质过定点(0,1),即x =0时,y =1当x >0时,y >1;当x <0时,0<y <1当x <0时,y >1;当x >0时,0<y <1在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数1.画指数函数y =a x (a >0,且a ≠1)的图像,应抓住三个关键点:(1,a ),(0,1),12.指数函数y =a x (a >0,且a ≠1)的图像和性质跟a 的取值有关,要特别注意应分a >1与0<a <1来研究.3.在第一象限内,指数函数y =a x (a >0,且a ≠1)的图像越高,底数越大.1.思考辨析(在括号内打“√”或“×”)(1)4(-4)4=-4.()(2)分数指数幂a mn 可以理解为mn 个a 相乘.()(3)函数y =2x -1是指数函数.()(4)函数y =a x2+1(a >1)的值域是(0,+∞).()2.(易错题)若函数f (x )=(a 2-3)·a x 为指数函数,则a =________.3.(易错题)函数y =21x -1的值域是________.4.函数f (x )=a x -1+2(a >0且a ≠1)的图像恒过定点________.5.(2021·贵阳一中月考)3213-76+814×42--2323________.6.已知a 35-13,b 35-14,c =3234,则a ,b ,c 的大小关系是________.考点一指数幂的运算1.计算:823--780+4(3-π)4+[(-2)6]12=________.2.[(0.06415)-2.5]23-3338-π0=________.3.(2021·沧州七校联考1412·(4ab -1)3(0.1)-1·(a 3·b -3)12(a >0,b >0)=________.4.已知f (x )=3x +3-x ,f (b )=4,则f (2b )=________.考点二指数函数的图像及应用例1(1)已知实数a ,b 满足等式2022a =2023b ,下列等式一定不成立的是()A.a =b =0B.a <b <0C.0<a <bD.0<b <a(2)若函数f (x )=|2x -2|-b 有两个零点,则实数b 的取值范围是________.训练1(1)函数f (x )=a x -b 的图像如图所示,其中a ,b 为常数,则下列结论正确的是()A.a >1,b <0B.a >1,b >0C.0<a <1,b >0D.0<a <1,b <0(2)如果函数y =|3x -1|+m 的图像不经过第二象限,则实数m 的取值范围是________.考点三解决与指数函数性质有关的问题角度1比较指数式的大小例2(1)设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是() A.a<b<c B.a<c<bC.b<a<cD.b<c<a(2)若e a+πb≥e-b+π-a,下列结论一定成立的是()A.a+b≤0B.a-b≥0C.a-b≤0D.a+b≥0角度2解简单的指数方程或不等式例3(1)已知实数a≠1,函数f(x)4x,x≥0,2a-x,x<0,若f(1-a)=f(a-1),则a的值为________.(2)若2x2+114x-2,则函数y=2x的值域是()A.18,2 B.18,2C.-∞,18 D.[2,+∞)角度3指数函数性质的综合应用例4(1)不等式4x-2x+1+a>0,对任意x∈R都成立,则实数a的取值范围是________.(2)已知定义域为R的函数f(x)=-12+12x+1,则关于t的不等式f(t2-2t)+f(2t2-1)<0的解集为________.训练2(1)(2021·郑州调研)已知函数f(x)=4x-12x,a=f(20.3),b=f(0.20.3),c=f(log0.32),则a,b,c的大小关系为()A.c<b<aB.b<a<cC.b<c<aD.c<a<b(2)若函数f (x )2+2x +3,19,则f (x )的单调递增区间是______.(3)函数y +1在区间[-3,2]上的值域是________.1.若函数f (x )=a x (a >0,且a ≠1)f (-1)=()A.1B.2C.3D.32.(2021·成都诊断)不论a 为何值,函数y =(a -1)2x -a2恒过定点,则这个定点的坐标是()113.(2022·哈尔滨质检)函数y =a x -1a(a >0,且a ≠1)的图像可能是()4.(2020·天津卷)设a =30.7,b 0.8,c =log 0.70.8,则a ,b ,c 的大小关系为()A.a <b <cB.b <a <cC.b <c <aD.c <a <b5.(2021·衡水中学检测)当x∈(-∞,-1]时,不等式(m2-m)·4x-2x<0恒成立,则实数m的取值范围是()A.(-2,1)B.(-4,3)C.(-3,4)D.(-1,2)6.(2020·新高考山东卷)基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天B.1.8天C.2.5天D.3.5天7.化简:(a23·b-1)-12·a-12·b136a·b5(a>0,b>0)=________.8.设偶函数g(x)=a|x+b|在(0,+∞)上单调递增,则g(a)与g(b-1)的大小关系是____________.9.已知函数f(x),a≤x<0,x2+2x,0≤x≤4的值域是[-8,1],则实数a的取值范围是________.10.已知定义域为R的函数f(x)=-2x+b2x+1+2为奇函数.(1)求b的值;(2)任意t∈R,f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.11.已知函数f(x)=4x+m2x是奇函数.(1)求实数m的值;(2)设g(x)=2x+1-a,若函数f(x)与g(x)的图像有公共点,求实数a的取值范围.12.若关于x的方程|a x-1|=2a(a>0,且a≠1)有两个不相等的实根,则a的取值范围是()A.0,12(1,+∞) B.0,12C.12,1 D.(1,+∞)13.(2022·邯郸模拟)设f(x)|2x-1|,x≤2,-x+5,x>2,若互不相等的实数a,b,c满足f(a)=f(b)=f(c),则2a+2b+2c的取值范围是()A.(16,32)B.(18,34)C.(17,35)D.(6,7)14.已知定义在R上的函数f(x)=2x-12|x|.(1)若f(x)=32,求x的值;(2)若2t f(2t)+mf(t)≥0对任意t∈[1,2]恒成立,求实数m的取值范围.。

01-4.1 指数与指数函数-4.1.1 实数指数幂及其运算高中数学必修第二册人教B版

01-4.1 指数与指数函数-4.1.1 实数指数幂及其运算高中数学必修第二册人教B版

例5 求下列各式的值:
(1) 3 + 2
2+ 3−2
【解析】
=
2;
原式
( 2)2 + 2
2−1=2
2 + 1 + ( 2)2 − 2
2+1=
( 2 + 1)2 + ( 2 − 1)2 = 2 + 1 +
2.(【技巧】将被开方数化为完全平方式)
令 =
3+2
2+ 3−2
2,两边平方得 2 = 6 + 2 9 − 8 = 8.
1
2
例11 (2024·湖北省荆、荆、襄、宜四地七校期中)已知 +
1
−2
= 3,求下列各式的值:
(1) + −1 ;
1
2
【解析】将 +
1
2

= 3两边平方,得 + −1 + 2 = 9,所以 + −1 = 7.
(2)2 + −2 ;
【解析】将 + −1 = 7两边平方,得2 + −2 + 2 = 49,所以2 + −2 = 47.
(3)
3
3

2 − 2
1
1

2 − 2
3
3

2 − 2
1
1

2 − 2
【解析】
.
=
1
1
1
1


−1
(2 − 2 )(+ +2 2 )
1
1

2 − 2
= + −1 + 1 = 8.(化简后整体代入求解)

高中数学 第二章 指数函数、对数函数和幂函数 2.2.3 对数函数的图象和性质 第1课时 反函数及对

高中数学 第二章 指数函数、对数函数和幂函数 2.2.3 对数函数的图象和性质 第1课时 反函数及对

2.2.3 对数函数的图象和性质第1课时反函数及对数函数的图象和性质[学习目标] 1.理解对数函数的概念.2.初步掌握对数函数的图象及性质.3.会类比指数函数,研究对数函数的性质.[知识]1.作函数图象的步骤为列表、描点、连线.另外也可以采取图象变换法.2.指数函数y=a x(a>0且a≠1)的图象与性质.a>10<a<1 图象定义域R值域(0,+∞)性质过定点过点(0,1),即x=0时,y=1函数值的变化当x>0时,y>1;当x<0时,0<y<1当x>0时,0<y<1;当x<0时,y>1 单调性是R上的增函数是R上的减函数[预习导引]1.对数函数的概念把函数y=log a x(x>0,a>0,a≠1)叫作(以a为底的)对数函数,其中x是自变量,函数的定义域是(0,+∞).2.对数函数的图象与性质a>10<a<1 图象性质定义域(0,+∞)值域R过点过点(1,0),即x=1时,y=0函数值的变化当0<x<1时,y<0;当x>1时,y>0当0<x<1时,y>0;当x>1时,y<0单调性是(0,+∞)上的增函数是(0,+∞)上的减函数3.反函数(1)对数函数y=log a x(a>0且a≠1)与指数函数y=a x(a>0,且a≠1)互为反函数.(2)要寻找函数y=f(x)的反函数,可以先把x和y换位,写成x=f(y),再把y解出来,表示成y=g(x)的形式,如果这种形式是唯一确定的,就得到f(x)的反函数g(x).要点一对数函数的概念例1 指出下列函数哪些是对数函数?(1)y=3log2x;(2)y=log6x;(3)y=log x3;(4)y=log2x+1.解(1)log2x的系数是3,不是1,不是对数函数.(2)符合对数函数的结构形式,是对数函数.(3)自变量在底数位置上,不是对数函数.(4)对数式log2x后又加1,不是对数函数.规律方法判断一个函数是对数函数必须是形如y=log a x(a>0且a≠1)的形式,即必须满足以下条件(1)系数为1.(2)底数为大于0且不等于1的常数.(3)对数的真数仅有自变量x.跟踪演练1 若某对数函数的图象过点(4,2),则该对数函数的解析式为( )A.y=log2x B.y=2log4xC.y=log2x或y=2log4x D.不确定答案 A解析设对数函数的解析式为y=log a x(a>0且a≠1),由题意可知log a4=2,∴a2=4,∴a =2,∴该对数函数的解析式为y=log2x.要点二对数函数的图象例2 如图所示,曲线是对数函数y =log a x 的图象,已知a 取3,43,35、110,则相应于c 1、c 2、c 3、c 4的a 值依次为( )A.3、43、35、110B.3、43、110、35C.43、3、35、110D.43、3、110、35 答案 A解析 方法一 先排c 1、c 2底的顺序,底都大于1,当x >1时图低的底大,c 1、c 2对应的a 分别为3、43.然后考虑c 3、c 4底的顺序,底都小于1,当x <1时底大的图高,c 3、c 4对应的a 分别为35、110.综合以上分析,可得c 1、c 2、c 3、c 4的a 值依次为3、43、35、110.故选A.方法二 作直线y =1与四条曲线交于四点,由y =log a x =1,得x =a (即交点的横坐标等于底数),所以横坐标小的底数小,所以c 1、c 2、c 3、c 4对应的a 值分别为3、43、35、110,故选A.规律方法 函数y =log a x (a >0且a ≠1)的底数变化对图象位置的影响.观察图象,注意变化规律:(1)上下比较:在直线x =1的右侧,a >1时,a 越大,图象向右越靠近x 轴,0<a <1时a越小,图象向右越靠近x 轴.(2)左右比较:比较图象与y =1的交点,交点的横坐标越大,对应的对数函数的底数越大. 跟踪演练2 (1)函数y =log a (x +2)+1的图象过定点( ) A .(1,2) B .(2,1) C .(-2,1) D .(-1,1)(2)如图,若C 1,C 2分别为函数y =log a x 和y =log b x 的图象,则( )A .0<a <b <1B .0<b <a <1C .a >b >1D .b >a >1 答案 (1)D (2)B解析 (1)令x +2=1,即x =-1, 得y =log a 1+1=1,故函数y =log a (x +2)+1的图象过定点(-1,1).(2)作直线y =1,则直线与C 1,C 2的交点的横坐标分别为a ,b ,易知0<b <a <1. 要点三 对数函数的定义域例3 (1)函数f (x )=11-x +lg(1+x )的定义域是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)∪(1,+∞) D.(-∞,+∞) (2)若f (x )=121log (21)x +,则f (x )的定义域为( )A.⎝ ⎛⎭⎪⎫-12,0B.⎝ ⎛⎭⎪⎫-12,+∞ C.⎝ ⎛⎭⎪⎫-12,0∪(0,+∞) D.⎝ ⎛⎭⎪⎫-12,2 答案 (1)C (2)C解析 (1)由题意知⎩⎪⎨⎪⎧1+x >0,1-x ≠0,解得x >-1且x ≠1.(2)由题意有⎩⎪⎨⎪⎧2x +1>0,2x +1≠1,解得x >-12且x ≠0.规律方法 求与对数函数有关的函数定义域时,除遵循前面已学习过的求函数定义域的方法外,还要对这种函数自身有如下要求:一是要特别注意真数大于零;二是要注意对数的底数;三是按底数的取值应用单调性,有针对性地解不等式. 跟踪演练3 (1)函数y =x ln(1-x )的定义域为( ) A .(0,1) B .[0,1) C .(0,1] D .[0,1] (2)函数y =lgx +1x -1的定义域是( )A .(-1,+∞) B.[-1,+∞)C .(-1,1)∪(1,+∞) D.[-1,1)∪(1,+∞) 答案 (1)B (2)C解析 (1)因为y =x ln(1-x ),所以⎩⎪⎨⎪⎧x ≥0,1-x >0,解得0≤x <1.(2)要使函数有意义,需⎩⎪⎨⎪⎧x +1>0,x -1≠0,解得x >-1且x ≠1,故函数的定义域为(-1,1)∪(1,+∞),故选C. 要点四 反函数例4 求下列函数的反函数:(1)y =2x -5;(2)y =x1-x ;(3)y =1+e 2x . 解 (1)从x =2y -5中解得y =x +52,即为所求;(2)从x =y 1-y 中解得y =xx +1,即为所求;(3)从x =1+e 2y 移项得x -1=e 2y .两端取自然对数得到ln(x -1)=y2,解得y =2ln(x -1),即为所求.规律方法 要找寻函数y =f (x )的反函数,可以先把x 和y 换位,写成x =f (y ),再把y 解出来,表示成y =g (x )的形式.如果这种形式是唯一确定的,就得到了f (x )的反函数g (x ).既然y =g (x )是从x =f (y )解出来的,必有f (g (x ))=x ,这个等式也可以作为反函数的定义. 跟踪演练4 y =ln x 的反函数是________. 答案 y =e x解析 由y =ln x ,得x =e y ,所以反函数为y =e x.1.下列函数是对数函数的是( ) A .y =log a (2x ) B .y =log 22xC .y =log 2x +1D .y =lg x 答案 D解析 选项A 、B 、C 中的函数都不具有“y =log a x (a >0且a ≠1)”的形式,只有D 选项符合. 2.函数f (x )=11-x +lg(3x +1)的定义域是( )A .(-13,+∞) B.(-∞,-13)C .(-13,13)D .(-13,1)答案 D解析 由⎩⎪⎨⎪⎧1-x >0,3x +1>0,可得-13<x <1.3.函数y =a x与y =-log a x (a >0,且a ≠1)在同一坐标系中的图象形状可能是( )答案 A解析 函数y =-log a x 恒过定点(1,0),排除B 项; 当a >1时,y =a x是增函数,y =-log a x 是减函数,排除C 项,当0<a <1时,y =a x是减函数,y =-log a x 是增函数,排除D 项,A 项正确.4.若a >0且a ≠1,则函数y =log a (x -1)+1的图象恒过定点________. 答案 (2,1)解析 函数图象过定点,则与a 无关, 故log a (x -1)=0,所以x -1=1,x =2,y =1, 所以y =log a (x -1)+1过定点(2,1). 5.函数y =lg x 的反函数是________. 答案 y =10x解析 由反函数的定义知x =10y,故反函数为y =10x.1.判断一个函数是不是对数函数关键是分析所给函数是否具有y =log a x (a >0且a ≠1)这种形式.2.在对数函数y =log a x 中,底数a 对其图象直接产生影响,学会以分类的观点认识和掌握对数函数的图象和性质.3.涉及对数函数定义域的问题,常从真数和底数两个角度分析.一、基础达标1.函数y =log a x 的图象如图所示,则a 的值可以是( )A .0.5B .2C .eD .π 答案 A解析 ∵函数y =log a x 的图象单调递减,∴0<a <1,只有选项A 符合题意. 2.函数f (x )=lg(x -1)+4-x 的定义域为( ) A .(1,4] B .(1,4) C .[1,4] D .[1,4) 答案 A解析 由⎩⎪⎨⎪⎧x -1>0,4-x ≥0,解得1<x ≤4.3.在同一坐标系中,函数y =log 3x 与y =13log x 的图象之间的关系是( )A .关于y 轴对称B .关于x 轴对称C .关于原点对称D .关于直线y =x 对称 答案 B解析 ∵y =13log x =-log 3x ,∴函数y =log 3x 与y =13log x 的图象关于x 轴对称.4.如图是三个对数函数的图象,则a 、b 、c 的大小关系是( )A .a >b >cB .c >b >aC .c >a >bD .a >c >b 答案 D解析 y =log a x 的图象在(0,+∞)上是上升的,所以底数a >1,函数y =log b x ,y =log c x 的图象在(0,+∞)上都是下降的,因此b ,c ∈(0,1),又易知c >b ,故a >c >b .5.已知函数f (x )=⎩⎪⎨⎪⎧3x, x ≤0,log 2x ,x >0,那么f (f (18))的值为( )A .27 B.127C .-27 D .-127答案 B解析 f (18)=log 218=log 22-3=-3,f (f (18))=f (-3)=3-3=127.6.已知对数函数f (x )的图象过点(8,-3),则f (22)=________. 答案 -32解析 设f (x )=log a x (a >0,且a ≠1), 则-3=log a 8,∴a =12.∴f (x )=log 12x ,f (22)=log 12(22)=-log 2(22)=-32.7.求下列函数的定义域: (1)f (x )=lg(x -2)+1x -3; (2)f (x )=log (x +1)(16-4x ).解 (1)要使函数有意义,需满足⎩⎪⎨⎪⎧x -2>0,x -3≠0,解之得x >2且x ≠3.∴函数定义域为(2,3)∪(3,+∞). (2)要使函数有意义,需满足⎩⎪⎨⎪⎧16-4x >0,x +1>0,x +1≠1,解之得-1<x <0或0<x <4. ∴函数定义域为(-1,0)∪(0,4). 二、能力提升8.设函数f (x )=log 2x 的反函数为y =g (x ),且g (a )=14,则a 等于( )A .2B .-2 C.12 D .-12答案 B解析 ∵函数f (x )=log 2x 的反函数为y =2x,即g (x )=2x. 又∵g (a )=14,∴2a=14,∴a =-2.9.若函数f (x )=log a (x +b )的图象如图,其中a ,b 为常数,则函数g (x )=a x+b 的图象大致是( )答案 D解析 由函数f (x )=log a (x +b )的图象可知,函数f (x )=log a (x +b )在(-b ,+∞)上是减函数.所以0<a <1且0<b <1.所以g (x )=a x+b 在R 上是减函数,故排除A ,B.由g (x )的值域为(b ,+∞).所以g (x )=a x+b 的图象应在直线y =b 的上方,故排除C. 10.若log 2a 1+a21+a<0,则a 的取值X 围是____________.答案 ⎝ ⎛⎭⎪⎫12,1解析 当2a >1时,∵log 2a 1+a21+a <0=log 2a 1,∴1+a 21+a <1.∵1+a >0,∴1+a 2<1+a , ∴a 2-a <0,∴0<a <1,∴12<a <1.当0<2a <1时,∵log 2a 1+a21+a <0=log 2a 1,∴1+a 21+a >1.∵1+a >0,∴1+a 2>1+a , ∴a 2-a >0,∴a <0或a >1,此时不合题意.综上所述,a ∈⎝ ⎛⎭⎪⎫12,1. 11.已知f (x )=log 3x . (1)作出这个函数的图象;(2)若f (a )<f (2),利用图象求a 的取值X 围. 解 (1)作出函数y =log 3x 的图象如图所示.(2)令f (x )=f (2),即log 3x =log 32,解得x =2.由图象知:函数f (x )为单调增函数,当0<a <2时,恒有f (a )<f (2).∴所求a 的取值X 围为(0,2). 三、探究与创新12.求y =(log 12x )2-12log 12x +5在区间[2,4]上的最大值和最小值.解 因为2≤x ≤4,所以log 122≥log 12x ≥log 124,即-1≥log 12x ≥-2.设t =log 12x ,则-2≤t ≤-1,所以y =t 2-12t +5,其图象的对称轴为直线t =14,所以当t =-2时,y max =10;当t =-1时,y min =132.13.若函数f (x )为定义在R 上的奇函数,且x ∈(0,+∞)时,f (x )=lg(x +1),求f (x )的word 11 / 11 表达式,并画出大致图象.解 ∵f (x )为R 上的奇函数,∴f (0)=0. 又当x ∈(-∞,0)时,-x ∈(0,+∞), ∴f (-x )=lg(1-x ).又f (-x )=-f (x ),∴f (x )=-lg(1-x ),∴f (x )的解析式为f (x )=⎩⎪⎨⎪⎧lg x +1,x >0,0,x =0,-lg 1-x ,x <0,∴f (x )的大致图象如图所示:。

第二章 §2.7 指数与指数函数

第二章 §2.7 指数与指数函数

增 函数
减 函数
常用结论
1.指数函数图象的关键点(0,1),(1,a),-1,a1. 2.如图所示是指数函数(1)y=ax,(2)y=bx,(3)y=cx,(4)y =dx的图象,则c>d>1>a>b>0,即在第一象限内,指数函 数y=ax(a>0,且a≠1)的图象越高,底数越大.
自主诊断
1.判断下列结论是否正确.(请在括号中打“√”或“×”)
B.0
√C.1
D.2
由函数y=a·2x是指数函数,得a=1, 由y=2x+b是指数函数,得b=0,所以a+b=1.
自主诊断
3.已知关于x的不等式
1x-4 3
≥3-2x,则该不等式的解集为
√A.[-4,+∞)
B.(-4,+∞)
C.(-∞,-4)
D.(-4,1]
不等式13x-4≥3-2x,即 34-x≥3-2x, 由于y=3x是增函数, 所以4-x≥-2x,解得x≥-4, 所以原不等式的解集为[-4,+∞).
第二章
§2.7 指数与指数函数
课标要求
1.理解有理数指数幂的含义,了解实数指数幂的意义,掌握指 数幂的运算性质. 2.通过实例,了解指数函数的实际意义,会画指数函数的图象. 3.理解指数函数的单调性、特殊点等性质,并能简单应用.
内容索引
第一部分 落实主干知识 第二部分 探究核心题型
课时精练
第一部分
√B.
(a
2 3
b
1 2
)(3a
11
2b3
)
1 3
a
1
6b
5 6
9a(a
0,
b
0)
√C. 3 9=3 3

第十讲 指数函数(学生版)

第十讲 指数函数(学生版)

第十讲 指数函数 重难点一、指数图像综合【例1】已知2()f x x =,1()2xg x m ⎛⎫=- ⎪⎝⎭,若对[]11,3x ∀∈-,[]20,2x ∃∈, 12()()f x g x ≥,则m 的取值范围为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,4⎡⎫+∞⎪⎢⎣⎭C .1,2⎛⎤-∞ ⎥⎝⎦D .1,4⎛⎤-∞ ⎥⎝⎦【变式1】如图,面积为8的平行四边形OABC ,对角线AC CO ⊥,AC 与BO 交于点E ,某指数函数x y a=()0,1a a >≠且,经过点E B 、,则a =( )A .2B .3C .2D .3 重难点二、指数复合综合【例2】函数()22323()x x y a a a R --=++∈的递增区间是________. 【变式1】函数2212x y -⎛⎫= ⎪⎝⎭的单调递减区间为( ) A .(],0-∞B .[)0,+∞C .(,2⎤-∞⎦D .)2,⎡+∞⎣ 【变式2】已知函数()()0,1x f x a a a -=>≠且满足(2)(3)f f ->-,则函数21()x g x a -=的单调增区间是________.【例3】已知关于x 的方程422x x a -=有两个不相等的实数根,求a 的取值范围.【变式1】设函数()31,1,2,1x x x f x x -<⎧=⎨≥⎩则满足()()()2f a f f a =的a 取值范围是( ) A .2,13⎡⎤⎢⎥⎣⎦B . []0,1C . 2,3⎡⎫+∞⎪⎢⎣⎭D .[)1,+∞【例4】已知1339x x ⎛⎫≤- ⎪⎝⎭,求函数13xy ⎛⎫= ⎪⎝⎭的值域.【变式1】若函数1()21x f x =+,则该函数在(),-∞+∞上( ) A .单调递减且无最小值 B .单调递减且有最小值 .单调递增且有最大值【例5】若存在正数x 使2()1x a -<成立,则a 的取值范围是( )A .(),-∞+∞B .()2,-+∞C .()0,+∞D .()1,-+∞【变式1】已知函数||212)(x x x f -=,若0)()2(2≥+t mf t f t 对于]2,1[∈t 恒成立,求实数m 的取值范围.【例6】已知)(122)(12R a a a x f x x ∈-+-⋅=+. (1)求()f x 的值域;(2)设()2()x h x f x -=,0a >时,对任意12,[1,1]x x ∈-总有121()()2a h x h x +-≤成立,求a 的取值范围.【变式1】定义域为R 的函数12()2x x b f x a+-+=+是奇函数.(1)求,a b 的值;(2)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.【例7】设函数()(01)x x f x ka a a a -=->≠且是定义在R 的奇函数(1)求k 的值(2)若(1)0f >,试求不等式2(2)(4)0f x x f x ++->的解集(3)若3(1)2f =且22()2()x x g x a a mf x -=+-在[1,)+∞上的最小值为2-,求m 的值【变式1】已知函数()2()11xx f x a a x -=+>+ 证明:(1)函数()f x 在()1,-+∞上为增函数; (2)用反证法证明方程()0f x =没有负数根。

2020年上海新高一新教材数学讲义-专题12 指数函数(学生版)

2020年上海新高一新教材数学讲义-专题12 指数函数(学生版)

专题12 指数函数(指数函数的定义与图像,指数函数的性质)知识梳理1.根式的运算性质:(1)当n 为任意正整数时,()n=a(2)当n 为奇数时,n n a =a ;当n 为偶数时,n na =|a |=⎩⎨⎧<-≥)0()0(a a a a(3)根式的基本性质:n m npmp a a =,(a≥0) 2.分数指数幂的运算性质:)()(),()(),(Q n b a ab Q n m aa Q n m a a a n n n mnnm n m n m ∈⋅=∈=∈=⋅+3.指数函数 n a热身练习1、3a a a ⋅⋅的分数指数幂表示为2、函数xy 2=的值域是3、函数21(0,1)x y a a a -=+>≠且的图像必经过点4、下列函数中值域是+R 的是( )A 、125xy -= B 、113xy -⎛⎫= ⎪⎝⎭ C 、y = D 、y =5、已知函数2()f x x bx c =-+满足(1)(1)f x f x +=-,且(0)3f =,比较()x f b 与()x f c 的大小关系例题解析考点一、指数函数的概念和性质【例1】在下列函数中,是指数函数的有_________________①1()2x y =①11()2x y -=①23x y =•①(0,0,1)x y a x a a =≥>≠①1xy =①21()2x y =①12y x =【例2】函数2(33)xy a a a =-+是指数函数,求a 的值【例3】函数12(0.58)xy -=-的定义域是【例4】函数()xa a x f ⎪⎭⎫ ⎝⎛-=1在()+∞∞-∈,x 上是减函数,求a 的取值范围【巩固训练】1.指出下列函数哪些是指数函数?(1)4x y =;(2)4y x =;(3)4xy =-;(4)(4)xy =-;(5)1(21)(1)2x y a a a =->≠且;(6)4x y -=.2.作出函数12x y -=与12x y -=的图像.3.已知x>0, 函数2(8)xy a =-的值恒大于1,则实数a 的取值范围是_____________4.函数(0,1)xy a a a =>≠在区间[1,2]上的最大值比最小值大2a,则实数a 的值是_____ 5.函数2xy =的图像与函数12xy ⎛⎫= ⎪⎝⎭的图像关于_________对称,它们的交点坐标是______考点二、指数函数的图像及其应用【例5】指数函数①()x f x m =②()x g x n =满足不等式01m n <<<,则它们的图象是 ( )【例6】(1)函数2xy -=-的图象一定过____________象限.(2)函数1()3x f x a -=+的图象一定过定点P ,则P 点的坐标是_________.(3)函数3x y -=与___________的图象关于y 轴对称.【例7】方程22x x +=的实根的个数为_______________. 【例8】.比较下列各组数的大小:(1)0.1和0.2;(2) 163()4和154()3-;(3) 20.8-和125()3-;(4) 13a 和12a (0a >,1a ≠);(5) 1.71.1;(6)2306.-和340.6-。

2.1.2指数函数图象及性质(二)

2.1.2指数函数图象及性质(二)

若把函数 f ( x ) 的图象向左平移2 个单位, y=3(x+2)2 则得到函数 ____________ 的图象; 若把函数 f ( x ) 的图象向下平移 3 个单位, y=3x2-3 则得到函数 _________ 的图象; 若把函数 f ( x ) 的图象向上平移 4 个单位, y=3x2+4 则得到函数 _________ 的图象.
C. 0 a 1, 且 b 0 B. a 1, 且 b 0 D. a 1, 且 b 0
y
o
x
0 a 1, 1 b 1 0,
主页
§2.1.2指数函数及其性质(二) y ( 1 ) x 作出函数图象,求定义域、 例1. 已知函数 2 y ( 1 )| x| 的关系. 值域,并探讨与图象 2
y
2
o -2
- x 1
x
所以当x<0时, f ( x ) 2
主页
.
§2.1.2指数函数及其性质(二)
1.图像过定点问题
由于函数y=ax(a>0,且a≠1)恒经过定点 (0,1),因此指数函数与其它函数复合会产生一 些丰富多彩的定点问题
例2.函数y=ax-3+2(a>0,且a≠1)必经 过哪个定点? (3, 3)
点评:函数y=ax-3+2的图象恒过定点(3,3),实 际上就是将定点(0,1)向右平移3个单位,向上平 移2个单位得到.
主页
§2.1.2指数函数及其性质(二)
【1】函数y=ax+5-1(a>0,且a≠1)必经 过哪个定点? ( 5, 0)
【2】函数 y a b=____. 1
x b
2 恒过定点(1,3)则
1 ) x12 2 x1 , f ( x ) ( 1 ) x22 2 x 2 , 则 f ( x1 ) ( 5 2 5

指数与指数函数.板块二.学生版

指数与指数函数.板块二.学生版

题型一 指数函数的定义与表示【例1】 求下列函数的定义域(1)32xy -= (2)213x y += (3)512xy ⎛⎫= ⎪⎝⎭(4)()10.7xy =【例2】 求下列函数的定义域、值域⑴112x y -= ; ⑵3x y -=; ⑶2120.5x x y +-=【例3】 求下列函数的定义域和值域:1.xa y -=1 2.31)21(+=x y【例4】 求下列函数的定义域、值域(1)110.4x y -=; (2)513x y -=. (3)21x y =+典例分析板块二.指数函数【例5】 求下列函数的定义域(1)13xy =;(2)y =【例6】 已知指数函数()(0,x f x a a =>且1)a ≠的图象经过点(3,π),求(0)f ,(1)f ,(3)f -的值.【例7】 若1a >,0b >,且b b a a -+=b b a a --的值为( )A B .2或2- C .2- D .2题型二 指数函数的图象与性质【例8】 已知1a b c >>>,比较下列各组数的大小:①___bca a ;②1ba ⎛⎫⎪⎝⎭1ca ⎛⎫ ⎪⎝⎭;③11___b ca a ;④__a abc .【例9】 比较下列各题中两个值的大小:⑴ 2.51.7,31.7; ⑵ 0.10.8-,0.20.8-; ⑶ 0.31.7, 3.10.9.【例10】 比较下列各题中两个值的大小(1)0.80.733,(2)0.10.10.750.75-, (3) 2.7 3.51.01 1.01,(4) 3.3 4.50.990.99,【例11】 已知下列不等式,比较m 、n 的大小(1) 22m n<(2)0.20.2m n >(3)()01m n a a a <<<(4)()1m n a a a >>【例12】 图中的曲线是指数函数x y a =的图象,已知a413,,3105四个值,则相应于曲线1234,,,c c c c 的a 依次为_______________.【例13】 已知a =函数()x f x a =,若实数m n ,满足()()f m f n >,则m n ,的大小关系为.【例14】 设a b =c a ,b ,c 的大小关系是【例15】 若对[1,2]x ∈,不等式22x m +>恒成立,求实数m 的取值范围.【例16】 判断函数11()3x y -=的单调性.【例17】 函数||()x f x e =( )A .是奇函数,在(,0]-∞上是减函数B .是偶函数,在(,0]-∞上是减函数C .是奇函数,在[0,)+∞上是增函数D .是偶函数,在(,)-∞+∞上是增函数【例18】 已知函数f (x )为偶函数,当()0x ∈+∞,时,()12x f x +=-,求当()0x ∈-∞,时,()f x 的解析式.【例19】 证明函数x a y =和x a y -= )10(≠>a a 且的图象关于y 轴对称。

专题2.函数、指数函数与对数函数-答案

专题2.函数、指数函数与对数函数-答案

1 / 103.函数函数是描述客观世界中变量关系和规律的最为基本的数学模型和数学工具,有广泛的实际应用.函数是贯穿中职数学的主线.本单元的学习,可以帮助学生在初中用变量之间的依赖关系描述函数的基础上,从集合与对应出发,进一步学习和研究函数的概念,深刻理解函数的本质;通过对函数图像与性质的研究,提升直观想象素养;利用函数的基本表示方法、单调性、奇偶性解决实际生活中的问题,体会函数的实际背景和实际应用,提升数学抽象、逻辑思维和数学应用素养.知识点一:函数的概念(.约需3分钟).内容包括:对应与映射的概念,函数的概念,定义域,函数值的求法. 学习水平一级水平:了解对应与映射的概念,会判断一些简单的对应是否为映射;理解函数的概念,理解函数的定义域、值域、对应法则的概念;能由已知表达式求函数值. 例3.1.1判断下列各图所示对应关系是否函数?解:只要一个x对应唯一的一个y ,就是函数.所以第二个不是,其余两个都是函数.练习:下列三个图象中,能表示 y 是 x 的函数图象的个数是A .0B .1C .2D .3解:第一个图象,对给定的x 的值,有两个y 值与之对应,不是函数图象. 综上所述,表示y 是x 的函数的有第一个、第二个,共2个. 故选C .2 / 10例3.1.2已知函数 321)(-=x x f ,求)1(-f ,)2(f ,)1(+a f .解:513)1(21)1(-=--=-f ;13221)2(=-⨯=f ;1213)1(21)1(-=-+=+a a a f练习:已知函数32)(-=x x f ,求)1(+a f ,)2(a f 。

二级水平:理解函数的三要素,会求函数的定义域,会判断两个函数是否同一函数. 例3.1.3求下列函数的定义域:(1). 51)(-=x x f ;(2)12)(-=x x g ;(3)12)(-+=x x x h解:(1).X ≠5;(2). 21≥x ;(3).012≥-+x x ;x ≥-2或x>1 . 练习:求下列函数的定义域:(1).132)(2+-=x x x f (2).x x x f 212)(2-=例3.1.4指出下列各函数中,哪个与函数y = x 是同一个函数?(1)xx y 2=; (2)2x y =; (3)s =t .解:函数y = x 中:R y R x ∈∈,;s =t 与y=x 是同一个函数. 练习:上例中,哪个与函数y = |x| 是同一个函数?三级水平:会求简单复合函数的定义域及函数值.例3.1.5设函数)(x f 的定义域是(a ,b ),求函数)1(+x f 的定义域. 解:∵a<x+1<b,∴a-1<x<b-1 练习:知识点二:函数的表示法.约需3学时. 内容包括:函数的解析法、列表法、图像法. 学习水平一级水平:能判断点与图像的关系,会利用“描点法”作简单函数的图像.掌握正比例函数,反比例函数,一次函数等几个常用函数的解析式及图像.3 / 10例3.2.1判断点P (1,1),Q (-1,-3)是否在 f (x) =3x 2 + x -5 的图像上. 解:3+1-5=-1,3-1-5=-3.所以点Q(-1,-3)在f(x)图像上 例3.2.2点A (a ,3)在函数352+-=x x y 上,求a. 解: 3523+-=a a ; 3a+9=2a-5;a=-14例3.2.3反比例函数经过点(4,81-),求解析式. 解:481k =-;k=21-;x y 21-=二级水平:掌握二次函数的图像及性质,能用待定系数法求二次函数的解析式;结合实例理解分段函数的意义,能由分段函数的解析式直接求值.例3.2.4已知一元二次函数的顶点为(6,-12),与x 轴的一个交点为(8,0),求这个函数的解析式. 解:y=a(x -6)2-12;a(8-6)2-12=0;例3.2.5函数 y =ax + a 和y =ax 2 的图像只可能是( ).练习:在图中,函数y=-ax 2与y=ax+b 的图象可能是( )A.B. C. D.根据图象判断两函数式中,a 的符号是否相符;A 、由函数y=-ax 2的图象知a <0,由函数y=ax+b 的图象知a >0,不相符;B 、由函数y=-ax 2的图象知a >0,由函数y=ax+b 的图象知a <0,不相符;C 、由函数y=-ax 2的图象知a >0,由函数y=ax+b 的图象知a <0,不相符;D 、由函数y=-ax 2的图象知a <0,由函数y=ax+b 的图象知a <0,相符. 故选D .4 / 10例3.2.6设)0(3)0(4{)(≤->+=x x x x x f ,则(1).=)2(f ;(1).=-))3((f f .三级水平:能用适当方法表示生活中的函数关系.例3.2.7文具店内出售某种铅笔,每支售价0.12元,应付款是购买铅笔数的函数,当购买6支以内(含6支)的铅笔时,请用三种方法表示这个函数.例3.2.8国内投寄外埠平信,每封信不超过20克付邮资80分,超过20克而不超过40克付邮资160分,试写出x(0≤x ≤40)克重的信应付的邮资y(分)与x(克)的函数关系,并求函数的定义域,作出函数的图象.知识点三:函数的单调性和奇偶性.约需 4 学时.内容包括:函数单调性、奇偶性的定义,判断函数的单调性和奇偶性;函数单调性、奇偶性的应用. 学习水平一级水平:结合实例理解函数的单调性及奇偶性的定义,能根据函数图像判断函数的单调性和奇偶性. 例 3.3.1 结合下列函数的图像,判断函数的单调性: (1)函数y =2x+3在R 上是 函数;(2)函数y=2x 2 + 4x-3 的单调递增区间是 ,单调减区间是 ; (3)函数xy 1-=在(0,+∞)上是 函数.例 3.3.2 结合下列函数的图像,判断函数的奇偶性: (1) f (x)= x 3 ; (2) f(x)=2x2;(3) f (x)= x+1.二级水平:能利用函数奇偶性定义判断函数的奇偶性,能利用函数奇偶性求 函数值;能根据函数的单调性比较函数值的大小. 例 3.3.3 已知 f (x) =x 5+ bx 3 + cx 且 f(-2)=10,那么 f(2) =.例 3.3.4 已知奇函数 f (x)在(1,5)上单调递减,比较 f (-1), f (-3), f (-5)的大小关系.三级水平:能根据函数单调性定义判断、证明函数的单调性;能解决含有参数的实际问题,能解决有关函数奇偶性、单调性的综合问题.例 3.3.5 已知 f (x)= x 3 + ax + bsin x-1,且 f (4) =3,求 f (-4).5 / 10例 3.3.6 已知函数 f (x) = (m 2-1)x2+(m -1)x + (n + 2) 为奇函数,则m =,n =.例 3.3.7 已知函数 f (x)= x 2 +2(a -1)x +2 在区间(-∞,4)上是减函数,求实数a 的取值范围.例 3.3.8 判断函数xx x f 1)(+=在(1,+∞)上的单调性.例 3.3.9 已知函数为偶函数,在[-1,0]上是增函数,且最大值为5,那么 f (x)在[0,1)]是 函数,最大值是 .知识点四:函数的实际应用举例.约需 2 学时. 内容包括:选择函数模型解决实际问题. 学习水平三级水平:学会将实际问题转化为数学问题,选择适当的函数模型(分段函数、二次函数)刻画实际问题.培养学生的作图及读图的能力.例 3.4.1 某城市供电不足,供电部门规定,每户每月用电不超过 200kW .h ,收费标准为 0.51 元/(kW . h ),当用电超过 200kW . h ,但不超过400kW . h 时,超过的部分按 0.8 元/(kW .h )收费,当用电超过 400kW . h 时,就停止用电.(1)写出每月用电费 y 元与用电量x 之间的函数解析式,并求函数的定义域; (2)求出 f(150),f(300)的值; (3)作出函数的图像.例 3.4.2 设 f (x)表示某事物温度随时间的变化规律,有一下函数的关系式 (1)比较第 5 分钟与第 25 分钟时该物体温度值得大小; (2)求在什么时候该物体温度最高?最高温度是多少?例 3.4.3 某商品的进价为每件 50 元,根据市场调查,如果售价为每件50 元时,每天可卖出 400 件;商品的售价每上涨 1 元,则每天少卖10件.设每件商品的定价为x 元(x ≥50,x ∈N ).(1)求每天销售量与自变量x 的函数关系式; (2)求每天销售量利润与自变量x 的函数关系式;(3)每件商品的售价定为多少时,每天可获得最大利润?最大的日利润是多少元?6 / 105.指数函数与对数函数指数函数与对数函数是基本函数,在科技领域内应用广泛.本单元学习,可以帮助学生理解指数、对数的概念及运算法则和指数函数、对数函数的有关概念,利用图像研究指数函数、对数函数的基本性质,提升数学运算、逻辑思维和直观想象素养;在研究过程中进一步领会研究函数的基本方法,认识指数函数、对数函数在现实生活中的广泛应用,提升数学抽象和数学应用素养.知识点一:有理数指数幂和实数指数幂.约需 3 学时.内容包括:n 次根式、分数指数幂、有理数指数幂的概念,根式、分数指数幂的互化,实数指数幂的运算性质及运用. 学习水平一级水平:能理解分数指数幂、有理数指数幂的概念,会对根式、分数指数幂进行互化,能运用实数指数幂的运算性质进行计算和化简.例 5.1.1 将下列各根式写成分数指数幂.(1)13= (2)431a=例 5.1.2 将下列各分数指数幂写成根式的形式. (1)412= (2)324=例 5.1.3 计算:(1)3227= (2)31256.0=例 5.1.4 化简:(1)33231a a a ∙∙ (2)))((212212b a b a -+ .二级水平:能运用实数指数幂的运算性质进行幂的计算和化简,并能利用幂 的性质解决根式的计算问题. 例 5.1.5 计算: 43411643216∙∙-例 5.1.6 计算:543812793⨯⨯⨯三级水平:能熟练运用根式、指数幂的相关知识进行化简和计算.例 5.1.7 化简:(1).()323233ba b a abb(2). 32238791)2(413⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+-⨯7 / 10知识点二:指数函数.约需 3 学时.内容包括:指数函数定义,指数函数图像及性质,指数函数模型及其应用. 学习水平一级水平:理解指数函数定义、图像及性质,能用“描点法”作指数函数图像,能理解 0<a <1 与 a >1 两种情况的指数函数图像的总体特征,能结合图像分析并指出基本型指数函数的有关性质(单调性、值域、定点).例 5.2.1 判断下列指数函数在),(+∞-∞内的单调性:y= 0.7x ; (2)xy ⎪⎭⎫⎝⎛=23例 5.2.2 函数 y=2x 的大致图像是( ).二级水平:能作出指数函数简图,能判断指数函数的单调性,并应用指数函数的单调性求函数的定义域和值域,能判断指数增长模型或指数衰减模型、比较同底指数幂的大小关系,能用待定系数法求指数函数解析式.例 5.2.3 求下列函数的定义域:(1)121-=xy ; (2) 273-=xy例 5.2.4 判断下列函数在),(+∞-∞内的单调性:(1)xy -⎪⎭⎫⎝⎛=121 (2) 33x y =例 5.2.5 已知指数函数 f (x) =a x 的图像过点 )94,2( ,求 f (3)的值.8 / 10例 5.2.6 比较大小:(1). 313 1;(2)312 252⎪⎭⎫⎝⎛三级水平:能从实际情境中建立指数函数模型,感受生活中的数学模型,体会数学知识的应用.例 5.2.7 林阳的家长于 2015 年 7 月 1 日存入银行 10000 元人民币,整存整取一年期的年利率为 3.20%,他按照一年期存入,如果每过一年连本带息转存,那么三年后连本带息共有多少元(结果保留两位小数)?例 5.2.8 某种抗生素类药物服药后,每经过 1 小时,药物在体内的剩余量为32,问 4 小时后的剩余量为多少?知识点三:对数.约需 4 学时.内容包括:对数的概念(含常用对数、自然对数)及性质,对数与指数的关系,指数式与对数式的互化,积、商、幂的对数.学习水平一级水平:能熟练完成指数式与对数式的互化,能运用对数性质求值,初步了解积、商、幂对数的公式及简单运用.例 5.3.1 将下列指数式写成对数式:(1)8134= ; (2)10x = y .例 5.3.2 将下列对数式写成指数式:(1)log 10 1000 = 3 ;(2)log 5 625=4 .例 5.3.3 求下列对数的值:(1)log 5 5;(2)log 8 1 .例 5.3.4 用lgx , lgy ,lgz 表示下列各式:(1)zxylg ; (2)x lg .二级水平:理解并熟记积商幂的对数公式,能运用公式解决相关计算问题. 例 5.3.5 设x>0,y >0,下列各式中正确的是( ).A. ln(x + y) =lnx +lnyB. ln(xy) =lnxlnyC. ln(xy)=lnx +lnyD.yxy x ln ln ln =9 / 10例 5.3.6 计算下列各式的值:(1)21lg 5lg - ; (2)lg125+lg8.三级水平:能运用积、商、幂的对数运算法则解决综合性计算问题. 例 5.3.7 计算:(1)(lg 2)2+ lg 20×lg5 ; (2)5.0lg 85lg 125lg +-例 5.3.8 已知log 2 3 = a ,log 2 5=b ,则59log 2=( ). A. a 2-b B. 2a - b C.ba 2D. b a 2知识点四:对数函数.约需 3 学时.内容包括:对数函数定义,对数函数图像、性质及其应用. 学习水平一级水平:理解对数函数定义、图像及性质,能用“描点法”作对数函数图像,能理解记忆 0<a <1 与 a >1 两种情况的对数函数图像的总体特征,能结合图像分析基本型对数函数的有关性质(单调性、值域、定点),会求简单对数函数的定义域.例 5.4.1 作出函数y =log 2 x 的简图.例 5.4.2 求下列函数的定义域.(1)y = log 2(x +1) ;(2)xy ln 1=.例 5.4.3 函数y = log 3 x 的大致图像是( ).10 / 10例 5.4.4 若函数y = log a x 的图像经过点(),则底数a =.二级水平:能结合对数函数简图,比较同底对数的大小关系,能求含有对数式的函数的定义域. 例 5.4.5 比较大小:(1)log 2 7与log 2 9; (2)4log 5log 2121与.例 5.4.6 求下列函数的定义域:(1)x y ln =; (2)xy 3log 11-=三级水平:应用对数函数解决实际问题,体会数学知识的应用.例 5.4.7 某钢铁公司今年年产量为a 万吨,计划每年比上一年增产5%,设经过 x 年后产量番一翻,则 x 的值是( ). A.(1+5%)2 B. log 1.05 2 C. alog 1.05 2 D.a2log 05.1例 5.4.8 某地区的森林蓄积量每年比上一年平均增长 8%,要增长到原来的x 倍,需要经过y 年,则函数y = f(x)的图像大致为( ).。

指数与指数函数图像及性质(学生版)

指数与指数函数图像及性质(学生版)

指数与指数函数图像及性质【知识要点】 1.根式(1)如果a x n =,那么x 叫做a 的n 次方根.其中1>n ,且*∈N n 。

(2)如果a x n=,当n 为奇数时,n a x =;当n 为偶数时,n a x ±=()0>a .其中n a 叫做根式,n 叫做根指数,a 叫做被开方数. 其中1>n ,且*∈N n 。

(3)()()*∈>==N n n a a nnn ,1,00。

,||,a n a n ⎧=⎨⎩为奇数为偶数其中1>n ,且*∈N n 。

2.分数指数幂(1)正分数指数幂的定义: n m n m a a =()1,,,0>∈>*n N n m a (2)负分数指数幂的定义: nm nm aa1=-()1,,,0>∈>*n Nn m a(3) 要注意四点:①分数指数幂是根式的另一种表示形式; ②根式与分数指数幂可以进行互化; ③0的正分数指数幂等于0; ④0的负分数指数幂无意义。

(4)有理数指数幂的运算性质:①sr sra a a +=⋅()Q s r a ∈>,,0;② ()rs sra a =()Q s r a ∈>,,0;③()r r rb a ab =()Q r b a ∈>>,,0,0.3.无理数指数幂(1)无理数指数幂的值可以用有理数指数幂的值去逼近; (2)有理数指数幂的运算性质同样适用于无理数指数幂。

4.指数函数的概念:一般地,函数()0,1xy a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域是R 。

5.指数函数的图像与性质第一课时【典例精讲】题型一 根式、指数幂的化简与求值1.n a 叫做a 的n 次幂,a 叫做幂的底数,n 叫做幂的指数,规定:1a a =;2. (1,)n a n n N +=>∈,||,a n a n ⎧=⎨⎩为奇数为偶数;3. 1(0,,,)n mnmn a a m n N ma-+=>∈且为既约分数,=a a αβαβ(). 【例1】计算下列各式的值.(1(2(3;(4)a b >.【变式1】 求下列各式的值:(1*1,n n N >∈且);(2【例2】计算)21313410.027256317--⎛⎫--+-+⎪⎝⎭【变式2】化简34的结果为( )A .5B .C .﹣D .﹣5【变式3】1332-⎛⎫ ⎪⎝⎭×76⎛⎫- ⎪⎝⎭0+148=________.题型二 根式、指数幂的条件求值 1. 0a >时,0;b a > 2. 0a ≠时, 01a =; 3. 若,r s a a =则r s =;4. 1111222222()(0,0)a a b b a b a b ±+=±>>; 5. 11112222()()(0,0)a b a b a b a b +-=->>. 【例3】已知11223a a-+=,求下列各式的值.(1)11a a -+;(2)22a a -+;(3)22111a a a a --++++【变式1】已知,a b 是方程2640x x -+=的两根,且0,a b >>的值.【变式2】已知12,9,x y xy +==且x y <,求11221122x y x y-+的值.【变式3】已知11223a a -+=,求33221122a aa a----的值.【变式4】(1)已知122+=xa,求xx xx a a a a --++33;(2)已知a x=+-13,求6322--+-x ax a .【例4】计算下列各式的值:(1)246347625---+-;(2)()2x 3442<--+-x x x ;(3)12121751531311++-+++++++n n ;(4)()54 2222233=++--xxxx x 其中.【变式5】化简或计算出下列各式:(1)121316324(1243)27162(8)--+-+-;(2)化简65312121132ab b a b a ---⎪⎪⎭⎫ ⎝⎛;(3【课堂练习】1. 若()0442-+-a a 有意义,则a 的取值范围是()A.2≥aB.42<≤a 或4>aC. 2≠aD. 4≠a 2. 下列表述中正确的是() A.()()()273336263=-=-=- B.32213421313a a a a a a =⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⋅=⋅ C.无理数指数幂na (n 是无理数)不是一个确定的实数 D.()()()⎩⎨⎧≤-≥=00a a a a a nn3. 已知0>a ,则的值2313123131⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+--a a a a 为 ()A.3232-+aa B.4 C. 3232--aa D. 4-4. 计算:()=-+-0430625.0833416π ______.【思维拓展】1.化简⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+-----2141811613212121212121的结果是 ( )A.13212121--⎪⎪⎭⎫ ⎝⎛-B.132121--⎪⎪⎭⎫ ⎝⎛- C.32121-- D.⎪⎪⎭⎫ ⎝⎛--3212121第二课时题型三 指数函数的概念【例1】已知函数()2()33x f x a a a =-+是指数函数,求实数a 的值。

004指数与指数函数(二)生

004指数与指数函数(二)生

高一数学基础教材(A )—04第二章 基本初等函数2-1 指数与指数函数(二)✍基础知识:1、指数函数的定义函数 叫做指数函数,其中x 是自变量,函数的定义域为R.指数函数xy a =在底数1a >及01a <<这两种情况下的图象和性质:(1)指数函数中,底数是一个常量,自变量出现在指数位置上.显然y =x a不是指数函数,这一点要特别注意.(2)指数函数中,系数一定为1,指数一定为x.例如,y =3·2x 不是指数函数,y =2x+1也不是指数函数.(3)当0<a<1时,x →+∞,y →0;当a>1时,x →-∞,y →0. (其中“x→+∞”的意义是“x 接近于正无穷大”)✍例题讲解:[例1] 下列函数中,哪些是指数函数?(1)y =10x ;(2)y =10x +1;(3)y =-4x ;(4)y =x x ;(5)y =x α(α是常数).【一点通】 判定一个函数为指数函数:①___________________;②_________________________;③________________________________________. 【巩固】1.给出下列函数: ①y =2·(2)x;②y =2x -1;③y =(π2)x;④y =31x -;⑤y =x 13.其中是指数函数的是________(填序号).【巩固】2.若函数y =(a 2-3a +3)·a x是指数函数,求a 的值.[例2] 如图,曲线C 1,C 2,C 3,C 4是指数函数y =ax的图象,而a ∈⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫23,13,5,π,则图象C 1,C 2,C 3,C 4对应的函数的底数依次是______,______,________,________.【一点通】(1)指数函数的图象随底数变化的规律:①无论指数函数的底数a 如何变化,指数函数y =a x的图像都与直线_________相交于点(__,________),由图像可知:在y 轴右侧,图象从下到上相应的底数由___变_____.②指数函数的底数与图象间的关系可概括记忆为:在第一象限内,图高则底_____(填大小). (2) 指数函数图象问题的处理方法①抓住图象上的特殊点,如指数函数的图象过定点(___,____); ②利用图象变换,如函数图象的平移变换(左右平移、上下平移); ③利用函数的__________与______________.【巩固】3.函数y =2-|x |的大致图象是 ( )【巩固】4.函数f (x )=ax -1+1(a >0且a ≠1)的图像过定点A ,则A 点的坐标为________.[例3] 比较下列各组数的大小:(1)1.82.2,1.83;(2)0.7-0.3,0.7-0.4;(3)1.90.4,0.92.4;(4)(45)12,(910)13.【一点通】 比较幂的大小的方法:(1)对于底数相同但指数不同的幂,可以利用指数函数的______________来比较. (2)对于底数不同但指数相同的幂,可利用指数函数__________________来比较. (3)对于底数不同且指数不同的幂,则应通过________________来比较. 【巩固】5.下列判断正确的是 ( )A .2.52.5>2.53B .0.82<0.83C .π2<π2D .0.90.3>0.90.5【巩固】6.已知a =5-12,函数f (x )=a x.若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为________.【巩固】7.比较下列各组数的大小:(1)(54)2.3和(45)2.3;(2)0.6-2和(43)23-.【巩固】8.如果a -5x >ax +7(a >0,且a ≠1),求x 的取值范围.[例4] (12分)求下列函数的定义域和值域:(1)y =21x -4;(2)y =⎝ ⎛⎭⎪⎫23-|x |;(3)y =22x -x 2.【一点通】(1)函数y =af (x )的定义域与y =f (x )的定义域相同.(2)函数y =af (x )的值域的求法如下:①换元,令t =f (x );②求t =f (x )的定义域x ∈D ;③求t =f (x )的值域t ∈M ;④利用y =at 的单调性求y =at ,t ∈M 的值域.【巩固】9.函数y = a x-1的定义域是(-∞,0],则实数a 的取值范围为________.【巩固】10.函数f (x )=⎝ ⎛⎭⎪⎫13x-1,x ∈[-1,2]的值域为________. 【巩固】11.求下列函数的定义域和值域:(1)y = 1-2x; (2)y =(13)3-x .(1)应用指数函数y =ax 的单调性时,如果底数a 大小不确定,必须分________________和_____________________两种情况讨论.(2)当_____________时,a 的值越大,图象越靠近y 轴,递增速度越快.当_________时,a 的值越小,图象越靠近y 轴,递减的速度越快.课堂练习一、选择题:1、化简1111132168421212121212-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,结果是( )A 、11321122--⎛⎫- ⎪⎝⎭B 、113212--⎛⎫- ⎪⎝⎭C 、13212-- D 、1321122-⎛⎫- ⎪⎝⎭2、44366399a a ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭等于( )A 、16aB 、8aC 、4aD 、2a3、若1,0a b ><,且22b ba a -+=,则b b a a --的值等于( )A 、6B 、2±C 、2-D 、24、函数()2()1xf x a =-在R 上是减函数,则a 的取值范围是( )A 、1>a B 、2<a C 、2a < D 、12a <<5、下列函数式中,满足1(1)()2f x f x +=的是( )A 、1(1)2x + B 、14x + C 、2x D 、2x -6、下列2()(1)x x f x a a -=+是( )A 、奇函数B 、偶函数C 、非奇非偶函数D 、既奇且偶函数7、已知,0a b ab >≠,下列不等式(1)22a b >;(2)22ab>;(3)b a 11<;(4)1133a b >;(5)1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭中恒成立的有( )A 、1个B 、2个C 、3个D 、4个8、函数2121x x y -=+是( )A 、奇函数B 、偶函数C 、既奇又偶函数D 、非奇非偶函数9、函数121x y =-的值域是( )A 、(),1-∞ B 、()(),00,-∞+∞ C 、()1,-+∞ D 、()(,1)0,-∞-+∞10、已知01,1a b <<<-,则函数x y a b =+的图像必定不经过( )A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限11、2()1()(0)21x F x f x x ⎛⎫=+⋅≠ ⎪-⎝⎭是偶函数,且()f x 不恒等于零,则()f x ( )A 、是奇函数 B 、可能是奇函数,也可能是偶函数C 、是偶函数 D 、不是奇函数,也不是偶函数12、一批设备价值a 万元,由于使用磨损,每年比上一年价值降低%b ,则n 年后这批设备的价值为( )A 、(1%)na b -B 、(1%)a nb -C 、[1(%)]n a b -D 、(1%)na b - 二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上) 13、若103,104xy==,则10x y-= 。

第二章 函数2-4指数与指数函数

第二章  函数2-4指数与指数函数



解法2:当a>0,a≠1时,y=ax是定义域上 的单调函数,因此其最值在x∈[0,1]的两个 端点得到,于是必有1+a=3,∴a=2. 答案:B 点评:指数函数的最值问题一般都是用单调 性解决.
(理)函数y=ax(a>0,且a≠1)在[1,2]上的最大值比最 a 小值大 ,则a的值是________. 2 解析:当a>1时,y=ax在[1,2]上递增,

( B.2ab>2b D.log2(ab)<-2
)
[答案] D [解析] 易知y=2x在R上单调递增, y=log2x在R+上单调递增, 故2ab<2a,2ab<2b,
1 log2(ab)<log222=-2,故选D.
4x+1 2.(2010· 重庆理,5)函数f(x)= x 的图象 ( 2 A.关于原点对称 B.关于直线y=x对称 C.关于x轴对称 D.关于y轴对称
0<y<1
x<0 y>1


误区警示 1.忽视底数a>1与0<a<1时性质的区别及函 数的值域致误. 2.比较幂值大小时,要注意区分底数相同 还是指数相等.是用指数函数的单调性,还 是用幂函数的单调性或指数函数的图象解 决.要注意图象的应用,还应注意中间量0、 1等的运用.指数函数的图象在第一象限内 底大图高(逆时针方向底数依次变大).
[例1]
化简: 4 1 3=________; a-1
(1)(1-a) 3
(2) xy2· xy-1· xy=________; (3)0.25
-0.5
1 1 +27- -6250.25=________. 3
答案:(1)- a-1 (2)xy

《指数与指数函数》课件

《指数与指数函数》课件

2 特殊性质
e的值是无理数,e的倒数为0.3678… 。。
自然对数函数的定义
自然对数函数y=lnx是以常数e(约为2.7 18 2 8 )为底数的对数函数。
自然对数函数的图像和性质
图像
性质
1 无界限性
自然对数函数的定义域是(0,+∞),值域是(∞,+∞)。
2 单调递增
自然对数函数具有单调递增性质,x越大, 自然对数的值越大。
对数和指数的关系
对数和指数是互为反函数的函数,可以用来互相转化,例如e^ (ln x)=x。
对数函数的图像和性质
图像
性质
1 穿过y轴
当x=1时,y=0,因此,对于任何底数a (a>0且a≠1),对数函数y=logax都穿过点 (1,0)。
2 单调递增
底数大于1时,对数函数单调递增;底数小 于1时函数单调递减。
对数函数的定义
对数函数是指数函数的反函数,其定义为y=logax,其中a>0且a≠1,x>0。
对数的性质
对于任意的a>0,a≠1,m 和n是正数,则有:
对数乘法公式
loga(m ·n)=logam +logan。
对数除法公式
loga(m /n)=logam −logan。
对数幂运算公式
loga(m ^ n)=nlogam 。
指数函数y=e^ x的图像是一条通过点(0,1),从左往右逐渐增长的曲线。
指数函数的图像和性质
图像
性质
1 在零点处穿过y轴
e^ 0=1,因此该函数穿过y轴(0,1)。
2 单调递增
指数函数的导数恒大于0,因此函数单调递 增。
3 无零点
指数函数无论x取多少值,其函数值都不为0。

指数与指数函数(学生版)

指数与指数函数(学生版)

指数与指数函数一、指数与指数幂的运算1.根式的概念一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.此时,a 的n 次方根用符号n a 表示.式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.当n 是偶数时,正数的n 次方根有两个,这两个数互为相反数.此时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号-n a 表示.正的n 次方根与负的n 次方根可以合并成±n a (a >0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作00=n . 结论:当n 是奇数时,a a n n=当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a n n2.分数指数幂)1,,,0(*>∈>=n N n m a a a n m nm )1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义3.指数幂的运算性质(1); (2);(3)。

二、指数函数1、概念一般地,函数)1a ,0a (a y x≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:①指数函数的定义是一个形式定义②注意指数函数的底数的取值范围,底数为什么不能是负数、零和1.2、指数函数的图象和性质注意内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.(1)指数函数的图象如右图:分类讨论.②画指数函数y =a x(a >0,且a≠1)的图象,应抓住三个关键点:(1,a),(0,1),⎝ ⎛⎭⎪⎫-1,1a .③指数函数都以x 轴为渐近线(当10<<a 时,图象向左无限接近x 轴,当1>a 时,图象向右无限接近x轴); ④对于相同的)1,0(≠>a a a 且,函数x x a y a y -==与的图象关于y 轴对称。

第7讲指数函数与对数函数(学生版)

第7讲指数函数与对数函数(学生版)

第7讲 指数函数与对数函数一.基础知识回顾1.指数函数的定义:函数 叫作指数函数,自变量x 在指数位置上,底数a ( )的常量.2.指数函数的图象与性质y =a x a >1 0<a <1图象定义域值域性质 过定点( )当x >0时, ; 当x <0时, 当x >0时, 当x <0时, ;在R 上是 函数 在R 上是 函数3. 当0<a <1时,指数函数的底数越小函数图像越接近坐标轴,当a >1,指数函数的底数越大函数图像越接近坐标轴4.对数函数的定义:一般地,我们把函数 (a>0,a≠1)叫作对数函数,a 叫作对数函数的 ,x 是 5.对数函数的图象与性质a >1 0<a <1图象性 质 定义域:值域:过点 ,即x =1时,y =0当x >1时, 当0<x <1时, 当x >1时,当0<x <1时,是(0,+∞)上的 函数 是(0,+∞)上的 函数6.当0<a 大函数图像越接近坐标轴7.反函数:指数函数y =a x 与对数函数y =log a x 互为反函数,它们的图象关于直线 对称.二.典例精析题型一:指数函数的性质及应用例1:(1)已知a =32)21(,b =234-,c =31)21(,则下列关系式中正确的是( ) A .c <a <b B .b <a <c C .a <c <b D .a <b <c(2)设偶函数f (x )满足f (x )=2x -4(x ≥0),则{x |f (x -2)>0}=( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2}(3)函数f (x )=⎝⎛⎭⎫12-x 2+2x +1的单调减区间为______.变式训练1:(1)已知a =2,b ,c ,则( )A .a >b >cB .a >c >bC .c >a >bD .b >c >a(2)已知函数y =2-x 2 +ax +1在区间(-∞,3)内递增,则a 的取值范围为 .(3)函数f (x )=⎝⎛⎭⎫14x -⎝⎛⎭⎫12x +1在x ∈[-3,2]上的值域是________题型二:指数型函数的综合问题例2:已知f (x )=a a 2-1(a x -a -x )(a >0且a ≠1). (1)判断f (x )的奇偶性;(2)讨论f (x )的单调性;(3)当x ∈[-1,1]时f (x )≥b 恒成立,求b 的取值范围.变式迁移2:已知函数f (x )=(12x -1+12)x 3. (1) 求f (x )的定义域;(2)证明:f (-x )=f (x ); (3)证明:f (x )>0.题型三:对数函数的性质及应用 例3:已知a =231-,b =log 312,c =log 3121,则( ) A .a >b >c B .a >c >b C .c >a >b D .c >b >a(2)定义在R 上的偶函数f (x )在[0,+∞)上递增,f (13)=0,则满足)(log 81x f >0的x 的取值范围是( )A .(0,+∞)B .(0,12)∪(2,+∞)C .(0,18)∪(12,2)D .(0,12) (3)已知函数f (x )=lg ax +a -2x在区间[1,2]上是增函数,则实数a 的取值范围是______ 变式训练3:(1)设函数f (x )=log a |x |在(-∞,0)上单调递增,则f (a +1)与f (2) 的大小关系是( A )A .f (a +1)>f (2)B .f (a +1)<f (2)C .f (a +1)=f (2)D .不能确定(2)已知函数f (x )=a x +log a x (a >0,a ≠1)在[1,2]上的最大值与最小值之和为log a 2+6,则a 的值为( C )A.12B.14C .2D .4 (3)已知函数f (x )=ln(1-a 2x )的定义域是(1,+∞),则实数a 的值为________. 题型四:对数型函数的综合问题例4:已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1.(1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明;(3)若a >1时,求使f (x )>0的x 的解集.变式训练4:已知f (x )=2+log 3x ,x ∈[1,9],求y =[f (x )]2+f (x 2)的最大值及y 取最大值时x 的值.三.方法规律总结2.比较两个指数幂大小时,尽量化同底数或同指数,当底数相同,指数不同时,构造同一指数函数,然后比较大小;当指数相同,底数不同时,构造两个指数函数,利用图象比较大小.3.指数函数在同一直角坐标系中的图象的相对位置与底数大小的关系如图所示,则0<c <d <1<a <b .在y 轴右侧,图象从上到下相应的底数由大变小;在y 轴左侧,图象从下到上相应的底数由大变小;即无论在y 轴的左侧还是右侧,底数按逆时针方向变大.4.求解与对数函数有关的复合函数的单调性的步骤:(1)确定定义域;(2)弄清函数是由哪些基本初等函数复合而成的,将复合函数分解成基本初等函数y =f (u ),u =g (x );(3)分别确定这两个函数的单调区间;(4)若这两个函数同增或同减,则y =f (g (x ))为增函数,若一增一减,则y =f (g (x ))为减函数,即“同增异减”.5.用对数函数的性质比较大小:(1)同底数的两个对数值的大小比较例如,比较log a f (x )与log a g (x )的大小,其中a >0且a ≠1.①若a >1,则log a f (x )>log a g (x )⇔f (x )>g (x )>0.②若0<a <1,则log a f (x )>log a g (x )⇔0<f (x )<g (x ).(2)同真数的对数值大小关系如图:图象在x 轴上方的部分自左向右底逐渐增大,即0<c <d <1<a <b .6.常见对数方程式或对数不等式的解法:(1)形如log a f (x )=log a g (x )(a >0且a ≠1)等价于f (x )=g (x ),但要注意验根.对于log a f (x )>log a g (x )等价于0<a <1时,⎪⎩⎪⎨⎧<>>);()(,0)(,0)(x g x f x g x f a >1时,⎪⎩⎪⎨⎧>>>).()(,0)(,0)(x g x f x g x f (2)形如F (log a x )=0、F (log a x )>0或F (log a x )<0,一般采用换元法求解.四.课后练习作业一.选择题1.函数f (x )=ln (x +3)1-2x的定义域是( ) A .(-3,0) B .(-3,0] C .(-∞,-3)∪(0,+∞) D .(-∞,-3)∪(-3,0)2.若函数y =f (x )是函数y =a x (a >0且a ≠1)的反函数,且f (2)=1,则f (x )=( )A .log 31x B.12x C . log 2x D .2x -23.在同一坐标系中,函数y =2x 与y =⎝⎛⎭⎫12x 的图象之间的关系是( ) A .关于y 轴对称 B .关于x 轴对称C .关于原点对称 D .关于直线y =x 对称4.已知f (x )=3x -b (2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域为( )A .[9,81]B .[3,9]C .[1,9]D .[1,+∞)5.函数f (x )=a |x +1|(a >0,a ≠1)的值域为[1,+∞),则f (-4)与f (1)的关系是( )A 不确定.B .f (-4)=f (1)C .f (-4)<f (1)D f (-4)>f (1)6.函数y =⎝⎛⎭⎫12x +1的图象关于直线y =x 对称的图象大致是( )7.当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x<0恒成立,则实数m 的取值范围是( )A .(-2,1)B .(-4,3)C .(-1,2)D .(-3,4)8.已知函数f (x )=ln e x -e -x2,则f (x )是( ) A .非奇非偶函数,且在(0,+∞)上单调递增B .奇函数,且在R 上单调递增C .非奇非偶函数,且在(0,+∞)上单调递减D .偶函数,且在R 上单调递减9.设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A.q =r <pB.p =r <qC.q =r >pD.p =r >q10.已知函数f (x )=log a (2x -a )在区间⎣⎡⎦⎤12,23上恒有f (x )>0,则实数a 的取值范围是( B )A. ⎣⎡⎭⎫13,1B. ⎝⎛⎭⎫13,1C.⎝⎛⎭⎫23,1D.⎣⎡⎭⎫23,1 11.偶函数f (x )满足f (x -1)=f (x +1),且在x ∈[0,1]时,f (x )=x ,则关于x 的方程f (x )=⎝⎛⎭⎫110x在x ∈[0,4]上解的个数是( B )A .0B .4C .6D .812.已知函数f (x )=e x +m e x +1,若对于任意a ,b ,c ∈R ,都有f (a )+f (b )>f (c )成立,则实数m 的取值范围是( )A.⎣⎡⎦⎤12,2B.[0,1] C .[1,2] D.⎣⎡⎦⎤12,1 二.填空题13.已知正数a 满足a 2-2a -3=0,函数f (x )=a x ,若实数m 、n 满足f (m )>f (n ),则m 、n 的大小关系为________.14.已知函数f (x )=a 2x -4+n (a >0且a ≠1)的图象恒过定点P (m ,2),则m +n =________.15.函数y =log 3(x 2-2x )的单调减区间是________.16.已知函数f (x )=|log 2x |,正实数m ,n 满足m <n ,且f (m )=f (n ),若f (x )在区间[m 2,n ]上的最大值为2,则n +m =________.三.解答题17.已知定义域为R 的函数f (x )=-2x +b 2x +1+a是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.18.已知函数f (x )=⎝⎛⎭⎫13ax 2-4x +3.(1)若a =-1,求f (x )的单调区间;(2)若f (x )有最大值3,求a 的值;(3)若f (x )的值域是(0,+∞),求a 的值.19.已知函数f (x )=log 4(ax 2+2x +3).(1)若f (1)=1,求f (x )的单调区间;(2)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,说明理由.20.已知函数f (x )=lg(a x -b x )(a >1>b >0).(1)求y =f (x )的定义域;(2)在函数y =f (x )的图象上是否存在不同的两点,使得过这两点的直线平行于x 轴;(3)当a ,b 满足什么条件时,f (x )在(1,+∞)上恒取正值.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题型一 指数函数的定义与表示【例1】 求下列函数的定义域(1)32xy -= (2)213x y += (3)512xy ⎛⎫= ⎪⎝⎭(4)()10.7xy =【例2】 求下列函数的定义域、值域⑴112x y -= ; ⑵3x y -=; ⑶2120.5x x y +-=【例3】 求下列函数的定义域和值域:1.xa y -=1 2.31)21(+=x y【例4】 求下列函数的定义域、值域(1)110.4x y -=; (2)513x y -=. (3)21x y =+典例分析板块二.指数函数【例5】 求下列函数的定义域(1)13xy =;(2)y =【例6】 已知指数函数()(0,x f x a a =>且1)a ≠的图象经过点(3,π),求(0)f ,(1)f ,(3)f -的值.【例7】 若1a >,0b >,且b b a a -+=b b a a --的值为( )A B .2或2- C .2- D .2题型二 指数函数的图象与性质【例8】 已知1a b c >>>,比较下列各组数的大小:①___bca a ;②1ba ⎛⎫⎪⎝⎭1ca ⎛⎫ ⎪⎝⎭;③11___b ca a ;④__a abc .【例9】 比较下列各题中两个值的大小:⑴ 2.51.7,31.7; ⑵ 0.10.8-,0.20.8-; ⑶ 0.31.7, 3.10.9.【例10】 比较下列各题中两个值的大小(1)0.80.733,(2)0.10.10.750.75-, (3) 2.7 3.51.01 1.01,(4) 3.3 4.50.990.99,【例11】 已知下列不等式,比较m 、n 的大小(1) 22m n<(2)0.20.2m n >(3)()01m n a a a <<<(4)()1m n a a a >>【例12】 图中的曲线是指数函数x y a =的图象,已知a413,,3105四个值,则相应于曲线1234,,,c c c c 的a 依次为_______________.【例13】 已知a =函数()x f x a =,若实数m n ,满足()()f m f n >,则m n ,的大小关系为.【例14】 设a b =c a ,b ,c 的大小关系是【例15】 若对[1,2]x ∈,不等式22x m +>恒成立,求实数m 的取值范围.【例16】 判断函数11()3x y -=的单调性.【例17】 函数||()x f x e =( )A .是奇函数,在(,0]-∞上是减函数B .是偶函数,在(,0]-∞上是减函数C .是奇函数,在[0,)+∞上是增函数D .是偶函数,在(,)-∞+∞上是增函数【例18】 已知函数f (x )为偶函数,当()0x ∈+∞,时,()12x f x +=-,求当()0x ∈-∞,时,()f x 的解析式.【例19】 证明函数x a y =和x a y -= )10(≠>a a 且的图象关于y 轴对称。

题型三 关于指数的复合函数1.二次函数复合型【例20】 求函数2212x xy -⎛⎫= ⎪⎝⎭单调区间,并证明【例21】 函数221()3x xf x -⎛⎫= ⎪⎝⎭的单调增区间为 ,值域为 .【例22】 函数()342x x f x =⋅-,求()f x 在[0,)x ∈+∞上的最小值.【例23】 求函数1()423x x f x a +=-⋅+ (R)x ∈的值域.【例24】 已知4323x x y =-⋅+,当其值域为[1,7]时,x 的取值范围是【例25】 求下列函数的单调区间.⑴232xx y a -++=(0a >,且1a ≠);⑵已知910390x x -⨯+≤,求函数1111()4()542x x y --=-⋅+最值.【例26】 函数2281(01)x x y a a --+=<<的单调增区间是 .【例27】 设()124()x x f x a a =++⋅∈R ,当(,1]x ∈-∞时,()f x 的图象在x 轴上方,求a 的取值范围.【例28】 如果函数221(0,1)x x y a a a a =+->≠在区间[1,1]-上的最大值是14,求a 的值.【例29】 求函数11()1([3,2])42xxf x x ⎛⎫⎛⎫=-+∈- ⎪ ⎪⎝⎭⎝⎭的单调区间及其值域.【例30】 已知12x -≤≤,求函数1()3239x x f x +=+⋅-的最大值和最小值.【例31】 求函数()()444222x x x f x a --=+-+的最小值,并指出使()f x 取得最小值时x 的值2.分式函数复合型【例32】 当a >1时,证明函数1()1x x a f x a +=-是奇函数.【例33】 求证下列命题:(1)()2x xa a f x --=(a >0,a ≠1)是奇函数;(2)()(1)1x x a xf x a +=-(a >0,a ≠1)是偶函数.【例34】 已知函数()2121x x f x -=+,(1)判断函数()f x 的奇偶性;(2)求证函数()f x 在()-∞+∞,上是增函数.【例35】 讨论函数21()21x x f x -=+的奇偶性、单调性,并求它的值域.【例36】 已知1010()1010x xx xf x ---=+,判断函数的单调性、奇偶性,并求()f x 的值域.【例37】 正实数12x x ,及函数()f x 满足()()141x f x f x +=-,且()()121f x f x +=,求()12f x x +的最小值【例38】 设a ∈R ,2()()21xf x a x =-∈+R ,若()f x 为奇函数,求a 的值.【例39】 在计算机的算法语言中有一种函数[]x 叫做取整函数(也称高斯函数),它表示x的整数部分,即[]x 是不超过x 的最大整数.例如:[2]2=,[3.1]3=,[2.6]3-=-.设函数21()122x x f x =-+,则函数[()][()]y f x f x =+-的值域为题型四 其他综合题目【例40】 小明即将进入一大学就读,为了要支付4年学费,小明欲将一笔钱存入银行,使得每年皆有40000元可以支付学费.而银行所提供的年利率为6%,且为连续复利,试求出小明现在必须存入银行的钱的数额.【例41】 求函数y =【例42】 已知函数|22|x y =-,⑴ 作出函数的图象;⑵ 根据图象指出函数的单调区间;⑶ 根据图象指出当x 取什么值时,函数有最值.【例43】 方程22x x =-的解的个数为 .【例44】 已知函数()||122x x f x =-, ⑴若()2f x =,求x 的值;⑵若()()220t f t mf t +≥对于[]12t ∈,恒成立,求实数m 的取值范围.【例45】 函数()2lg 34y x x =-+的定义域为M ,当x ∈M 时,求()42234x f x =+-⨯的最值.【例46】 设a 是实数,()221x f x a =-+ (x ∈R) (1)试证明对于任意()af x 为增函数; (2)试确定a 值,使f (x )为奇函数.【例47】 因为复杂的函数,往往是由多个简单函数的加、减、乘、除运算得到,或者是多个函数的复合后得到的,比如下列函数:()()()22x f x g x h x x ==,,则()()f xg x ,复合后可得到函数()()2x g f x g ==⎡⎤⎣⎦和()f g x f==⎡⎤⎣⎦的取值,得到的函数称为复合函数;也可以由()()f x g x ,进行乘法运算得到函数()()2x f x g x =.所以我们在研究较复杂的函数时,常常设法把复杂的函数进行逆向操作,把其拆分转化为简单的函数,借助简单函数的性质进行研究. ⑴复合函数(){}f h g x ⎡⎤⎣⎦的解析式为 ;其定义域为 .⑵可判断()()2x f x g x =是增函数,那么两个增函数相乘后得到的新函数是否一定是增函数?若是请证明,若不是,请举一个反例;⑶已知函数()2x f x -=,若()()121f x f x +>-,则x 的取值范围为 .⑷请用函数()()()()22ln x f x g x h x x k x x ====,,中的两个进行复合,得到三个函数,使它们分别为偶函数且非奇函数、奇函数且非偶函数、非奇非偶函数.【例48】 已知函数2()()1x x af x a a a -=--,其中0a >,1a ≠.⑴判断函数()f x 的奇偶性; ⑵判断函数()f x 的单调性,并证明.【例49】 已知2()()(0,1)2x x a f x a a a a a -=->≠-是R 上的增函数,求a 的取值范围.【例50】 已知函数()x f x b a =(其中a ,b 为常量,且a >0,a ≠1)的图象经过点A (1,6),B(3,24).(1)求()f x ;(2)若不等式1123x xm ⎛⎫⎛⎫+≥ ⎪ ⎪⎝⎭⎝⎭在()1x ∈-∞,时恒成立,求实数m 的取值范围.【例51】 已知11()212x f x x ⎛⎫=+ ⎪-⎝⎭. ⑴求证:()0f x >;⑵若()()()F x f x t f x t =++-(t 为常数),判断()F x 的奇偶性.【例52】 用{}min a b c ,,表示a ,b ,c 三个数中的最小值,设{}()min 2210x f x x x =+-,, (0)x ≥,则()f x 的最大值为( )A .4B .5C .6D .7【例53】 已知函数()x f x a =满足条件:当(),0x ∈-∞时,()1f x >;当()0,1x ∈时,不等式,()()()23112f mx f mx x f m ->+->+恒成立,求实数m 的取值范围.【例54】 如果函数2()(31)x x f x a a a =--(0,1)a a >≠且仔区间[)0,+∞上是增函数,那么实数a 的取值范围是( )A .20,3⎛⎤ ⎥⎝⎦ B .1⎫⎪⎪⎣⎭ C .(1, D .2,3⎛⎫+∞ ⎪⎝⎭【例55】 若关于x 的方程1125450x x m -+-+-⋅-=有实根,求m 的取值范围.【例56】 已知11235723511x y z x y z -+++=++=,,求11235x y z +-++的取值范围。

【例57】 已知()xf x =01a a >≠,。

(1)求证:函数()f x 的图像关于点1122⎛⎫ ⎪⎝⎭,中心对称 (2)求123910101010f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【例58】 已知函数()2x f x =,()122x g x =+(1)求函数()g x 的值域; (2)求满足方程()()0f x g x -=的x 的值.。

相关文档
最新文档