材料力学第7章-弯曲变形

合集下载

材料力学-弯曲变形

材料力学-弯曲变形

(向下)
qB
qmax
w(l)
Pl 2 2EI
(顺时针)
例题2
图示的等截面简支梁长为l,抗弯刚度为
EI,在右端受有集中力偶M0的作用,求梁任
一截面的转角和挠度。
y
解:
由整体平衡得 FAx=0, FAy= FBy= M0/l 从而,截面的弯矩为
M(x)= xFAy= xM0/l
FAx A x o
FAy
横截面变形:
线位移:长度变化
水平方向—小变形假定,挠曲轴平坦,忽略不计 垂直方向—挠度 w= w(x)
转角:角度变化
横截面相对于原位置转过的夹角,
一般用q (x)表示截面转角,并且以逆时针为正
q'
对于细长梁,略去剪力对变形影响 平截面假设成立: 变形的横截面与挠曲轴垂直
q q tan q dw
(l 2
a2)
y
例题3
P x
A
C
于是,梁的挠曲线方程为 FAx
l
w
w1 w2
(x) (x)
0 xa a xb
FAy
a
b
Pb
6 EIl
Pa
6 EIl
x3 (b2 l2 )x (l x)3 (a2 l2
)(l
x)
0 xa a xl
转角方程为
q w ww12((xx))
0 xa a xb
Pb 2EIl
x2
C1
ቤተ መጻሕፍቲ ባይዱdx
Pb 6EIl
x3
C1x
D1
同理,对CB段
w2
w2dx C2
Pa EIl
(l
x)dx
C2

材料力学第七章课后题答案 弯曲变形

材料力学第七章课后题答案 弯曲变形
3.确定积分常数
(a) (b)
7
该梁的位移边界条件为:
在x 0处, w0 dw 在x 0处, 0 dx 将条件(c)与(d)分别代入式(b)和(a),得 D 0,C 0 4.建立挠曲轴方程 将所得 C 与 D 值代入式(b),得挠曲轴的通用方程为
1 Fa 2 F 3 3Fa [ x x xa EI 4 6 4 由此得 AC 段、 CD 段和 DB 段的挠曲轴方程依次为 w
5.计算 wC 和 θ B 将 x a 代入上述 w1或w2 的表达式中,得截面 C 的挠度为
41qa 4 ( ) 240EI 将以上所得 C 值和 x 2a 代入式(a),得截面 B 的转角为 wC θB qa 3 7 4 16 1 187 203qa 3 [ ] EI 24 24 24 720 720 EI ()
(4)
D1 0 , C1
由条件(4) 、式(a)与(c) ,得
qa 3 12 EI
C2
由条件(3) 、式(b)与(d) ,得
qa 3 3EI
D2
7qa 4 24 EI
3. 计算截面 C 的挠度与转角 将所得积分常数值代入式(c)与(d) ,得 CB 段的转角与挠度方程分别为
q 3 qa 3 x2 6 EI 3EI 3 q qa 7 qa 4 4 w2 x2 x2 24 EI 3EI 24 EI 将 x2=0 代入上述二式,即得截面 C 的转角与挠度分别为
5.计算 wC 和 θ B 将 x a 代入上述 w1 或 w2 的表达式中,得截面 C 的挠度为
Fa 3 ( ) 12 EI 将以上所得 C 值和 x 3a 代入式(a),得截面 B 的转角为 wC

材料力学:第七章 弯曲变形

材料力学:第七章 弯曲变形
刚度设计依据
(1) 挠度w大小取决于M, E, I三个参数 应该取较小的M, 较大的E, I
(2) 弯矩M大小取决于载荷\约束分布及梁跨度大小
(3) 截面惯性矩I 大小和截面形状有关,
弹性模量E大小和材料有关
Iz =
y2dA,
A
当A大小一定时, y越大, I 越大
梁的合理刚度设计
选择I 较大的薄壁横截面形状
1 度静不定 选 FBy 为多余力, 去约 束, 写出位移边界条件
-变形协调条件 -物理方程
利用边界条件 解出未知力
列平衡方程,求其他约束力:
-补充方程
分析方法与步骤:
判断梁的静不定度
用多余力代替多余约
束的作用,得相当系统
相当系统
相当系统有多种选择:
计算相当系统在多余约
束处的位移,并根据变形 协调条件建立补充方程。
例题
解:
()
()
例题
例题
解:
()
()
()
例题
图示组合梁,EI=常数,求 wB 与qA
例题
解:
P378, 情况8
()
P377, 情况1,2
()
例题
图示刚架,求截面 C 的铅垂位移
例题
解:
位移w1包括AB弯曲 和AB扭转两部分
例题
矩形截面梁, 自由端承受集中载荷F作用, 该载荷与对 称轴y的夹角为θ, 用叠加法计算自由端求自由端截面形心C
的位移d
解:
例题
一般情况下
挠曲轴与外力作用面一般不重合
§6 简单静不定梁
静不定度与多余约束 简单静不定梁分析方法
静不定度与多余约束
静不定度 4-3= 1

工程力学---材料力学(第七章- 梁弯曲时位移计算与刚度设计)经典例题及详解

工程力学---材料力学(第七章- 梁弯曲时位移计算与刚度设计)经典例题及详解

得: D 0
Pl 2 得: C 16
AC段梁的转角方程和挠曲线方程分别为:
P 2 2 (4 x l ) 16 EI Px y (4 x 2 3 l 2 ) 48 EI
y
P
B
A
x
l 2
C
l 2
x
最大转角和最大挠度分别为:
max A B
ymax y
q 7qa 8k 384 EI
3
q/2
B C
q/2
A B C
顺时针
q/2
例16:图示梁B处为弹性支座,弹簧刚 度
EI k 求C端挠度fC。 2a 3
q
A
EI k
B
C
2a
a
解:(1)梁不变形,仅弹簧变形引起的C点挠度为 4 3 qa 3qa B处反力=qa fC 1 2 k EI
q
B
x
l
由边界条件: x 0时,y 0
x l时,y 0
得:
ql 3 C , D0 24
梁的转角方程和挠曲线方程分别为:
y
q 2 3 3 (6lx 4 x l ) 24 EI
q
x
A qx y (2lx 2 x 3 l 3 ) 24 EI
ql 3 24 EI
A a a
q
B C
a
qa 12 EI
顺时针
3 3
P=qa
A B
P=qa
m=qɑ²/2
qa qa C B 6 EI 4 EI
4
顺时针
B
q
C
qa 5qa fC B a 8EI 24 EI

材料力学 第7章 弯曲变形

材料力学 第7章 弯曲变形

M
Fx 挠曲轴近似微分方程: w ' ' EI 3 2 Fx Fx w Cx D w' ( x) C 6 EI 2EI
梁的弯矩方程: M ( x ) Fx
2、确定积分常数
FAy
A x
F L
B
X=0, w=0 X=L, w=0
M
Me L C=- ,D=0 6 EI
3、挠度方程、转角方程及B截面的转角
FAy
x
F L
B
M
3、挠度方程、转角方程及B截面的转角
Fx w' (x) 2EI 3 Fx w 6 EI
2
将 x=L 代入转角方程:
FL2 B 2 EI
例2:简支梁AB,弯曲刚 度 EI为常数,受力偶 M=FL作用,求w(x),
FAy
A x
F L
B
θ(x);
解:1、 建立挠曲轴微分方程并积分 A端约束反力 FAy=F
FA A a l
x
F D b
FB
B x
Fb 解:坐标系如图,求出反力。 FA l 分AD、DB两段分析:
y
Fa FB l
b AD段: 0 x a M x F x l b M x F x 则: EIw1 l
积分可得:
b M x F x EIw1 l
= 0
自由端:无位移边界条件。 位移连续与光滑条件 挠曲轴在B点连续且光滑 连续:wB左= wB右 光滑:左 = 右
F A B D
写出梁的挠曲轴方程的边界条件和连续条件。 例:
F A B C E D
思考: 1、 该梁可分几段积分? 2、 各边界和内部分界点有多少位移边界与连续条件? 分4段。 位移边界条件:A端:2个; C端:1个;D端:无。 位移连续条件:E:2个;B:1个;C:2个

材料力学-第7章 弯曲变形

材料力学-第7章 弯曲变形
引言
梁弯曲问题的近似和简化
q( x)
M0
ML
Q0
QL
弯曲问题中,不考虑轴向拉伸。因此,梁内力只有弯矩和剪力 下面,我们分别考虑弯矩和剪力引起的弯曲变形效果
材料力学-第7章 弯曲变形
挠度曲线 垂直于轴线的横截面弯曲后仍为平面,仍 垂直于轴线,只是相互间转动一个角度
M
弯矩引起的弯曲变形
M
剪力引起的弯曲变形
例题
2
已知:简支梁受力如 图所示。FP、EI、l均为已 知。 求:加力点B的挠度和 支承A、C处的转角。
材料力学-第7章 弯曲变形
§7- 3 计算梁位移的积分法
解:1. 确定梁约束力 首先,应用静力学方法求得 梁在支承A、C二处的约束力分别 如图中所示。 解:2. 分段建立梁的弯矩方程 因为B处作用有集中力FP,所以需要分为AB和BC两段 建立弯矩方程。 在图示坐标系中,为确定梁在0~l/4范围内各截面上的 弯矩,只需要考虑左端A处的约束力3FP/4;而确定梁在l/4~ l范围内各截面上的弯矩,则需要考虑左端A处的约束力 3FP/4和荷载FP。
Q
垂直于轴线的横截面弯曲后不垂直于轴线
Q
材料力学中一般考虑细长梁,顾而可以忽略剪力引起的变形,只 考虑弯矩引起的变形。因为所有横截面始终与轴线垂直,所以,梁的 弯曲变形可以仅用轴线来表征。空间的梁简化成一轴线。
材料力学-第7章 弯曲变形
挠度曲线
问题1: 如何表征梁的弯曲变形
-用什么物理量来描述梁的变形
( x)
w
x
x
( x)
w( x)
材料力学-第7章 弯曲变形
挠度曲线
* 弯曲变形的表征
梁在弯曲变形后,横截面的位置将发生改变,这种位置 的改变称为位移 (displacement) 。梁的位移包括三部分:

第七章 弯曲变形

第七章 弯曲变形

材料力学
弯曲变形/挠曲线的近似微分方程
二、挠曲线的近似微分方程
1 M ( x) 力学公式 ( x) EI z d2y 1 dx2 数学公式 3 ( x) dy 2 2 [1 ( ) ] dx 1

,得:
以上两式消去
材料力学
d2y M ( x) dx2 3 EI z dy 2 2 [1 ( ) ] dx
材料力学
x 0, y A 0
x a时,C左 C右 x a时,yC左 yC右
x L, yB lBD
FBy h EA
FBy k
弯曲变形/用积分法求梁的变形
讨论:
(1)凡载荷有突变处(包括中间支座),应作为分段点;
(2)凡截面有变化处,或材料有变化处,应作为分段点; (3)中间铰视为两个梁段间的联系,此种联系体现为两 部分之间的相互作用力,故应作为分段点;
B L x
A
x L时,yB 0.
材料力学
弯曲变形/用积分法求梁的变形 若B支座改为弹簧支撑,则: y A a
L
若B支座改为拉杆支撑,则: D B kx A a
L
F
C
b
F C b
EA
h
x 0, y A 0
B
x a时,C左 C右 x a时,yC左 yC右
x L, y B
弯曲变形/用积分法求梁的变形 AC段 (0 x a) BC段 (a x L) Fb 2 Fb 2 F EI y1 EI 1 x C1 , EI y2 EI 2 x ( x a ) 2 C2 , 2L 2L 2 Fb 3 Fb 3 F EIy 1 x C1 x D1 , EIy 2 x ( x a ) 3 C2 x D2 , 6L 6L 6 3、确定常数 由边界条件:

材料力学-弯曲变形

材料力学-弯曲变形

二、叠加法求梁的变形 梁的刚度校核
1. 叠加法求梁的变形
当梁上同时受几种荷载作用时,我们可用叠加法来计算 梁的变形。其方法是:先分别计算每一种荷载单独作用时所 引起的 梁的变形(挠度或转角),然后求出各种荷载作用下 变形的代数和,即得到这些荷载共同作用下的变形。一般工 程中要找的是特定截面的变形(最大挠度和最大转角)。我 们将一些简单荷载作用下梁变形的计算公式列成教材中表81,以供选用。
2
式(8-2)再积分一次得:
y
1 EI
M( x)dxdx
Cx
D 8
3
式(8-2)、(8-3)为转角方程和挠曲线方程。式中常数C、D
可由边界条件确定。
图8-1a 图8-1b
(图8-1a)的边界条件为:
x 0, yA 0; x l, yB 0
(图8-1b)的边界条件为:
x 0, yA 0;
ql 3 24EI
, B
ql 3 24EI
转角 A 为负值,表明A截面绕中性轴作顺时针方向转动; 转角 B 为负值,表明B截面绕中性轴作逆时针方向转动。
例2:试计算图示梁的转角方程和挠曲线方程,并求 ymax
例2图
设:a>b
解:(一)分段建立弯矩方程和挠曲线近似微分方程并积分二次
AC 段 (0 x1 a)
C1a D1 C2a D2 将 C1 C2, D1 0 代入上式得:D1 D2 0
将 D2
0 代入式e得:C2
Pbl 6
P(l a)3 6l
化简后得:
C1
C2
Pb 6l
(l 2
b
2)
(三) 列出转角方程和挠曲线方程:将C1,C2, D1, D2代入式 a,b,c,d得:

梁弯曲变形的计算

梁弯曲变形的计算

yC 2
A MA FA A F C
(a)
Fl 3 24 EI Z
B FB B FB
求得有无顶尖作用时,在刀 尖处变形比为:
yC 7 yC 2 32
结论:可见用顶尖可有效地 减小工件的变形,因而,在 细长轴加工中要设置顶尖, 甚至使用跟刀架。
材料力学
+ A C F B
(b)
F MA A 2a (a)
2
x
d y 2 dx
d y M ( x) 所以 2 dx EI z
2
O
1
2
M (x ) < 0
dy dx 2 < 0
2
x
材料力学
由弯矩的正负号规定可得,弯矩的符号与挠曲 线的二阶导数符号一致,所以挠曲线的近似微分方 程为:
d w M ( x) 2 dx EI z
由上式进行积分,就可以求出梁横截面的转角 和挠度。
1 M ρ EI z

忽略剪力对变形的影响
1 M ( x) ( x) EI z
材料力学
由数学知识可知:
d y 2 1 dx dy 2 3 [1 ( ) ] dx 略去高阶小量,得
2
y M (x ) > 0 M (x ) > 0
dy dx 2 > 0 O
y M (x ) < 0
3
11ql 3 ( ) 48EI
材料力学
wC
例4 已知:悬臂梁受力如图 示,q、l、EI均为已知。求C 截面的挠度wC和转角C 解 1)首先,将梁上的载荷变成 有表可查的情形
为了利用梁全长承受均 布载荷的已知结果,先将均 布载荷延长至梁的全长,为 了不改变原来载荷作用的效 果,在AB 段还需再加上集 度相同、方向相反的均布载 荷。

材料力学教程-7.弯曲变形

材料力学教程-7.弯曲变形
数据处理
根据需要,对数据进行计算、 绘图等处理,以便更好地理解 和分析实验结果。
结果分析
结合实验数据和理论分析,评 估材料的弯曲性能,并探讨影 响材料弯曲性能的因素。
结论总结
总结实验结果,得出结论,并 提出改进和优化材料弯曲性能
的建议。
04
弯曲变形的工程应用实例
桥梁的弯曲变形分析
总结词
桥梁的弯曲变形分析是确保桥梁安全的重要环节,通过分析桥梁在不同载荷下的弯曲变形程度,可以评估桥梁的 承载能力和安全性。
转角
梁在弯曲变形后,其横截 面绕其中性轴旋转的角度 称为转角。转角是衡量梁 横截面旋转程度的量。
弯曲变形的物理关系
弯矩
由于外力作用在梁上,使梁产生弯曲变形的力矩 称为弯矩。弯矩是引起梁弯曲变形的力。
剪力
在梁弯曲变形过程中,垂直于轴线的横向剪切力 称为剪力。剪力使梁产生剪切变形。
扭矩
当外力作用在梁的某一侧时,会使梁产生扭转变 形,这种使梁产生扭转变形的力矩称为扭矩。
详细描述
高层建筑由于其高度和规模,对风载和地震等外部载荷非常敏感。因此,在高层建筑设 计阶段,需要进行详细的弯曲变形分析。这包括对建筑物的整体结构和各个楼层在不同 载荷下的弯曲变形进行模拟和分析,以确保建筑物在各种外部载荷下的安全性和稳定性。
机械零件的弯曲变形分析
要点一
总结词
机械零件的弯曲变形分析是确保机械系统正常运行的关键 环节。通过对机械零件在不同工作载荷下的弯曲变形进行 分析,可以优化零件的设计和加工工艺,提高其工作性能 和寿命。
通过实例分析和习题练习,学生可以加深对弯曲 变形的理解,提高解决实际问题的能力。
弯曲变形的未来研究方向
弯曲变形的非线性行为

材料力学弯曲变形

材料力学弯曲变形

材料力学弯曲变形
材料力学中的弯曲变形是指物体在受到外力作用下发生的一种变形形式。

当材料受到垂直于其长度方向的外力时,会产生弯矩,使得物体产生弯曲变形。

弯曲变形的原理可以通过材料力学中的悬臂梁模型进行解释。

在悬臂梁中,一个固定的端点支撑着一根梁,梁的另一端受到外力作用,使得梁产生弯曲。

在悬臂梁的弯曲变形中,梁上部的纤维受到拉力,而下部的纤维受到压力。

由于力的作用,纤维之间会相互滑动,从而产生弯曲变形。

弯曲变形可以通过材料的弹性性质进行描述。

弯曲变形的程度取决于材料的弯曲刚度,即弹性模量,以及外力的大小和作用点的位置。

与拉伸变形不同,弯曲变形的应变分布不是均匀的,而是随着离中轴线的距离而变化。

中轴线上的纤维经历的应变为零,而离中轴线较远的纤维经历的应变较大。

弯曲变形是材料工程中常见的一种变形形式,它在很多结构中都会发挥作用。

例如,在桥梁和楼板等结构中,弯曲变形可以帮助承受外部荷载并保持结构的稳定性。

在材料设计和工程应用中,科学家和工程师常常要考虑材料的弯曲性能,以确保结构的强度和稳定性。

材料力学 第七章 弯曲变形

材料力学 第七章  弯曲变形


FA
3FP 4
(↑)
3FP
FP
FC
FP 4
(↑)
4
4
明德行远 交通天下
材料力学
(2)分段列梁的弯矩方程
AB段:
M1(x)
3 4
FP x
0x l 4
3
l
BC段:
M 2 ( x)
4
FP x
-
FP (x
-
) 4
l xl 4
(3)积分法求梁的挠曲线
挠曲线近似微分方程
EI
d 2w1 dx2
=
-
M1(x)
-
wC- wC
P
A (b)
图(b): wA 0 A 0
或写成w C

wC右
光滑条件
C- C
或写成 C 左 C 右
明德行远 交通天下
材料力学
讨论: ①适用于小变形、线弹性材料、细长构件的平面弯曲。 ②可求解各种载荷作用下等截面或变截面梁上任意位置处的位移。 ③积分常数由挠曲线变形的几何相容条件(边界条件、光滑连续条件)确定。 ④优点:使用范围广,直接求出较精确; 缺点:计算较繁。
(2)
EIzw=EIz = -
q(x)dx3
1 2
C1x2
C2
x
C3
(3)
明德行远 交通天下
材料力学
例题7-1如图所示,受集中荷载的简支梁AC。已知EI、l、FP。试写出梁的挠 度方程和转角方程,并求截面A和C处的转角及B截面处的挠度。
明德行远 交通天下
y
FP
A
B
θA wB
l 4
EI
3l 4
C
θC

第7章-弯曲变形

第7章-弯曲变形

x2
-
F(x2
-
a)
( a x2 L )
Mechanics of Materials
a
Fb
A
C
B
Fb
x1
FAy L
( 2 ) AC段
{
x2
Fa FBy L
EIw1''
M1
Fb L
x1
EI w1'
Fb L
x12 2
C1
3
Fb x1 EIw 1 L 6 Mechanics of Materials
C1x1 D1
a
Fb
A
C
B
FAy
Fb L
CB 段
{
x1
x2
FBy
Fa L
EIw
'' 2
M2
Fb L
x2
-
F(x2
- a)
EI 2
Fb 2L
x2 2
-
F(x 2 2
a)2
C2
EIw
2
Fb 6L
x23
-
F(x 2 6
a)3
C2x2
D2
Mechanics of Materials
a
Fb
A
C
Fb FAy L
x1
x2
( 3 ) 挠曲线光滑连续条件
x1 x2 a 时, 1 2
w1 w2
B
Fa FBy L
Mechanics of Materials
a
Fb
A
C
B
FAy
Fb L
w1' w2'
x1
x2

材料力学第7章

材料力学第7章

积分一次: Fb 2 EIw1 x C1 2l 积分二次: Fb 3 EIw1 x C1 x D1 6l
11
CB段(a x l): 弯矩方程:
Fb M 2 x x F x a l
挠曲线近似微分方程:
Fb EIw2 x F x a l Fb 2 F 2 x x a C2 积分一次: EIw2 2l 2
ቤተ መጻሕፍቲ ባይዱ 1 x 0
Fab l b , B 2 6lEI
Fab l a B = 6lEI
Fl 3 Fl 3 Fl 3 2 EI 6 EI 3EI
7
wmax w x l
例题7.2:图示弯曲刚度为EI的简支梁,受集度为q的均布 荷载作用,试求梁的挠曲线方程和转角方程,并确定其最 大挠度和最大转角。 解:由平衡方程得支座反力 ql FA FB 2 建立坐标系,得梁的弯矩方程为 1 1 2 M x qlx qx 2 2 梁挠曲线近似微分方程
1 3 C ql , D 0 24
9
梁的转角方程
q w (4 x3 6lx 2 l 3 ) 24 EI
梁的挠曲线方程
(5)
qx w ( x3 2lx 2 l 3 ) 24 EI
最大转角
(6)
max
ql 3 A B 24 EI
2
最大挠度
M ( x) F l x
1
挠曲线近似微分方程
EIw M x F l x 2 两次积分,得 1 2 EIw Flx Fx C 2 1 1 3 2 EIw Flx Fx Cx D 2 6

材料力学第七章 弯曲变形

材料力学第七章 弯曲变形

1.叠加原理 各载荷同时作用下梁任一截面的挠度和转角
等于各个 载荷单独作用时同一截面挠度和转角 的代数和。
2.叠加原理的前提 小变形 材料是线弹性材料
例1:求大梁跨度中点的挠度 F
q
A
c
B
l
l
F
2
2
q
A
c
B+ A
c
B
l
l
l
l
2
2
2
2
(wc )F
Fl 3 48 EI
(wc )q
5ql 4 384 EI
dx
o
三、弯曲刚度条件
x
w
w f (x) 挠曲线
| w |max [w], | |max [ ]
§7.2 挠曲线的近似微分方程
| ds | | d | (a)
纯弯曲时挠曲线曲率与弯矩的关系为 1 M (b)
EI
横力弯曲时, 剪力对梁弯曲变形很小,可忽略不计。此时曲率与 弯矩为x的函数 。它们的关系仍满足(b)式。
EI2 EIw2' C2 EIw2 C2 x D2
确定积分常数
边界条件 x 0,1 0 w1 0
连续条件 x a,1 2 w1 w2
求得自由端转角和挠度为
C1 0 C2 ma
D1 0
D2
1 2
ma2
B
2
|xl
ma EI
fB
w2
|xl
ma (l EI
a) 2
§7.4 用叠加法求弯曲变形
由(a)(b)可得 d M (c)
ds EI
y
d
由于挠度很小,挠曲线非常平
坦,ds dx,并考虑到符号(c)可

材料力学 第七章弯曲正应力(1,2)解析

材料力学 第七章弯曲正应力(1,2)解析

M
1.平面假设: 梁各个横截面变形后仍保持为平面,并仍垂直于变形 后的轴线,横截面绕某一轴旋转了一个角度。 2.单向受力假设: 假设各纵向纤维之间互不挤压。于是各纵向纤维均 处于单向受拉或受压的状态。
中性层 梁在弯曲变形时,凹面部分纵向纤维缩短,凸面 部分纵向纤维伸长,必有一层纵向纤维既不伸长也不 缩短,保持原来的长度,这一纵向纤维层称为中性层. 中性轴
C截面
Fb/4 拉应力 压应力 B截面
20
y 20
拉应力
压应力
可见:压应力强度条件由B截面控制,拉应力强度 条件则B、C截面都要考虑。
Fb/2
40 180
120 C 形心 86 z 134
Fb/4 考虑截面B :
t,max
c, max
M B y1 F / 2 2 103 mm134 mm 90 MPa 4 4 Iz 5493 10 mm F 73.8 kN
c
注:强度校核(选截面、荷载) ( 1) ( 2)
[ ]t [ ]c (等截面)只须校核Mmax处
[ ]t [ ]c (等截面)
(a)对称截面情况只须校核Mmax处使
maxt [ ]t , maxc [ ]c
(b)非对称截面情况,具体分析,一般要校核 M+max与 M-max两处。
查型钢表得56b号工字钢的Wz比较接近要求值
Wz 2447cm3 2447103 mm3
此时 max
M max 153MPa Wz
误差小于5%,可用
例4-17 跨长 l= 2m 的铸铁梁受力如图,已知铸铁 的许用拉应力[ t ]=30 MPa,许用压应力[ c ] =90 MPa。试根据截面最为合理的要求,确定T字形梁 横截面的尺寸d ,并校核梁的强度 。

材料力学第2版 课后习题答案 第7章 弯曲变形

材料力学第2版 课后习题答案  第7章 弯曲变形

解:查自重得:
q = 587.02 N / m
J = 15760cm4 Pl 3 5ql 4 f =− − 48EJ 384EJ −176 × 103 × 113 = 48 × 210 × 109 × 15760 × 10−8 × 4 −587.02 × 5 × 114 + 385 × 210 × 109 × 15760 × 10−8 × 4 = 0.0377 m = 3.77cm
(d) 解:
D A P P E
' yC = y E + θ B ia + y C
C B P
− P ( 2a ) − Pa 3 − Pa3 = − − 3EJ 3EJ 3EJ 3 −10 Pa = 3EJ
3
252
7-5 门式起重机横梁由4根36a工字钢组成如图所示, 梁的两端均可视为铰支, 钢的弹 性模量E=210Gpa。试计算当集中载荷P=176 kN作用在跨中并考虑钢梁自重时,跨中截面 C的挠度yC。
x=l
∴y =−
'
∴D = 0
y=0
∴C =
− M 0l 6
M 0l 2 ⎛ x x 3 ⎞ ⎜ − ⎟ 6 EJ ⎝ l l 3 ⎠
M 0l 2 ⎛ 1 3 x 2 ⎞ ∴θ = y = − ⎜ − ⎟ 6 EJ ⎝ l l 3 ⎠
− M 0l 2 l ;此时挠度最大 f = 3 9 3EJ 2 ⎛ l ⎞ − M 0l 中点挠度 y ⎜ ⎟ = ⎝ 2 ⎠ 16 EJ − M 0l Ml θA = θB = 0 6 EJ 3EJ (b)解: 设中点为C点,则分析CB段
''
C2 = −
D2 = −
a4 24
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单辉祖,材料力学教程
14
祖,材料力学教程
F=qa 15
§4 计算梁位移的奇异函数法
奇异函数 弯矩通用方程 梁位移通用方程 例题
单辉祖,材料力学教程
16
奇异函数
当需分段建立 M 或 EI 方程时,用积分法求解需要 确定许多积分常数,利用奇异函数简化了分析计算
研究弯曲变形的目的,进行梁的刚度计算,分析静 不定梁,为研究压杆稳定问题提供有关基础
单辉祖,材料力学教程
4
挠度与转角
转角
-挠度
挠度-横截面形心在垂直于梁轴方向的位移
w w (x)-挠曲轴方程
转角-横截面的角位移
( x) -转角方程
挠度与转角的关系
(忽略剪力影响)
' tan' dw(小变形)
定义
x a (x a) (x a) x a 0 (x a) x a0 0 (x a)
奇异函数(或麦考利函数)
Fn(x) x an (n 0)
x andx 1 x an1 C n1
单辉祖,材料力学教程
17
弯矩通用方程
用奇异函数建立最后梁段 DE 的弯矩方程:
M FAyxMe
单辉祖,材料力学教程
坐标轴 w 向下时:
d2w dx 2
M(x EI
)
8
§3 计算梁位移的积分法
挠曲轴微分方程的积分与 边界条件
积分法求梁位移 挠曲轴的绘制 例题
单辉祖,材料力学教程
9
挠曲轴微分方程的积分与边界条件
d2w dx 2
M(x EI
)
dw
dx
ME(Ix )dx C
w
M(x EI
例 5-1 q(x)=q0cos(px/2l),利用叠加法求 wB=?
M ( x)MF ( x)Mq ( x)
(小变形)
上述微分方程的解,为下列微分方程解的组合
EI
d2w dx 2
MF (x)
w wF ( x)
EI d2w dx 2
Mq ( x)
w wq ( x)
故:w wF ( x) wq ( x)
叠加法适用条件:小变形,比例极限内
单辉祖,材料力学教程
25
)dxdxCx
D
约束处位移应满足的 条件-位移边界条件
梁段交接处位移应满足 的条件-位移连续条件
利用位移边界条件与连续条件确定积分常数
单辉祖,材料力学教程
10
积分法求梁位移
A =?
EI = 常数
单辉祖,材料力学教程
11
挠曲轴的绘制
绘制依据
满足基本方程
w M ( x) EI
❖ 满足位移边界 条件与连续条件
xl1 0F
xl2
q 2
xl3
2
适用于各梁段。
例如对于 BC 段( l1, l2)
由于 x-l2 0 xl3 0 M FAyxMe
x-l1 0 1
单辉祖,材料力学教程
18
梁位移通用方程
M
FAyx Me
x l1
0F
x l2
q 2
x l3
2
d2w dx2
1 EI
FAy
x
M
e
x l1
0F
x l2
第 7 章 弯曲变形
本章主要研究:
弯曲变形基本方程 计算梁位移的方法 简单静不定梁分析 梁的刚度条件与设计
单辉祖,材料力学教程
1
§1 引言 §2 梁变形基本方程 §3 计算梁位移的积分法 §4 计算梁位移的奇异函数法 §5 计算梁位移的叠加法 §6 简单静不定梁 §7 梁的刚度条件与合理设计
绘制方法与步骤
画M图 ❖ 由 M 图的正、负、零点或零值区,确定挠曲轴的
凹、凸、拐点或直线区,即确定挠曲轴的形状 由位移边界条件确定挠曲轴的空间位置
单辉祖,材料力学教程
12
例题
例 3-1 用积分法求梁的最大挠度,EI 为常数
单辉祖,材料力学教程
13
例 3-2 建立挠曲轴 微分方程,写出边界条件,EI 为常数
-挠曲轴微分方程
w-弯矩引起的挠度 ❖ smax < sp
单辉祖,材料力学教程
7
挠曲轴近似微分方程
w
1 w2
3/2
M(x) EI
小变形时: w2 << 1
d2w dx 2
M(x) EI
-挠曲轴近似微分方程
d2w dx 2
M(x EI
)
应用条件:
s max s p ❖ 小变形 坐标轴 w 向上
dx
dw (rad)
dx
单辉祖,材料力学教程
5
§2 梁变形基本方程
挠曲轴微分方程 挠曲轴近似微分方程
单辉祖,材料力学教程
6
挠曲轴微分方程
1 M (纯弯) EI
(推广到非纯弯) 1 M ( x) ( x) EI
1
(x)
w 1 w2
3/2
w
1 w2
3/2
M(x) EI
求位移之和
w A,F
Fl 3 3EI
()
w A,q
ql 4 8 EI
()
wA
wA,F
w
A,q
Fl 3 3EI
ql 4 8EI
()
当梁上作用几个载荷时,任一横截面 的总位移,等于各载荷单独作用时在 该截面引起的位移的代数和或矢量和
单辉祖,材料力学教程
24
理论依据
EI
d2w dx 2
M
(
x
)
(小变形,比例极限内)
单辉祖,材料力学教程
2
§1 引 言
弯曲变形及其特点 挠度与转角
单辉祖,材料力学教程
3
弯曲变形及其特点
挠曲轴
变弯后的梁轴,称为挠曲轴 挠曲轴是一条连续、光滑曲线
对称弯曲时,挠曲轴为位于纵向对称面的平面曲线 对于细长梁,剪力对弯曲变形影响一般可忽略不计,
因而横截面仍保持平面,并与挠曲轴正交
单辉祖,材料力学教程
20
例 4-2 用奇异函数法计算wA,EI为常数
单辉祖,材料力学教程
21
例 4-3 建立通用挠曲轴微分方程,写出位移边界条件
单辉祖,材料力学教程
22
§5 计算梁位移的叠加法
叠加法 逐段分析求和法 例题
单辉祖,材料力学教程
23
叠加法
方法
w A ?
分解载荷 分别计算位移
逐段分析求和法
分解梁
分别计算各梁段的 变形在需求位移处引 起的位移
w1 Ba
B
Fa l 3EI
w1
Fal 3EI
a
Fa2l 3EI
w2
Fa 3 3EI
求总位移
ww1
w2
Fa 2 3EI
(
l
a)
()
单辉祖,材料力学教程
在分析某梁段的变形在 需求位移处引起的位移 时,其余梁段视为刚体
26
例题
q 2
x l3
2
dw dx
1 EI
FAy 2
x
2
Me
x l1
F 2
x l2
2
q 6
x l3
3
C
w
1 EI
FAy 6
x
3
Me 2
x l1
2
F 6
x l2
3 q 24
x l3
4
Cx
D
适用于任一梁段 , 仅包括两个积分常数 , 由边界条件确定
单辉祖,材料力学教程
19
例题
例 4-1 用奇异函数法计算A ,EI 为常数
相关文档
最新文档