分式加减法全类型练习题
分式加减法专项练习60题含答案
分式加减法专项练习60题(有答案)1.2.a(a﹣1)+3.4..5. +.6..7.=_________.8..6yue289..10..11..12.13.14..15.16.(1);(2)17.18.1+ 19.﹣+20.21.+.22.23..24.,25.26.++.27.+﹣.28.29.(式中a,b,c两两不相等):30.31.(1);(2)….32.+﹣33.化简分式:.34..35.计算:﹣.36.计算:.37.计算:.38..39.计算化简:.40.计算:+++.41.计算.42.计算:.43.化简:.44..45.计算:.zuoguo46..55.化简:.47.化简:.48..49..50.计算:﹣.51.计算:.52.计算:1﹣•.53.计算:.54.化简56.先观察下列等式,然后用你发现的规律解答下列问题:由,,…(1)计算++++++=_________(n为正整数);(2)化简:+…+.57.化简:﹣.60.求和.58.请你阅读下列计算过程,再回答所提出的问题:题目计算:解:原式=(A)=(B)=a﹣3﹣6(C)=a﹣9(D)(1)上述计算过程中,从哪一步开始出现错误:_________.(2)从B到C是否正确,若不正确,错误的原因是_________.(3)请你把正确解答过程写下来.59.观察下面的变形规律:=1﹣;=﹣;=﹣;…解答下面的问题:(1)若n为正整数,请你猜想=_________;(2)证明你猜想的结论;(3)求和:+++…+.参考答案:1.原式===1+1=2.2.原式=a2﹣a+=a2﹣a+a=a2.3.==.4.原式===.5.原式=+==.6.原式===.7.==.8.原式===a﹣1.9.原式==.10.+=+=+==1.11.原式=﹣==.12.原式=﹣=﹣=.13.原式=+===14.原式=+==.15.=﹣=﹣==﹣1.16.(1)原式=;(2)原式=17.====.18.原式=1﹣====.19.原式=﹣•==.20.===0.21.原式=+==.22.原式=﹣==.23.原式=====1.24.原式====;x的取值范围是x≠﹣2且x≠1的实数.25.原式==.26.====027.原式=﹣﹣==28.=.29.原式=++=+++++=0.30.原式=+﹣==.31.(1),=,=;(2)+…+=﹣+﹣+…+﹣=﹣=.32.==﹣2 33.=(2a+1)+﹣(a﹣3)﹣﹣(3a+2)++(2a﹣2)﹣=[(2a+1)﹣(a﹣3)﹣(3a+2)+(2a﹣2)]+(﹣+﹣)=﹣+﹣=﹣=.34.原式=﹣=﹣===35.原式====﹣36.原式====37.原式==38.原式=+﹣==39.原式=++=+﹣==== 40.原式=+++=++ =++=+=+=.41.设2x2+3x=y,则原式=﹣+===.42.原式=﹣a+2=a+1﹣a+2=3.43. 原式====.44.原式===,===45.=﹣===46.=== ==47.原式=,=﹣+,=+﹣﹣++,=048.原式=2a﹣a﹣1+a+1=2a.49.原式====.50.原式====.51.原式===.52.原式=1﹣×=1﹣==﹣.53.原式=+﹣====54.原式=++=+++++=﹣+﹣+﹣=0+0+0=055.原式===156.(1)原式=1﹣+﹣+…+﹣=1﹣=;(2)原式=﹣+…+﹣=﹣=57.原式=﹣=﹣=158.(1)A(2)不正确,不能去分母(3)原式===59.(1)=﹣;(2)﹣=﹣==;(3)+++…+=1﹣+﹣+﹣+…+﹣=1﹣=60.原式=++++…+﹣=+++…+﹣=+﹣=﹣=.。
分式乘除法加减法练习题(打印版)
分式乘除法加减法练习题(打印版)### 分式乘除法加减法练习题练习一:分式乘法1. \( \frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd} \)求 \( \frac{3}{4} \times \frac{5}{6} \)。
2. \( \frac{m}{n} \times \frac{p}{q} \)如果 \( m = 2 \), \( n = 3 \), \( p = 4 \), \( q = 5 \),计算结果。
3. 计算 \( \frac{2x}{3y} \times \frac{4y^2}{5x^2} \)。
练习二:分式除法1. \( \frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times\frac{d}{c} \)求 \( \frac{3}{4} \div \frac{5}{6} \)。
2. \( \frac{m}{n} \div \frac{p}{q} \)如果 \( m = 2 \), \( n = 3 \), \( p = 4 \), \( q = 5 \),计算结果。
3. 计算 \( \frac{2x^2}{3y} \div \frac{4y^3}{5x} \)。
练习三:分式加减法1. \( \frac{a}{b} + \frac{c}{b} = \frac{a+c}{b} \)求 \( \frac{1}{2} + \frac{3}{2} \)。
2. \( \frac{m}{n} - \frac{p}{n} \)如果 \( m = 4 \), \( n = 5 \), \( p = 3 \),计算结果。
3. 计算 \( \frac{2x}{3y} + \frac{4y}{3x} \)。
练习四:混合运算1. 计算 \( \frac{1}{2} \times \frac{3}{4} + \frac{5}{6} \)。
分式加减法混合运算测试题及答案
分式加减乘除混合运算测试题(总分100分,时间100分钟)班级_________姓名_____________得分____________________一.填空题(每题3分,共24分)1.若代数式1324x x x x ++÷++有意义,则x 的取值范围是__________. 2.化简131224a a a -⎛⎫-÷ ⎪--⎝⎭ 的结果是___________. 3.若222222M xy y x y x y x y x y--=+--+ ,则M=___________. 4.公路全长s 千米,骑车t 小时可到达,要提前40分钟到达,每小时应多走____千米.5.某班a 名同学参加植树活动,其中男生b 名(b<a).若只由男生完成,每人需植树15棵;若只由女生完成,则每人需植树 棵.6.化简13+a a -1+a a = ,7.若50m x y y x -=--,则m = 8.若113x y -=,则232x xy y x xy y+---= 二.选择题(每题3分,共24分)1.下列等式中不成立的是( )A 、y x y x --22=x -yB 、y x yx y xy x -=-+-222 C 、yx y xy x xy -=-2 D 、xy x y y x x y 22-=- 2.下列各式中,从左到右的变形正确的是( )A 、y x y x y x y x ---=--+-B 、yx y x y x y x +-=--+- C 、y x y x y x y x -+=--+- D 、yx y x y x y x +--=--+-3.如果从一卷粗细均匀的电线上截取1米长的电线, 称得它的质量为a 克,再称得剩余电线的质量为b 克, 那么原来这卷电线的总长度是 ( )A .b+1a 米B .(b a +1)米C .(a+b a +1)米D .(a b+1)米 4.已知a ,b 为实数,且ab=1,设M=11+++b b a a ,N=1111+++b a ,则M ,N 的大小关系是( )A 、M>NB 、M=NC 、M<ND 、不确定5.下列分式的运算中,其中结果正确的是( )A 、a 1+b a b +=21B 、323)(a a a =C 、b a b a ++22=a+bD 、319632-=+--a a a a 6.下列各式从左到右的变形正确的是( )A.122122x y x y x y x y --=++ B.0.220.22a b a b a b a b ++=++ C.11x x x y x y +--=-- D.a b a b a b a b+-=-+ 7.若有m 人a 天完成某项工程,则(m+n )个同样工作效率的人完成这项工程需要的天数是( )A 、a+mB 、n m ma +C 、n m a +D 、man m + 8. 若1111x y y x=+=+,,则y 等于( ) A.1x - B.1x +C.x - D.x 三、计算题: (每题4分,共32分)1.化简(x x x x x 2)2422+÷-+-2.化简:÷--23x x (25-x -x -2),3.化简:abb a ab b a b a 21(222222++÷--) 4.(m 1+n 1)÷n n m +5.)11(122x x xx +⋅+- 6.x x x x x x x 112122÷⎪⎭⎫ ⎝⎛+---+7.2221412211a a a a a a --÷+-+-8、2a a b a b ---四.先化简,再求值:1、14422-+-x x x ÷(13+x -1) ,其中x =-2 (本题6分)2、你先化简2132·446222--+-+-+x x x x x x x ,再选取一个你喜欢的数代入并求值。
分式加减法练习题
分式的加减法分式的加减法:(1)23+34=34⨯+ 34⨯= (2)abab 610-= (3)1a +1b =ab +ab= (4)b a 21+21ab= 因为最简公分母是___________,所以b a 21+21ab = =_____________________=_____________________=_____________________-.提示:通分的关键是确定几个分式的公分母,通常取各分母所有因式的最高次幂的积作为公分母(叫做最简公分母).例如第(1)小题中的两个分式b a 21和21ab,它们的最简公分母是(5)y x -1+yx +1 因为最简公分母是___________,所以y x -1+y x +1 =(6)1()x x y -+yx +1 因为最简公分母是___________,所以1()x x y -+yx +1 =练习A : (1)a a 21+= (2)bc a c -= (3)a c b a c b ++- (4)ba b b a a +++=(5)ab b b a a -+-= (6)x x -++1111 =(7)231x +x43; 因为最简公分母是_____,所以231x +x43 =2134x ⨯+34x=+=(8)221y x -+xy x +21 因为 x 2-y 2=(x+y )( ), x 2+xy =x( ), 所以221y x -与xy x +21的最简公分母为_____,因此221y x -+xy x +21 =1()x y++1x =+(9)231x +xy125; 因为最简公分母是___________ =(10)24ab a b -;B 组(1)xy y x xy y x 2)(2-++)(; (2)xyy x xy y x 22)()(--+(3)x x +21+x x -21. 最简公分母是__________ =(4)1624432---x x (5)aa a +--22214;(6)224-++a a (7)112---x x x .(8)323111x x x x⋅⎪⎭⎫ ⎝⎛+-;(9)⎪⎭⎫ ⎝⎛--+⋅+-y x x y x y x x 2121.(10)林林家距离学校a 千米,骑自行车需要b 分钟,若某一天林林从家出发迟了c 分钟,则她每分钟应多骑多少千米,才能像往常一样到达学校(11)周末,小颖跟妈妈到水果批发市场去买苹果.那儿有两种苹果,甲种苹果每箱重m 千克,售a 元;乙种苹果每箱重n 千克,售b 元.请问,甲种苹果的单价是乙种苹果的多少倍。
分式加减法练习题 答案
分式加减法练习题答案分式加减法练习题及答案1. 小题一:求下列分数的和或差,并将结果化简至最简形式。
a) 2/3 + 3/4b) 5/6 - 1/2c) 7/8 + 1/8d) 4/5 - 3/10解答:a) 2/3 + 3/4 = (2*4 + 3*3)/(3*4) = 8/12 + 9/12 = 17/12b) 5/6 - 1/2 = (5*2 - 1*6)/(6*2) = 10/12 - 6/12 = 4/12 = 1/3c) 7/8 + 1/8 = (7+1)/8 = 8/8 = 1d) 4/5 - 3/10 = (4*10 - 3*5)/(5*10) = 40/50 - 15/50 = 25/50 = 1/22. 小题二:根据给出的情境,完成下面的分式加法或减法。
a) 买书的钱原本是2/3元,现在我又借了1/6元,我有多少钱?b) 小明拥有5/6个苹果,他给了小红3/4个苹果,还剩下多少个?c) Mary用1/2小时完成了作业,而Lucy用5/6小时,比Mary多用了多少时间?解答:a) 2/3 + 1/6 = (2*2 + 1)/(3*2) = 5/6b) 5/6 - 3/4 = (5*4 - 3*6)/(6*4) = 20/24 - 18/24 = 2/24 = 1/12c) 5/6 - 1/2 = (5*2 - 1*6)/(6*2) = 10/12 - 6/12 = 4/12 = 1/33. 小题三:写出与下列分数相加或相减,结果等于1的另一个分数。
a) 3/7 + ? = 1b) ? - 4/5 = 1c) 7/8 - ? = 1/2解答:a) 3/7 + 4/7 = 7/7 = 1b) 9/5 + 4/5 = 13/5 = 2 3/5c) 7/8 - 3/8 = 4/8 = 1/2总结:通过以上的练习题,我们可以更好地理解和掌握分式加减法的运算规则。
在进行计算时,我们需要注意分母的相等与否,以及结果是否需要化简至最简形式。
初二分式的加减乘除的练习题
初二分式的加减乘除的练习题分式加减乘除的练习题1. 加法(1)计算:⅔ + ⅛解析:首先需要找到两个分数的最小公倍数,即6。
然后将两个分数的分子乘以相应的倍数,得到:4/6 + 1/6 = 5/6。
答案:⅔ + ⅛ = 5/6(2)计算:7/10 + 3/5解析:将两个分数转化为相同的分母,得到:7/10 + 6/10 = 13/10。
由于13/10是一个假分数,需要将其化简为带分数形式,即整数部分加上真分数:13/10 = 1 3/10。
答案:7/10 + 3/5 = 1 3/102. 减法(1)计算:2/5 - 1/10解析:将两个分数转化为相同的分母,得到:4/10 - 1/10 = 3/10。
答案:2/5 - 1/10 = 3/10(2)计算:5/6 - 1/3解析:首先需要找到两个分数的最小公倍数,即6。
然后将两个分数的分子乘以相应的倍数,得到:5/6 - 2/6 = 3/6。
由于3/6可以化简为1/2,答案可以写为带分数形式:1/2 = 0 1/2。
答案:5/6 - 1/3 = 0 1/23. 乘法(1)计算:2/3 × 5/8解析:将两个分数的分子相乘,分母相乘,得到:2/3 × 5/8 = 10/24。
由于10/24可以化简为5/12,答案可以写为带分数形式:5/12 = 0 5/12。
答案:2/3 × 5/8 = 0 5/12(2)计算:3/4 × 3/5解析:将两个分数的分子相乘,分母相乘,得到:3/4 ×3/5 = 9/20。
答案:3/4 × 3/5 = 9/204. 除法(1)计算:7/8 ÷ 1/4解析:将除数(被除数的倒数)乘以分子的倒数,得到:7/8 × 4/1= 28/8。
由于28/8可以化简为7/2,答案可以写为带分数形式:7/2 = 31/2。
答案:7/8 ÷ 1/4 = 3 1/2(2)计算:2/3 ÷ 4/5解析:将除数(被除数的倒数)乘以分子的倒数,得到:2/3 × 5/4 = 10/12。
分式加减法练习题 答案
分式加减法练习题答案分式加减法练习题答案分式,作为数学中的一个重要概念,是我们在日常生活中经常会遇到的。
它是由分子和分母组成的,分子表示分数的一部分,而分母表示总共的份数。
分式加减法是分式运算的一种基本形式,通过练习题来提高我们的分式加减法运算能力,下面是一些练习题及其答案。
题目一:计算下列分式的和或差。
1. 3/4 + 1/62. 5/8 - 1/33. 2/5 + 3/104. 7/12 - 1/6解答:1. 3/4 + 1/6 = (3×3 + 1×2) / (4×3) = 11/122. 5/8 - 1/3 = (5×3 - 1×8) / (8×3) = 7/243. 2/5 + 3/10 = (2×2 + 3×1) / (5×2) = 7/104. 7/12 - 1/6 = (7×1 - 1×2) / (12×2) = 5/24题目二:计算下列分式的和或差。
1. 2/3 + 4/52. 3/7 - 2/93. 1/2 + 1/34. 4/5 - 3/10解答:1. 2/3 + 4/5 = (2×5 + 4×3) / (3×5) = 22/152. 3/7 - 2/9 = (3×9 - 2×7) / (7×9) = 13/633. 1/2 + 1/3 = (1×3 + 1×2) / (2×3) = 5/64. 4/5 - 3/10 = (4×2 - 3×1) / (5×2) = 7/10通过以上的练习题及其答案,我们可以发现分式加减法的计算并不难,只需要根据分式的定义和运算规则进行计算即可。
在计算过程中,我们需要注意分式的分子和分母的运算,以及最终结果的化简。
八年级上册分式的加减乘除计算题
八年级上册分式的加减乘除计算题一、分式的乘除法计算题(10题)1. 计算:(x)/(y)·(y)/(x)- 解析:分式乘法法则为(a)/(b)·(c)/(d)=(ac)/(bd),这里(x)/(y)·(y)/(x)=(x× y)/(y×x)=1。
2. 计算:(2a)/(3b)·frac{9b^2}{8a^2}- 解析:根据分式乘法法则,(2a)/(3b)·frac{9b^2}{8a^2}=frac{2a×9b^2}{3b×8a^2}=frac{18ab^2}{24a^2b}=(3b)/(4a)。
3. 计算:frac{x^2-1}{x^2+2x + 1}÷(x - 1)/(x+1)- 解析:- 先将分子分母因式分解,x^2-1=(x + 1)(x - 1),x^2+2x + 1=(x + 1)^2。
- 然后根据分式除法法则(a)/(b)÷(c)/(d)=(a)/(b)·(d)/(c),原式可化为((x + 1)(x - 1))/((x + 1)^2)·(x+1)/(x - 1)=1。
4. 计算:frac{4x^2-4xy+y^2}{2x - y}÷(4x^2-y^2)- 解析:- 先对分子4x^2-4xy + y^2=(2x - y)^2,分母4x^2-y^2=(2x + y)(2x - y)进行因式分解。
- 根据除法法则,原式=frac{(2x - y)^2}{2x - y}·(1)/((2x + y)(2x - y))=(1)/(2x + y)。
5. 计算:frac{a^2-4}{a^2+4a+4}·(2a + 4)/(a - 2)- 解析:- 对分子分母因式分解,a^2-4=(a + 2)(a - 2),a^2+4a + 4=(a + 2)^2,2a+4 = 2(a + 2)。
分式加减法专项练习60题(有答案)
分式加减法专项练习60题(有答案)1.2.a(a﹣1)+3.4..5. +.6..7.=_________.8..9..10..11..12.13.14..15.16.(1);(2).17.18.1+19.﹣+ 20.21.+.22.23..24.,25.26.++.27.+﹣.28.29.(式中a,b,c两两不相等):30.31.(1);(2)….32.+﹣33.化简分式:.34..35.计算:﹣.36.计算:.37.计算:.38..39.计算化简:.40.计算:+++.41.计算.42.计算:.43.化简:.44..45.计算:.46..47.化简:.48..49..50.计算:﹣.51.计算:.52.计算:1﹣•.53.计算:.54.化简.55.化简:.56.先观察下列等式,然后用你发现的规律解答下列问题:由,,…(1)计算++++++=_________(n为正整数);(2)化简:+…+.57.化简:﹣.58.请你阅读下列计算过程,再回答所提出的问题:题目计算:解:原式=(A)=(B)=a﹣3﹣6(C)=a﹣9(D)(1)上述计算过程中,从哪一步开始出现错误:_________.(2)从B到C是否正确,若不正确,错误的原因是_________.(3)请你把正确解答过程写下来.59.观察下面的变形规律:=1﹣;=﹣;=﹣;…解答下面的问题:(1)若n为正整数,请你猜想=_________;(2)证明你猜想的结论;(3)求和:+++…+.60.求和.参考答案:1.原式===1+1=2.2.原式=a2﹣a+=a2﹣a+a=a2.3.==.4.原式===.5.原式=+==.6.原式===.7.==.8.原式===a﹣1.9.原式==.10.+=+=+==1.11.原式=﹣==.12.原式=﹣=﹣=.13.原式=+===14.原式=+==.15.=﹣=﹣==﹣1.16.(1)原式=;(2)原式=17.====.18.原式=1﹣====.19.原式=﹣•==.20.===0.21.原式=+==.22.原式=﹣==.23.原式=====1.24.原式====;x的取值范围是x≠﹣2且x≠1的实数.25.原式==.26.====027.原式=﹣﹣==28.=.29.原式=++=+++++=0.30.原式=+﹣==.31.(1),=,=;(2)+…+=﹣+﹣+…+﹣=﹣=.32.==﹣2 33.=(2a+1)+﹣(a﹣3)﹣﹣(3a+2)++(2a﹣2)﹣=[(2a+1)﹣(a﹣3)﹣(3a+2)+(2a﹣2)]+(﹣+﹣)=﹣+﹣=﹣=.34.原式=﹣=﹣===35.原式====﹣36.原式====37.原式==38.原式=+﹣==39.原式=++=+﹣==== 40.原式=+++=++ =++=+=+=.41.设2x2+3x=y,则原式=﹣+===.42.原式=﹣a+2=a+1﹣a+2=3.43. 原式====.44.原式===,===45.=﹣===46.=== ==47.原式=,=﹣+,=+﹣﹣++,=048.原式=2a﹣a﹣1+a+1=2a.49.原式====.50.原式====.51.原式===.52.原式=1﹣×=1﹣==﹣.53.原式=+﹣====54.原式=++=+++++=﹣+﹣+﹣=0+0+0=055.原式===156.(1)原式=1﹣+﹣+…+﹣=1﹣=;(2)原式=﹣+…+﹣=﹣=57.原式=﹣=﹣=158.(1)A(2)不正确,不能去分母(3)原式===59.(1)=﹣;(2)﹣=﹣==;(3)+++…+=1﹣+﹣+﹣+…+﹣=1﹣=60.原式=++++…+﹣=+++…+﹣=+﹣=﹣=.。
分式加减法练习题
分式加减法练习题
分式加减法练习题
分式的加减运算是分式四则运算中的重点内容,特别是异分母分式的加减更是分式四则运算中的难点。
以下是分式加减法练习题,欢迎阅读。
一、选择题:(每小题4分,共8分)
1.下列各式计算正确的是()
A.B.C.D.
2.化简+1等于()
A.B.C.D.
3.若a-b=2ab,则的值为()
A.B.-C.2D.-2
4.若,则M、N的值分别为()
A.M=-1,N=-2
B.M=-2,N=-1
C.M=1,N=2
D.M=2,N=1
5.若x2+x-2=0,则x2+x-的.值为()
A.B.C.2D.-
二、填空题:(每小题4分,共8分)
1.计算:=________.
2.已知x≠0,=________.
3.化简:x+=________.
4.如果m+n=2,mn=-4,那么的值为________.
5.甲、乙两地相距S千米,汽车从甲地到乙地按每小时v千米的速度行驶,可按时到达;若每小时多行驶a千米,则可提前________小时到达(保留最简结果).
三、解答题:(共50分)
1.(4×5=20)计算:(1)a+b+(2)
(3)(4)(x+1-)÷
2.(10分)化简求值:(2+)÷(a-)其中a=2.
3.(10分)已知,求的值.
4.(10分)一项工程,甲工程队单独完成需要m天,乙工程队单独完成比甲队单独完成多需要n天时间,那么甲、乙工程队合做需要多少天能够完成此项工程?。
(05)分式加减法专项练习60题(有答案)ok
分式加减法专项练习60题(有答案)6yue281 12a41|a 2-l[13 nx-:3 x ( X-3)5.6.2 a ..] a+1.i '.8.1 ID - 5 in2 _ in 2ID 2 _ 214.9.10. ab b:I.7'-'-.11.2m _ 1 m 2 -4 时2x 2 2x .K 2+X -2 /-4X £+4X +412.a - 1a 2+a- 2a+l¥-115.13.16 .(1)x+x | - 9X2+6I+917 .n m ^2_2L珂0jm_ 2n n, - 4im+4n*18.1+a2+ab+ b 2?-b319 .b2ab+ b2 - 2ab+ b2'a2 - b22a * b ~ e , 2b ~ c - a _ 2e - a - b~2I 5' oa - ab - ac+bc b - ab - bc+ac c - ac - bc+ab23.ir^+2ni+l V 7?(i-l)(K +2)-1 ,r 12.L2IE 2 - 9 TS;_ IT 26.25.27.2y+z —■+28 卅9b _ a+3b.:.- --29.(式中a , b , c 两两不相等)231. (1) ^― ■出;x+y2曰'+3*2 _ 己2 _ 廿 _ 5 _ 3 a? _ 4邑- § 2护 - 3时5 a+1af2 a - 2 + a - 3:, 1 … K (xfl) T (计1)(計刃 (x+2005) (x+2006)(2) b 2a+c b-ca 一 b+c|b ' a _ c b -耳-百 32.33.化简分式:34. 72x y+xy35 .计算:2x+2y36. 计算: 37•计算:3K - 4y40. 38. 39.计算化简:一X2+3X +2 X 2+K -2 1- T 21124 1-X|i+d1+/计算:41 . 1 2 12X 2+31-1 2 K 2+3X +1 2X 2+3I ^3计算45•计算:f「二47.化简:2a_ b-c _ 2b _c _a , 2c _a ~ b (a-b) ta_c) * (b_c) Cb - a)亠(G_(G_b)42•计算: 7s +2a+l a+148. ::-■-a- 1 49.a2-l51 •计算:2JS' y _z 2y _ _2 2z _K_y~~5 "I o "I- Ky- xz+yz y^- xy - yz+xz z^-KZ- yz+sy54.化简(2)化简:1 + + + +■ ++=1X^ 2X3 3X4 4X5 5X6|6X7 7X8 _—□__________ 1______ .L[(n为正整数);+・・+1(x+2QQ8) C K+2009)50.计算:56.先观察下列等式,然后用你发现的规律解答下列问题:由 __ _!—丄_J_一_!_! _J__1X2 2 1 2 2X3 6 2 3 3Xq 12 3 4 (1)计算(K+2) (X+3)(x+1)(x+1) (x+2)解答下面的问题:(1 )若n 为正整数,请你猜想一.1.= _|n Cn+1)(2) 证明你猜想的结论;(3) ------------------------------------------------------------- 求和: 一=—+—=—+—=—+ •- +=1X2 2X3 3X4 2011X2012解:原式= ----- ------------ ' (A )a+3(a+3)(a - 3)= a-3_6(a+3)_3)((a - 3)58•请你阅读下列计算过程,再回答所提岀的问题:题目计算:(B)=a — 3- 6 (C ) =a - 9 ( D )(1 )上述计算过程中,从哪一步开始岀现错误: _ _ •(2)从B 到C 是否正确,若不正确,错误的原因是 __________________ (3 )请你把正确解答过程写下来.59 •观察下面的变形规律:=11X21::;L1 1 1 |1 12|3|;3X4 3 4;参考答案:1 原式=• .' . -1 - I =1 + 1=2 .a _ ba _b a _ ba 2 - abb a (a b) n = • a + b a+b|Pt/a+b(a+b) (a _b)a+b a +h| a+ba+b|m _ 2 2m (mH)4. 5. 6. 2x1x 11(xH) (K--1) x-1 (計 1) (x-1) x+1-+a+1 (aH )2冷-1)a- 1+2 _ (aH)〔耳 T) 1 1 1-1 X3x _ 3 1 1x (x _3) x (x-3)"x Cs _ 3) x1 . 2_l+2_3 a da a T a14.十「、2自(已+1)222 .原式=a — a+ =a - a+a=a .nfl3.原式=原式= 原式=7. 10.(ID - 1 ) (ID - 2)2m (ID - 1) (nrl-1)a _ 1_ 3.^+0| a-1 |a (a+1) | 1 |a 1 _ a □ -l =a-la 2 - 2a+l a 2 - T'(a -D 旷(a -1) (a+1)〜1 一-11 _ 4 _ - a+2 _41□ _ 2 (at2) Ca _ 2) (af2)冷-2)(a+2) (a _ 2)(寸2〕_ 2)16.17.18. 19. 20.21 .22.23.24.25. 26.27.28. 29.D 2,1血G+l ) 2(x+1)(x-1)(xH) (K-1)(xH) C K -1)K-l 原式 2xy y (旳)= ¥ a - y) y (K _ y) (K +Y ) (K _ y) Cx+y)(富一 y ) 〔盂+y )(nrFl ) 22 itd-1 2 | irr^L - 2 ra _1 A (1□- 1) (nrbl) m - 1 m _ 1 m _ 1 m _ 1 m _ 1x (x+2)5 _(X- n (X42) _x 2+2x-3 - X 2-X +2 (K- 1) (x+2)(K-1;(x+2)〔耳「1)(計2)_ (i-l )(计2)原式原式原式 ;x 的取值范围是x a 2且x 的实数.K - 12m -n nr^n m n _ ID n ~ IT ] 原式-- ・ 1 _ 12 -2 (m+3)皿2 _ 9 _ in 「nr+3 (ml-3) (ID - 3i 丁 (nrl-3) Cm - 3)12-2 (昭引 +2 57)L2-2u- -&+2m - 61 J -■ i :(nrf 3) ■i 02 Cm - 3) +(nH-3)~_ 3)2y+xy2x2y+z - y - 2iy x",(xfy) (K _y)1 x+ya 2= 1(ad-2) Ca _2)nt - n (m - 2n ) in - 2n (mi-n) (m 一 n)a 2+ab+ b 2m _ 2n _rrH ■口 - ( m _ 2n) jirl-n _ irrl^2n _irr^nrn^n m+n— b 24_ 1 _ b_1 -b(a -b) 2| b ( a+b)'□-b(旦-b) ~a+l+a 1 2a 0 且一 1 8+1 /-I(a - 1) (a+1) (a+1) fa _ 1)a+9b a +3t 廿9b =~ (a-K3b) ■仙 23ab3ab - 3ab 3ab a原式=1 -=0.(a~b) ( a^+ab+ b 2)原式=原式34.…氏+F )'原式x - y x+y-莖+y 2y 2xy xy xy x36. / - 2xy+ y 2 - 2Z 3 - 2y 2z+y2 (x+y) (K -y) =b 【葢-y)J s+2y y -1yi+2y - y+1 - yx+1 | 1 |_l-x 2 1-S 2l-,21 1*1 - :, 1 -.37. 原式2-y 238. 原式三買丄玄-丄?x 2 (x _ 1)(2)「| J +••+^亠亠 + 亠——+ ••+ -s (xfl) (K +1) (X +2) (X +2005) (r+2006)同莎直+1 越 x+200EL =. 200& 丈我006=x (x+200G)” b2a^c b - c b 2a+c - b-+c - b 2a - M2c 2a - 2b+2<na " t+cb _ a _ cb _ a _ ca" b+cb _ a _ Gb _ a _G b _ a - G b 一且一 E2a 2+3a+2 __ 3a 2_4a~^ 2 a 2 _ Sa+Sarbla+2 a _ 2 + a - 3=(2a+1)-( a - 3)--( 3a+2) +—'a+1a+2a-=[(2a+1)-( a - 3)-( 3a+2) + ( 2a - 2) ]+ (-—r ■丁arl a+Z a _ J 耳一/ 丄-一 :-• = . •. -a+1 a+2 □ _ 2 a _ 3 (aH 〕(a+2)(a _ 2) (a _ 3)-盼4(a-bl)( a+2) (a - 2)(a _ 3)x+2006-40x+40 (x-2) (K -4)31. (1)x+ysy (x - y)35.原式22 - K - 3yJy+ x 2C K - 1)(y+1)(y+3) -2 (y 1? (y+3) + (y■-1D (y+1) rs(y-1) Cy+1)Cy+3) =(厂⑴(y+D (y+3)8(2x ?+3i- 1)(2 x 2+3X +1 )(2 x 2+3x+3)'2c - a - k>4 (1+/) 4 (1+ J)—丄8 (1-』)(Hx 4) (1-/) (1+/)1-x 8 2 41 .设2x +3x=y ,则原式=X J y 2 2 _ * y _xK ( K ~ y) y(y _z) K ( K ~ y) y (K_ y) xy (K _ y) xy (K _y)_ 2 . y K -(旳)Cx -y)s+y xy -y)xy (h -y)XV44.原式 2y 严2 y2X1 y 2-x 2(y+莖)Cy x) /-/y-xx (K - y)K (x - y) x U - y) x (s - y) 45.2KVx _ xE M 什貨(x - y) +x (x+y) 992zy+ z - XV+ 92sy+2 x 凤2 -x+y ^-y _ ]宀/ I'_2 _ 2K y(x _y) (x+y)46. 2工(旳)n (旳)「2工m 一y39.原式=JS ( 1 - 1 )X (x+1) 2 (x+2)(K +2) (X +1 } (x _ 1)( K +2) C X H) (s-1) | | (K +2) C K H)(; cl)K ?K + K2+X 2x - 4=2x 2 2x 4J 2 ( 英-2〕(x+1)2K - 4 (計刃(?-n 丨丘+对a+D G — i ) (xf2) (x+1) (x-1)X2+K - 240.原式=14■覽(1 - x)~(1 十辺2 (1+ x 2) 2 (1- J)丄+ 4 =44 I(1 -4 (H x £)(1-?) (1+?)1十 J 1- J 1+J+ -+ ■-1+x 2 1+J42 .原式=■-+ 乩一x - x+y 1K +X (s+y)(盖—y)(s+y) (x-y) (x+y) (K - y)K _ y47 .原式=.一: - 1〔 一 ,,++(x+2) &十 1)(1 十小(1 -X ) (2 (x-1)2+4(1-X )(1+G(1-X )(1卄)43.原式-a+2=a+1 - a+2=3.48.49.50.(a-k>) + (且-c)—(h* - c? + (b - s) +(c-a) +〔匚-b)(a- b) (a~ c)(b-c) (a-b) 〔£-辺)(c - b)+++]—,=0a+ (3a+l) ・(2a+3) a+3a4-l -•岛・3 2 (a- 1? .2 I宀1a-1a+1'=1 3x+5=h 1 ③+5)-2:計孑(X-HS) ( K _ 1 )(K+3)(K-D(K+3)G-1)原式原式原式=2a - a _1+a+仁2a.4 x- 81 3 x+612= 7 x- 14(x+2 ) ( x-2 )(x+2 ) ( x-2 )(x+2 ) ( x -2 )](也)(K-2 )51.原式乂且(# 3)52.原式=1 -2a+12a+b 2b^2a- (2a+b) 2b+2a 2a b=1..--2ab2ab Znb 2ab=1 -(曲)Ca_ 1)a+3a+153. 原式-I- , 1-L2ab 2ab1 1r 1 亠1-L 1 4.1 1x _ z z _ y y _s 1y _ m 12 _y i Z _I X _z55.原式X2-1+2(好1) (x+L ) 2= 4+1 )戈=_(田)2=1M -—+ •-+3118 =1 -+ - - + 1L56. (1)原式=1 -12=』;11= 2009灶2009K (計20Q9)=157 .原式=■K (x+2) 2 XK-2'_X- 2K+2008 K+200^y- 一a-3 ’£寸畀(arf3) G - 3)(a+3)(且- 3)丁(af3) Ca_ 3)a - 3+6 十1(时3) (a-3) (a+3) ( □ _3) a.-3(x+2) (x _2)58. (1) A (2)不正确,不能去分母(3)原式=1 ]11n (汩1)=n n+1;59. (1)-=.n+1 n .n+1 - n 1n+1 n (n+1)n (n+1) n (nil) b 5+i)(2) 2岛说九X4=14墙4 i弓-—+ ••+2011X20121feOll2012 =20122011 2012—=1.=2 +」+4+ ••+ 「1 ] 1 - X 1-x 2l+i 21出1+4|1-』60•原式叮・+.「.。
分式的乘除加减法练习题(打印版)
分式的乘除加减法练习题(打印版)### 分式的乘除加减法练习题#### 一、分式的乘法1. 计算以下分式的乘积:\[\frac{3}{4} \times \frac{5}{6}\]2. 计算以下分式的乘积:\[\frac{2}{3} \times \frac{7}{8}\]3. 计算以下分式的乘积:\[\frac{1}{2} \times \frac{4}{9}\]#### 二、分式的除法1. 计算以下分式的商:\[\frac{3}{5} \div \frac{2}{3}\]2. 计算以下分式的商:\frac{4}{7} \div \frac{1}{3} \]3. 计算以下分式的商:\[\frac{5}{8} \div \frac{5}{2} \]#### 三、分式的加法1. 计算以下分式的和:\[\frac{1}{3} + \frac{2}{3}\]2. 计算以下分式的和:\[\frac{3}{4} + \frac{1}{4}\]3. 计算以下分式的和:\[\frac{5}{6} + \frac{1}{6}\]#### 四、分式的减法1. 计算以下分式的差:\[\frac{4}{5} - \frac{1}{5}2. 计算以下分式的差:\frac{7}{8} - \frac{3}{8}3. 计算以下分式的差:\[\frac{9}{10} - \frac{2}{5}\]#### 五、混合运算1. 计算以下混合运算的结果:\[\left(\frac{2}{3} + \frac{1}{6}\right) \times \frac{3}{4} \]2. 计算以下混合运算的结果:\[\frac{5}{6} \div \left(\frac{2}{3} \times\frac{3}{4}\right)\]3. 计算以下混合运算的结果:\[\left(\frac{3}{5} - \frac{1}{10}\right) \div \frac{1}{2} \]通过以上练习题,可以有效地提高对分式运算的理解和计算能力。
分式加减法混合运算测试题及答案
B 、x2-2xy+ y2=x- y分式加减乘除混合运算测试题(总分100分,时间100分钟)班级___________ 姓名________________ 得分_________________________一.填空题(每题3分,共2 4分)x + \ X + 31•若代数式——有意义,则X的取值范围是____________________ ・x+2 x+4( 1 A 3_a2•化简1 -------- 一——的结果是___________________ ・< a — 2 丿 2" — 4M 2xy - y2 x -y …3.若一 =一 +—-,则M二 ________________________ ■牙・_)厂x + y4.公路全长s千米,骑车t小时可到达,要提前40分钟到达,每小时应多建—千米.5 .某班a名同学参加植树活动,其中男生b^(b<a).若只由男生完成,每人需植树1 5棵:若只由女生完成,则每人需植树______________ 棵.6.化简--------- 二_____________ .7.若--------- =0,贝I]m = _________a+1 a+1 x-y y-x8.若1-1 = 3,贝严3gy= ______________________x y x-xy- y二选择题(每题3分,共24分)1 •下列等式中不成立的是(x 2 -xy x- y D 、x y xyB 、 2•下列各式中,从左到右的变形正确的是(-x + V -% - VA 、 ----- = --------_ x _ y x-yC、D 、 A. \ F(b+1,B.(£+1)C ・(错误!+ 1 )米A. x-B三.计B. x+\ 。
-x+y_x+y_牙 + y _ x-y_ x _ y x _ y_ x _ y x + y3.如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为d 克,再称得剩余电线的质量为〃克, 那么原来这卷电线的总长度是 ()D.(错误!+1 )米 N 的大小关系是( )A 、M>NB 、M=NC . M<ND 、不确定5.下列分式的运算中 ,其中结果正确的是()A 1+ 12B c (r+b 2 =a +b D 、a ba + bau + ba-31a 1-6a+ 9a-36.下列各式从左到右的变形正确的是( )1 x__y A -1 亍+y 2x-y x + 2y c 0.2a+ b 2a+ bB. ----------- = ----------6/4-0.27? a + 2bc._7x —y x-1x-y,、a + b a-b 。