2018中考数学第一轮复习教案
中考数学第一轮总复习教案(26-32课时)
第六章 三角形课时26.几何初步及平行线、相交线【课前热身】1. 如图,延长线段AB 到C ,使4BC =, 若8AB =,则线段AC 是BC的 倍.2.如图,已知直线a b ∥,135=∠,则2∠的度数是 .3.如图,在不等边ABC △中,DE BC ∥,60ADE =∠,图中等于60的角还有______________.4.经过任意三点中的两点共可以画出的直线条数是( )A .一条或三条B .三条C .两条D .一条 5.如图,直线a b ∥,则A ∠的度数是( )A .28B .31C .39D .42【考点链接】1. 两点确定一条直线,两点之间线段最短._______________叫两点间距离.2. 1周角=__________平角=_____________直角=____________.3. 如果两个角的和等于90度,就说这两个角互余,同角或等角的余角相等;如果_____________________互为补角,__________________的补角相等.4. ___________________________________叫对顶角,对顶角___________.5. 过直线外一点心___________条直线与这条直线平行.6. 平行线的性质:两直线平行,_________相等,________相等,________互补.7. 平行线的判定:________相等,或______相等,或______互补,两直线平行.8. 平面内,过一点有且只有_____条直线与已知直线垂直.【典例精析】例1 如图:AB ∥CD ,直线EF 分别交AB 、CD 于E 、F ,EG 平分∠BEF ,若∠1=720,则∠2等于多少度?(第1题)E A B(第3题)1 2 (第2题)(第4题)图70°31°例2 如图,ABC △中,B C ∠∠,的平分线相交于点O ,过O 作DE BC ∥,若5BD EC +=,则DE 等于多少?【中考演练】1.(08永州) 如图,直线a 、b 被直线c 所截,若要a ∥ b ,需增加条件 _____________.(填一个即可) 2.(08义乌) 如图直线l 1//l 2,AB ⊥CD ,∠1=34°,那么∠2的度数是 . 3.(08河南) 如图, 已知直线25,115,//=∠=∠A C CD AB , 则=∠E ( ) A.70 B. 80 C. 90 D. 100( 第1题) ( 第2题) (第3题) 4.(08益阳) 如图,在△ABC 中,AB =BC =12cm ,∠ABC =80°,BD 是∠ABC 的平分线,DE ∥BC .(1) 求∠EDB 的度数;(2) 求DE 的长.21D CBAl 2l 1ABCD E5. (08宁夏)如图,AB ∥CD , AC ⊥BC ,∠BAC =65°,求∠BCD 度数.﹡6. (08东莞) 如图,在ΔABC 中,AB =AC =10,BC =8.用尺规作图作BC 边上的中线AD (保留作图痕迹,不要求写作法、证明),并求AD 的长.课时27.三角形的有关概念【课前热身】1. 如图,在△ABC 中,∠A =70°,∠B =60°,点D 在BC 的延长线上,则∠ACD = 度.2. ABC△中,D E ,分别是AB AC ,的 中点,当10cm BC =时,DE = cm . (第1题) 3. 如图在△ABC 中,AD 是高线,AE 是角平分线,AF 中线.(1) ∠ADC = =90°; (2) ∠CAE = =12 ;(3) CF = =12; (4) S △ABC = .C DB7060A A B CE DC BAF(第3题) (第4题)4. 如图,⊿ABC 中,∠A = 40°,∠B = 72°,CE 平分∠ACB ,CD ⊥AB 于D ,DF ⊥CE ,则∠CDF = 度. 5. 如果两条平行直线被第三条直线所截,一对同旁内角的度数之比为3:6,那么这两个角分别等于 °和 °.【考点链接】一、三角形的分类:1.三角形按角分为______________,______________,_____________. 2.三角形按边分为_______________,__________________. 二、三角形的性质:1.三角形中任意两边之和____第三边,两边之差_____第三边2.三角形的内角和为_______,外角与内角的关系:__________________. 三、三角形中的主要线段:1.___________________________________叫三角形的中位线.2.中位线的性质:____________________________________________. 3.三角形的中线、高线、角平分线都是____________.(线段、射线、直线)【典例精析】例1 如图,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC=63°. 求∠DAC 的度数.例2 如图,已知D 、E 分别是△ABC 的边BC 和边AC 的中点,连接DE 、AD ,若S ABC △=24cm 2,求△DEC 的面积.4321D CB A例3 如图,在等腰三角形ACB 中,5AC BC ==,8AB =,D 为底边AB 上一动点(不与点A B ,重合),DE AC ⊥,DF BC ⊥,垂足分别为E F ,,求DE DF +的长.【中考演练】1.在△ABC 中,若∠A =∠C=13∠B ,则∠A=,∠B = ,这个三角形是 .2. (07深圳)已知三角形的三边长分别为3、8、x ,若x 的值为偶数,则x 的值有( )A. 6个B. 5个C. 4 个D. 3个 3.(07济南)已知一个三角形三个内角度数的比是1:5:6,则其最大内角度数为( )A.60°B.75°C.90°D.120°4.如图,AB ∥CD ,AE 平分∠BAC ,CE 平分∠ACD ,求∠E 的度数.5. 如图,已知DE ∥BC ,CD 是∠ACB 的平分线,∠B =70°,∠ACB =50°, 求∠EDC 和∠BDC 的度数.﹡6. △ABC 中,AD 是高,AE 、BF 是角角平分线相交于点O ,∠BAC=50°,∠C=70°,EDCBAAB CD E求∠DAC,∠BOA的度数.课时28.等腰三角形与直角三角形【课前热身】1.等腰三角形的一个角为50°,那么它的一个底角为______.2. 在△ABC中,AB=AC,∠A=50°,BD为∠ABC的平分线,则∠BDC=_____°.3.在△ABC中,AB=AC,D为AC边上一点,且BD=BC=AD. 则∠A等于()A.30° B.36° C.45° D.72°(第2题)(第3题)(第4题)4.(07南充)一艘轮船由海平面上A地出发向南偏西40º的方向行驶40海里到达B地,再由B地向北偏西10º的方向行驶40海里到达C地,则A、C两地相距()A.30海里 B.40海里 C.50海里 D.60海里【考点链接】一.等腰三角形的性质与判定:1. 等腰三角形的两底角__________;2. 等腰三角形底边上的______,底边上的________,顶角的_______,三线合一;3. 有两个角相等的三角形是_________.二.等边三角形的性质与判定:1. 等边三角形每个角都等于_______,同样具有“三线合一”的性质;2. 三个角相等的三角形是________,三边相等的三角形是_______,一个角等于60°的_______三角形是等边三角形.三.直角三角形的性质与判定:1. 直角三角形两锐角________.2. 直角三角形中30°所对的直角边等于斜边的________.3. 直角三角形中,斜边的中线等于斜边的______.;4. 勾股定理:_________________________________________.5. 勾股定理的逆定理:_________________________________________________.【典例精析】例1 如图,等腰三角形ABC中,AB=AC,一腰上的中线BD 将这个等腰三角形周长分成15和6两部分,求这个三角形的腰长及底边长.例2 (06包头)《中华人民共和国道路交通管理条例》规定:“小汽车在城市街道上的行驶速度不得超过70千米/时”. 一辆小汽车在一条城市街道上由西向东行驶(如图所示),在距离路边25米处有“车速检测仪O”, 测得该车从北偏西60°的A点行驶到北偏西30°的B点,所用时间为1.5秒.(1)试求该车从A点到B的平均速度;(2)试说明该车是否超过限速.【中考演练】1.(08湖州)已知等腰三角形的一个底角为70,则它的顶角为____________.度.2.(08白银)已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为____. 3. (08武汉) 如图,小雅家(图中点O处)门前 有一条东西走向的公路,经测得有一水塔(图中点A处)在她家北偏东60度500m 处,那么水塔 所在的位置到公路的距离AB 是____________.(第3题)4.如图,已知在直角三角形中,∠C=90°,BD 平分∠ABC 且交AC 于D . ⑴ 若∠BAC=30°,求证:AD=BD ;⑵ 若AP 平分∠BAC 且交BD 于P ,求∠BPA 的度数.5.(08义乌) 如图,小明用一块有一个锐角为30的直角三角板测量树高,已知小明离 树的距离为4米,DE 为1.68米,那么这棵树大约有多高?(精确到0.1米)P D C B AA O B东北课时29.全等三角形【课前热身】1.如图1所示,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD=____.ACFEDB(第1题)(第2题)(第3题)2.如图2,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去3.如图,已知AE∥BF, ∠E=∠F,要使△ADE≌△BCF,可添加的条件是________.4. 在⊿ABC和⊿A/B/C/中,AB=A/B/,∠A=∠A/,若证⊿ABC≌⊿A/B/C/还要从下列条件中补选一个,错误的选法是()A. ∠B=∠B/B. ∠C=∠C/C. BC=B/C/,D. AC=A/C/,【考点链接】1.全等三角形:____________、______________的三角形叫全等三角形.2. 三角形全等的判定方法有:_______、______、_______、______.直角三角形全等的判定除以上的方法还有________.3. 全等三角形的性质:全等三角形___________,____________.4. 全等三角形的面积_______、周长_____、对应高、______、_______相等.【典例精析】例1 已知:在梯形ABCD中,AB//CD,E是BC的中点,直线AE与DC的延长线交于点F. 求证:AB=CF.例2 (06重庆)如图所示,A、D、F、B在同一直线上,AD=BF,AE=BC,且AE BC.求证:(1) AEF BCD;(2)EF CD.【中考演练】1.(08遵义)如图,OA OB =,OC OD =,50O ∠=,35D ∠=,则AEC ∠等于( )A .60B .50C .45D .302. ( 08双柏) 如图,点P 在AOB ∠的平分线上,AOP BOP △≌△,则需添加的一个条件是 (只写一个即可,不添加辅助线):(第1题) (第2题) (第3题)3. ( 08郴州) 如图,D 是AB 边上的中点,将ABC ∆沿过D 的直线折叠,使点A 落在BC上F 处,若50B ∠=︒,则BDF ∠= __________度.4. (08荆州)如图,矩形ABCD 中,点E 是BC 上一点,AE =AD ,DF ⊥AE 于F ,连结DE ,求证:DF =DC .5. 如图,AB=AD ,BC=DC ,AC 与BD 交于点E ,由这些条件你能推出哪些结论?(不再添加辅助线,不再标注其它字母,不写推理过程,只要求写出四个你认为正确的结论即可)F E DC B AEDO E AB D CA B C D F﹡6. (08东莞) 如图,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求∠AEB 的大小.课时30.相似三角形【课前热身】1.两个相似三角形对应边上中线的比等于3:2,则对应边上的高的比为______,周长之比为________,面积之比为_________.2.若两个相似三角形的周长的比为4:5,且周长之和为45,则这两个三角形的周长分别为__________.C B ODA E3.如图,在△ABC 中,已知∠ADE=∠B ,则下列等式成立的是( )A.AD AE AB AC = B .AE ADBC BD =C .DE AE BC AB =D .DE ADBC AC=4.在△ABC 与△A′B ′C ′中,有下列条件: (1)''''AB BC A B B C =;(2)''''BC ACB C A C =;(3)∠A=∠A′;(4)∠C=∠C′. 如果从中任取两个条件组成一组,那么能判断△ABC ∽△A′B ′C ′的共有多少组( ) A .1 B .2 C .3 D .4【考点链接】一、相似三角形的定义三边对应成_________,三个角对应________的两个三角形叫做相似三角形. 二、相似三角形的判定方法1. 若DE ∥BC (A 型和X 型)则______________.2. 射影定理:若CD 为Rt △ABC 斜边上的高(双直角图形)则Rt △ABC ∽Rt △ACD ∽Rt △CBD 且AC 2=________,CD 2=_______,BC 2=__ ____.3. 两个角对应相等的两个三角形__________.4. 两边对应成_________且夹角相等的两个三角形相似.5. 三边对应成比例的两个三角形___________. 三、相似三角形的性质1. 相似三角形的对应边_________,对应角________.2. 相似三角形的对应边的比叫做________,一般用k 表示.3. 相似三角形的对应角平分线,对应边的________线,对应边上的_______•线的比等于_______比,周长之比也等于________比,面积比等于_________.【典例精析】例1 在△ABC 和△DEF 中,已知∠A=∠D ,AB=4,AC=3,DE=1,当DF 等于多少时,这两个三角形相似.E A D CBEADCBA D CB例2 如图,△ABC 是一块锐角三角形余料,边BC=120mm ,高AD=80mm , 要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上, 这个正方形零件的边长是多少?例3 一般的室外放映的电影胶片上每一个图片的规格为:3.5cm ×3.5cm ,放映的荧屏的规格为2m ×2m ,若放映机的光源距胶片20cm 时,问荧屏应拉在离镜头多远的地方,放映的图象刚好布满整个荧屏?【中考演练】1.(08大连)如图,若△ABC ∽△DEF ,则∠D 的度数为______________.2. (08杭州) 在中, 为直角, 于点,,写出其中的一对相似三角形是 _ 和 _;并写出它的面积比_____.(第1题) (第2题) (第3题) 3.( 08常州) 如图,在△ABC 中,若DE ∥BC,=,DE =4cm,则BC 的长为 ( ) A.8cm B.12cm C.11cm D.10cmRt ABC ∆C ∠AB CD ⊥D 5,3==AB BC AD DB 12B(0,-4)A(3,0)xy4. (08无锡) 如图,已知是矩形的边上一点,于,试证明.课时31.锐角三角函数【课前热身】1.(06黑龙江)在△ABC 中,∠C =90°,BC =2,sinA =23,则AC 的长是( ) A .5 B .3 C .45D .13 2.Rt ∆ABC 中,∠C=︒90,∠A ∶∠B=1∶2,则sinA 的值( )A .21B .22C .23D .13.如图,在平面直角坐标系中,已知点A (3,0), 点B (0,-4),则cos OAB ∠ 等于_______.4.︒+︒30sin 130cos =____________.【考点链接】1.sin α,cos α,tan α定义sin α=____,cos α=_______,tan α=______ . 2.特殊角三角函数值E ABCD CD BF AE ⊥F ABF EAD △∽△α bc【典例精析】例1 在Rt △ABC 中,a =5,c =13,求sinA ,cosA ,tanA .例2 计算:4sin 302cos 453tan 60︒-︒+︒.例3 等腰△ABC 中,AB =AC =5,BC =8,求底角∠B 的四个三角函数值.【中考演练】1.(08威海) 在△ABC 中,∠C = 90°,tan A =13,则sin B =( ) A .10 B .23 C .34D .310 2.若3cos 4A =,则下列结论正确的为( ) 30° 45° 60° sin α cos α tan αA . 0°< ∠A < 30°B .30°< ∠A < 45°C . 45°< ∠A < 60°D .60°< ∠A < 90° 3. (08连云港) 在Rt ABC △中,90C ∠=,5AC =,4BC =,则tan A = .4.(07济宁) 计算45tan 30cos 60sin -的值是 . 5. 已知3tan 30 A -=∠A =则 .6.△ABC 中,若(sinA -12)2+|32-cosB|=0,求∠C 的大小.﹡7.(07长春)图中有两个正方形,A ,C 两点在大正方形的对角线上,△HAC 是等边三角形,若AB=2,求EF 的长.﹡8. 矩形ABCD 中AB =10,BC =8, E 为AD 边上一点,沿BE 将△BDE 对折,点D 正好落在AB 边上,求 tan ∠AFE ._ E_ A_ F_ D_ C _ B_ O _ H_ G FA BC DE课时32.解直角三角形及其应用【课前热身】1.如图,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为________米.(结果保留根号)(第1题) 2. 某坡面的坡度为1:3,则坡角是_______度.3.(07山东)王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )A .150mB .350mC .100 mD .3100m【考点链接】1.解直角三角形的概念:在直角三角形中已知一些_____________叫做解直角三角形. 2.解直角三角形的类型:已知____________;已知___________________. 3.如图(1)解直角三角形的公式:(1)三边关系:__________________.(2)角关系:∠A+∠B =_____,(3)边角关系:sinA=___,sinB=____,cosA=_______.cosB=____,tanA=_____ ,tanB=_____. 4.如图(2)仰角是____________,俯角是____________. 5.如图(3)方向角:OA :_____,OB :_______,OC :_______,OD :________. 6.如图(4)坡度:AB 的坡度i AB =_______,∠α叫_____,tanα=i =____.(图2) (图3) (图4)αA C B45︒南北西东60︒A D C B 70︒O O A B Cc ba A C B【典例精析】例1 Rt ABC ∆的斜边AB =5, 3cos 5A =,求ABC ∆中的其他量.例2 (08十堰) 海中有一个小岛P ,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P 在北偏东60°方向上,航行12海里到达B 点,这时测得小岛P 在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.例3(07辽宁)为了农田灌溉的需要,某乡利用一土堤修筑一条渠道,在堤中间挖出深为1.2米,下底宽为2米,坡度为1:0.8的渠道(其横断面为等腰梯形),并把挖出来的土堆在两旁,使土堤高度比原来增加了0.6米.(如图所示) 求:(1)渠面宽EF ;(2)修200米长的渠道需挖的土方数.【中考演练】1.在Rt ABC ∆中,090C ∠=,AB =5,AC =4,则 sinA 的值是_________.2.(07乌兰察布)升国旗时,某同学站在离旗杆24m 处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为30°,若两眼距离地面 1.2m,则旗杆高度约为_______.(取 ,结果精确到0.1m)3 1.733.(07云南)已知:如图,在△ABC中,∠B = 45°,∠C = 60°,AB = 6.求BC的长. (结果保留根号)﹡4.(06哈尔滨)如图,在测量塔高AB时,选择与塔底在同一水平面的同一直线上的C、D两点,用测角仪器测得塔顶A的仰角分别是30°和60°.已知测角仪器高CE=1.5米,CD=30米,求塔高AB.(保留根号)。
中考数学总复习的教案5篇
中考数学总复习的教案5篇中考数学总复习的教案篇1一、第一轮复习【3月初—4月中旬】1、第一轮复习的形式:“梳理知识脉络,构建知识体系”————理解为主,做题为辅(1)目的:过三关①过记忆关必须做到:在准确理解的基础上,牢记所有的基本概念(定义)、公式、定理,推论(性质,法则)等。
②过基本方法关需要做到:以基本题型为纲,理解并掌握中学数学中的基本解题方法,例如:配方法,因式分解法,整体法,待定系数法,构造法,反证法等。
③过基本技能关应该做到:无论是对典型题、基本题,还是对综合题,应该很清楚地知道该题目所要考查的知识点,并能找到相应的解题方法。
(2)宗旨:知识系统化在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构。
①数与代数分为3个大单元:数与式、方程与不等式、函数。
②空间和图形分为5个大单元:几何基本概念(线与角)与三角形,四边形,圆与视图,相似与解直角三角形,图形的变换。
③统计与概率分为2个大单元:统计与概率。
(3)配套练习以《中考精英》为主,复习完每个单元进行一次单元测试,重视补缺工作。
2、第一轮复习应注意的问题(1)必须扎扎实实夯实基础中考试题按难:中:易=1:2:7的比例,基础分占总分的70%,因此必须对基础数学知识做到“准确理解”和“熟练掌握”,在应用基础知识时能做到熟练、正确和迅速。
(2)必须深钻教材,不能脱离课本。
(3)掌握基础知识,一定要从理解角度出发。
数学知识的学习,必须要建立逻辑思维能力,基础知识只有理解透了,才可以举一反三、触类旁通。
相对而言,“题海战术”在这个阶段是不适用的。
(5)定期检查学生完成的作业,及时反馈对于作业、练习、测验中的问题,将问题渗透在以后的教学过程中,进行反馈、矫正和强化。
二、第二轮复习【4月中旬—5月初】1、第二轮复习的形式第一阶段是总复习的基础,侧重双基训练,第二阶段是第一阶段复习的延伸和提高,侧重培养学生的数学能力。
第二轮复习时间相对集中,在第一轮复习的基础上,进行拔高,适当增加难度;主要集中在热点、难点、重点内容上,特别是重点;注意数学思想的形成和数学方法的掌握,这就需要充分发挥教师的主导作用。
中考数学第一轮复习教案
一、实数与整式【课标要求】1、有理数(1)理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小. (2)借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值. (3)理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主).(4)理解有理数的运算律,并能运用运算律简化运算.(5)能运用有理数的运算解决简单的实际问题.(6)能对含有较大数字的信息作出合理的解释和推断.2、实数(1)了解无理数和实数的概念,知道实数与数轴上的点一一对应.(2)能用有理数估计一个无理数的大致范围.(3)了解近似数与有效数字的概念;在解决实际问题中,知道计算器进行实数计算的一般步骤,能按问题的要求对结果取近似值.3、代数式(1)在现实情境中进一步理解用字母表示数的意义.(2)能分析简单问题的数量关系,并用代数式表示.(3)能解释一些简单代数式的实际背景或几何意义.(4)会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算.4、整式(1)了解整数指数幂的意义和基本性质,会用科学记数法表示数.(2)了解整式的概念,会进行简单的整式加、减、乘、除运算.(3)会推导乘法公式:(a+b)(a-b)=a2-b2;(a±b)2=a2±2ab+b2,能用图形的面积解释乘法公式,并会用乘法公式进行简单计算;了解乘法公式(a+b)( a2-ab+b2)=a3+b3;(a-b)( a2+ab+b2)=a3-b3.第1课时有理数一、知识点1.有理数的意义:数轴,相反数,倒数,绝对值,近似数与有效数字。
2.有理数的运算:加减乘除,乘方,有理数的大小比较,科学记数法.二、中考课标要求1、有理数的有关概念要准确把握有理数的概念,特别是负数和绝对值的概念是难点,要深刻理解,并结合数轴理解这两个概念,用数形结合的思想,使抽象的概念具体化,再就是近似数的有效数字的概念也是非常重要的,要理解透彻。
【鲁教版】中考数学一轮分类复习四《代数式的初步知识》教案
【鲁教版】中考数学一轮分类复习四《代数式的初步知识》教案一. 教材分析《代数式的初步知识》是初中数学的基础内容,主要介绍了代数式的概念、代数式的运算和代数式的应用。
这部分内容对于学生来说,既是基础又是难点,因此在中考复习中,需要重点讲解和练习。
二. 学情分析学生在学习代数式时,通常会存在以下问题:1.对代数式的概念理解不清晰,容易混淆;2.对代数式的运算规则理解不透彻,容易出错;3.对代数式的应用掌握不牢固,不能灵活运用。
三. 教学目标1.让学生掌握代数式的概念,明确代数式的组成要素;2.让学生熟悉代数式的运算规则,能正确进行代数式的运算;3.让学生能运用代数式解决实际问题,提高解决问题的能力。
四. 教学重难点1.代数式的概念及其组成要素;2.代数式的运算规则及运算方法;3.代数式在实际问题中的应用。
五. 教学方法采用“问题驱动”的教学方法,通过提出问题,引导学生思考和探究,从而激发学生的学习兴趣,提高学生的学习积极性。
同时,结合实例讲解和练习,使学生更好地理解和掌握代数式的相关知识。
六. 教学准备1.准备相关的教学PPT,包括代数式的概念、运算和应用等内容;2.准备一些实际的例子,用于讲解和练习;3.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出代数式的概念,激发学生的学习兴趣。
例题:小明买了一本书,原价是x元,打八折后价格为0.8x元,请问小明实际支付了多少钱?2.呈现(10分钟)通过PPT呈现代数式的概念和组成要素,让学生明确代数式的定义和表示方法。
代数式:用字母和数字的组合表示数的关系的表达式。
组成要素:字母(变量)、数字、运算符号。
3.操练(10分钟)让学生进行代数式的运算练习,巩固所学知识。
练习1:计算下列代数式的值:(1)2x + 3y - 4(2)5(x - 2) + 2(y + 1)4.巩固(10分钟)通过实例讲解,使学生更好地理解和掌握代数式的应用。
2018中考数学第一轮复习教案
2018年中考数学第一轮复习第一章 数与式第一讲 实数【基础知识回顾】 一、实数的分类: 1、按实数的定义分类: 实数 有限小数或无限循环数2、按实数的正负分类:实数【名师提醒:1、正确理解实数的分类。
如:2π是 数,不是 数, 722是 数,不是 数。
2、0既不是 数,也不是 数,但它是自然数】 二、实数的基本概念和性质1、数轴:规定了 、 、 的直线叫做数轴, 和数轴上的点是一一对应的,数轴的作用有 、 、 等。
2、相反数:只有 不同的两个数叫做互为相反数,a 的相反数是 ,0的相反数是 ,a 、b 互为相反数⇔3、倒数:实数a 的倒数是 , 没有倒数,a 、b 互为倒数⇔4、绝对值:在数轴上表示一个数的点离开 的距离叫做这个数的绝对值。
a =因为绝对值表示的是距离,所以一个数的绝对值是 数,我们学过的非负数有三个: 、 、 。
【名师提醒:a+b 的相反数是 ,a-b 的相反数是 ,0是唯一一个没有倒数的数,相反数等于本身的数是 ,倒数等于本身的数是 ,绝对值等于本身的数是 】三、科学记数法、近似数和有效数字。
1、科学记数法:把一个较大或较小的数写成 的形式叫做科学记数法。
其中a 的取值范围是 。
2、近似数和有效数字:一般的,将一个数四舍五入后的到的数称为这个数的近似数,这时,从 数字起到近似数的最后一位止,中间所有的数字都叫这个数的有效数字。
⎪ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎩ ⎪ ⎨ ⎧ 正无理数 无理数 负分数 零 正整数 整数 有理数 无限不循环小数 ⎧⎨⎩⎧⎨⎩正数正无理数零 负有理数负数 (a >0) (a <0) 0 (a=0)【名师提醒:1、科学记数法不仅可以表示较大的数,也可以表示较小的数,其中a 的取值范围一样,n 的取值不同,当表示较大数时,n 的值是原整数数位减一,表示较小的数时,n 是负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数数位上的零)。
中考数学第一轮复习教案9篇
中考数学第一轮复习教案9篇中考数学第一轮复习教案9篇数学教案对于老师是很重要的。
教案是老师在进行教学的重要参考材料,对教学进度和节奏的把控有重要的作用,可以提高教学效率。
下面小编给大家带来关于中考数学第一轮复习教案,希望会对大家的工作与学习有所帮助。
中考数学第一轮复习教案(篇1)本学期是初中学习的关键时期,教学任务非常艰巨。
因此,要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际,把握好重点、难点,努力把本学期的任务圆满完成。
九年级毕业班总复习教学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。
下面特制定以下教学复习计划。
一、学情分析经过前面五个学期的数学教学,本班学生的数学基础和学习态度已经明晰可见。
通过上个学期多次摸底测试及期末检测发现,本班的特点是两极分化现象极为严重。
虽然涌现了一批学习刻苦,成绩优异的优秀学生,但后进学生因数学成绩十分低下,厌学情绪非常严重,基本放弃对数学的学习了。
其次是部分中等学生对前面所学的一些基础知识记忆不清,掌握不牢。
二、指导思想坚持贯彻党的__大教育方针,继续深入开展新课程教学改革。
立足中考,把握新课程改革下的中考命题方向,以课堂教学为中心,针对近年来中考命题的变化和趋势进行研究,积极探索高效的复习途径,夯实学生数学基础,提高学生做题解题的能力,和解答的准确性,以期在中考中取得优异的数学成绩。
并通过本学期的课堂教学,完成九年级下册数学教学任务及整个初中阶段的数学复习教学。
三、教学内容分析本学期,除了要完成规定的所学内容,就将开始进入初中数学总复习,将九年制义务教育数学课本教学内容分成代数、几何两大部分,其中初中数学教学中的六大版块即:“实数与统计”、“方程与函数”、“解直角三角形”、“三角形”、“四边形”、“圆”是学业考试考中的重点内容。
在《课标》要求下,培养学生创新精神和实践能力是当前课堂教学的目标。
在近几年的中考试卷中逐渐出现了一些新颖的题目,如探索开放性问题,阅读理解问题,以及与生活实际相联系的应用问题。
2018初中数学中考总复习教案
2018年中考总复习数学教案目录第一章实数与代数式1。
1 有理数 (4)1。
2 实数 (6)1。
3 整式 (8)1.4 因式分解 (10)1.5 分式 (12)1。
6 二次根式 (14)●单元综合评价 (16)第二章方程与不等式2。
1 一次方程(组) (20)2。
2 分式方程 (23)2。
3 一元二次方程 (25)2。
4 一元一次不等式(组) (28)2.5 方程与不等式的应用 (30)●单元综合评价 (33)第三章函数3.1 平面直角坐标系与函数 (37)3.2 一次函数 (39)3.3 反比例函数………………………………………………………………………………3.4 二次函数…………………………………………………………………………………3。
5 函数的综合应用…………………………………………………………………………●单元综合评价………………………………………………………………………………第四章图形的认识4.1 简单空间图形的认识……………………………………………………………………4.2 线段、角、相交线与平行线……………………………………………………………4。
3 三角形及全等三角形……………………………………………………………………4。
4 等腰三角形与直角三角形………………………………………………………………4.5 平行四边形………………………………………………………………………………4.6 矩形、菱形、正方形……………………………………………………………………4。
7 梯形………………………………………………………………………………………●单元综合评价………………………………………………………………………………第五章圆5。
1 圆的有关性质……………………………………………………………………………5.2 与圆有关的位置关系……………………………………………………………………5.3 圆中的有关计算…………………………………………………………………………5.4 几何作图…………………………………………………………………………………●单元综合评价………………………………………………………………………………第六章图形的变换6。
2018届中考数学一轮复习讲义 第18讲等边三角形
2018届中考数学一轮复习讲义第18讲等边三角形【知识巩固】1.等边三角形的概念:等边三角形(又称正三角形),为三边相等的三角形,其三个内角相等,均为60°,它是锐角的一种。
2.等边三角形的判定:(1)三条边都相等的三角形是等边三角形;(2)三个内角都相等的三角形是等边三角形;(3)有一个内角是60°的等腰三角形是等边三角形;(4)两个内角都为60°的三角形是等边三角形。
3.等边三角形的性质:(1)等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一);(2)等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或对角的平分线所在的直线;(3)等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。
(四心合一);(4)等边三角形内任意一点到三边的距离之和为定值(等于其高)。
【典例解析】典例一、等边三角形概念如图,直线a∥b,△ABC是等边三角形,点A在直线a上,边BC在直线b上,把△ABC 沿BC方向平移BC的一半得到△A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第100个图形中等边三角形的个数是【答案】400.【解析】:先证出阴影的三角形是等边三角形,又观察图可得,第n个图形中大等边三角形有2n个,小等边三角形有2n个,据此求出第100个图形中等边三角形的个数.试题解析:如图①∵△ABC是等边三角形,∴AB=BC=AC,∵A′B′∥AB,BB′=B′C=12 BC,∴B′O=12AB,CO=12AC,∴△B′OC是等边三角形,同理阴影的三角形都是等边三角形.又观察图可得,第1个图形中大等边三角形有2个,小等边三角形有2个,第2个图形中大等边三角形有4个,小等边三角形有4个,第3个图形中大等边三角形有6个,小等边三角形有6个,…依次可得第n个图形中大等边三角形有2n个,小等边三角形有2n个.故第100个图形中等边三角形的个数是:2×100+2×100=400.故答案为:400.【变式训练】如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论:①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC,∠BAC=1200时,四边形AEFD是正方形.其中正确的结论是________.(请写出正确结论的番号).【答案】①②.【解析】试题分析:∵△ABE、△BCF为等边三角形,∴AB=BE=AE,BC=CF=FB,∠ABE=∠CBF=60°,∴∠ABE﹣∠ABF=∠FBC﹣∠ABF,即∠CBA=∠FBE,在△ABC和△EBF中,∵AB=EB,∠CBA=∠FBE,BC=BF,∴△ABC≌△EBF(SAS),选项①正确;∴EF=AC,又∵△ADC为等边三角形,∴CD=AD=AC,∴EF=AD,同理可得AE=DF,∴四边形AEFD是平行四边形,选项②正确;若AB=AC,∠BAC=120°,则有AE=AD,∠EAD=120°,此时AEFD为菱形,选项③错误,故答案为:①②.典例二、等边三角形的判定(2017张家界)如图,在正方形ABCD中,AD=2,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为6﹣10.【考点】R2:旋转的性质;LE:正方形的性质.【分析】根据旋转的想知道的PB=BC=AB,∠PBC=30°,推出△ABP是等边三角形,得到∠BAP=60°,AP=AB=2,解直角三角形得到CE=2﹣2,PE=4﹣2,过P作PF⊥CD于F,于是得到结论.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∵把边BC绕点B逆时针旋转30°得到线段BP,∴PB=BC=AB,∠PBC=30°,∴∠ABP=60°,∴△ABP是等边三角形,∴∠BAP=60°,AP=AB=2,∵AD=2,∴AE=4,DE=2,∴CE=2﹣2,PE=4﹣2,过P作PF⊥CD于F,∴PF=PE=2﹣3,∴三角形PCE的面积=CE•PF=×(2﹣2)×(4﹣2)=6﹣10,故答案为:6﹣10.【变式训练】(2017湖南岳阳)如图,⊙O为等腰△ABC的外接圆,直径AB=12,P为弧上任意一点(不与B,C重合),直线CP交AB延长线于点Q,⊙O在点P处切线PD交BQ于点D,下列结论正确的是②③④.(写出所有正确结论的序号)①若∠PAB=30°,则弧的长为π;②若PD∥BC,则AP平分∠CAB;③若PB=BD,则PD=6;④无论点P在弧上的位置如何变化,CPCQ为定值.【分析】①根据∠POB=60°,OB=6,即可求得弧的长;②根据切线的性质以及垂径定理,即可得到=,据此可得AP平分∠CAB;③根据BP=BO=PO=6,可得△BOP是等边三角形,据此即可得出PD=6;④判定△ACP∽△QCA,即可得到=,即CPCQ=CA2,据此可得CPCQ为定值.【解答】解:如图,连接OP,∵AO=OP,∠PAB=30°,∴∠POB=60°,∵AB=12,∴OB=6,∴弧的长为=2π,故①错误;∵PD是⊙O的切线,∴OP⊥PD,∵PD∥BC,∴OP⊥BC,∴=,∴∠PAC=∠PAB,∴AP平分∠CAB,故②正确;若PB=BD,则∠BPD=∠BDP,∵OP⊥PD,∴∠BPD+∠BPO=∠BDP+∠BOP,∴∠BOP=∠BPO,∴BP=BO=PO=6,即△BOP是等边三角形,∴PD=OP=6,故③正确;∵AC=BC,∴∠BAC=∠ABC,又∵∠ABC=∠APC,∴∠APC=BAC,又∵∠ACP=∠QCA,∴△ACP∽△QCA,∴=,即CPCQ=CA2(定值),故④正确;故答案为:②③④.【点评】本题主要考查了相似三角形的判定与性质,垂径定理,切线的性质以及弧长公式的综合应用,解决问题的关键是作辅助线,构造三角形,解题时注意:垂直弦的直径平分这条弦,并且平分弦所对的弧.典例三、等边三角形的性质(2017广西河池)已知等边△ABC的边长为12,D是AB上的动点,过D作DE⊥AC于点E,过E作EF⊥BC于点F,过F作FG⊥AB于点G.当G与D重合时,AD的长是()A.3 B.4 C.8 D.9【考点】KK:等边三角形的性质;KO:含30度角的直角三角形.【分析】设AD=x,根据等边三角形的性质得到∠A=∠B=∠C=60°,由垂直的定义得到∠ADF=∠DEB=∠EFC=90°,解直角三角形即可得到结论.【解答】解:设AD=x,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵DE⊥AC于点E,EF⊥BC于点F,FG⊥AB,∴∠ADF=∠DEB=∠EFC=90°,∴AF=2x,∴CF=12﹣2x,∴CE=2CF=24﹣4x,∴BE=12﹣CE=4x﹣12,∴BD=2BE=8x﹣24,∵AD+BD=AB,∴x+8x﹣24=12,∴x=4,∴AD=4.故选B.【变式训练】(2016·广西百色·3分)如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是()A.4 B.32C.23D.2+3【考点】轴对称-最短路线问题;等边三角形的性质.【分析】连接CC′,连接A′C交y轴于点D,连接AD,此时AD+CD的值最小,根据等边三角形的性质即可得出四边形CBA′C′为菱形,根据菱形的性质即可求出A′C的长度,从而得出结论.【解答】解:连接CC′,连接A′C交l于点D,连接AD,此时AD+CD的值最小,如图所示.∵△ABC与△A′BC′为正三角形,且△ABC与△A′BC′关于直线l对称,∴四边形CBA′C′为边长为2的菱形,且∠BA′C′=60°,∴A′C=2×23A′B=23.故选C .典例四、等边三角形的综合应用△ABC 是等边三角形,点D 、E 分别在边AB 、BC 上,CD 、AE 交于点F ,∠AFD=60°. (1)如图1,求证:BD=CE ;(2)如图2,FG 为△AFC 的角平分线,点H 在FG 的延长线上,HG=CD ,连接HA 、HC ,求证:∠AHC=60°;(3)在(2)的条件下,若AD=2BD ,FH=9,求AF 长.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)根据等边三角形的性质得出AB=BC ,∠BAC=∠C=∠ABE=60°,根据SAS 推出△ABE ≌△BCD ,即可证得结论;(2)根据角平分线的性质定理证得CM=CN ,利用∠CEM=∠ACE+∠CAE=60°+∠CAE ,∠CGN=∠AFH+∠CAE=60°+∠CAE ,得出∠CEM=∠CGN ,然后根据AAS 证得△ECM ≌△GCN ,得出CG=CE ,EM=GN ,∠ECM=∠GCN ,进而证得△AMC ≌△HNC ,得出∠ACM=∠HCN ,AC=HC ,从而证得△ACH 是等边三角形,证得∠AHC=60°;(3)在FH 上截取FK=FC ,得出△FCK 是等边三角形,进一步得出FC=KC=FK ,∠ACF=∠HCK ,证得△AFC ≌△HKC 得出AF=HK ,从而得到HF=AF+FC=9,由AD=2BD 可知AG=2CG ,再由=,根据等高三角形面积比等于底的比得出===2,再由AF+FC=9求得.【解答】解:(1)如图1,∵△ABC 是等边三角形,∴∠B=∠ACE=60°BC=AC , ∵∠AFD=∠CAE+∠ACD=60°∠BCD+∠ACD=∠ACB=60°,∴∠BCD=∠CAE,在△ABE和△BCD中,∴△ABE≌△BCD(ASA),∴BD=CE;(2)如图2,作CM⊥AE交AE的延长线于M,作CN⊥HF于N,∵∠EFC=∠AFD=60°∴∠AFC=120°,∵FG为△AFC的角平分线,∴∠CFH=∠AFH=60°,∴∠CFH=∠CFE=60°,∵CM⊥AE,CN⊥HF,∴CM=CN,∵∠CEM=∠ACE+∠CAE=60°+∠CAE,∠CGN=∠AFH+∠CAE=60°+∠CAE,∴∠CEM=∠CGN,在△ECM和△GCN中∴△ECM≌△GCN(AAS),∴CE=CG,EM=GN,∠ECM=∠GCN,∴∠MCN=∠ECG=60°,∵△ABE≌△BCD,∵AE=CD,∵HG=CD,∴AE=HG,∴AE+EM=HG+GN,即AM=HN,在△AMC和△HNC中∴△AMC≌△HNC(SAS),∴∠ACM=∠HCN,AC=HC,∴∠ACM﹣∠ECM=∠HCN﹣∠GCN,即∠ACE=∠HCG=60°,∴△ACH是等边三角形,∴∠AHC=60°;(3)如图3,在FH上截取FK=FC,∵∠HFC=60°,∴△FCK是等边三角形,∴∠FKC=60°,FC=KC=FK,∵∠ACH=60°,∴∠ACF=∠HCK,在△AFC和△HKC中∴△AFC≌△HKC(SAS),∴AF=HK,∴HF=AF+FC=9,∵AD=2BD,BD=CE=CG,AB=AC,∴AG=2CG,∴==,作GW⊥AE于W,GQ⊥DC于Q,∵FG为△AFC的角平分线,∴GW=GQ,∵===,∴AF=2CF,∴AF=6.【变式训练】(2017江西)我们定义:如图1,在△ABC看,把AB点绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=8时,则AD长为4.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,∠C=90°,∠D=150°,BC=12,CD=2,DA=6.在四边形内部是否存在点P,使△PDC是△PAB的“旋补三角形”?若存在,给予证明,并求△PAB的“旋补中线”长;若不存在,说明理由.【考点】LO:四边形综合题.【分析】(1)①首先证明△ADB′是含有30°是直角三角形,可得AD=AB′即可解决问题;②首先证明△BAC≌△B′AC′,根据直角三角形斜边中线定理即可解决问题;(2)结论:AD=BC.如图1中,延长AD到M,使得AD=DM,连接E′M,C′M,首先证明四边形AC′MB′是平行四边形,再证明△BAC≌△AB′M,即可解决问题;(3)存在.如图4中,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接PA、PD、PC,作△PCD的中线PN.连接DF交PC 于O.想办法证明PA=PD,PB=PC,再证明∠APD+∠BPC=180°,即可;【解答】解:(1)①如图2中,∵△ABC是等边三角形,∴AB=BC=AB=AB′=AC′,∵DB′=DC′,∴AD⊥B′C′,∵∠BAC=60°,∠BAC+∠B′AC′=180°,∴∠B′AC′=120°,∴∠B′=∠C′=30°,∴AD=AB′=BC,故答案为.②如图3中,∵∠BAC=90°,∠BAC+∠B′AC′=180°,∴∠B′AC′=∠BAC=90°,∵AB=AB′,AC=AC′,∴△BAC≌△B′AC′,∴BC=B′C′,∵B′D=DC′,∴AD=B′C′=BC=4,故答案为4.(2)结论:AD=BC.理由:如图1中,延长AD到M,使得AD=DM,连接E′M,C′M∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴AC′=B′M=AC,∵∠BAC+∠B′AC′=180°,∠B′AC′+∠AB′M=180°,∴∠BAC=∠MB′A,∵AB=AB′,∴△BAC≌△AB′M,∴BC=AM,∴AD=BC.(3)存在.理由:如图4中,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接PA、PD、PC,作△PCD的中线PN.连接DF交PC于O.∵∠ADC=150°,∴∠MDC=30°,在Rt△DCM中,∵CD=2,∠DCM=90°,∠MDC=30°,∴CM=2,DM=4,∠M=60°,在Rt△BEM中,∵∠BEM=90°,BM=14,∠MBE=30°,∴EM=BM=7,∴DE=EM﹣DM=3,∵AD=6,∴AE=DE,∵BE⊥AD,∴PA=PD,PB=PC,在Rt△CDF中,∵CD=2,CF=6,∴tan∠CDF=,∴∠CDF=60°=∠CPF,易证△FCP≌△CFD,∴CD=PF,∵CD∥PF,∴四边形CDPF是矩形,∴∠CDP=90°,∴∠ADP=∠ADC﹣∠CDP=60°,∴△ADP是等边三角形,∴∠ADP=60°,∵∠BPF=∠CPF=60°,∴∠BPC=120°,∴∠APD+∠BPC=180°,∴△PDC 是△PAB 的“旋补三角形”,在Rt △PDN 中,∵∠PDN=90°,PD=AD=6,DN=, ∴PN===. 【能力检测】1.已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )ABC .32D .不能确定 [答案]B[考点]勾股定理,三角形面积公式,应用数学知识解决问题的能力。
中考数学第一轮复习《方程与不等式的综合应用》教案
方程与不等式的综合运用学习目标:1.进一步加强方程(组)与不等式(组)的之间的联系;2.会运用方程(组)或不等式(组)模型解决实际问题, .在问题解决的过程中理解数学思想方法.学习重点:方程(组)或不等式(组)的综合运用学习难点:方程(组)或不等式(组)的综合运用课前准备:下列问题你能不能不用老师点拨就把别人讲懂?请先尝试看,看自己有无“漏洞”.问题1:若不等式组2x x a<⎧⎨≥⎩ 无解,那么a 的取值范围是 问题2:如果关于x 的方程3211ax x x =-++ 无解,则a 的值为判断方程ax bx c ++=0(a ≠0,a,b,c 为常数)一个解x 的范围是( )A 、 3<x<3.23B 、 3.23<x<3.24C 、 3.24<x<3.25D 、 3.25<x<3.26问题4:甲、乙两人完成一项工作,甲先做了3天,然后乙加入合作,完成剩下的工作,设工作总量为1,A.9 B.10 C.11 D.12问题5:某商场计划拨款9万元从厂家购进50台电视机。
已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元。
(1)商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元,在同时购进两种不同型号的电视机的方案中,为使销售时获利最多,你选择哪种进货方案?(3)若商场准备用9万元同时购进三种不同型号的电视机50台,请你设计进货方案。
教学过程(一)与大家交流你的“课前准备”是否有“漏洞”?你能以知识点或题型给它们分类吗?解决这些问题后,你发现了哪些解题规律或数学思想方法?(二)变一变,你还认识下列问题吗?请运用发现的规律或方法挑战下列问题,试试你的能力吧!问题1:若关于x 的不等式组3155x a x a≥-⎧⎨≤-⎩无解,则二次函数21(2)4y a x x =--+的图象与x 轴( )A. 没有交点 B. 相交于一点 C .相交于两点 D. 相交于一点或没有交点问题2:已知不等式组 111x x x k >-⎧⎪<⎨⎪<-⎩(1)当12k =时,不等式组的解集是 ; 当3=k 时,不等式组的解集是 ;当2-=k 时,不等式组的解集是 ;(2)由(1)知不等式组的解集随实数k的变化而变化,当k 为任意实数时,写出不等式组的解集。
中考数学一轮复习教案: (正方形)
初三数学复习教案(正方形)课 题:正方形教学目标:使学生掌握正方形的性质、判定及应用。
教学过程:一、 知识要点:1. 性质:名 称 边 角 对角线 对称性 正方形 对边平行四边相等都是直角垂直平分且相等轴对称、 中心对称2.判定:正方形有一组邻边相等的矩形; 有一个角是直角的菱形。
二、 范例分析:例1.填空:(1)对角线 的菱形是正方形。
(2)对角线 的平行四边形是正方形。
(3)对角线 的矩形是正方形。
(4)顺次连结 四边形各边中点得正方形。
例2.已知:正方形ABCD 中,E 、F 、G 、H 分别是边上的点,EF ⊥GH ,求证:EF=GH 。
例3.已知:正方形ABCD 中,O 为中心,以O 为顶点作正方形OEFG ,(1)求证:BE=CG ; (2)求证:BE⊥CG;(3)求证:AB=BM+DN ;(4)若S OMCN =3,求正方形的边长;(5)若MN=3,正方形边长为2+1,求tan∠MOC。
例4.已知:M 为正方形ABCD 中AD 边中点,∠PMB=∠MBC,求证:DP=2PC 。
例5.已知四边形ABCD 是正方形,且边长为2+1,延长BC 到E ,使CE =5-2,并作正方形CEFG ,(如图),求△BDF 的面积.例6. 如图,∠POQ =90°,边长为2cm 的正方形ABCD 的顶点B 在OP 上,C 在OQ 上,且∠OBC =30°,分别求点A 、D 到OP 的距离.例7.如图,在正方形ABCD 中,E 是AB 的中点,连结CE ,过B 作BF ⊥CE 交AC 于F 。
求证:CF=2FA例8.如图.正方形 ABCD 是⊙O 的内接正方形,延长BA 到E ,使AE =AB ,连结ED . ⑴求证:直线ED 是⊙O 的切线;⑵ 连结EO 交AD 于点F ,求证:EF=2FO ,FD=2FA 。
同步练习1.如图:E 是边长为1的正方形ABCD 的对角线BD 上一点,且BE =BC ,P 为CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BE 于点R ,则PQ +PR 的值是( )A 、23B 、21C 、22D 、322. 设将一张正方形纸片沿右图中虚线剪开后,能拼成下列四个图形,则其中是中心对称图形的是( ).第9题图 EQ R PD CB AABCDPMB C H A DG E F A B CDN OM EFG GDF E C B A M F ED C BA(A ) (B ) (C ) (D )3. 如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,AE ⊥EF .则下列结论正确的是( ).(A )∠BAE =30° (B ) CE 2=AB ·CF (C ) CF=31CD (D )△ABE ∽△AEF 4.如图,圆的直径是10厘米,A 、B 、C 、D 分别为正方形各边的中点,则图中阴影部分的面积是 .5.某正方开园地是由边长为1的四个小正方形组成,现要在园地上建一个花坛(阴影部分),使花坛面积是园地面积的一半,以下图中设计不合要求的是6.下图是某同学在沙滩上用石于摆成的小房子.观察图形的变化规律,写出第n 个小房子用了 块石子. 7.某校有一个正方形的花坛,现要将它分成形状和面积都相同的四块种上不同颜色的花卉,请你帮助设计三种不同的方案,分别画在下面三个正方形图形上(用尺规作图或徒手作图均可,但要尽可能准确些、美观些).8.右图是用8个大小一样边长为整数的矩形搭成的,其中中间阴影部分是一边长为2的正方形,试写出符合要求的三个不同的矩形边长___________________.9.如图所示,在正方形ABCD 中,点E 、F 是BC 边上的三等分点,求证:AF =DE10. 如图,已知正方形ABCD 的边AB 与正方形AEFM 的边AM 在同一直线上,直线BE 与DM 交于点N.求证:BN ⊥DM11.已知Q 是正方形ABCD 中CD 边上一点,P 是BC 边上一点; (1) 若∠DAQ=∠PAQ,求证:AP=BP+QD;(2) 若AP=BP+QD,则∠DAQ=∠PAQ 成立吗?为什么?12.在平面上有且只有四个点,这四个点有一个独特的性质:每两个点之间的距离有且只有两种长度.例如,正方形ABCD 中,有AB=BC=CD=DA ≠AC=BD ,请画出具有这种独特的性质的另外四种不同的图形,并标明相等的线段.13.已知:如图,点E 是正方形ABCD 的边CD 上一点,点F 是CB 的延长线上一点,且EA ⊥AF .求证:DE =BF .14.将正方形ABCD 折叠,使顶点A 与CD 边上的点M 重合,折痕交AD 于E ,交BC 于F ,边AB 折叠后与BC 边交于点G(如图). ⑴如果M 为CD 边的中点,求DE ∶DM ∶EM ; ⑵如果M 为CD 边上的任意一点,设AB =2a ,问ΔCMG 的周长与点M 的位置有关吗?为什么?ACDBB A DC E FA B C D Q PA M FD E NB C A D C B A B C D A D B F EC15.如图,△ABC 中,∠C=900,AC=BC=2,D 为BC 上一点,AD 的垂直平分线EF 交AC 于E ,交AB 于F ,(1) 当CD=2时,求AE 的长;(2) 当CD=2(2-1)时,证明:四边形AEDF 是菱形.A CEFBDO。
2018年中考数学一轮复习教学案(完整版)
第一课时 实数的有关概念知识点:有理数、无理数、实数、非负数、相反数、倒数、数的绝对值 大纲要求:1. 使学生复习巩固有理数、实数的有关概念.2. 了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。
3. 会求一个数的相反数和绝对值,会比较实数的大小4. 画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小。
考查重点:1. 有理数、无理数、实数、非负数概念; 2.相反数、倒数、数的绝对值概念;3.在已知中,以非负数a 2、|a|、 a (a ≥0)之和为零作为条件,解决有关问题。
实数的有关概念 (1)实数的组成{}⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数负无理数(2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可),实数与数轴上的点是一一对应的。
数轴上任一点对应的数总大于这个点左边的点对应的数, (3)相反数实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反效是零). 从数轴上看,互为相反数的两个数所对应的点关于原点对称. (4)绝对值⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离 (5)倒数实数a(a ≠0)的倒数是a1(乘积为1的两个数,叫做互为倒数);零没有倒数. 考查题型:以填空和选择题为主。
如 一、考查题型:1. -1的相反数的倒数是2. 已知|a+3|+b+1 =0,则实数(a+b )的相反数 3. 数-3.14与-Л的大小关系是4. 和数轴上的点成一一对应关系的是5. 和数轴上表示数-3的点A 距离等于2.5的B 所表示的数是 6. 在实数中Л,-25,0, 3 ,-3.14, 4 无理数有( )(A )1 个 (B )2个 (C )3个 (D )4个7.一个数的绝对值等于这个数的相反数,这样的数是( ) (A )非负数 (B )非正数 (C )负数 (D )正数 8.若x <-3,则|x +3|等于( )(A )x +3 (B )-x -3 (C )-x +3 (D )x -3 9.下列说法正确是( )(A ) 有理数都是实数 (B )实数都是有理数(B ) 带根号的数都是无理数 (D )无理数都是开方开不尽的数 10.实数在数轴上的对应点的位置如图,比较下列每组数的大小: (1) c-b 和d-a (2) bc 和ad 二、考点训练: 1.判断题:(1)如果a 为实数,那么-a 一定是负数;( ) (2)对于任何实数a 与b,|a -b|=|b -a|恒成立;( ) (3)两个无理数之和一定是无理数;( ) (4)两个无理数之积不一定是无理数;( ) (5)任何有理数都有倒数;( ) (6)最小的负数是-1;( ) (7)a 的相反数的绝对值是它本身;( ) (8)若|a|=2,|b|=3且ab>0,则a -b=-1;( ) 2.把下列各数分别填入相应的集合里-|-3|,21.3,-1.234,-227 ,0,sin60°º,-9 ,-3-18 , -Л2 ,8 ,( 2 - 3 )0,3-2,ctg45°,1.2121121112......中无理数集合{ } 负分数集合{ } 整数集合 { } 非负数集合{ } 3.已知1<x<2,则|x -3|+(1-x)2等于( )(A )-2x (B )2 (C )2x (D )-24.下列各数中,哪些互为相反数?哪些互为倒数?哪些互为负倒数?-3, 2 -1, 3, - 0.3, 3-1, 1 + 2 , 313互为相反数: 互为倒数: 互为负倒数:5.已知x、y是实数,且(X - 2 )2和|y+2|互为相反数,求x,y 的值6.a,b 互为相反数,c,d 互为倒数,m 的绝对值是2,求|a+b|2m 2+1 +4m-3cd= 。
2018届中考数学一轮复习讲义 第32讲平移变换
2018届中考数学一轮复习讲义第32讲平移变换【知识巩固】1.平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.2.平移的性质:(1)平移后,对应线段平行(或在同一条直线上)且相等;(2)平移后,对应角相等;(3)平移后,对应点所连的线段平行(或在同一条直线上)且相等.(4)平移只改变图形的位置,不改变图形的形状和大小,即平移后的图形与原图形全等.3.平移的两个要素:平移的方向和距离. (方向为前后对应点射线方向,距离为对应点之间的线段的长度)4.简单图形的平移作图:(1)确定图形中的关键点;(2)将关键点沿指定的方向移动指定的距离;(3)连结各点,得到原图形平移后的图形.【典例解析】典例一、平移的定义将图形平移,下列结论错误的是( )A.对应线段相等B.对应角相等C.对应点所连的线段互相平分D.对应点所连的线段相等解析:根据平移的性质,将图形平移,对应线段相等、对应角相等、对应点所连的线段相等,而对应点所连的线段不一定互相平分,故选C.答案:C【变式训练】4.如图,面积为12cm 2 的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的两倍,则图中的四边形ACED的面积为()A.24cm 2 B.36cm 2 C.48cm 2 D.无法确定答案:B解析:由题意可知根据平移的性质可以知道四边形ACED的面积是三个△ABC的面积,依此计算即可.∵平移的距离是边BC长的两倍,∴BC=CE=EF,∴四边形ACED的面积是三个△ABC的面积;∴四边形ACED的面积=12×3=36cm 2 .考点:平移的性质.典例二、平移的性质(2017毕节)把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为()A.y=2x﹣2 B.y=2x+1 C.y=2x D.y=2x+2【考点】F9:一次函数图象与几何变换.【分析】根据“左加右减”的函数图象平移规律来解答.【解答】解:根据题意,将直线y=2x﹣1向左平移1个单位后得到的直线解析式为:y=2(x+1)﹣1,即y=2x+1,故选B.【变式训练】(2017广西百色)如图,在正方形OABC中,O为坐标原点,点C在y轴正半轴上,点A 的坐标为(2,0),将正方形OABC沿着OB方向平移OB个单位,则点C的对应点坐标为(1,3).【考点】Q3:坐标与图形变化﹣平移.【分析】将正方形OABC沿着OB方向平移OB个单位,即将正方形OABC沿先向右平移1个单位,再向上平移1个单位,根据平移规律即可求出点C的对应点坐标.【解答】解:∵在正方形OABC中,O为坐标原点,点C在y轴正半轴上,点A的坐标为(2,0),∴OC=OA=2,C(0,2),∵将正方形OABC沿着OB方向平移OB个单位,即将正方形OABC沿先向右平移1个单位,再向上平移1个单位,∴点C的对应点坐标是(1,3).故答案为(1,3).典例三、简单图形的平移作图(2016·黑龙江龙东·3分)如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC 的顶点C的坐标为.【考点】翻折变换(折叠问题);等边三角形的性质;坐标与图形变化-平移.【分析】据轴对称判断出点A变换后在x轴上方,然后求出点A纵坐标,再根据平移的距离求出点A变换后的横坐标,最后写出即可.【解答】解:解:∵△ABC是等边三角形AB=3﹣1=2,∴点C到x轴的距离为1+2×=+1,横坐标为2,∴A(2,+1),第2016次变换后的三角形在x轴上方,点A的纵坐标为+1,横坐标为2-2016×1=-2014,所以,点A的对应点A′的坐标是(-2014,+1)故答案为:(-2014,+1).【变式训练】(2016·山东省菏泽市·3分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5【考点】坐标与图形变化-平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.典例四、平移的综合应用(2017广西河池)直线l的解析式为y=﹣2x+2,分别交x轴、y轴于点A,B.(1)写出A,B两点的坐标,并画出直线l的图象;(2)将直线l向上平移4个单位得到l1,l1交x轴于点C.作出l1的图象,l1的解析式是y=﹣2x+6.(3)将直线l绕点A顺时针旋转90°得到l2,l2交l1于点D.作出l2的图象,tan∠CAD=.【考点】F9:一次函数图象与几何变换;F3:一次函数的图象.【分析】(1)分别令x=0求得y、令y=0求得x,即可得出A、B的坐标,从而得出直线l 的解析式;(2)将直线向上平移4个单位可得直线l1,根据“上加下减”的原则求解即可得出其解析式;(3)由旋转得出其函数图象及点B的对应点坐标,待定系数法求得直线l2的解析式,继而求得其与y轴的交点,根据tan∠CAD=tan∠EAO=可得答案.【解答】解:(1)当y=0时,﹣2x+2=0,解得:x=1,即点A(1,0),当x=0时,y=2,即点B(0,2),如图,直线AB即为所求;(2)如图,直线l1即为所求,直线l1的解析式为y=﹣2x+2+4=﹣2x+6,故答案为:y=﹣2x+6;(3)如图,直线l2即为所求,∵直线l绕点A顺时针旋转90°得到l2,∴由图可知,点B(0,2)的对应点坐标为(3,1),设直线l2解析式为y=kx+b,将点A(1,0)、(3,1)代入,得:,解得:,∴直线l2的解析式为y=x﹣,当x=0时,y=﹣,∴直线l2与y轴的交点E(0,﹣),∴tan∠CAD=tan∠EAO===,故答案为:.【变式训练】(2017浙江湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换.例如,在4×4的正方形网格图形中(如图1),从点A经过一次跳马变换可以到达点B,C,D,E等处.现有20×20的正方形网格图形(如图2),则从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是()A.13 B.14 C.15 D.16【考点】RA:几何变换的类型;KQ:勾股定理.【分析】根据从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换,计算出按A﹣C﹣F的方向连续变换10次后点M的位置,再根据点N的位置进行适当的变换,即可得到变换总次数.【解答】解:如图1,连接AC,CF,则AF=3,∴两次变换相当于向右移动3格,向上移动3格,又∵MN=20,∴20÷3=,(不是整数)∴按A﹣C﹣F的方向连续变换10次后,相当于向右移动了10÷2×3=15格,向上移动了10÷2×3=15格,此时M位于如图所示的5×5的正方形网格的点G处,再按如图所示的方式变换4次即可到达点N处,∴从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是14次,故选:B.【能力检测】1.学校对学生寝室进行了整顿,并举行了文明寝室评比,结果七年级班被评为文明寝室.你看她们的牙刷、牙杯放得多整齐,你能说说她们用了数学中的什么知识?答案:平移解析:根据平移的基本性质即可判断结果。
初三数学教案-2018年中考数学一轮复习1 精品
中考一轮复习 方程与不等式的综合应用课标要求1.熟悉方程和不等式的相关知识,结合函数知识,明确它们之间的联系及在一定条件下能相互转化.2.结合复习中对基本知识的梳理和练习,体会和强化数学建模的思想,注意提高对常用数学思想方法应用的自觉性.3.通过对探索、开放型问题的讨论,提高数学上分析问题和解决问题的能力,增强数学学习中的应用意识.中招考点方程和不等式之间的联系和相互转化,应用方程和不等式解决实际问题,方程与不等式的综合应用.典型例题例1 m 为何值时,关于x 的方程x m m x ---=-6151632的解大于1? 分析:这是一类关于方程和不等式知识综合应用的常见题型.立足于“方程的解”,可以从解字母系数方程入手;立足于“解大于1”,可以着眼于不等式x >1.解1 解这个关于x 的方程:()(),x m x m --=--2616351.x m x m -+=-+1226153.x m -=-+531.513-=m x 根据题意,得 .m ->3115 解这个不等式,得 .m >2解2 将原方程看作关于m 的方程,解得.x m +=513因为x >1,所以x +>⨯+=515116,所以x +>=516233,即m >2. 说明:解法1将原题分解为解字母系数方程和列不等式求解两个简单问题;解法2注意到x 的范围已知,对未知元进行变易.两者都是数学学习和解题中常用的思想方法.例2 已知关于x 的方程x kx ---=411633.当k 取何值时,(1)方程有解?(2)方程的解是正整数?分析:本题对最后的问题,尚不能预见到应用何种方法讨论、求解,但因为涉及到方程的解,可以从解方程入手.去分母、整理,得x kx -=24,这是一个关于x 的一元一次方程.对于x 合并同类项,得()k x -=124.联系我们已有解字母系数方程的经验,问题的解决已显端倪:(1)当k ≠12时,方程有解;(2)在满足上述条件下,方程的解为x k=-412.要使它是正整数,k -12必需是4的正因数:1、2、4,由此求得k 的值是0、-12、-32.说明:综合问题的求解策略应该立足于大胆动手尝试,在探索的过程中得到启发,发现解题途径.例3 某商场计划拨款9万元,从厂家购进50台电视机.已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进两种不同型号电视机50台,共付9万元,请研究一下进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元,在同时购进两种不同电视机的方案中,哪种获利最大?(3)若商场准备用9万元同时购进三种不同型号的电视机50台,请你设计进货方案.分析:这一类有关经营、销售的实际问题,首先要仔细阅读、理解题意,获取信息.进而分析数量关系,建立方程或不等式,得到问题的解答.解:(1)本题显然应分三种情形讨论:①设购甲种电视机x 台,则购乙种电视机()x -50台,列方程()x x +-=150021005090000,解得x =25,即同时购进甲、乙两种电视机都为25台;②同理求得若同时购进甲、丙两种电视机,分别为35台和15台;③若同时购进乙、丙两种电视机,列方程后没有正整数解.(2)通过直接计算,上述两种方案所获利润分别为8750元和9000元,应选第②种方案.(3)设购甲种电视机x 台,购乙种电视机y 台,则购丙种电视机()x y --50台.根据题意,可列得方程()x y x y ++--=1500210025005090000.按常规,还应列出一个方程,组成方程组求解.但仔细读题后发现确仅有这一个等量关系,联系上述已接触到的问题,可以根据未知数的取值范围,求上述方程的正整数解.化简、整理这一方程,得()x y -=5352.根据题意,x 、y 、x y --50都是正整数,用枚举、验证的方法可求得符合题意的4组解如下:,;x y =⎧⎨=⎩11335 ,;x y =⎧⎨=⎩223110 ,;x y =⎧⎨=⎩332915 ,;x y =⎧⎨=⎩442720 强化训练1. 填空题(1)已知单项式n na b -13与m ab +23是同类项,则_______m =,_________.n =(2)已知方程Ax By +-=50的解是,x y =⎧⎨=⎩01和,.x y =-⎧⎨=⎩10那么这个方程是_______. (3)已知,x y x y -=+3243则x 与y 的比值等于__________.(4)不等式)x >22__________________.(5)若关于x 的方程()x m x -+-=23120的一个根是2,则m =__________,另一个根是_________.(6)三位同学中,任意两人的年龄和分别是29,31,32,那么各人的年龄分别为_____、______、______.2.解答题(1)a 是什么整数时,关于x 、y 的方程组,x y a x y +=⎧⎨+=⎩5331的解 A.是正数; B.是正整数.(2)已知方程x x ++=22730的解满足不等式x x -->-31122,求方程x y -+=3220 (3) 林老师去文具店给美术小组的30名学生买铅笔和橡皮.到商店后发现,若给每人买2枝铅笔和1块橡皮,按零售价计算,共需付30元;若给每人买3枝铅笔和2块橡皮,则可按批发价计算,共需付40.5元.已知每枝铅笔批发价比零售价低0.05元,每块橡皮批发价比零售价低0.1元.问这两种商品的零售价各是多少?(4)学校体育室准备添置20副乒乓球拍和若干个乒乓球.了解到两家体育用品商店的零售价都是每副乒乓球拍20元,每个乒乓球0.6元,且都表示对集体购买优惠;甲店每买一副乒乓球拍赠送5个乒乓球,再对总价打9折;乙店统一按定价8折计算.就购买乒乓球数,讨论去哪家商店购买较合算.(5)已知无论k 取何值,关于x 的方程kx m x nk +-=+2236的解总是x =1,求m 、n 的值. (6)某县新培育成功一种食用菌,一家经销公司一次收购46吨.经市场预测,若直接销售每吨获利1千元;经过加工、包装,每吨可获利5千元;若制成罐头出售,每吨可获利8千元.该公司每天可包装8吨或制罐头3吨,同一天两种加工方式不能同时进行,但必须在一周内全部销售或加工完毕.为此,公司研究了三种方案:A.全部进行包装;B.尽可能多制作罐头,余下的直接销售;C.部分制作罐头,其余进行加工、包装,且正好在7天完成.请你也研究一下,为公司作决策.(7)初三年级8个班级外出春游,租用了若干辆相同的客车,原计划一辆车坐48人,其余每辆车坐45人.可临出发时一辆车发生了故障,司机说只要每辆车不超过52人,可以挤一下.结果正好每辆车人数相等,同学们高高兴兴地出发了.问结果坐了几辆车?(8) 已知关于x 、y 的方程组,x y m x y m -=-⎧⎨+=⎩32243的解x 、y 互为相反数,求m 的值. (9) 某园林门票每张10元,一次性使用,若购买个人年票,有三种类型:A 类门票每张120元,持票者进入园林,无需买门票;B 类门票每张60元,持票者进入园林,需每次再买门票2元;C 类门票每张40元,持票者进入园林,需每次再买门票3元.试根据每年预计进入园林次数,讨论是否值得购买年票,以及购买何种年票较合算.(10) 爸爸有一笔钱准备存入银行,预计两年后要取用,要小红算一下存一年期到期自动转存和存二年期(年利率分别为1.98%和2.25%)这两种方案中哪种合算.小红按了几下计算器,告诉爸爸,存二年期的到期能多得到利息101.73元.你能知道这笔存款有多少吗?(11) 用平行于正方体一个面的平面去截正方体,截得两个长方体的体积之比是1:2.若已知原正方体的棱长为6厘米,求被截的棱两部分的长度.若将条件“体积之比”改为“截得两个长方体的展开图面积之比是1:2”,则结论如何?(12)某班春游,上午8时从学校出发,先沿平路到山脚下,再爬山到山顶.在山顶停留1个半小时,沿原路回到学校时已是下午3时30分.已知平路每小时行4千米,上山速度是平路速度的34,下山速度是上山速度的2倍.同学们所行的全程是多少?(13)某电子产品去年按定价的80%出售,能获20%的利润.由于今年的买入价低,按同样定价的75%出售,能获25%的利润.求今年买入价与去年买入价之比(买入价×(1+利润率)=卖出价).(14)应用不等式解下列问题:A.高速公路施工需要爆破,根据现场实际情况,操作人员点燃导火索后,要在炸药爆破前跑到400米外的安全区域.已知导火索燃烧速度是1.2厘米/秒,人跑步的速度是5米/秒,问导火索至少需要多长?B.学校因教学需要,准备刻录一批电脑光盘.若到电脑公司刻录,每张需8元;若租用刻录机后自行刻录,每张成本3.5元,但需付刻录机租金150元.试讨论用何种方式费用较节省. (15)假期中父母两人带孩子外出.甲旅行社表示父母和孩子均按原定价七折收费,乙旅行社表示父母全价,孩子只按原定价的三折收费.若两旅行社原价相同,问哪家旅行社更优惠?。
2018届中考数学一轮复习教学设计八一元二次方程
(一元二次方程)章节第二章课题一元二次方程课型复习课教法教学目标(知识、能力、教育)1.能够利用一元二次方程解决有关实际问题并能根据问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力.2.了解一元二次方程及其相关概念,会用配方法、公式法、分解因式法解简单的一元二次方程,并在解一元二次方程的过程中体会转化等数学思想.3.经历在具体情境中估计一元二次方程解的过程,发展估算意识和能力.教学重点会用配方法、公式法、分解因式法解简单的一元二次方程。
教学难点根据方程的特点灵活选择解法。
并在解一元二次方程的过程中体会转化等数学思想.教学媒体学案教学过程一:【课前预习】(一):【知识梳理】1. 一元二次方程:只含有一个,且未知数的指数为的整式方程叫一元二次方程。
它的一般形式是(其中、)它的根的判别式是△= ;当△>0时,方程有实数;当△=0时,方程有实数根;当△<0时,方程有实数根;一元二次方程根的求根公式是、(其中)2.一元二次方程的解法:⑴配方法:配方法是一种以配方为手段,以开平方为基础的一种解一元二次方程的方法.用配方法解一元二次方程:ax2+bx+c=0(k≠0)的一般步骤是:①化二次项系数为1,即方程两边同除以二次项系数;②移项,即使方程的左边为二次项和一次项,右边为常数项;③配方,即方程两边都加上 的绝对值一半的平方;④化原方程为2(x+m)=n 的形式;⑤如果n 0≥就可以用两边开平方来求出方程的解;如果n=<0,则原方程无解.⑵ 公式法:公式法是用求根公式求出一元二次方程的解的方法。
它是通过配方推导出来的.一元二次方程的求根公式是2(40)b ac -≥注意:用求根公式解一元二次方程时,一定要将方程化为 。
⑶ 因式分解法:用因式分解的方法求一元二次方程的根的方法叫做 .它的理论根据是两个因式中至少要有一个等于0,因式分解法的步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.3.一元二次方程的注意事项:⑴ 在一元二次方程的一般形式中要注意,强调a ≠0.因当a=0时,不含有二次项,即不是一元二次方程.如关于x 的方程(k 2-1)x 2+2kx +1=0中,当k=±1时就是一元一次方程了.⑵ 应用求根公式解一元二次方程时应注意:①化方程为一元二次方程的一般形式;②确定a 、b 、c 的值;③求出b 2-4ac 的值;④若b 2-4ac ≥0,则代人求根公式,求出x 1 ,x 2.若b 2-4a <0,则方程无解.⑶ 方程两边绝不能随便约去含有未知数的代数式.如-2(x +4)2=3(x +4)中,不能随便约去(x +4)⑷ 注意:解一元二次方程时一般不使用配方法(除特别要求外)但又必须熟练掌握,解一元二次方程的一般顺序是:直接开平方法→因式分解法→公式法.(二):【课前练习】1. 用直接开平方法解方程2(3)8x -=,得方程的根为( )A. 323x =+B. 12322,322x x =+=-C. 322x =-D. 12323,323x x =+=-2. 方程2(1)0x x -=的根是( )A .0B .1C .0,-1D .0,13. 设(1)(2)0x x --=的两根为12x x 、,且1x >2x ,则122x x -= 。
中考数学一轮复习教案: (二次凼数6)
初三数学复习教案课题:二次函数(2)重点与难点:二次函数性质的综合运用例题讲解:1. 已知直线y =-2x +b(b ≠0)与x 轴交于点A ,与y 轴交于点B ;一抛物线的解析式为y=x 2-(b +10)x +c.⑴若该抛物线过点B ,且它的顶点P 在直线y =-2x +b 上,试确定这条抛物线的解析式; ⑵过点B 作直线BC ⊥AB 交x 轴于点C ,若抛物线的对称轴恰好过C 点,试确定直线y =-2x +b 的解析式.2. 已知两点0(O ,O)、B(0,2),⊙A 过点B 且与x 轴分别相交于点O 、C,⊙A 被y 轴分成两段圆弧,其弧长之比为3:1.直线l 与⊙A 切于点O ,抛物线的顶点在直线L 上运动.(1)求⊙A 的半径;(2)若抛物线经过O 、C 两点,求抛物线的解析式;3.如图,△OAB 是边长为2+3的等边三角形,其中O 是坐标原点,顶点B 在y 轴的正方向上,将△OAB 折叠,使点A 落在边OB 上,记为A ’,折痕为EF .(1)当A ’E ∥x 轴时,求点A ’和E 的坐标;(2)当A ’E ∥x 轴,且抛物线y=-61x 2+bx+c 经过点A ’和E 时,求该抛物线与x 轴的交点的坐标;(3)当点A ’在OB 上运动但不与点O 、B 重合时,能否使△A ’EF 成为直角三角形?若能,请求出此时点A ’的坐标;若不能,请你说明理由.4.如图,已知点A(0,1)、C(4,3)、E(415,823),P 是以AC 为对角线的矩形ABCD 内部(不在各边上)的—个动点,点D 在y 轴,抛物线y =ax 2+bx+1以P 为顶点.(1)说明点A 、C 、E 在一条条直线上;(2)能否判断抛物线y =ax 2+bx+1的开口方向?请说明理由;(3)设抛物线y =ax 2+bx+1与x 轴有交点F 、G(F 在G 的左侧),△GAO 与△FAO 的面积差为3,且这条抛物线与线段AE 有两个不同的交点.这时能确定a 、b 的值吗?若能,请求出a 、b 的值;若不能,请确定a 、b 的取值范围.5.如图,函数221+-=x y 的图象交y 轴于M ,交x 轴于N ,点P 是直线MN 上任意一点,PQ ⊥x 轴,Q 是垂足,设点Q 的坐标为(t ,0),△POQ 的面积为S (当点P 与M 、N 重合时,其面积记为0).(1)试求S 与t 之间的函数关系式;(2)在如图所示的直角坐标系内画出这个函数的图象,并利用图象求使得S =a (a >0)的点P 的个数.6.已知:在平面直角坐标系xOy 中,过点P(0,2)任作..一条与抛物线y =ax 2(a >0)交于两点的直线,设交点分别为A 、B .若∠AOB =90°,⑴ 判断A 、B 两点纵坐标的乘积是否为一个确定的值,并说明理由;⑵ 确定抛物线y =ax 2(a >0)的解析式;⑶ 当△AOB 的面积为4 2 时,求直线AB 的解析式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年中考数学第一轮复习第一章 数与式第一讲 实数【基础知识回顾】 一、实数的分类: 1、按实数的定义分类: 实数 有限小数或无限循环数 2、按实数的正负分类: 实数解实数的分类。
如:2π是 数,不是数, 【名师提醒:1、正确理722是 数,不是 数。
2、0既不是 数,也不是 数,但它是自然数】 二、实数的基本概念和性质1、数轴:规定了 、 、 的直线叫做数轴, 和数轴上的点是一一对应的,数轴的作用有 、 、 等。
2、相反数:只有 不同的两个数叫做互为相反数,a 的相反数是 ,0的相反数是 ,a 、b 互为相反数⇔3、倒数:实数a 的倒数是 , 没有倒数,a 、b 互为倒数⇔4、绝对值:在数轴上表示一个数的点离开 的距离叫做这个数的绝对值。
a =因为绝对值表示的是距离,所以一个数的绝对值是 数,我们学过的非负数有三个: 、 、 。
【名师提醒:a+b 的相反数是 ,a-b 的相反数是 ,0是唯一一个没有倒数的数,相反数等于本身的数是 ,倒数等于本身的数是 ,绝对值等于本身的数是 】三、科学记数法、近似数和有效数字。
1、科学记数法:把一个较大或较小的数写成 的形式叫做科学记数法。
其中a 的取值范围是 。
2、近似数和有效数字:一般的,将一个数四舍五入后的到的数称为这个数的近似数,这时,从 数字起到近似数的最后一位止,中间所有的数字都叫这个数的有效数字。
【名师提醒:1、科学记数法不仅可以表示较大的数,也可以表示较小的数,其中a 的取值范围一样,n 的取值不同,当表示较大数时,n 的值是原整数数位减一,表示较小的数时,n 是负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数数位上的零)。
2、近似数3.05万是精确到 位,而不是百分位】四、数的开方。
1、若x 2=a(a 0),则x 叫做a 的 ,记做±a ,其中正数a 的 平方根叫做a 的算术平方根,记做 ,正数有 个平方根,它们互为 ,0的平方根是 ,负数 平方根。
2、若x 3=a,则x 叫做a 的 ,记做3a ,正数有一个 的立方根,0的立方根是 ,负数 立方根。
【名师提醒:平方根等于本身的数有 个,算术平方根等于本身的数有 ,立方根等于本身的数有 。
】【重点考点例析】⎪ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎩ ⎪ ⎨ ⎧ 正无理数 无理数 负分数 零 正整数 整数 有理数 无限不循环小数 ⎧⎨⎩⎧⎨⎩正数正无理数零 负有理数负数 (a >0) (a <0) 0 (a=0)A .πB .15C .0D .-1 .对应训练 1.(2017•安顺)下列各数中,3.14159,38-,0.131131113…,-π,25,17-,无理数的个数有( )A .1个B .2个C .3个D .4个考点二、实数的有关概念。
例2 (2017•遵义)如果+30m 表示向东走30m ,那么向西走40m 表示为( )A .+40mB .-40mC .+30mD .-30m例3 (2017•资阳)16的平方根是( )A .4B .±4C .8D .±8例4 (2017•铁岭)-2的绝对值是( )A .2B .-2C .22D .-222.(2017•盐城)如果收入50元,记作+50元,那么支出30元记作( )A .+30B .-30C .+80D .-803.(2017•珠海)实数4的算术平方根是( )A .-2B .2C .±2D .±44.(2017•绵阳)2的相反数是( )A .2B .22C .-2D .-225.(2017•南京)-3的相反数是 ;-3的倒数是 。
6.(2017•湘西州)-2013的绝对值是 .7.(2017•宁波)实数-8的立方根是 .考点三:实数与数轴。
例5 (2017•广州)实数a 在数轴上的位置如图所示,则|a-2.5|=( )A .a-2.5B .2.5-aC .a+2.5D .-a-2.5对应训练8.(2017•连云港)如图,数轴上的点A 、B 分别对应实数a 、b ,下列结论中正确的是( )A .a >bB .|a|>|b|C .-a <bD .a+b <0考点四:科学记数法。
例6 (2017•威海)花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,已知1克=1000毫克,那么0.000037毫克可用科学记数法表示为( )A .3.7×10-5克B .3.7×10-6克C .37×10-7克D .3.7×10-8克对应训练9.(2017•潍坊)2012年,我国财政性教育经费支出实现了占国内生产总值比例达4%的目标,其中在促进义务教育均衡方面,安排农村义务教育经费保障机制改革资金达865.4亿元,数据“865.4亿元”用科学记数法可表示为( )元.A .865×108B .8.65×109C .8.65×1010D .0.865×101110.(2017•绵阳)2013年,我国上海和安徽首先发现“H7N9”禽流感,H7N9是一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012米,这一直径用科学记数法表示为( )A .1.2×10-9米B .1.2×10-8米C .12×10-8米D .1.2×10-7米例7 (2017•新疆)若a ,b 为实数,且|a+1|+1b -=0,则(ab )2013的值是( )11.(2017•攀枝花)已知实数x ,y ,m 满足2x ++|3x+y+m|=0,且y 为负数,则m 的取值范围是( )【聚焦山东中考】1.(2017•济宁)一运动员某次跳水的最高点离跳台2m ,记作+2m ,则水面离跳台10m 可以记作( )A .-10mB .-12mC .+10mD .+12m2.(2017•临沂)-2的绝对值是( ) A .2 B .-2 C .12 D .-12 3.(2017•烟台)-6的倒数是( )A . 16B .-16C .6D .-64.(2017•潍坊)实数0.5的算术平方根等于( )A .2B .2C .22D .125.(2017•威海)下列各式化简结果为无理数的是( )A .327-B .(21-)0C .8D .2(2)-6.(2017•烟台)“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为( )A .2.1×109B .0.21×109C .2.1×108D .21×107 7.(2017•泰安)2012年我国国民生产总值约52万亿元人民币,用科学记数法表示2012年我国国民生总值为( )A .5.2×1012B .52×1012元C .0.52×1014D .5.2×1013元8.(2017•临沂)拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学记数法表示为( )A .0.5×1011千克B .50×109千克C .5×109千D .5×1010千克9.(2017•德州)森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.28.3亿吨用科学记数法表示为( )A .28.3×107B .2.83×108C .0.283×1010D .2.83×10910.(2017•菏泽)明明同学在“百度”搜索引擎输入“钓鱼岛最新消息”,能搜索到与之相关的结果个数约为,这个数用科学记数法表示为 .11.(2017•菏泽)如图,数轴上的A 、B 、C 三点所表示的数分别是a 、b 、c ,其中AB=BC ,如果|a|>|b|>|c|,那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点B 与点C 之间或点C 的右边【备考真题过关】一、选择题1.(2017•咸宁)如果温泉河的水位升高0.8m 时水位变化记作+0.8m ,那么水位下降0.5m 时水位变化记作( )A .0mB .0.5mC .-0.8mD .-0.5m2.(2017•丽水)在数0,2,-3,-1.2中,属于负整数的是( )A .0B .2C .-3D .-1.23.(2017•连云港)下列各数中是正数的为( )A .3B .-12C .2D .04.(2017•玉林)2的相反数是( )A .2B .-2C .12D .-12 5.(2017•张家界)-2013的绝对值是( ) A .-2013 B .2013 C . 12013 D .-12013 6.(2017•乌鲁木齐)|-2|的相反数是( )A .-2B .-12C .12D .2 7.(2017•随州)与-3互为倒数的是( ) A .- 13 B .-3 C .13 D .38.(2017•钦州)在下列实数中,无理数是( )A .0B .14C .5D .69.(2017•宜宾)据宜宾市旅游局公布的数据,今年“五一”小长假期间,全市实现旅游总收入330000000元.将330000000用科学记数法表示为( )A .3.3×108B .3.3×109C .3.3×107D .0.33×101010.(2017•包头)若|a|=-a ,则实数a 在数轴上的对应点一定在( )A .原点左侧B .原点或原点左侧C .原点右侧D .原点或原点右侧11.(2017•遵义)如图,A 、B 两点在数轴上表示的数分别是a 、b ,则下列式子中成立的是( )A .a+b <0B .-a <-bC .1-2a >1-2bD .|a|-|b|>0二.填空题12.(2017•乐山)如果规定向东为正,那么向西即为负.汽车向东行驶3千米记作3千米,向西行驶2千米应记作 千米. 13.(2017•重庆)实数6的相反数是 .14.(2017•上海模拟)求值:38-= .15.(2017•黔西南州)81的平方根是 .16.(2017•黔西南州)已知1a -+|a+b+1|=0,则a b = .第二讲 实数的运算【重点考点例析】考点一:实数的大小比较。
例1 (2017•淮安)如图,数轴上A 、B 两点表示的数分别为2和5.1,则A 、B 两点之间表示整数的点共有( )A .6个B .5个C .4个D .3个1.(2017•内江)下列四个实数中,绝对值最小的数是( )A .-5B .-2C .1D .4例2 (2017•毕节地区)估计11的值在( )之间. 2.(2017•吴江市模拟)3+3的整数部分是a ,3- 3的小数部分是b ,则a+b 等于 .例3 (2017•咸宁)在数轴上,点A (表示整数a )在原点的左侧,点B (表示整数b )在原点的右侧.若|a-b|=2013,且AO=2BO ,则a+b 的值为 .3.(2017•永州)已知0||||a b a b +=,则 ||ab ab 的值为 . 例4 (2017•自贡)计算:20130+(12)-1-2sin60°-|3-2|= . 4.(2017•玉林)计算:38+2cos60°-(π-2-1)0.例5 (2017•永州)我们知道,一元二次方程x 2=-1没有实数根,即不存在一个实数的平方等于-1.若我们规定一个新数“i ”,使其满足i 2=-1(即方程x 2=-1有一个根为i ).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i 1=i ,i 2=-1,i 3=i 2•i=(-1)•i=-i ,i 4=(i 2)2=(-1)2=1,从而对于任意正整数n ,我们可以得到i 4n+1=i 4n •i=(i 4)n •i=i ,同理可得i 4n+2=-1,i 4n+3=-i ,i 4n =1.那么i+i 2+i 3+i 4+…+i 2012+i 2013的值为( )A .0B .1C .-1D .i2017•台州)任何实数a,可用[a]表示不超过a的最大整数,如72[72]8[8]2[2]1===第一次第二次第三次只需进行几次操作后变为1:②只需进行3次操作后变为【聚焦山东中考】2017•莱芜)在-12,-13,-2,-1这四个数中,最大的数是(A.- B.- 13C.-2 D.-12017•滨州)计算1-1,正确的结果为(A.5B.-5C.6D.-63.(2017•日照)计算-22+3的结果是()A.7 B.5 C.-1 D.-5 4.(2017•聊城)(-2)3的相反数是()A.-6 B.8 C.- 16D.165.(2017•菏泽)如果a的倒数是-1,那么a2013等于()A.1 B.-1 C.2013 D.-2013 【备考真题过关】一、选择题1.(2017•广州)比0大的数是()A.-1 B.-12C.0 D.12.(2017•重庆)在-2,0,1,-4这四个数中,最大的数是()A.-4 B.-2 C.0 D.1 3.(2017•天津)计算(-3)+(-9)的结果等于()A.12 B.-12 C.6 D.-6 4.(2017•河北)气温由-1℃上升2℃后是()A.-1℃B.1℃C.2℃D.3℃5.(2017•自贡)与-3的差为0的数是()A.3 B.-3 C.13D.-136.(2017•温州)计算:(-2)×3的结果是()A.-6 B.-1 C.1 D.6 7.(2017•厦门)下列计算正确的是()A.-1+2=1 B.-1-1=0 C.(-1)2=-1 D.-12=1 8.(2017•南京)计算:12-7×(-4)+8÷(-2)的结果是()第三讲整式【基础知识回顾】一、整式的有关概念::由数与字母的积组成的代数式1、整式:多项式:。