2021年中考一轮复习第2讲:整式与因式分解 (无答案)
中考数学一轮温习第2讲整式与因式分解教案
第2讲:整式与因式分解一、温习目标一、在识记整式和因式分解知识点的基础上明白得并能熟练的应用整式和因式分解知识点。
二、能结合具体情境制造性的综合应用因式分解解决问题。
二、课时安排1课时三、温习重难点一、分解因式及利用因式分解法解决问题。
二、整式的归并及变形计算。
四、教学进程(一)知识梳理整式的有关概念单项式定义:数与字母的________的代数式叫做单项式,单独的一个________或一个________也是单项式单项式次数:一个单项式中,所有字母的________ 叫做那个单项式的次数单项式系数:单项式中的叫做单项式的系数多项式概念:几个单项式的________叫做多项式多项式次数:一个多项式中,_____________ _的次数,叫做那个多项式的次数多项式系数:多项式中的每一个________叫做多项式的项整式:________________统称整式同类项、归并同类项同类项概念:所含字母________,而且相同字母的指数也别离________的项叫做同类项,几个常数项也是同类项归并同类项概念:把中的同类项归并成一项叫做归并同类项,归并同类项后,所得项的系数是归并前各同类项的系数的,且字母部份不变整式的运算整式的加减实质确实是____________.一样地,几个整式相加减,若是有括号就先去括号,再归并同类项幂的运算:同底数幂相乘,底数不变,指数相加. 即:a m·a n=________(m,n都是整数)幂的乘方,底数不变,指数相乘. 即:(a m)n=________(m,n都是整数)积的乘方,等于把积的每一个因式别离乘方,再把所得的幂相乘.即:(ab)n=________(n为整数)同底数幂相除,底数不变,指数相减. 即:a m÷a n=________(a≠0,m、n都为整数)整式的乘法:单项式与单项式相乘,把它们的别离相乘,关于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式单项式与多项式相乘,确实是用单项式去乘多项式的每一项,再把所得的积相加,即m(a+b+c)=多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加,即(m+n)(a +b)=整式的除法:单项式除以单项式,与别离相除,作为商的因式,关于只在被除式里含有的字母,则连同它的指数作为商的一个因式多项式除以单项式,先把那个多项式的每一项别离那个单项式,然后把所得的商相加乘法公式:平方差公式:(a+b)(a-b)=________完全平方公式:(a±b)2=________经常使用恒等变换:(1)a2+b2=____________=____________(2)(a-b)2=(a+b)2-因式分解的相关概念及分解大体方式公因式概念:一个多项式各项都含有的的因式,叫做那个多项式各项的公因式提取公因式法概念:一样地,若是多项式的各项都有公因式,能够把那个公因式提到括号外面,将多项式写成因式的乘积形式,即ma+mb+mc=________运用公式法:平方差公式a2-b2=___________完全平方公式a2+2ab+b2=________ ,a2-2ab+b2=________二次三项式x2+(p+q)x+pq=________(二)题型、方式归纳考点一整式的有关概念技术归纳:注意单项式次数、单项式系数的概念考点二同类项、归并同类项技术归纳:(1)同类项必需符合两个条件:第一所含字母相同,第二相同字母的指数相同,二者缺一不可.(2)依照同类项概念——相同字母的指数相同列方程(组)是解此类题的一样方式.考点三整式的运算技术归纳:(1)进行整式的运算时,一要注意合理选择幂的运算法则,二要注意结果的符号. (2)不要把同底数幂的乘法和整式的加减法混淆 (3)单项式的除法关键:注意区别“系数相除”与“同底数幂相除”的含义,必然不能把同底数幂的指数相除.(4)整式的运算顺序是:先计算乘除,再做整式的加减,整式加减的实质确实是归并同类项,其中能运用乘法公式计算的应采纳乘法公式进行计算.考点四因式分解的相关概念及分解大体方式技术归纳:(1)因式分解时有公因式的要先提取公因式,再考虑是不是应用公式法或其他方式继续分解.(2)提公因式时,若括号内归并的项有公因式应再次提取;注意符号的变换(3)应用公式法因式分解时,要牢记平方差公式和完全平方式及其特点.(4)因式分解要分解到每一个多项式不能再分解为止.(三)典例精讲一、若是□×3ab=3a2b,则□内应填的代数式是()D.3a答案:C2、在下列代数式中,次数为3的单项式是( )A.xy2 B.x3-y3C.x3y D.3xy[解析]由单项式次数的概念可知次数为3的单项式是xy2. 因此本题选项为A.3、若是单项式231123ba y yx x与是同类项,那么a,b的值别离为( )A.2,2 B.-3,2 C.2,3 D.3,2[解析] 依题意知两个单项式是同类项,依照相同字母的指数相同列方程,得 D点析:(1)同类项必需符合两个条件:第一所含字母相同,第二相同字母的指数相同,二者缺一不可.(2)依照同类项概念——相同字母的指数相同列方程(组)是解此类题的一样方式.4、下列运算中,正确的是( )A.a2·a3=a6 B.a3÷a2=aC.(a3)2=a9 D.a2+a2= a5[解析]因为a2·a3=a2+3=a5,a3÷a2=a3-2=a,(a3)2=a3×2=a6,a2+a2= 2a2.故选B.点析:(1)进行整式的运算时,一要注意合理选择幂的运算法则,二要注意结果的符号.(2)不要把同底数幂的乘法和整式的加减法混淆,如a3·a5 =a8和a3+a3=2a3. (a m)n和a n·a m也容易混淆.(3)单项式的除法关键:注意区别“系数相除”与“同底数幂相除”的含义,如6a5÷3a2=(6÷3)a5-2=2a3, 必然不能把同底数幂的指数相除.5、先化简,再求值:(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中x=-3[解析] 按运算法则化简代数式,再代入求值.解:原式=4x2-9-4x2+4x+x2-4x+4=x2-5,当x=-3时,原式=(-)2-5=3-5=-2.点析:整式的运算顺序是:先计算乘除,再做整式的加减,整式加减的实质确实是归并同类项,其中能运用乘法公式计算的应采纳乘法公式进行计算.6、分解因式(x-1)2-2(x-1)+1的结果是( )A.(x-1)(x-2) B. x2 C.(x+1)2 D. (x-2)2[解析] 第一把x-1看做一个整体,观看发觉符合完全平方公式,直接利用完全平方公式进行分解.(x-1)2-2(x-1)+1=(x-1-1)2=(x-2)2.点析: (1)因式分解时有公因式的要先提取公因式,再考虑是不是应用公式法或其他方式继续分解.(2)提公因式时,若括号内归并的项有公因式应再次提取;注意符号的变换y-x=-(x-y),(y-x)2=(x -y)2.(3)应用公式法因式分解时,要牢记平方差公式和完全平方式及其特点.(4)因式分解要分解到每一个多项式不能再分解为止.7、①是一个长为2m,宽为2n(m>n)的长方形,用剪子沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图3-1②那样拼成一个正方形,则中间空的部份的面积是( ) A.2mn B.(m+n)2 C.(m-n)2 D.m2-n2[解析] 中间空的部份的面积是(m+n)2-2m·2n=(m+n)2-4mn=(m-n)2.点析:(1)通过拼图的方式可验证平方差公式和完全平方公式,关键要能准确计算阴影部份的面积.(2)利用因式分解进行计算与化简,先把要求的代数式进行因式分解,再代入已知条件计算.(四)归纳小结本部份内容要求熟练把握整式、同类项、归并同类项的有关概念及整式的运算、因式分解的相关概念及分解大体方式。
中考数学 第2讲 整式与因式分解复习教案1 北师大版(2021学年)
中考数学第2讲整式与因式分解复习教案1(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(中考数学第2讲整式与因式分解复习教案1(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为中考数学第2讲整式与因式分解复习教案1(新版)北师大版的全部内容。
课题:第二讲整式与因式分解像课:是学习目标:1.了解单项式、多项式、整式的概念,弄清它们与代数式之间的联系和区别;2.理解同类项的概念,掌握合并同类项的法则和去、添括号的法则,能准确地进行整式的加、减、乘、除、乘方混合运算;3.会根据多项式的结构特征,进行因式分解,并能利用因式分解的方法进行整式的化简和求值。
教学重点、难点:重点:整式的运算法则和因式分解.难点:乘法公式与因式分解.课前准备:老师:导学案、课件学生:导学案、练习本、课本(八年级下册、七年级下册)教学过程:一、基础回顾,课前热身活动内容:整式相关内容回顾1.单项式是数与字母的积,单独一个数或一个字母也是单项式.2.多项式是几个单项式的和,每个单项式叫做多项式的项,次数最高的项的次数叫做这个多项式的次数.3.单项式与多项式统称整式 .4.所含字母相同,并且相同字母的指数也相同的项叫做同类项.5.合并同类项的方法:系数相加减,字母部分不变.6.去括号法则:如果括号前是+ 号,去括号后括号里各项都不改变符号;如果括号前是- 号,去括号后括号里各项都改变符号.7.整式的加减法则:几个整式相加减,如果有括号先去括号,然后再合并 同类项 . 8.幂的运算性质:(1)n m a a ⋅=m n a +(m,n 都是正整数) (2)()n m a =mn a (m,n 都是正整数) (3)()n ab =n n b a (n是正整数)(4)m n a a ÷= m n a -(a ≠0,m ,n都是正整数,并且m >n ) (5)0a = 1 (a ≠0) (6)p a -=1p a( a ≠0, p 是正整数)9.整式乘法法则:(1)单项式与单项式相乘,系数 相乘 ,相同字母 的幂相乘 ,其它照抄,作为积的因式.(2)单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一 项 ,再把所得的积相加;(3)多项式与多项式相乘,先用一个多项式的每一 项 乘另一个多项式的每一 项 ,再把所得的积相加.10.乘法公式:(1)平方差公式:(a+b )(a —b )=22b a -(2)完全平方公式: (a+b )2=222ab b a ++ (a-b)2=222ab b a -+ 11.整式除法法则:(1)单项式与单项式相除,把系数、同底数幂分别 相除 后,,其它照抄,作为商的因式.(2)多项式除以单项式,先把这个多项式的每一 项 分别除以这个单项式,再把所得的商相加.12.把一个多项式化成几个因式 积 的形式,叫做因式分解.13.因式分解常用的方法有提公因式 法、 运用公式法 法.分解因式要分解到不能再分解为止.多媒体出示知识网络处理方式:多媒体出示知识提纲,学生依次回答,不完整的地方其他学生补充。
中考数学考前热点冲刺指导《第2讲 整式与因式分解》课件
去括号与添括号时要特别注意的是如果括号前边是
“-”号,各项要__改__变____符号
整式的 加减
合并同类项:同类项的系数_相__加_____,相同字母及其 字母的指数__不__变____
整式的加减,先去括号,然后合并多项式中的同类项
2021/12/9
第2讲┃ 整式(zhěnɡ shì)与因
第三页,共二十页。
多项式
的次数是_次__数__最__高__项_的__次__数____
多项式的排列包括_升__幂__排_列__和_降__幂__排_列__
2021/12/9
第2讲┃ 整式(zhěnɡ shì)与因式
第二页,共二十页。
所含__字__母____相同,并且_相_同__字__母__的指数也相同的项
同类项
叫做同类项,几个常数项也是同类项
例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它 有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它 有三项,系数分别为1,2,1,系数和为4;(a+b)3=a3+3a2b+ 3ab2+b3,它有四项,系数分别为1,3,3,1,系数和为8;
2021/12/9
以单项式 _相__加_____,即(am+bm+cm)÷m
=_a_+__b_+__c_
平方差公 式
(a+b)(a-b)=__a_2-__b_2__
完全平方 公式
(a±b)2=__a_2±__2_a_b_+__b_2 _
2021/12/9
第2讲┃ 整式(zhěnɡ shì)与因式
第八页,共二十页。
5.下列计算正确的是( B )
第十五页,共二十页。
[解析] 通过阅读理解寻找规律,观察可得(a+b)n(n为非负整 数)展开式的各项系数的规律:首尾两项系数都是1,中间各项系 数等于(a+b)n-1相邻两项的系数和.因此可得(a+b)4的各项系数 分别为1、(1+3)、(3+3)、(3+1)、1,即1、4、6、4、1.
第2讲 整式与因式分解-2021年中考数学一轮复习知识考点课件
3.单项式与多项式统称⑪__整__式_______.
4.同类项:所含字母相同,并且相同字母的⑫__指__数_______也相同的项叫做
同类项.
上一页 下一页
知识点3 整式的运算
1.合并同类项:合并同类项后,所得项的系数是合并前各同类项的系数的
⑬__和_________,且字母连同它的⑭__指__数_______不变.
上一页 下一页
上一页 下一页
命题点1 列代数式及求值
1.(2019·邵阳)如图,边长为a的正方形阴影部分的面积为( A )
2
A.a2-π
a 2
B.a2-πa
C.a2-πa2
D.a2-2πa
上一页 下一页
2.(2020·十堰)已知x+2y=3,则1+2x+4y的值为____7________. 3.(营口中考)按下面程序计算,若开始输入x的值是-2,则输出的结果是
__2_a_b_____
上一页
下一页
(3)除法运算: (ⅰ)单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除 式里含有的字母,则连同它的指数作为商的一个因式.如7x4y÷x3=7x4-3y =7xy; (ⅱ)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所 得的商相加.如(am-bm)÷m= __a_-__b______.
上一页 下一页
(3)十字相乘法(拓展):
分解因式:x2+bx+c(b2-4c≥0).
若
,其中pq=c,p+q=b,则x2+bx+c=(x+p)(x+q).
上一页 下一页
4.因式分解的一般步骤:
上一页 下一页
上一页 下一页
考点1 列代数式及求值
考点精讲
1.(2019·贵阳)如图是一个长为a,宽为b的矩形,两个阴影图形都是底边长为
人教版2021中考数学总复习 第2讲 整式与因式分解
=12mn+10n
11. (2019·广州)分解因式: x2y+2xy+y=____y_(__x_+_1_)__2__________________. 12. (2019·深圳)分解因式: ab2-a=________a_(__b_+_1_)__(__b_-_1_)_____________. 13.(2020·广东)分解因式: xy-x=_________x_(_y_-__1_)____________________.
14.(2020·长春)长春市净月潭国家森林公园门票的价格为成
人票每张30元,儿童票每张15元.若购买m张成人票和n张儿童
票,则共需花费___(__3_0_m_+_12+2m=1,则4m2+8m-3的值是( D )
A.4
B.3
C.2
D.1
分层训练
变式诊断
9. (2019·深圳)下列运算正确的是( C )
A. a2+a2=a4
B. a3·a4=a12
C. (a3)4=a12
D. (ab)2=ab2
10.(2020·南通)计算:
(2m+3n)2-(2m+n)(2m-n).
解:原式=4m2+12mn+9n2-(4m2-n2)
=4m2+12mn+9n2-4m2+n2
续表 4. 因式分解的步骤(概括为“一提,二套,三检查”): (1)提公因式法:ma+mb+mc=m(a+b+c). (2)套公式:a2-b2=(a+b)(a-b),a2±2ab+b2=(a±b)2(乘法公式 的逆运算). (3)检查:分解因式要分解到每一个多项式都不能再分解为止.
人教版中考数学一轮复习课件第1章 第2讲 整式与因式分解
2.(1)(2022泰州)下列计算正确的是( A ) A.3ab+2ab=5ab B.5y2-2y2=3 C.7a+a=7a2 D.m2n-2mn2=-mn2 (2)计算:2a2-(a2+2)=__a_2_-__2__.
3.整式的乘除
(1)幂的运算法则:
①am•an=am+n;
②(am)n=amn;
考点1 整式的运算 1.(2022广东)单项式3xy的系数为___3___. 2.(2022牡丹江)下列计算正确的是( B ) A.a+a=a2 B.a•a2=a3 C.(a2)4=a6 D.a3÷a-1=a2
3.先化简,再求值:(2a-b)2+(a-b)(a+b)-5a(a-2b),其中a=
1 2
1.(1)单项式-
2 5
a2b的系数是__-__25____,次数是___3___.多项式5x3-
3x2y2+2xy+1的次数是___4___.
(2)如果2x4y2n与-3xmy6是同类项,那么m+n=____7__.
2.整式的加减 运算法则:有括号先去括号,再合并同类项. (1)去括号法则(“+”不变,“-”整体变号): a+(b+c)=a+b+c; a-(b+c)=a-b-c. (2)合并同类项法则:把同类项的系数相加,字母连同它的的指数不变.
③(ab)m=ambm;abm=bamm(b≠0);
④am÷an=am-n(a≠0);
⑤a-m=
1 am
(a≠0);a0=1(a≠0).
3.(1)a3•a2=__a_5_; (2)(a3)2=__a_6_; (3)(-3a)3=__-__2_7_a_3__; (4)a6÷a2=__a_4_;
3.整式的乘除 (2)整式的乘除: 单项式乘多项式:a(b+c)=ab+ac; 多项式乘多项式:(a+b)(m+n)=am+an+bm+bn; 多项式除以单项式:(a+b)÷m=a÷m+b÷m. (3)乘法公式: 平方差公式:(a+b)(a-b)=a2-b2; 完全平方公式:(a±b)2=a2±2ab+b2.
浙教版2021年中考数学一轮复习专题2—— 整式与因式分解
浙教版2021年中考数学一轮复习专题2——整式与因式分解一、单选题1.计算a2·a4的结果是()A. a6B. a5C. 2a3D. a2.下列式子中正确的是().A. B. C. D.3.下列由左到右的变形,属于因式分解的是( )A. (x+2)(x-2)=x2-4B. x2+4x-2=x(x+4)-2C. x2-4=(x+2)(x-2)D. x2-4+3x=(x+2)(x-2)+3x4.把多项式分解因式,结果正确的是()A. B. C. D.5.对代数式a2+b2的意义表达不确切的是()A. a与b的平方和B. a与b的平方的和C. a2与b2的和D. a的平方与b的平方的和6.请你观察图形,依据图形面积之间的关系,不需要添加辅助线,便可以得到一个你熟悉的公式,这个公式是()A. (x+y)(x﹣y)=x2﹣y2B. (x+y)2=x2+2xy+y2C. (x﹣y)2=x2﹣2xy+y2D. (x+y)2=x2+xy+y27.计算:3(22+1)(24+1)(28+1)-216 的结果为()A. 216-1B. -1C. 216+1D. 18.从下图的变形中验证了我们学习的公式()A. B.C. D.9.下列说法中错误的是()A. 9600用科学记数法表示为9.6x103B. 互为相反数的两数的积为-1C. ab比c可以写成D. 单项式的系数是,次数是710.下列说法不正确的个数为()①﹣0.5x2y3与2πy3x2不是同类项;②多项式3ab3﹣ab﹣1的次数为6次3项式;③单项式﹣4πxy3的系数为与次数之和0;④多项式3x3y2﹣xy﹣3的常数项为3.A. 4个B. 3个C. 2个D. 1个11.下列等式成立的是( )A. (-x-1)2=(x-1)2B. (-x-1)2=(x+1)2C. (-x+1)2=(x+1)2D. (x+1)2=(x-1)212.将2x2﹣x﹣2分解因式为()A. B. 2C. 2D. 213.下列图形都是由同样大小的矩形按一定的规律组成,其中,第①个图形中一共有6个矩形,第②个图形中一共有11个矩形,…,按此规律,第⑥个图形中矩形的个数为()A. 30B. 25C. 28D. 3114.在求的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:……①然后在①式的两边都乘以6,得:……②②-①得,即,所以.得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出的值?你的答案是()A. B. C. D.二、填空题15.已知与(m,n是整数)是同类项,则=________.16.用代数式表示:“x的2倍与y的差的平方”是________.17.把四张形状大小完全相同的小长方形卡片(如图①),卡片长为x,宽为y,不重叠地放在一个底面为长方形(宽为a)的盒子底部(如图②),盒底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是________(用只含b的代数式表示).18.多项式a2-ab2-3a2c-8是________次________项式,它的常数项是________19.把多项式5xy﹣x2+4按x的降幂排列________.20.观察下面两行数-2,4,-8,16,-32……-1,6,-5,20,-27……则第二行数的第8个数等于________.三、综合题21.先化简,再求值.(2+3x)(-2+3x)-5x(x-1)-(2x-1)2,其中.22.计算:(1);(2)4(a﹣b)﹣(2a﹣b).23.计算:(1)6x2•3xy(2)(4a﹣b2)(﹣2b)(3)2a·(a+1)- a(3a- 2)+2a2 (a2-1).24.请你阅读如图框内老师的新定义运算规定,然后解答下列各小题.(1)若x⊕y=1,x⊕2y=﹣2,分别求出x和y的值;(2)若x满足x⊕2≤0,且3x⊕(﹣8)>0,求x的取值范围.25.先化简,再求的值,其中a= ,b=﹣.26.下列各式中,哪些是整式?哪些是分式?, , , - ,- x+3,- +3, , .27.计算(1)|﹣1|+(﹣2)3+(7﹣π)0﹣()﹣1(2)(﹣a2)3﹣6a2•a4(3)3x﹣2(x﹣1)﹣3(x+1)(4)(m4)2+m5•m3+(﹣m)4•m4.28.已知,有一组不为零的数a,b,c,d,e,f,m,满足,求解:∵a=bm,c=md,e=fm∴= = m利用数学的恒等变形及转化思想,试完成:(1)244,333,422的大小关系是________(2)已知a,b,c 不相等且不为零,若,求的值.29.阅读理解:对于二次三项式,能直接用公式法进行因式分解,得到,但对于二次三项式,就不能直接用公式法了.我们可以采用这样的方法:在二次三项式中先加上一项,使其成为完全平方式,再减去这项,使整个式子的值不变,于是:像这样把二次三项式分解因式的方法叫做添(拆)项法.(1)问题解决:请用上述方法将二次三项式分解因式.(2)拓展应用:二次三项式有最小值或有最大值吗?如果有,请你求出来并说明理由.答案一、单选题1. A2. D3. C4.B5. B6.B7. B8. D9. B 10.A 11. B 12. D 13. D 14. B二、填空题15. -1 16. (2x-y)217.4b 18. 三;四;19.﹣x2+5xy+4.20. 264三、综合题21. 解:== = ,当时,.故答案为:-8.22. (1)解:(-1)2016-2÷ ×3+(−2)2=1-4×3+4=1-12+4=-7(2)解:4(a-b)-(2a-b)=4a-4b-2a+b=2a-3b23. (1)解:6x2•3xy=18x3y;(2)解:(4a﹣b2)(﹣2b)=﹣8ab+2b3(3)解:2a·(a+1)- a(3a-2)+2a2 (a2-1) =2a2+2a - 3a2+2a +2a4 -2a2=2a4 -3a2+4a24. (1)解:根据题意得:,解得:(2)解:根据题意得:,解得:﹣2<x≤ .故x的取值范围是﹣2<x≤25.解:原式= + + = = ,当a=,b=﹣时,原式=﹣26.解:整式: , , ;分式: ,、、、27. (1)解:|﹣1|+(﹣2)3+(7﹣π)0﹣()﹣1=1﹣8+1﹣3=﹣9(2)解:(﹣a2)3﹣6a2•a4=﹣a6﹣6a6=﹣7a6(3)解:3x﹣2(x﹣1)﹣3(x+1)=3x﹣2x+2﹣3x﹣3=﹣2x﹣1(4)解:(m4)2+m5•m3+(﹣m)4•m4=m8+m8+m8=3m828. (1)333>244=422(2)解:∵,,,∴a+b=3ab,b+c=4bc,a+c=5ac,∴(a+b)c=3abc,(b+c)a=4abc,(a+c)b=5abc,即ac+bc=3abc,ab+ac=4abc,ab+bc=5abc,∴2(ab+bc+ac)=12abc,即ab+bc+ac=6abc,∴.29. (1)解:==== ;(2)解:有最小值,为-4,== ,∵,∴当时,有最小值,为-4.。
中考数学一轮复习2整式与因式分解课件
学习目标
1、掌握代数式、求代数式的值、单项式、多项式、整式、因式分 解的概念. 2、理解并掌握合并同类项、整式的乘除法及因式分解的运算.
知识梳理
考点1 代数式及其求值
1.代数式:用基本运算符号把 数 和表示数的 字母连接起来的式子叫 代数式, 代数式不含等号.
如 6x4÷2x3=(6÷2)x4-3=3x
运算 多项式除以单项式
(am+bm)÷m=a+b
混合运算法则
先乘方,再乘除,最后加减,有括号的先算括号 里面的
知识梳理
考点4:因式分解
定义:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做 这个多项式的因式分解
提公因式法:ma+mb+mc=⑭ m(a+b+c)
D.(-a3)2=a5
随堂检测
3、已知 m2-4m=7,则代数式 2m2-8m-13 的值为( C )
A.3
B.2
C.1
D.0
4.把多项式 x2+ax+b 分解因式,得(x+1)(x-3),则 a,b 的值分别是( B )
A.a=2,b=3
B.a=-2,b=-3
C.a=-2,b=3
D.a=2,b=-3
本课小结
1、掌握代数式、求代数式的值、单项式、多项式、整式、因 式分解的概念. 2、理解并掌握合并同类项、整式的乘除法及因式分解的运算.
随堂检测
1.单项式4xy2z3的次数是( D )
A.3
B.4
C.5
D.6
2、下列计算正确的是( A )
A. 8- 2= 2
B.(-3)2=6
C.3a4-2a2=a2
难点突破
3、当 a=-1 时,代数式(a+1)2+a(a+3)的值等于( C )
2021年中考数学总复习第2讲整式及其运算课件
分析
答案
考点四 乘法公式
例4 (2020·重庆B)计算:(x-y)2-(x-2y)(x+y). 分析 根据平方差公式、多项式乘多项式法则进行计算. 解 原式=x2-2xy+y2-x2+xy+2y2=-xy+3y2.
分析
答案
规律方法
规律方法
本题考查的是整式的混合运算,掌握完全平方公式、单项式乘多项式 法则是解题的关键.
练习4
(2020·邵阳)先化简,再求值:(m-n)2-m(m-2n),其中m= 3 , n= 2 . 解 原式=m2-2mn+n2-m2+2mn=n2, 当n=时,原式=2.
分析
答案
返回
易错防范
返回
易错警示系列 2 幂运算易出现的错误
试题 计算:①x3·x5;②x4·x4;③(am+1)2;④(-2a2b)2;⑤(m-n)6÷(n-m)3.
分析
答案
考点二 整式的加减运算
例2 (2020·株洲)计算:3a-(2a-1)=___a_+__1__. 分析 原式去括号合并即可得到结果. 原式=3a-2a+1=a+1.
分析
答案
规律方法
规律方法
本题考查了整式的加减,熟练掌握去括号法则、整式加减法法则是解 本题的关键.
练习2
(2020·青岛)计算a·a5-(2a3)2的结果为( D )
2
诊断自测
1.(2020·舟山)计算2a2+a2,结果正确的是( D )
A.2a4
B.2a2
C.3a4
D.3a2
1 23 45
2.(2020·福州)下列算式中,结果等于a6的是( D )
A.a4+a2
B.a2+a2+a2
C.a2·a3
中考一轮复习 数学专题02 整式与因式分解(老师版)
专题02 整式与因式分解一、单选题1.(2022·湖南郴州)下列运算正确的是( )A .325a a a +=B .632a a a ÷=C .()222a b a b +=+D 5=【答案】D【解析】【分析】根据合并同类项、同底数幂的除法法则,完全平方公式以及二次根式的计算法则进行计算即可.【详解】A.32a a +不能合并,故A 错误;B.633a a a ÷=,故B 错误;C.()2222a b a ab b +=++,故C 错误;5,故D 正确;故答案为:D .【点睛】本题考查了合并同类项、同底数幂的除法法则、完全平方公式以及二次根式的计算法则等知识.掌握合并同类项、同底数幂的除法法则、完全平方公式以及二次根式的计算法则是解答本题的关键. 2.(2022·山东临沂)计算()1a a a +-的结果是( )A .1B .2aC .22a a +D .21a a -+ 【答案】B【解析】【分析】先计算单项式乘以多项式,再合并同类项即可.【详解】解:()1a a a +- 22a a a a .故选B【点睛】本题考查的是整式的混合运算,单项式乘以多项式,掌握“单项式乘以多项式的运算”是解本题的关键. 3.(2022·内蒙古包头)若a ,b 互为相反数,c 的倒数是4,则334a b c +-的值为( )A .8-B .5-C .1-D .16【答案】C【解析】【分析】根据a ,b 互为相反数,可得0a b +=,c 的倒数是4,可得14c =,代入即可求解. 【详解】∵a ,b 互为相反数,∵0a b +=,∵c 的倒数是4, ∵14c =, ∵334a b c +-()34a b c =+-130414=⨯-⨯=-, 故选:C【点睛】 本题考查了代数式的求值问题,利用已知求得0a b +=,14c =是解题的关键. 4.(2022·广西河池)多项式244x x +﹣因式分解的结果是( )A .x (x ﹣4)+4B .(x +2)(x ﹣2)C .(x +2)2D .(x ﹣2)2【答案】D【解析】【分析】根据完全平方公式进行因式分解即可.【详解】解:()22442x x x +=-﹣. 故选:D .【点睛】本题主要考查了公式法分解因式,理解完全平方公式是解答关键.5.(2022·广西柳州)把多项式a 2+2a 分解因式得( )A .a (a +2)B .a (a ﹣2)C .(a +2)2D .(a +2)(a ﹣2)【答案】A【解析】【分析】运用提公因式法进行因式分解即可.【详解】22(2)a a a a +=+ 故选A【点睛】本题主要考查了因式分解知识点,掌握提公因式法是解题的关键.6.(2021·广西百色)下列各式计算正确的是( )A .33=9B .(a ﹣b )2=a 2﹣b 2C .+D .(2a 2b )3=8a 8b 3【答案】C【解析】【分析】分别根据有理数的乘方、二次根式的计算法则和整式的乘法计算法则进行计算判断即可得到答案.【详解】解:A 、33=27,此选项错误;B 、()2222a b a ab b -=-+,此选项错误;C 、D 、()362328a b a b =,此选项错误. 故选C.【点睛】本题主要考查了二次根式的加法运算和整式的乘法运算,解题的关键在于熟练的掌握相关知识进行求解. 7.(2021·甘肃兰州)如图,将图1中的菱形纸片沿对角线剪成4个直角三角形,拼成如图2的四边形ABCD(相邻纸片之间不重叠,无缝隙).若四边形ABCD 的面积为13,中间空白处的四边形EFGH 的面积为1,直角三角形的两条直角边分别为a 和b ,则()2a b +=( )A .12B .13C .24D .25【答案】D【解析】【分析】 根据菱形的性质可得对角线互相垂直平分,进而可得4个直角三角形全等,结合已知条件和勾股定理求得22a b +,进而根据面积差以及三角形面积公式求得12ab ,最后根据完全平方公式即可求得2()a b +. 【详解】菱形的对角线互相垂直平分,∴4个直角三角形全等;,90ADH BAE DAH HAD ∴∠=∠∠+∠=︒,AD AB BC CD ===,90DAB ∴∠=︒,∴四边形ABCD 是正方形,又正方形ABCD 的面积为13,∴根据勾股定理,则22213a b AB +==,中间空白处的四边形EFGH 的面积为1,∴4个直角三角形的面积为13112-=,112432ab ∴=÷=, 212ab ∴=,222()2a b a b ab +=++,∴()2a b +=121325+=.故选D .【点睛】 本题考查了正方形的性质与判定,菱形的性质,勾股定理,完全平方公式,求得12ab 是解题的关键. 8.(2022·青海)下列运算正确的是( )A .235347x x x +=B .()222x y x y +=+ C .()()2232394x x x +-=- D .()224212xy xy xy y +=+ 【答案】D【解析】【分析】根据合并同类项,完全平方公式,平方差公式,因式分解计算即可.【详解】A.选项,3x 2与4x 3不是同类项,不能合并,故该选项计算错误,不符合题意;B.选项,原式= ()2222x y x xy y +=++,故该选项计算错误,不符合题意;C.选项,原式= 249x -,故该选项计算错误,不符合题意;D.选项,原式=()212xy y +,故该选项计算正确,符合题意;故选:D .【点睛】本题考查了合并同类项,完全平方公式,平方差公式,因式分解,注意完全平方公式展开有三项是解题的易错点.9.(2020·四川广安)下列运算中,正确的是( )A .347x x x +=B .248236x x x ⋅=C .2242(3)9x y x y -=-D 【答案】D【解析】【分析】根据同类项的定义、单项式乘单项式法则和二次根式的乘法公式逐一判断即可.【详解】解:A .3x 和4x 不是同类项,不能合并,故错误;B .246236x x x ⋅= ,故错误;C .2242(3)9x y x y -=,故错误;D ==故选D .【点睛】此题考查的是整式的运算和二次根式的运算,掌握同类项的定义、单项式乘单项式法则和二次根式的乘法公式是解题关键.10.(2020·黑龙江大庆)若2|2|(3)0x y ++-=,则x y -的值为( )A .-5B .5C .1D .-1【答案】A【解析】【分析】根据绝对值和平方的非负性可求出x ,y 的值,代入计算即可;【详解】∵2|2|(3)0x y ++-=,∵20x +=,30y -=,∵2x =-,3y =,∵235-=--=-x y .故答案选A .【点睛】本题主要考查了绝对值和平方的非负性,准确计算是解题的关键.11.(2022·广东广州)如图,用若干根相同的小木棒拼成图形,拼第1个图形需要6根小木棒,拼第2个图形需要14根小木棒,拼第3个图形需要22根小木棒……若按照这样的方法拼成的第n 个图形需要2022根小木棒,则n 的值为( )A .252B .253C .336D .337【答案】B【解析】【分析】 根据图形的变化及数值的变化找出变化规律,即可得出结论.【详解】解:设第n 个图形需要an (n 为正整数)根小木棒,观察发现规律:第一个图形需要小木棒:6=6×1+0,第二个图形需要小木棒:14=6×2+2;第三个图形需要小木棒:22=6×3+4,…,∵第n 个图形需要小木棒:6n +2(n -1)=8n -2.∵8n -2=2022,得:n =253,故选:B .【点睛】本题考查了规律型中图形的变化类,解决该题型题目时,根据给定图形中的数据找出变化规律是关键. 12.(2022·内蒙古呼和浩特)以下命题:∵面包店某种面包售价a 元/个,因原材料涨价,面包价格上涨10%,会员优惠从打八五折调整为打九折,则会员购买一个面包比涨价前多花了0.14a 元;∵等边三角形ABC 中,D 是BC 边上一点,E 是AC 边上一点,若AD AE =,则3∠=∠BAD EDC ;∵两边及第三边上的中线对应相等的两个三角形全等;∵一列自然数0,1,2,3,55,依次将该列数中的每一个数平方后除以100,得到一列新数,则原数与对应新数的差,随着原数的增大而增大.其中真命题的个数有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】根据全等三角形的判定与性质、二次函数的性质等知识逐项判断即可, 本号资料皆来源于微信公众*号:#数学 【详解】解:∵项,会员原来购买一个面包需要0.85a 元,现在需要a ×(1+10%)×0.9=0.99a ,则会员购买一个面包比涨价前多花了0.99a -0.85a =0.14a 元,故∵项正确;∵项,如图,∵∵ABC是等边三角形,∵∵B=∵C=60°,∵∵B+∵BAD=∵ADE+∵EDC,∵C+∵EDC=∵AED,又∵AD=AE,∵∵ADE=∵AED,∵∵B+∵BAD=∵ADE+∵EDC=∵C+∵EDC+∵EDC,本号资料皆来源于微#信:数学∵∵BAD=∵EDC+∵EDC=2∵EDC,故∵项错误;∵项,如图,∵ABC和∵DEF,AB=DE,AC=DF,AM是∵ABC的BC边上的中线,DN是∵DEF的边EF上的中线,AM=DN,即有∵ABC∵∵DEF,理由如下:延长AM至G点,使得AM=GM,连接GC,延长DN至H点,使得DN=NH,连接HF,∵AM是中线,∵BM=MC,∵AM=MG,∵AMB=∵GMC,∵∵AMB∵∵GMC,∵AB=GC,同理可证DE=HF,∵AM=DN,∵AG =2AM =2DN =DH ,∵AB =DE ,∵GC =HF ,∵结合AC =DF 可得∵ACG ∵∵DFH ,∵∵GAC =∵HDF ,同理可证∵GAB =∵HDE ,∵∵BAC =∵GAB +∵GAC =∵HDF +∵HDE =∵EDF ,∵AB =DE ,AC =DF ,∵∵ABC ∵∵DEF ,故∵正确;∵设原数为x ,则新数为21100x ,设原数与新数之差为y , 即21100y x x =-,变形为:21(50)25100y x =--+, 将x 等于0、1、2、3、55分别代入可知,y 随着x 的增大而增大,故∵正确;即正确的有三个,故选:C ,【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质、二次函数的应用等知识,掌握全等三角形的判定与性质是解答本题的关键.13.(2022·广西玉林)如图的电子装置中,红黑两枚跳棋开始放置在边长为2的正六边形ABCDEF 的顶点A 处.两枚跳棋跳动规则是:红跳棋按顺时针方向1秒钟跳1个顶点,黑跳棋按逆时针方向3秒钟跳1个顶点,两枚跳棋同时跳动,经过2022秒钟后,两枚跳棋之间的距离是( )A .4B .C .2D .0【答案】B【解析】【分析】由题意可分别求出经过2022秒后,红黑两枚跳棋的位置,然后根据正多边形的性质及含30度直角三角形的性质可进行求解.【详解】解:∵2022÷3=674,2022÷1=2022, 本号资料#皆来*源于微信公*众号:数学∵67461122,20226337÷=⋅⋅⋅⋅⋅÷=,∵经过2022秒后,红跳棋落在点A 处,黑跳棋落在点E 处,连接AE ,过点F 作FG ∵AE 于点G ,如图所示:在正六边形ABCDEF 中,2,120AF EF AFE ==∠=︒, ∵1,302AG AE FAE FEA =∠=∠=︒, ∵112FG AF ==,∵AG∵AE =故选B .【点睛】本题主要考查图形规律问题、勾股定理、含30度直角三角形的性质及正多边形的性质,熟练掌握图形规律问题、勾股定理、含30度直角三角形的性质及正多边形的性质是解题的关键.14.(2021·内蒙古)若1x =,则代数式222x x -+的值为( )A .7B .4C .3D .3- 【答案】C【解析】【分析】先将代数式222x x -+变形为()211x -+,再代入即可求解.【详解】解:())22222=111113x x x -+-+=-+=. 故选:C【点睛】本题考查了求代数式的值,熟练掌握完全平方公式是解题关键,也可将x 的值直接代入计算.15.(2021·江苏苏州)已知两个不等于0的实数a 、b 满足0a b +=,则b a a b +等于( ) A .2-B .1-C .1D .2【答案】A【解析】【分析】 先化简式子,再利用配方法变形即可得出结果.【详解】解:∵22=b a b a a b ab++, ∵()2222==a b ab b a b a a b ab ab +-++, ∵两个不等于0的实数a 、b 满足0a b +=, ∵()22-2===-2a b ab b a ab a b ab ab+-+, 故选:A .【点睛】本题考查分式的化简、配完全平方、灵活应用配方法是解题的关键.16.(2021·山东临沂)实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.下图为表示镭的放射规律的函数图象,据此可计算32mg 镭缩减为1mg 所用的时间大约是( )A .4860年B .6480年C .8100年D .9720年【答案】C【解析】【分析】 根据物质所剩的质量与时间的规律,可得答案.【详解】解:由图可知:1620年时,镭质量缩减为原来的12, 再经过1620年,即当3240年时,镭质量缩减为原来的21142=, 再经过1620×2=3240年,即当4860年时,镭质量缩减为原来的31182=, ...,∵再经过1620×4=6480年,即当8100年时,镭质量缩减为原来的511232=, 此时132132⨯=mg , 故选C .【点睛】本题考查了函数图象,规律型问题,利用函数图象的意义是解题关键.17.(2020·四川眉山)已知221224a b a b +=--,则132a b -的值为( ) A .4B .2C .2-D .4-【答案】A【解析】【分析】根据221224a b a b +=--,变形可得:()22221121111042a a b b a b ⎛⎫-++++=-++= ⎪⎝⎭,因此可求出1a =,2b =-,把a 和b 代入132a b -即可求解. 【详解】 ∵221224a b a b +=-- ∵()22221121111042a a b b a b ⎛⎫-++++=-++= ⎪⎝⎭ 即2(1)0a -=,21(1)02b += ∵求得:1a =,2b =-∵把a 和b 代入132a b -得:131(2)42⨯-⨯-= 故选:A【点睛】本题主要考查了完全平方公式因式分解,熟记完全平方公式,通过移项对已知条件进行配方是解题的关键. 18.(2020·内蒙古呼和浩特)下列运算正确的是( )A 12±B .()325ab ab =C .22422()xy xy y x y x y x y x y y x ⎛⎫⎛⎫--+++=+ ⎪ ⎪--⎝⎭⎝⎭ D .223152845c a c c ab ab a-÷=- 【答案】C【解析】【分析】分别根据二次根式的乘法,幂的乘方和积的乘方,分式的混合运算,分式的除法法则判断即可.【详解】解:A 12===,故选项错误; B 、()3236ab a b =,故选项错误;C 、2422xy xy y x y x y x y y x ⎛⎫⎛⎫--+++ ⎪ ⎪--⎝⎭⎝⎭=()()()22422x y x y y x xy xy y x y x y y x y x ⎛⎫-+-⎛⎫-++ ⎪ ⎪ ⎪----⎝⎭⎝⎭=()()22x y x y x y y x+-⋅--- =()2x y +,故选项正确;D 、22222315348481510c a c c ab c ab ab ab a c a -÷=⨯=--,故选项错误; 故选C.【点睛】本题考查了二次根式的乘法,幂的乘方和积的乘方,分式的混合运算,分式的除法法则,解题的关键是学会计算,掌握运算法则.19.(2020·青海)下面是某同学在一次测试中的计算:∵22352m n mn mn -=-;∵()326224a b a b a b ⋅-=-;∵()235a a =;∵()32()a a a -÷-=,其中运算正确的个数为( ) A .4个B .3个C .2个D .1个【答案】D【解析】【分析】 根据整式的减法、整式的乘除法、幂的乘方逐个判断即可.【详解】23m n 与25mn 不是同类项,不可合并,则∵错误 本号资料*皆来源于微信:数学()332251122244a b a b a b a b ++⋅-=-=-,则∵错误 ()23326a a a ⨯==,则∵错误 ()33312()a a aa a a -÷=-÷-==,则∵正确 综上,运算正确的个数为1个故选:D .【点睛】 本题考查了整式的减法、整式的乘除法、幂的乘方,熟记整式的运算法则是解题关键.20.(2020·广西柳州)下列多项式中,能用平方差公式进行因式分解的是( )A .a 2﹣b 2B .﹣a 2﹣b 2C .a 2+b 2D .a 2+2ab +b 2 【答案】A【解析】【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.【详解】解:A 、a 2﹣b 2符合平方差公式的特点,能用平方差公式进行因式分解;B 、﹣a 2﹣b 2两平方项符号相同,不能用平方差公式进行因式分解;C 、a 2+b 2两平方项符号相同,不能用平方差公式进行因式分解;D 、a 2+2ab +b 2是三项,不能用平方差公式进行因式分解.故选:A .【点睛】本题考查了用平方差公式进行因式分解.熟记平方差公式的结构特点是解题的关键.平方差公式:()()22a b a b a b -=+-. 本号资料皆来源于微信@公*众号:数#学21.(2022·内蒙古通辽)下列命题:∵()3235m n m n ⋅=;∵数据1,3,3,5的方差为2;∵因式分解()()3422x x x x x -=+-;∵平分弦的直径垂直于弦;∵1≥x .其中假命题的个数是( )A .1B .3C .2D .4【答案】C【解析】【分析】根据积的乘方,方差的计算,多项的因式分解,垂径定理的推论,二次根式有意义的条件,逐项判断即可求解.【详解】解:∵()3362m n m n ⋅=,故原命题是假命题; ∵数据1,3,3,5的平均数为()1133534+++= ,所以方差为()()()()222211333335324⎡⎤-+-+-+-=⎣⎦,是真命题;∵()()()324422x x x x x x x -=-=+-,是真命题;∵平分弦(不是直径)的直径垂直于弦,故原命题是假命题;∵10x -≥,即1≥x ,是真命题;∵假命题的个数是2.故选:C【点睛】本题主要考查了积的乘方,方差的计算,多项的因式分解,垂径定理的推论,二次根式有意义的条件,熟练掌握相关知识点是解题的关键.22.(2021·广西贺州)多项式32242x x x -+因式分解为( )A .()221x x -B .()221x x +C .()221x x -D .()221x x + 【答案】A【解析】【分析】先提取公因式2x ,再利用完全平方公式将括号里的式子进行因式分解即可【详解】解:32242x x x -+()()2222121x x x x x =-+=- 故答案选:A .【点睛】本题考查了提公因式法和公式法进行因式分解.正确应用公式分解因式是解题的关键.23.(2021·四川眉山)化简221111a a a ⎛⎫+÷ ⎪--⎝⎭的结果是( ) A .1a +B .1a a +C .1a a -D .21a a + 【答案】B【解析】【分析】 小括号先通分合并,再将除法变乘法并因式分解即可约分化简.【详解】 解:原式()()()()221111111=11a a a a a a a a a a a a+-+--++⨯=⨯=--故答案是:B .【点睛】本题考察分式的运算和化简、因式分解,属于基础题,难度不大.解题关键是掌握分式的运算法则. 24.(2020·浙江金华)下列多项式中,能运用平方差公式分解因式的是( )A .22a b +B .22a b -C .22a b -+D .22a b --【答案】C【解析】【分析】根据平方差公式的定义判断即可;【详解】A 、原式不能利用平方差公式进行因式分解,不符合题意;B 、原式不能利用平方差公式进行因式分解,不符合题意;C 、原式()()b a b a =-+,能利用平方差公式进行因式分解,符合题意;D 、原式不能利用平方差公式进行因式分解,不符合题意,故选:C .【点睛】本题主要考查了平方差公式的应用,准确判断是解题的关键.25.(2020·湖南益阳)下列因式分解正确的是( ) 本号资料皆来源于微信:数学第六*感A .()()()()a a b b a b a b a b ---=-+B .2229(3)a b a b -=-C .22244(2)a ab b a b ++=+D .2()a ab a a a b -+=-【答案】C【解析】【分析】利用提公因式法分解因式和平方差公式以及完全平方公式进行分解即可得到答案.【详解】A 、2()()()()()a a b b a b a b a b a b ---=--=-,故此选项错误;B 、229(3)(3)a b a b a b -=+-,故此选项错误;C 、22244(2)a ab b a b ++=+,故此选项正确;D 、2(+1)a ab a a a b -+=-,故此选项错误.故选:C .【点睛】此题主要考查了公式法和提公因式法分解因式,关键是注意口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.26.(2020·内蒙古通辽)从下列命题中,随机抽取一个是真命题的概率是( )(1)无理数都是无限小数;(2)因式分解()()211ax a a x x -=+-;(3)棱长是1cm 的正方体的表面展开图的周长一定是14cm ;(4)弧长是20cm π,面积是2240cm π的扇形的圆心角是120︒.A .14B .12C .34D .1【答案】C【解析】【分析】 分别判断各命题的真假,再利用概率公式求解.【详解】解:(1)无理数都是无限小数,是真命题,(2)因式分解()()211ax a a x x -=+-,是真命题,(3)棱长是1cm 的正方体的表面展开图的周长一定是14cm ,是真命题,(4)设扇形半径为r ,圆心角为n ,∵弧长是20cm π,则180n r π=20π,则3600nr =, ∵面积是2240cm π,则2360n r π=240π,则2nr =360×240, 则2360240243600nr r nr ⨯===,则n=3600÷24=150°, 故扇形的圆心角是150︒,是假命题,则随机抽取一个是真命题的概率是34,故选C.【点睛】本题考查了命题的真假,概率,扇形的弧长和面积,无理数,因式分解,正方体展开图,知识点较多,难度一般,解题的关键是运用所学知识判断各个命题的真假.二、填空题27.(2022·江苏常州)计算:42÷=m m_______.【答案】2m【解析】【分析】根据同底数幂的除法运算法则即可求出.【详解】解:422m m m÷=.故答案为:2m.【点睛】本题主要考查同底数幂的除法,掌握同底数幂的除法法则是解题的关键.28.(2022·吉林)篮球队要购买10个篮球,每个篮球m元,一共需要__________元.(用含m的代数式表示)【答案】10m【解析】【分析】根据“总费用=购买篮球的数量⨯每个篮球的价格”即可得.【详解】解:由题意得:一共需要的费用为10m元,故答案为:10m.【点睛】本题考查了列代数式,正确找出等量关系是解题关键.29.(2022·天津)计算1)的结果等于___________.【答案】18【解析】【分析】根据平方差公式即可求解.【详解】解:221)119118=-=-=,故答案为:18.【点睛】本题考查了平方差公式的应用,熟练掌握平方差公式的展开式是解题的关键.30.(2022·四川广安)已知a +b =1,则代数式a 2﹣b 2 +2b +9的值为________.【答案】10【解析】【分析】根据平方差公式,把原式化为()()29a b a b b +-++,可得9a b ++,即可求解.【详解】解:a 2﹣b 2 +2b +9()()29a b a b b =+-++29a b b =-++9a b =++19=+10=故答案为:10【点睛】本题主要考查了平方差公式的应用,利用整体代入思想解答是解题的关键.31.(2022·四川乐山)如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”,如图所示,“优美矩形”ABCD 的周长为26,则正方形d 的边长为______. 本号*资料皆来源于@微信:数学第*六感【答案】5【解析】【分析】设正方形a、b、c、d的边长分别为a、b、c、d,分别求得b=13c,c=35d,由“优美矩形”ABCD的周长得4d+2c=26,列式计算即可求解.【详解】解:设正方形a、b、c、d的边长分别为a、b、c、d,∵“优美矩形”ABCD的周长为26,∵4d+2c=26,∵a=2b,c=a+b,d=a+c,∵c=3b,则b=13 c,∵d=2b+c=53c,则c=35d,∵4d+65d =26,∵d=5,∵正方形d的边长为5,故答案为:5.【点睛】本题考查了整式加减的应用,认真观察图形,根据长方形的周长公式推导出所求的答案是解题的关键.32.(2022·黑龙江大庆)已知代数式22(21)4a t ab b+-+是一个完全平方式,则实数t的值为____________.【答案】52或32-【解析】【分析】直接利用完全平方公式求解.【详解】解:∵代数式22(21)4a t ab b +-+是一个完全平方式,∵()()()222222(21)4222a t ab b a b a b a b +-+++±=±±⋅⋅=,∵214t -=±, 解得52t =或32t =-, 故答案为:52或32- 【点睛】本题考查了完全平方公式的运用,熟记完全平方公式的特点是解题的关键.33.(2022·广西)阅读材料:整体代值是数学中常用的方法.例如“已知32a b -=,求代数式621a b --的值.”可以这样解:()6212312213a b a b --=--=⨯-=.根据阅读材料,解决问题:若2x =是关于x 的一元一次方程3ax b +=的解,则代数式2244421a ab b a b ++++-的值是________.【答案】14【解析】【分析】先根据2x =是关于x 的一元一次方程3ax b +=的解,得到23a b +=,再把所求的代数式变形为()()22221a b a b +++-,把23a b +=整体代入即可求值.【详解】解:∵2x =是关于x 的一元一次方程3ax b +=的解,∵23a b +=,∵2244421a ab b a b ++++-()()22221a b a b =+++-23231=+⨯- 14=.故答案为:14.【点睛】本题考查了代数式的整体代入求值及一元一次方程解的定义,把所求的代数式利用完全平方公式变形是解34.(2021·贵州黔西)已知2a ﹣5b =3,则2+4a ﹣10b =________.【答案】8【解析】【分析】先变形得出2+4a ﹣10b =2+2(2a ﹣5b ),再代入求出答案即可.【详解】解:∵2a ﹣5b =3,∵2+4a ﹣10b=2+2(2a ﹣5b )=2+2×3=8,故答案为:8.【点睛】本题考查了求代数式的值,掌握整体代入法是解此题的关键.35.(2021·贵州铜仁)如图所示:是一个运算程序示意图,若第一次输入1,则输出的结果是______________;【答案】11【解析】【分析】把x =1代入运算程序的y =6<9,无法输出,再把x =2代入运算程序得y =11>9,输出答案,问题得解.【详解】解:把x =1代入223y x x =++得y =1+2+3=6<9,无法输出,∵把x =1+1=2代入223y x x =++得y =4+4+3=11>9,输出答案.【点睛】本题考查了根据运算程序进行计算,理解运算程序是解题关键.36.(2021·河北)现有甲、乙、丙三种不同的矩形纸片(边长如图).(1)取甲、乙纸片各1块,其面积和为___________;(2)嘉嘉要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片___________块.【答案】 22a b + 4【解析】【分析】(1)直接利用正方形面积公式进行计算即可;(2)根据已知图形的面积公式的特征,利用完全平方公式即可判定应增加的项,再对应到图形上即可.【详解】解:(1)∵甲、乙都是正方形纸片,其边长分别为,a b∵取甲、乙纸片各1块,其面积和为22a b +;故答案为:22a b +.(2)要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,则它们的面积和为224a b +,若再加上4ab (刚好是4个丙),则()222442a b ab a b ++=+,则刚好能组成边长为2+a b 的正方形,图形如下所示,所以应取丙纸片4块.故答案为:4.【点睛】本题考查了正方形的面积公式以及完全平方公式的几何意义,解决本题的关键是牢记公式特点,灵活运用公式等,本题涉及到的方法为观察、假设与实践,涉及到的思想为数形结合的思想.37.(2020·宁夏)2002年8月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图1),且大正方形的面积是15,小正方形的面积是3,直角三角形的较短直角边为a,较长直角边为b.如果将四个全等的直角三角形按如图2的形式摆放,那么图2中最大的正方形的面积为____.【答案】27【解析】【分析】根据题意得出a2+b2=15,(b-a)2=3,图2中大正方形的面积为:(a+b)2,然后利用完全平方公式的变形求出(a+b)2即可.【详解】解:由题意可得在图1中:a2+b2=15,(b-a)2=3,图2中大正方形的面积为:(a+b)2,∵(b-a)2=3a2-2ab+b2=3,∵15-2ab=3∵(a+b )2=a 2+2ab+b 2=15+12=27,故答案为:27.【点睛】本题考查了完全平方公式在几何图形中的应用,熟知完全平方式的形式是解题关键.38.(2022·辽宁锦州)分解因式:2232x y xy y -+=____________.【答案】2()y x y -【解析】【分析】先提取公因数y ,再利用完全平方公式进行二次分解.完全平方公式:(a ±b )2=a 2±2ab +b 2.【详解】解:222223(2)(2)=-++=--x y xy y x xy y y x y y ;故答案为:2()y x y -【点睛】本题考查了提公因式法分解因式和利用完全平方公式分解因式,难点在于需要进行二次分解因式. 39.(2022·贵州黔东南)分解因式:2202240442022x x -+=_______.【答案】()220221x -【解析】【分析】先提公因式,然后再根据完全平方公式可进行因式分解.【详解】解:原式=()()2220222120221x x x -+=-; 故答案为()220221x -.【点睛】本题主要考查因式分解,熟练掌握因式分解是解题的关键.40.(2020·浙江)化简:2121x x x +++=_____. 【答案】11x +【分析】先将分母因式分解,再根据分式的基本性质约分即可.【详解】2121x x x +++ =21(1)x x ++ =11x +. 故答案为:11x +. 【点睛】本题考查了分式的除法以及利用完全平方公式因式分解,解答本题的关键是掌握分式的基本性质以及因式分解的方法.41.(2022·浙江丽水)如图,标号为∵,∵,∵,∵的矩形不重叠地围成矩形PQMN ,已知∵和∵能够重合,∵和∵能够重合,这四个矩形的面积都是5.,AE a DE b ==,且a b >.(1)若a ,b 是整数,则PQ 的长是___________;(2)若代数式222a ab b --的值为零,则ABCD PQMNS S 四边形矩形的值是___________. 【答案】 -a b3+【解析】【分析】(1)根据图象表示出PQ 即可;(2)根据2220a ab b --=分解因式可得()()0a b a b -+-=,继而求得a b =+,根据这四个矩形的面积都是5,可得55,EP EN a b ==,再进行变形化简即可求解.(1)∵和∵能够重合,∵和∵能够重合,,AE a DE b ==,PQ a b ∴=-,故答案为:-a b ;(2)2220a ab b --=,2222222()2()()0a ab b b a b b a b a b ∴-+-=--=---=,0a b ∴-=或0a b -=,即a b =(负舍)或a b =+这四个矩形的面积都是5,55,EP EN a b ∴==,()()()()()()()()22555555ABCDPQMN a b a b a b a b S b a ab a b S a b a b a b b a ab⎛⎫++⋅++⋅ ⎪+⎝⎭∴===-⎛⎫----⋅ ⎪⎝⎭四边形矩形,2222222222222222a b ab a b a b a a b ab a b a b b ++++-===+-+-+,3=+【点睛】本题考查了代数式及其分式的化简求值,准确理解题意,熟练掌握知识点是解题的根据.本号资料皆来*源于微信公*众号:#数学42.(2022·四川自贡)化简:22a 3a 42a 3a 2a 4a 4--⋅+-+++ =____________. 【答案】2aa +【解析】【分析】根据分式混合运算的顺序,依次计算即可.【详解】22a 3a 42a 3a 2a 4a 4--⋅+-+++ =2a 3(a 2)(a 2)2a 3a 2(a 2)-+-⋅+-++22222a aa a a -=+=+++ 故答案为2aa +本题考查了分式的混合运算,熟练掌握约分,通分,因式分解的技巧是解题的关键.43.(2021·四川内江)若实数x 满足210x x --=,则3222021x x -+=__.【答案】2020【解析】【分析】由等式性质可得21x x =+,21x x -=,再整体代入计算可求解.【详解】解:210--=x x ,21x x ∴=+,21x x -=,3222021x x -+2(1)22021x x x =+-+2222021x x x =+-+22021x x =-+12021=-+2020=.故答案为:2020.【点睛】本题主要考查因式分解的应用,将等式转化为21x x =+,21x x -=是解题的关键.44.(2021·广东)若1136x x +=且01x <<,则221x x -=_____. 【答案】6536-【解析】【分析】 根据1136x x +=,利用完全平方公式可得2125()36x x -=,根据x 的取值范围可得1x x -的值,利用平方差公式即可得答案.【详解】 ∵1136x x +=, ∵2211125()()436x x x x x x -=+-⋅=,∵1x x<, ∵1x x-=56-, ∵221x x -=11()()x x x x +-=135()66⨯-=6536-, 故答案为:6536-【点睛】本题考查了完全平方公式及平方差公式,准确运用公式是解题的关键.45.(2021·湖北十堰)已知2,33xy x y =-=,则322321218x y x y xy -+=_________.本号资料皆来源于微信:数学第*六感【答案】36【解析】【分析】先把多项式因式分解,再代入求值,即可.【详解】∵2,33xy x y =-=,∵原式=()222322336xy x y -=⨯⨯=,故答案是:36.【点睛】本题主要考查代数式求值,掌握提取公因式法和公式法分解因式,是解题的关键.46.(2020·湖南)阅读理解:对于x 3﹣(n 2+1)x +n 这类特殊的代数式可以按下面的方法分解因式:@ 本@号资料皆来源于微信:数学 x 3﹣(n 2+1)x +n =x 3﹣n 2x ﹣x +n =x (x 2﹣n 2)﹣(x ﹣n )=x (x ﹣n )(x +n )﹣(x ﹣n )=(x ﹣n )(x 2+nx ﹣1).理解运用:如果x 3﹣(n 2+1)x +n =0,那么(x ﹣n )(x 2+nx ﹣1)=0,即有x ﹣n =0或x 2+nx ﹣1=0, 因此,方程x ﹣n =0和x 2+nx ﹣1=0的所有解就是方程x 3﹣(n 2+1)x +n =0的解.解决问题:求方程x 3﹣5x +2=0的解为_____.【答案】x =2或x =﹣或x =﹣1.【解析】【分析】将原方程左边变形为x 3﹣4x ﹣x +2=0,再进一步因式分解得(x ﹣2)[x (x +2)﹣1]=0,据此得到两个关于x 的方程求解可得.【详解】解:∵x 3﹣5x +2=0,∵x 3﹣4x ﹣x +2=0,∵x (x 2﹣4)﹣(x ﹣2)=0,∵x (x +2)(x ﹣2)﹣(x ﹣2)=0,则(x ﹣2)[x (x +2)﹣1]=0,即(x ﹣2)(x 2+2x ﹣1)=0,∵x ﹣2=0或x 2+2x ﹣1=0,解得x =2或x =﹣1故答案为:x =2或x =﹣或x =﹣1.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到解方程的方法.三、解答题47.(2021·吉林长春)先化简,再求值:(2)(2)(1)a a a a +-+-,其中4a =. 【答案】4,5a【解析】【分析】首先利用平方差公式,单项式乘以多项式去括号,再合并同类项,然后将a 的值代入化简后的式子,即可解答本题.【详解】 221a a a a224a a a =-+-4a =-当4a =时,原式44-=【点睛】本题考查了整式的混合运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.48.(2021·湖南永州)先化简,再求值:()()212(2)x x x +++-,其中1x =.【答案】25x +,7.【解析】【分析】先计算完全平方公式、平方差公式,再计算整式的加减法,然后将1x =代入求值即可得.【详解】解:原式22214x x x =+++-, 25x =+,将1x =代入得:原式2157=⨯+=.【点睛】本题考查了整式的化简求值,熟记完全平方公式和平方差公式是解题关键.49.(2021·河北)某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、10元/本.现购进m 本甲种书和n 本乙种书,共付款Q 元.(1)用含m ,n 的代数式表示Q ;(2)若共购进4510⨯本甲种书及3310⨯本乙种书,用科学记数法表示Q 的值.【答案】(1)410Q m n =+(2)52.310Q =⨯【解析】【分析】(1)进m 本甲种书和n 本乙种书共付款为2种书的总价,用单价乘以数量即可;(2)将书的数量代入(1)中结论,求解,最后用科学记数法表示.【详解】(1)410Q m n =+(2)43,351010m n =⨯⨯=43510410310Q ∴=⨯+⨯⨯⨯44453102310201 2.3100=+⨯=⨯=⨯⨯所以52.310Q =⨯.。
中考数学一轮复习课件-第二讲整式、因式的分解
C.(x2)3=x2
D.2x7÷x5=2x2
2.(202X·河池中考)下列运算正确的是 ( A )
A.a(-a)=-a2 B.(a2)3=a5
C.2a-a=1
D.a2+a=3a
3.(202X·桂林中考)下列计算正确的是 ( B )
A.x·x=2x
B.x+x=2x
C.(x3)3=x6
D.(2x)2=2x2
B.(a2)3=a5
C.a3·a6=a9 D.(2a2)2=2a4
(A)
5.分解因式:3m2-6mn+3n2=___3_(_m_-_n_)_2 __. 6.化简:(a-b)2+2a(a+b)=___3_a_2_+_b_2 __.
高频考点·疑难突破
考点一 整式的有关概念及加减
【示范题1】(202X·黄石中考)化简 1 (9x-3)-2(x+1)的结果是 ( D )
A.8a-a=7
B.a2+a2=2a4
C.2a·3a=6a2
D.a6÷a2=a3(Fra bibliotek)【答题关键指点】 1.牢记幂的运算性质,不要混淆,尤其是同底数幂相乘和幂的乘方. 2.不要忽略符号及数字因数. 3.要会逆用幂的运算性质.
【跟踪训练】
1.(202X·北部湾中考)下列运算正确的是
(D)
A.2x2+x2=2x4 B.x3·x2=2x3
B.a8÷a2=a4
C.a2+a2=2a2
D.(a+3)2=a2+9
2.(202X·桂林中考)计算:ab·(a+1)=___a_2b_+_a_b___.
3.(202X·温州中考)化简:(x-1)2-x(x+7). 【解析】(x-1)2-x(x+7)=x2-2x+1-x2-7x =-9x+1.
2024年中考数学一轮复习考点02 整式与因式分解(精讲)(解析版)21
考点02.整式与因式分解(精讲)【命题趋势】整式与因式分解在各地中考数学中难度中下,每年考查3题左右,分值为12分左右,主要考查整式的加减、乘除法则及幂的运算,难度一般不大,偶尔考察整式的基本概念。
因式分解作为整式乘法的逆运算,在数学中考中占比不大,但是依然属于必考题,常以简单选择、填空题的形式出现,难度不大。
对于整式与因式分解的复习,需要学生熟练掌握相关概念及运算法则等,探究与表达规律、乘法公式的相关运用偶尔考查难度相对较大,望同学们多加注意!【知识清单】1:代数式的相关概念(☆☆)(1)代数式:用基本的运算符号把数和表示数的字母连接起来的式子叫做代数式。
(2)代数式的值:用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果叫做代数式的值。
2:整式的相关概念(☆☆☆)(1)单项式:由数与字母或字母与字母相乘组成的代数式叫做单项式,所有字母指数的和叫做单项式的次数,数字因数叫做单项式的系数。
(2)多项式:由几个单项式相加组成的代数式叫做多项式,多项式里次数最高的项的次数叫做这个多项式的次数,其中不含字母的项叫做常数项。
(3)整式:单项式和多项式统称为整式。
3:整式的运算(☆☆☆)(1)同类项:多项式中所含字母相同并且相同字母的指数也相同的项,叫做同类项。
(2)整式的加减:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
(3)幂的运算:a m ·a n =a m +n ;(a m )n =a mn ;(ab )n =a n b n ;a m ÷a n =m n a -。
(4)整式的乘法:1)单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
2)单项式与多项式相乘:m (a +b +c )=ma +mb +mc 。
3)多项式与多项式相乘:(m +n )(a +b )=ma +mb +na +nb 。
2021年江西省中考数学复习第2讲 整式与因式分解(精选练习)
第2讲整式与因式分解一、选择题1.(2020·通辽)下列说法不正确的是( D )A.2a是2个数a的和B.2a是2和数a的积C.2a是单项式D.2a是偶数2.(2020·无锡)若x+y=2,z-y=-3,则x+z的值等于( C )A.5 B.1 C.-1 D.-53.(2020·临沂)计算(-2a3)2÷a2的结果是( D )A.-2a3B.-2a4C.4a3D.4a44.(2020·青海)下面是某同学在一次测试中的计算:①3m2n-5mn2=-2mn;②2a3b·(-2a2b)=-4a6b;③(a3)2=a5;④(-a3)÷(-a)=a2.其中运算正确的个数为( D )A.4个B.3个C.2个D.1个5.(2020·河北)对于①x-3xy=x(1-3y),②(x+3)(x-1)=x2+2x-3,从左到右的变形,表述正确的是( C )A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解6.(2020·淮安)如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是( D )A.205 B.250 C.502 D.520二、填空题7.(2020·江西南昌二模)因式分解:4x2-y2=__(2x+y)(2x-y)__.8.(2020·长沙)某数学老师在课外活动中做了一个有趣的游戏:首先发给A,B,C三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A同学拿出二张扑克牌给B同学;第二步,C同学拿出三张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学.请你确定,最终B同学手中剩余的扑克牌的张数为__7____.9.(2020·成都)已知a=7-3b,则代数式a2+6ab+9b2的值为__49__.10.(2020·甘孜州)若m2-2m=1,则代数式2m2-4m+3的值为__5____.三、解答题11.解答下列问题.(1)一正方形的面积是a2+6ab+9b2(a>0,b>0),则表示该正方形的边长的代数式是________.(2)求证:当n为正整数时,(2n+1)2-(2n-1)2能被8整除.(1)a+3b;(2)证明:∵(2n+1)2-(2n-1)2=[(2n+1)+(2n-1)][(2n+1)-(2n-1)]=4n×2=8n,∴原式能被8整除.12.分解因式:(1)a 2+1-2a +4(a -1);解:原式=(a -1)2+4(a -1)=(a -1)(a -1+4)=(a -1)(a +3).(2)6(a -b )2+3(a -b ).解:原式=3(a -b )[2(a -b )+1]=3(a -b )(2a -2b +1).13.(2020·邵阳)已知:|m -1|+n +2 =0.(1)求m ,n 的值;(2)先化简,再求值:m(m -3n)+(m +2n)2-4n 2.解:(1)m =1,n =-2;(2)原式=m 2-3mn +m 2+4mn +4n 2-4n 2=2m 2+mn ,当m =1,n =-2,原式=2×1+1×(-2)=0.14.(2020·北京)已知5x 2-x -1=0,求代数式(3x +2)(3x -2)+x (x -2)的值.解:(3x +2)(3x -2)+x (x -2)=9x 2-4+x 2-2x =10x 2-2x -4,∵5x 2-x -1=0,∴5x 2-x =1,∴原式=2(5x 2-x )-4=-2.15.(2020·乐山)已知3m =4,32m -4n =2.若9n =x ,则x 的值为( C ) A .8 B .4 C .2 2 D . 216.如图,已知点C 是线段AB 的中点,CD ⊥AB 且CD =12AB =a .延长CB 至点E ,使得BE =b ,以CD ,CE 为边作矩形CEFD.连结并延长DB ,交FE 的延长线于点G ,连结CF ,AG.《几何原本》中利用该图解释了代数式(2a +b )2+b 2=2[(a +b )2+a 2]的几何意义,则AG CF的值为( A )A .2B .2C .32 2D .2 2 17.在任意n(n >1且为整数)位正整数K 的首位后添加6得到的新数叫做K 的“顺数”,在K 的末位前添加6得到的新数叫做K 的“逆数”,若K 的“顺数”与“逆数”之差能被17整除,称K 是“最佳拍档数”.比如1324的“顺数”为16324,1324的“逆数”为13264,1324的“顺数”与“逆数”之差为16324-13264=3060,3060÷17=180,所以1324是“最佳拍档数”.(1)请根据以上方法判断31568________(选填“是”或“不是”)最佳拍档数.(2)若一个首位是5的四位“最佳拍档数”N ,其个位数字与十位数字之和为8,且百位数字不小于十位数字,求所有符合条件的N 的值.解:(1)31568的“顺数”为361568,31568的“逆数”为315668,31568的“顺数”与“逆数”之差为361568-315668=45900,45900÷17=2700,所以31568是“最佳拍档数”;(2)设N =5000+100y +10x +8-x (其中x 、y 都为整数,0≤x ≤9,0≤y ≤8,y ≥x ),则[(56000+100y +10x +8-x )-(50000+1000y +100x +60+8-x )]÷17=5940-90x -900y 17=349-5x -53y +7-5x +y 17 ,∵N 为“最佳拍档数”,∴7-5x +y 17为整数,∵x 、y 都为整数,0≤x ≤9,0≤y ≤8,y ≥x ,∴⎩⎪⎨⎪⎧x =2y =3, 或⎩⎪⎨⎪⎧x =6y =6, 或⎩⎪⎨⎪⎧x =3y =8, ∴N =5326或5662或5835.。
中考一轮复习教案-第2讲-整式与因式分解
第2讲整式与因式分解1.代数式及代数式求值2.单项式与多项式的基本概念3.同类项的基本概念4.整式的乘法(同底数幂乘除、积的乘方与幂的乘方)5.乘法公式(完全平方公式和平方差公式的运用及其变形)6.整式的乘除运算7.整式的化简求值3.代数式代数式了解用字母表示数的意义理解分析具体问题中的简单数量关系,用代数式表示掌握求代数式的值理解4.整式与分式整数指数幂的意义和基本性质了解用科学记数法表示数理解整式的概念理解合并同类项和去括号的法则掌握进行简单的整式加法和减法运算掌握进行简单的整式乘法运算(其中多项式相乘仅指一次式之间以及一次式与二次式相乘)掌握推导乘法公式:(a+b)( a-b) = a 2- b 2,(a±b)2 = a 2±2ab + b 2掌握平方差、完全平方公式的几何背景了解利用平方差、完全平方公式进行简单计算掌握用提公因式法、公式法(直接利用公式不超过二次)进行因式分解(指数是正整数)掌握【代数式】【例题1】 (2017秋•福田区期末)下列各式符合代数式书写规范的是( )A .B .a ×7C .2m ﹣1元D .3x【例题2】 (2018春•三亚期末)代数式a 2+b 2的意义是( )A .a 的平方与b 的和B .a 与b 和的平方C .a 与b 的平方的和D .a 的平方与b 的平方的和【例题3】 (2018•临安区)10名学生的平均成绩是x ,如果另外5名学生每人得84分,那么整个组的平均成绩是( )分 A .B .C .D .知识点一:代数式及相关概念关键点拨及对应举例1.代数式(1)代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,单独的一个数或一个字母也是代数式.(2)求代数式的值:用具体数值代替代数式中的字母,计算得出的结果,叫做求代数式的值.(3)书写要求:此题考查代数式的书写要求:1.在代数式中出现的乘号,通常简写成“•”或者省略不写;2.数字与字母相乘时,数字要写在字母的前面;3.在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.求代数式的值常运用整体代入法计算. 例:a -b =3,则3b -3a =-9.【例1】 (2016秋•渭滨区校级期末)下列各式符合代数式书写规范的是( ) A . B .a ×3 C .2m ﹣1个D .1m【代数式求值】【例题1】(2018•海南模拟)已知a﹣b=2,则代数式2a﹣2b+3的值是()A.5B.6C.7D.8【例题2】(2018•岳阳)已知a2+2a=1,则3(a2+2a)+2的值为.【例题3】(2018•菏泽)一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是.【单项式】【例题1】(2017秋•铜梁区期末)的系数次数分别为()A.,7B.,6C.,8D.5π,6【例题2】单项式﹣ab2的系数是;次数是.【练习1】(2017秋•大余县期末)代数式﹣的系数为.【练习2】(2017秋•锡山区期末)单项式的次数是.2.整式(单项式、多项式)(1)单项式:表示数字与字母积的代数式,单独的一个数或一个字母也叫单项式.其中的数字因数叫做单项式的系数,所有字母的指数和叫做单项式的次数.(2)多项式:几个单项式的和.多项式中的每一项叫做多项式的项,次数最高的项的次数叫做多项式的次数.(3)整式:单项式和多项式统称为整式.(4)同类项:所含字母相同并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.例:(1)下列式子:①-2a2;①3a-5b;①x/2;①2/x;①7a2;①7x2+8x3y;①2017.其中属于单项式的是①①①①;多项式是①①;同类项是①和①.(2)多项式7m5n-11mn2+1是六次三项式,常数项是__1 .【多项式】【例题1】单项式﹣的系数是,次数是;多项式的次数.【例题2】(2016秋•临洮县校级期末)已知多项式2mx m+2+4x﹣7是关于x的三次多项式,则m=.【练习1】多项式2a3﹣a2b2+a2c﹣8是次项式.【练习2】多项式2a2b﹣a2b2﹣ab是次项式,次数最高的项是.【练习3】当m=时,多项式3x2+2xy+y2﹣mx2中不含x2项.【同类项】【例题1】 若单项式2x 2y m ﹣1与y 3是同类项,则m +n的值是.【例题2】 若a 2n +1b 2与﹣2a 3n ﹣2b 2是同类项,则n= .【练习1】 若单项式与﹣2x b y 3的和仍为单项式,则其和为 .【练习2】 (2018•南通)计算:3a 2b ﹣a 2b= .【练习3】 若单项式﹣x m ﹣2y 3与x n y 2m﹣3n的和仍是单项式,则m ﹣n = .知识点二:整式的运算3.整式的加减运算(1)合并同类项法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.(2)去括号法则: 若括号外是“+”,则括号里的各项都不变号;若括号外是“-”,则括号里的各项都变号.(3)整式的加减运算法则:先去括号,再合并同类项.失分警示:去括号时,如果括号外面是符号,一定要变号,且与括号内每一项相乘,不要有漏项.例:-2(3a -2b -1)=-6a +4b +2.【同底数幂的乘法】【例题1】(2018•怀化)计算:a2•a3=.【例题2】(2018•句容市一模)计算(﹣x)2•x3所得的结果是.【例题3】(2018•越秀区二模)若a3•a m=a9,则m=.【例题4】(2018•河东区一模)(﹣p)2•(﹣p)3=.【练习1】(2018•隆回县三模)已知2×4m×8m=216,m=.4.幂运算法则(1)同底数幂的乘法:a m·a n=a m+n;(2)幂的乘方:(a m)n=a mn;(3)积的乘方:(ab)n=a n·b n;(4)同底数幂的除法:a m÷a n=a m-n (a≠0).其中m,n都在整数(1)计算时,注意观察,善于运用它们的逆运算解决问题.例:已知2m+n=2,则3×2m×2n=6.(2)在解决幂的运算时,有时需要先化成同底数.例:2m·4m=23m.【练习2】(2018春•常州期末)已知3n×27=38,则n的值是.【练习3】(2018春•茌平县期末)已知2x+3y﹣5=0,则9x•27y的值为.【练习4】(2018春•建平县期末)若23n+1•22n﹣1=,则n=.【练习5】(2017春•成华区期末)若2a+b=56,2a=7,则b=.【幂的乘方与积的乘方】【例题1】(2018•镇江)计算:(a2)3=.【例题2】(2018•镇江一模)计算(﹣2)2•(﹣2)3的结果=.【例题3】(2018•长春二模)计算(﹣a2b)3=.【例题4】(2018•河西区模拟)计算(﹣3a2)3的结果等于.【练习1】(2018春•泗洪县期末)计算(﹣0.125)2018×82019=.【练习2】(2017秋•卢龙县期末)当n为奇数时,(﹣a2)n+(﹣a n)2=【练习3】计算:0.1253×(﹣0.25)3×26×(﹣2)12=.【练习4】(2018春•南海区期末)计算:(﹣0.25)2017×42018=.【练习5】(2018春•新乐市期末)(﹣)2002×(1.5)2003=.【练习6】如果2x n y4与m2x2y|m﹣n|都是关于x、y的六次单项式,且系数相等,求m、n的值.【同底数幂的除法】【例题1】(2018春•抚宁区期末)计算:23÷25=.【例题2】(2018•西青区二模)计算(a3)2÷(a2)3的结果等于.【例题3】(2018春•垦利区期末)若a m=3,a n=5,则a m﹣n=.【例题4】(2018•达州)已知a m=3,a n=2,则a2m﹣n的值为.【练习1】(2017秋•蓬溪县期末)已知10m=2,10n=3,则102m+3n﹣1=.【练习2】(2017秋•丹江口市期末)已知2a=18,2b=3,则2a﹣2b+1的值为.【练习3】(2017秋•青浦区期末)如果,那么a m﹣n=.【练习4】(2017秋•河北区期末)已知x m=6,x n=3,则x2m﹣n的值为.【练习5】(2017秋•临洮县期末)若9x=4,3y=﹣2,则34x﹣3y的值是.【练习6】 若5x =2,5y =3,则53x﹣2y的值为 .【单项式×单项式】【例题1】 (2018•泰州)计算:x•(﹣2x 2)3=.【例题2】 (2018•滨海新区一模)计算4y•(﹣2xy 2)的结果等于 .【单项式×多项式】【例题1】 (2018•亭湖区一模)计算:(x ﹣3y )(﹣6x )= .【例题2】 (2018春•青羊区期末)化简:﹣x 2(6x 2﹣2x +1)= .5.整式的乘除运算(1)单项式×单项式:①系数和同底数幂分别相乘;②只有一个字母的照抄. (2)单项式×多项式: m (a +b )=ma +mb .(3)多项式×多项式: (m +n )(a +b )=ma +mb +na +nb . (4)单项式÷单项式:将系数、同底数幂分别相除.(5)多项式÷单项式:①多项式的每一项除以单项式;①商相加.失分警示:计算多项式乘以多项式时,注意不能漏乘,不能丢项,不能出现变号错. 例:(2a -1)(b +2)=2ab +4a -b -2.【多项式×多项式】【例题1】 (2018•玉林)已知ab=a +b +1,则(a ﹣1)(b ﹣1)= .【例题2】 (x +5)(x +n )=x 2+mx +5,则m= ,n= .【完全平方公式】【例题1】 (2018春•九江期末)已知x +y=4,xy=2,则(x ﹣y )2= . 【例题2】 (2017秋•禄劝县期末)若m +n=10,mn=1,则m 2+n 2=(6)乘法公式平方差公式:(a +b )(a -b )=a 2-b 2.注意乘法公式的逆向运用及其变形公式的运用完全平方公式:(a ±b )2=a 2±2ab +b 2. 变形公式: a 2+b 2=(a ±b )2①2ab ,ab =【(a +b )2-(a 2+b 2)】 /2完全平方公式平方差【例题3】(2018春•怀远县期末)已知x+y=8,xy=14,则x2+y2=.【例题4】(2018春•吉安县期末)若m2+n2=5,m+n=3,则mn=.【例题5】(2018春•濉溪县期末)若a+b=5,ab=2,则(a﹣b)2=.【练习1】(2018春•单县期末)已知x﹣y=5,xy=6,则x2+y2=.【练习2】(2017秋•化德县校级期末)已知x2+y2=10,xy=3,则x+y=.【练习3】(2017秋•自贡期末)若a+b=﹣3,ab=2,则a2+b2=.【练习4】如果实数a,b满足a+b=6,ab=8,那么a2+b2=.【练习5】(2017秋•庆云县期末)a2+b2=5,ab=2,则a﹣b=.【练习6】已知(x+y)2=25,(x﹣y)2=9,则x2+y2=.【练习7】已知(2017﹣a)(2018﹣a)=325,则(a﹣2017)2+(a﹣2018)2=.【练习8】(2018•陵城区二模)x2+kx+9是完全平方式,则k=.【平方差公式】【例题1】(2018•宁夏)已知m+n=12,m﹣n=2,则m2﹣n2=.【例题2】(2018•北塔区模拟)(﹣2x+y)(﹣2x﹣y)=.【例题3】(2018•赤壁市模拟)已知x2﹣y2=﹣18,若x﹣y=3,则x+y=.【例题4】已知a2﹣4b2=12,且a﹣2b=﹣3,则a+2b=.【例题5】(2018•临沂)已知m+n=mn,则(m﹣1)(n﹣1)=.【例题6】已知m+n=﹣3,mn=5,则(2﹣m)(2﹣n)的值为.【整式的运算】【例题1】先化简,再求值:(a+2b)(a﹣2b)﹣a(a﹣b),其中a=2,b=3【例题2】(2018•宜昌)先化简,再求值:x(x+1)+(2+x)(2﹣x),其中x=﹣4.【例题3】(2018•乐山)先化简,再求值:(2m+1)(2m﹣1)﹣(m﹣1)2+(2m)3÷(﹣8m),其中m是方程x2+x﹣2=0的根【例题4】(2018•淄博)先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【例题5】(2018•襄阳)先化简,再求值:(x+y)(x﹣y)+y(x+2y)﹣(x﹣y)2,其中x=2+,y=2﹣.【例题6】(2018•邵阳)先化简,再求值:(a﹣2b)(a+2b)﹣(a﹣2b)2+8b2,其中a=﹣2,b=.6.注意计算顺序,应先算乘除,后算加减;若为化简求值,一般步骤为:化简、代入替换、计算.例:(a-1)2-(a+3)(a-3)-10=_-2a__.混合运算知识点五:因式分解7.因式分解(1)定义:把一个多项式化成几个整式的积的形式.(2)常用方法:①提公因式法:ma+mb+mc=m(a+b+c).①公式法:a2-b2=(a+b)(a-b);a2±2ab+b2=(a±b)2.(3)一般步骤:①若有公因式,必先提公因式;①提公因式后,看是否能用公式法分解;①检查各因式能否继续分解.(1) 因式分解要分解到最后结果不能再分解为止,相同因式写成幂的形式;(2) 因式分解与整式的乘法互为逆运算.。
备战2023年中考数学一轮复习考点02 整式与因式分解(原卷版)
考点02 整式与因式分解中考数学中,整式这个考点一般会考学生对整式化简计算的应用,偶尔考察整式的基本概念,对整式的复习,重点是要理解并掌握整式的加减法则、乘除法则及幂的运算,难度一般不大。
因式分解作为整式乘法的逆运算,在数学中考中占比不大,但是依然属于必考题,常以简单选择、填空题的形式出现,而且一般只考察因式分解的前两步,拓展延伸部分基本不考,所以学生在复习这部分内容时,除了要扎实掌握好基础,更需要甄别好主次,合理安排复习方向。
考向一、整式的加减;考向二、幂的运算考向三、整式的乘除考向四、因式分解考向一:整式的加减1.整式的概念及注意事项:名称识别次数系数与项整单项式①数与字母或字母与字母相乘组成的代数式;②单独的一个数或一个字母所有字母的指数的和系数:单项式中的数字因数式多项式几个单项式的和次数最高项的次数项:多项式中的每个单项式【易错警示】➢由定义可知,单项式中只含有乘法运算;分数是一个完整的数,不拆开来算;➢单独的一个数或字母也叫单项式;单独的字母的系数为1,次数也是1➢由定义可知,多项式中可以含有乘法——加法——减法运算;➢多项式有统一的次数,但是没有统一的系数,多项式中的每一项有自己的系数;1.(2022秋•泉州期中)单项式﹣2πr3的系数和次数分别是()A.﹣2,4B.﹣2,3C.﹣2π,3D.2π,32.(2022秋•包河区期中)已知单项式2x3y m与单项式﹣9x n y2是同类项,则m﹣n的值为()A.﹣1B.7C.1D.113.(2022秋•陇县期中)下列说法中,错误的是()A.数字1也是单项式B.单项式﹣5x3y的系数是﹣5C.多项式﹣x3+2x﹣1的常数项是1D.3x2y2xy+2y3是四次三项式4.(2022秋•高邮市期中)已知代数式3a﹣b2的值为3,则8﹣6a+2b2的值为.5.(2022秋•鄂州期中)若多项式a(a﹣1)x2+(a﹣1)x+2是关于x的一次多项式,则a的值为()A.0B.1C.0或1D.不能确定2.整式的加减整式的加减同类项所含字母相同,并且相同字母的指数也相同合并同类项把同类项的系数相加,所得的结果作为结果的系数,字母及字母的指数不变添(去)括号法则括号外是“+”,添(去)括号不变号;括号外是“-”,添(去)括号都变号【易错警示】➢所有的常数项都是同类项;➢“同类项口诀”——两同两无关,识别同类项;一相加二不变,合并同类项1.(2022秋•黄石期中)下列计算正确的是()A.6a﹣5a=1B.a+2a2=3aC.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b2.(2022秋•老河口市期中)一个长方形的周长为6a+8b,其中一边长为2a﹣b,则与其相邻的一边长为()A.a+5b B.a+b C.4a+9b D.a+3b3.(2022秋•江都区期中)如图,长方形ABCD是由四块小长方形拼成(四块小长方形放置时既不重叠,也没有空隙).其中②③两块小长方形的长均为a,宽均为b,若BC=2,则①④两块长方形的周长之和为()A.8B.2a+2b C.2a+2b+4D.164.(2022秋•沈北新区期中)化简:6x2﹣[4x2﹣(x2+5)]=.5.(2022秋•北碚区校级期中)若关于x的多项式3ax+7x3﹣bx2+x不含二次项和一次项,则a+b等于()A.﹣B.C.3D.﹣36.(2022秋•扬州期中)化简:(1)x2﹣3x﹣4x2+5x﹣6;(2)3(2x2﹣xy)﹣(x2+xy﹣6).7.(2022秋•黔东南州期中)阅读材料:“如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)幂的运算 的值是多少?”我们可以这样来解:原式=2a +2b +8a +4b =10a +6b .把式子5a +3b =﹣4两边同乘以2.得10a +6b =﹣8.仿照上面的解题方法,完成下面的问题: (1)已知a 2+a =0,求a 2+a +2022的值;(2)已知a ﹣b =﹣3.求3(a ﹣b )﹣a +b +5的值;(3)已知a 2+2ab =﹣2,ab ﹣b 2=﹣4,求2a 2+5ab ﹣b 2的值.考向二:幂的运算1.(2022秋•朝阳区校级期中)下列运算正确的是( ) A .a 3+a 6=a 9 B .a 6•a 2=a 12 C .(a 3)2=a 5D .a 4•a 2+(a 3)2=2a 62.(2022秋•浦东新区校级期中)计算(﹣)2021•(﹣)2022的结果是( ) A .B .C .D .3.(2022秋•闵行区校级期中)已知a m =2,a 2n =3,求a m +2n = . 4.(2022秋•永春县期中)若a m =2,a n =3,a p =5,则a m +n ﹣p = .5.(2022秋•朝阳区校级期中)(1)计算:(a 4)3+a 8•a 4; (2)计算:[(x +y )m +n ]2;(3)已知2x +3y ﹣2=0,求9x •27y 的值.()()是正整数)且)>且都是正整数为正整数)都是正整数)都是正整数)p a aa a a n m n m a a a a nb a ab n m a a n m a a a p p n m n m n n n mn nm n m n m ,0(1)0(1,,,0((,(,(0≠=≠=≠=÷===•--+6.(2022秋•浦东新区期中)阅读下列材料:一般地,n 个相同的因数a 相乘a •a …,记为a n .如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log 28(即log 28=3).一般地,若a n =b (a >0且a ≠1,b >0),则n 叫做以a 为底b 的对数,记为log a b (即log a b =n ).如34=81,则4叫做以3为底81的对数,记为log 381(即log 381=4).(1)计算以下各对数的值:log 24= ,log 216= ,log 264= . (2)写出(1)log 24、log 216、log 264之间满足的关系式 .(3)由(2)的结果,请你能归纳出一个一般性的结论:log a M +log a N = (a >0且a ≠1,M >0,N >0).(4)设a n =N ,a m =M ,请根据幂的运算法则以及对数的定义说明上述结论的正确性.考向三:整式的乘除单项式乘(除以)单项式 单项式乘(除以)单项式,把它们的系数、同底数幂分别相乘(除);对于只在一个单项式里含有的字母(只在被除式里含有的字母),则连同它的指数不变,作为积(商)的因式 单项式乘多项式 m (a+b+c )=ma+mb+mc 多项式乘多项式(m+n)(a+b)=ma+mb+na+nb多项式除以单项式 (am+b)÷m=a+b/m乘法公式222222)())((bab a b a b a b a b a +±=±-=-+完全平方公式:平方差公式:➢ 乘法公式里的字母可以是一个单项式,也可以是一个多项式; ➢ 两个乘法公式可以从左到右应用,也可以从右到左应用;1.(2022春•南海区校级月考)下列各式中,计算正确的是( )A.2a2•3a3=5a6B.﹣3a2(﹣2a)=﹣6a3C.2a3•5a2=10a5D.(﹣a)2•(﹣a)3=a52.(2022秋•阳信县期中)下列计算中,能用平方差公式计算的是()A.(x﹣2)(2﹣x)B.(﹣1﹣3x)(1+3x)C.(a2+b)(a2﹣b)D.(3x+2)(2x﹣3)3.(2022秋•铁西区校级月考)若(x+3)(2x﹣m)=2x2+nx﹣15,则()A.m=﹣5,n=1B.m=﹣5,n=﹣1C.m=5,n=1D.m=5,n=﹣14.(2022秋•思明区校级期中)设M=(x﹣1)(x﹣2),N=(2x﹣3)(x﹣2),则M与N的大小关系为()A.MN B.M≥N C.M=N D.M≤N5.(2022•雁塔区校级开学)如图,一块矩形土地的面积是x2+5xy+6y2(x>0,y>0),长为x+3y,则宽是()A.x﹣y B.x+y C.x﹣2y D.x+2y6.(2022秋•东城区校级期中)若(s﹣t)2=4,(s+t)2=16,则st=.7.(2022秋•阳信县期中)(1)先化简,再求值:x(x﹣4y)+(2x+y)(2x﹣y)﹣(2x﹣y)2,其中x=﹣2,y=﹣1.(2)利用乘法公式简算:20212﹣2020×2022.8.(2022秋•西湖区校级期中)如图,有三张正方形纸片A,B,C,它们的边长分别为a,b,c,将三张纸片按图1,图2两种不同方式放置于同一长方形中,记图1中阴影部分周长为l1,图2中阴影部分周长为l2.(1)若a=7,b=5,c=3,则长方形的周长为;(2)若b=7,c=4,①求l1﹣l2的值;②记图1中阴影部分面积为S1,图2中阴影部分面积为S2,求S2﹣S1的值.考向四:因式分解基本概念公因式多项式各项都含有的相同因式因式分解把一个多项式化成几个整式的积的形式,这种式子变形叫做把这个多项式因式分解一般步骤“一提”【即:提取公因式】“二套”【即:套用乘法公式】222222)())((babababababa+±=±-=-+完全平方公式:平方差公式:“三分组”【即:分组分解因式】基本不考,如果考,多项式项数一般在四个及以上“二次三项想十字”【即:十字相乘法】()()()qxpxqpxqpx++=•+++2➢由定义可知,因式分解与整式乘法互为逆运算;➢公因式是各项系数的最大公约数与相同字母的最低次幂的积;单独的公因数也是公因式;➢将多项式除以它的公因式从而得到多项式的另一个因式;➢乘法公式里的字母,可以是单独的数字,也可以是一个单项式或者多项式;➢分解因式必须分解彻底,即分解到每一个多项式都不能再分解为止;1.(2022春•三水区校级期中)若二次三项式x2+mx﹣8可分解为(x﹣4)(x+2),则m的值为()A.1B.﹣1C.﹣2D.22.(2022秋•张店区期中)将几个图形拼成一个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个等式,例如,由图1可得等式:x2+(p+q)x+pq=(x+p)(x+q).将图2所示的卡片若干张进行拼图,可以将二次三项式a2+3ab+2b2分解因式为()A.(a+b)(2a+b)B.(a+b)(3a+b)C.(a+b)(a+2b)D.(a+b)(a+3b)3.(2022秋•南安市期中)已知a=2020x+2020,b=2020x+2021,c=2020x+2022,则a2+b2+c2﹣ab﹣ac﹣bc的值是()A.0B.1C.2D.34.(2022春•顺德区校级月考)三角形三边长分别是a,b,c,且满足a2﹣b2+ac﹣bc=0,则这个三角形是()A.等腰三角形B.直角三角形C.等边三角形D.形状不确定5.(2022秋•长宁区校级期中)因式分解:=.6.(2022秋•肇源县期中)因式分解:(1)15a3+10a2;(2)﹣3ax2﹣6axy+3ay2.7.(2022秋•巴南区校级期中)对于一个三位数,若其各个数位上的数字都不为0且互不相等,并满足十位数字最大,个位数字最小,且以各个数位上的数字为三边可以构成三角形,则称这样的三位数为“三角数”.将“三角数”m任意两个数位上的数字取出组成两位数,则一共可以得到6个两位数,其中十位数字大于个位数字的两位数叫“全数”,十位数字小于个位数字的两位数叫“善数”,将所有“全数”的和记为Q(m),所有“善数”的和记为S(m),例如:Q(562)=62+52+65=179,S(562)=26+25+56=107;(1)判断:342 (填“是”或“不是”)“三角数”,572 (填“是”或“不是”)“三角数”,若是,请分别求出其“全数”和“善数”之和.(2)若一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若“三角数”n满足Q(n)﹣S(n)和都是完全平方数,请求出所有满足条件的n.1.(2022•攀枝花)下列各式不是单项式的为()A.3B.a C.D.x2y2.(2022•巴中)下列运算正确的是()A.=﹣2B.()﹣1=﹣C.(a2)3=a6D.a8÷a4=a2(a≠0)3.(2022•淄博)计算(﹣2a3b)2﹣3a6b2的结果是()A.﹣7a6b2B.﹣5a6b2C.a6b2D.7a6b24.(2022•百色)如图,是利用割补法求图形面积的示意图,下列公式中与之相对应的是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.(ab)2=a2b25.(2022•济宁)下面各式从左到右的变形,属于因式分解的是()A.x2﹣x﹣1=x(x﹣1)﹣1B.x2﹣1=(x﹣1)2C.x2﹣x﹣6=(x﹣3)(x+2)D.x(x﹣1)=x2﹣x6.(2022•河池)多项式x2﹣4x+4因式分解的结果是()A.x(x﹣4)+4B.(x+2)(x﹣2)C.(x+2)2D.(x﹣2)27.(2022•台湾)多项式39x2+5x﹣14可因式分解成(3x+a)(bx+c),其中a、b、c均为整数,求a+2c之值为何?()A.﹣12B.﹣3C.3D.128.(2022•广州)分解因式:3a2﹣21ab=.9.(2022•宜宾)分解因式:x3﹣4x=.10.(2022•巴中)因式分解:﹣a3+2a2﹣a=.11.(2022•益阳)已知m,n同时满足2m+n=3与2m﹣n=1,则4m2﹣n2的值是.12.(2022•大庆)已知代数式a2+(2t﹣1)ab+4b2是一个完全平方式,则实数t的值为.13.(2022•盐城)先化简,再求值:(x+4)(x﹣4)+(x﹣3)2,其中x2﹣3x+1=0.14.(2022•六盘水)如图,学校劳动实践基地有两块边长分别为a,b的正方形秧田A,B,其中不能使用的面积为M.(1)用含a,M的代数式表示A中能使用的面积;(2)若a+b=10,a﹣b=5,求A比B多出的使用面积.15.(2022•常州)第十四届国际数学教育大会(ICME﹣14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3×83+7×82+4×81+5×80=2021,表示ICME﹣14的举办年份.(1)八进制数3746换算成十进制数是;(2)小华设计了一个n进制数143,换算成十进制数是120,求n的值.1.(2022•徐州)下列计算正确的是()A.a2•a6=a8B.a8÷a4=a2C.2a2+3a2=6a4D.(﹣3a)2=﹣9a2 2.(2022•黔西南州)计算(﹣3x)2•2x正确的是()A.6x3B.12x3C.18x3D.﹣12x33.(2022•荆门)对于任意实数a,b,a3+b3=(a+b)(a2﹣ab+b2)恒成立,则下列关系式正确的是()A.a3﹣b3=(a﹣b)(a2+ab+b2)B.a3﹣b3=(a+b)(a2+ab+b2)C.a3﹣b3=(a﹣b)(a2﹣ab+b2)D.a3﹣b3=(a+b)(a2+ab﹣b2)4.(2022•南通)已知实数m,n满足m2+n2=2+mn,则(2m﹣3n)2+(m+2n)(m﹣2n)的最大值为()A.24B.C.D.﹣45.(2022•临沂)计算a(a+1)﹣a的结果是()A.1B.a2C.a2+2a D.a2﹣a+16.(2022•重庆)对多项式x﹣y﹣z﹣m﹣n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.37.(2022•绵阳)因式分解:3x3﹣12xy2=.8.(2022•丹东)因式分解:2a2+4a+2=.9.(2022•黔东南州)分解因式:2022x2﹣4044x+2022=.10.(2022•德阳)已知(x+y)2=25,(x﹣y)2=9,则xy=.11.(2022•乐山)已知m2+n2+10=6m﹣2n,则m﹣n=.12.(2022•安顺)(1)计算:(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣|﹣.(2)先化简,再求值:(x+3)2+(x+3)(x﹣3)﹣2x(x+1),其中x=.13.(2022•北京)已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.14.(2022•河北)发现两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.验证如,(2+1)2+(2﹣1)2=10为偶数.请把10的一半表示为两个正整数的平方和;探究设“发现”中的两个已知正整数为m,n,请论证“发现”中的结论正确.15.(2022•重庆)对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m 整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30……4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且a>b>c.在a,b,c中任选两个组成两位数,其中最大的两位数记为F(A),最小的两位数记为G(A),若为整数,求出满足条件的所有数A.1.(2022•肥东县校级模拟)下列各式中计算结果为x2的是()A.x2•x B.x+x C.x8÷x4D.(﹣x)22.(2022•雁塔区模拟)下列计算正确的是()A.(12a4﹣3a2)÷3a2=4a2B.(﹣3a+b)(b﹣a)=﹣2ab﹣3a2+b2C.(a﹣b)2=a2﹣b2D.(b+2a)(2a﹣b)=﹣b2+4a23.(2022•环江县模拟)如图,某底板外围呈正方形,其中央是边长为x米的空白小正方形,空白小正方形的四周铺上小块正方形花岗石(即阴影部分),恰好用了144块边长为0.8米的正方形花岗石,则边长x的值是()A.3米B.3.2米C.4米D.4.2米4.(2022•路南区三模)在化简3(a2b+ab)﹣2(a2b+ab)◆2ab题中,◆表示+,﹣,×,÷四个运算符号中的某一个.当a=﹣2,b=1时,3(a2b+ab)﹣2(a2b+ab)◆2ab的值为22,则◆所表示的符号为()A.÷B.×C.+D.﹣5.(2022•蓬江区一模)下列多项式中,能运用平方差公式分解因式的是()A.a2+b2B.a2﹣4b2C.a2﹣2ab+b2D.﹣a2﹣b26.(2022•峨眉山市模拟)若把多项式x2+mx﹣12分解因式后含有因式x﹣6,则m的值为()A.2B.﹣2C.4D.﹣47.(2022•五华区校级模拟)观察后面一组单项式:﹣4,7a,﹣10a2,13a3,…,根据你发现的规律,则第7个单项式是()A.﹣19a7B.19a7C.﹣22a6D.22a68.(2022•张店区二模)如图,在矩形ABCD中放入正方形AEFG,正方形MNRH,正方形CPQN,点E在AB上,点M、N在BC上,若AE=4,MN=3,CN=2,则图中右上角阴影部分的周长与左下角阴影部分的周长的差为()A.5B.6C.7D.89.(2022•邯郸二模)若20222022﹣20222020=2023×2022n×2021,则n的值是()A.2020B.2021C.2022D.202310.(2022•碑林区模拟)计算:(2x+1)(2x﹣1)(4x2+1)=.11.(2022•玉树市校级一模)分解因式:a2﹣16=.12.(2022•五华区校级模拟)已知x+y=2,xy=﹣3,则x2y+xy2=.13.(2022•丽水二模)如图1,将一个边长为10的正方形纸片剪去两个全等小长方形,得到图2,再将剪下的两个小长方形拼成一个长方形(图3),若图3的长方形周长为30,则b的值为.14.(2022•潮安区模拟)一个长方形的面积为10,设长方形的边长为a和b,且a2+b2=29,则长方形的周长为.15.(2022•雁塔区校级模拟)化简:(x﹣3)2﹣(x+1)(x﹣4).16.(2022•南关区校级模拟)已知a2+2a﹣2=0,求代数式(a﹣1)(a+1)+2(a﹣3)的值.17.(2022•安徽模拟)某学习小组在研究两数的和与这两数的积相等的等式时,有下面一些有趣的发现:①由等式3+=3×发现:(3﹣1)×(﹣1)=1;②由等式+(﹣2)=×(﹣2)发现:(﹣1)×(﹣2﹣1)=1;③由等式﹣3+=﹣3×发现:(﹣3﹣1)×(﹣1)=1;…按照以上规律,解决下列问题:(1)由等式a+b=ab猜想:,并证明你的猜想;(2)若等式a+b=ab中,a,b都是整数,试求a,b的值.18.(2022•万州区校级一模)如果一个自然数M的个位数字不为0,且能分解成A×B,其中A与B都是两位数,A与B的十位数字相同,个位数字之和为8,则称数M为“团圆数”,并把数M分解成M=A×B 的过程,称为“欢乐分解”.例如:∵572=22×26,22和26的十位数字相同,个位数字之和为8,∴572是“团圆数”.又如:∵334=18×13,18和13的十位数字相同,但个位数字之和不等于8,∴234不是“团圆数”.(1)判断195,621是否是“团圆数”?并说明理由.(2)把一个“团圆数”M进行“欢乐分解”,即M=A×B,A与B之和记为P(M),A与B差的绝对值记为Q(M),令G(M)=,当G(M)能被8整除时,求出所有满足条件的M的值.。
2021年广东中考数学一轮复习课件 知识梳理整合 第一章 数与式 第2课时 整式(含因式分解)
中考特训
18.(2020·凉山州) 化简求值: (2x+3)(2x-3)-(x+2)2+4(x+3),其 中x= 2 . 解:原式=(4x2-9)-(x2+4x+4)+4x+12 =4x2-9-x2-4x-4+4x+12=3x2-1 当x= 2 时,原式=3×2-1=5.
D.-x+2y
(2)(2020·苏州) 若单项式2xm-1y2与单项式
1 3
x2yn+1是同类项,则m+n=
4
.
考点过关
(3)化简:3a-[a-2(a-b)]+b . 解:原式=3a-[a-2a+2b]+b =3a-a+2a-2b+b=4a-b.
考点过关
考点三: 整式的乘除(5年3考)
(1)(2020·扬州) 下列各式中,计算结果为
3的值是( D )
A.4
B.3
C.2
D.1
考点过关
(3)(2020·重庆 B) 已知 a+b=4,则代数式
1+a2 +b2 的值为( A )
A.3
B.1
C.0
D.-1
考点过关
考点二: 整式的加减(7年3考)
(1)计算-3(x-2y)+4(x-2y)的结果是
(A )
A.x-2y
B.x+2y
C.-x-2y
-2y的值为( A )
A.5
B.10
C.12
D.15
7.小陈同学买了5本笔记本,12支圆珠笔,设笔记 本的单价为a元,圆珠笔的单价为b元,则小陈同学 共花费(5a+12b)元.(用含a,b的代数式表示)
中考特训
8.(2018·广东) 分解因式:x2-2x+1 = (x-1)2 . 9.(2020·广东) 分解因式:xy-x = x(y-1) . 10.(2020·广东) 如果单项式3xmy与-5x3yn是同 类项,则m+n= 4 .
中考数学一轮教材梳理复习课件:第2课整式(含因式分解)
首页
下一页
11.(2019·广东)如图 1 所示的图形是一个轴对称 图形,且每个角都是直角,长度如图所示,小 明按图 2 所示方法玩拼图游戏,两两相扣,相 互间不留空隙,那么小明用 9 个这样的图形(图 1)拼出来的图形的总长度是__a_+__8_b__(结果用含 a,b 代数式表示).
首页
下一页
9.(1)(2020·金华)下列多项式中,能运用平方差公式分解因
式的是( C )
A.a2+b2
B.2a-b2
C.a2-b2
D.-a2-b2
(2)(2020·自贡)分解因式:3a2-6ab+3b2=__3_(_a_-__b_)_2_;
(3)(2020·贵州)把多项式 xy2-4x 分解因式,结果是
首页
下一页
三、解答题
14.(2020·随州)先化简,再求值:a(a+2b)- 2b(a+b),其中 a= 5 ,b= 3 .
解:原式=a2+2ab-2ab-2b2=a2-2b2. 当 a= 5 ,b= 3 时, 原式=( 5 )2-2×( 3 )2=5-6=-1.
首页
下一页
15.(2020·深圳)先化简,再求值:a2-a+2a1+1
首页
下一页
12.(2020·海口)已知 x-2y=-1,则代数式 1-2x +4y 的值为__3__.
首页
下一页
13.(2019·甘肃)如图,每一幅图中有若干个大小不 同的菱形,第 1 幅图中有 1 个菱形,第 2 幅图中 有 3 个菱形,第 3 幅图中有 5 个菱形,如果第 n 幅图中有 2 019 个菱形,则 n=___1_0_1_0___.
2021年中考数学复习第2讲 整式与因式分解(教学课件)
对应训练
考点精讲
对对应应训训练练
14.(2020·宁波)分解因式:2a2-18= 2(a+3)(a-3) .
15.(2020·哈尔滨)把多项式m2n+6mn+9n分解因式的结果 是 n(m+3)2 .
精讲释疑
重重点点题题型型
题 型 一 整式的运算、化简求值 例1.(2020·宁波)计算:(a+1)2+a(2-a). 解:(a+1)2+a(2-a) =a2+2a+1+2a-a2 =4a+1;
差为l,若要知道l的值,只要测量图中哪条线段的长( D )
A.a B.b C.AD D.AB
【解析】图1中阴影部分的周长=2AD+2AB-2b,图2中阴影部 分的周长=2AD-2b+4AB,l=2AD-2b+4AB-(2AD+2AB -2b)=2AD-2b+4AB-2AD-2AB+2b=2AB.故若要知道l的 值,只要测量图中线段AB的长.
(6)(-12 ab2)2=
1 4
a2b4
.
学 无 止 境
本课结束
(1)从初始状态按2次后,分别求A,B两区显示的结果; (2)从初始状态按4次后,计算A,B两区代数式的和, 请判断这个和能为负数吗?说明理由.
重重点点题题型型
解:(1)A区显示的结果为:25+2a2, B区显示的结果为:-16-6a; (2)这个和不能为负数,理由:根据题意得, 25+4a2+(-16-12a) =25+4a2-16-12a =4a2-12a+9; ∵(2a-3)2≥0,∴这个和不能为负数.
重点题型
1.(2020·嘉兴)化简:(a+2)(a-2)-a(a+1). 解:原式=a2-4-a2-a =-4-a.
题题组组训训练练
重点题型
题题组组训训练练
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考一轮复习第2讲:整式与因式分解
【学习目标】
1.会进行简单的整式乘法运算和简单的多项式除法运算;
2.会运用提公因式法和公式法进行因式分解.
【巩固练习】
一、选择题:
1.下列运算正确的是 ( )
A .22x x x =⋅
B .22)(xy xy =
C .632)(x x =
D .422x x x =+
2.计算 -(-3a)2的结果是 ( )
A .-6a 2
B . -9a 2
C . 6a 2
D . 9a 2
3.下列运算正确的是 ( )
A .523a a a =+
B .632a a a =⋅
C .22))((b a b a b a -=-+ D.222)(b a b a +=+
4.下列因式分解错误的是 (
) A .22()()x y x y x y -=+-
B .2269(3)x x x ++=+
C .2()x xy x x y +=+
D .222()x y x y +=+ 5.下列运算正确的是 ( )
A .-3(x -1)=-3x -1
B .-3(x -1)=-3x +1
C .-3(x -1)=-3x -3
D .-3(x -1)=-3x +3
6.把3222x x y xy -+分解因式,结果正确的是 ( )
A .()()x x y x y +-
B .()222x x xy y -+
C .()2x x y +
D .()2x x y - 7.已知m m Q m P 15
8,11572-=-=(m 为任意实数),则P 、Q 的大小关系为 ( )
A .Q P >
B . Q P =
C . Q P <
D .不能确定
二、填空题:
8.已知102103m n ==,,
则3210m n +=____________.
9.化简:322)3(x x -的结果是 .
10.孔明同学买铅笔m 支,每支0.4元,买练习本n 本,每本2元.那么他买铅笔和练习本一共花了 元.
11.分解因式:_____________223=---x x x .
12.若523m x
y +与3n x y 的和是单项式,则n m = .
13.已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是 .
14.若代数式26x x b -+可化为2()1x a --,则b a -的值是 .
15.若2320a a --=,则2526a a +-= .
16.若3=+y x ,1=xy ,则=+22y x ___________.
17.因式分解:=-822a .
三、解答题:。