化工设计中常用冷凝器的设计选用

合集下载

化工设计中常用冷凝器的设计选用

化工设计中常用冷凝器的设计选用

化工设计中常用冷凝器的设计选用前言在化工工业中,反应器通常是不可避免会产生高温高压的情况,而反应所得的产物又需要被分离出来进行后续的处理。

其中一种常用的分离方法是利用冷凝器来将产物冷却并转化为液态,以便于下一步的处理。

因此,冷凝器在化工工业中扮演着非常重要的角色。

本文将介绍化工设计中常用的冷凝器类型及其选用的相关要点。

常见冷凝器类型管式冷凝器管式冷凝器是一种基本型的冷凝器,它由许多直管组成,这些管通常是水冷却的,被冷却的产物在管内横流或竖流。

其优点是结构简单、制造工艺较为容易,且具有较高的换热系数。

但是管式冷凝器占地面积较大,通常只适用于小规模或中等规模的操作。

壳管式冷凝器壳管式冷凝器是具有更加复杂设计的冷凝器类型,通常由许多金属管和一个外壳组成。

被冷却的产物从金属管中流过,在此之前先由过壳端流过管子壁,而冷却水从外壳流过。

壳管式冷凝器适用于大规模的化工操作,但也存在一些缺点,如成本昂贵、清洗较为麻烦等。

级串式冷凝器级串式冷凝器通常由两个或多个不同类型的冷凝器组合而成,以便于更充分的冷却产物。

比如,在某些情况下,管式冷凝器与壳管式冷凝器的组合将极大地提高产品收率。

级串式冷凝器的主要优点是其调节性可以根据反应特性进行优化。

选用要点操作压力和温度操作压力和温度是选定冷凝器类型的两个重要参考因素,因为它们不仅会影响冷凝器的选择,还会影响到冷却液的流量和性质。

在低压下,管式冷凝器可能表现出更好的效果,而壳管式冷凝器则更适用于高压操作。

对于高温操作,通常需要更加高效的冷却系统。

生产速率生产效率对于化工生产来说,是一个至关重要的因素。

冷凝器的设计和选用将影响产物分离的效率,尤其是在生产批次较大时。

因此,在设计和选用冷凝器时,需要确保能够实现最高效的产物冷却,从而确保生产的效率和质量。

实际运行机制不同的冷凝器类型在操作时有不同的冷却机制,因此在选用冷凝器的时候,需要对其实际运行机制有足够的了解。

如果不同的冷凝器相互组合,也必须确保它们的特殊运行机制可以相互协调。

化工设计中常用冷凝器的设计选用分析

化工设计中常用冷凝器的设计选用分析

化工设计中常用冷凝器的设计选用分析摘要:目前我们常用的冷凝器是属于换热器的一种重要器材,为了提高利用冷凝器的效益应该注意产品的质量,很多施工员会在施工时将管道上增加传导性能将风传递,利用优异的散热片增大散热的面积让积累的热量可以有效流通,从而,利用风机加快空气的流通把热量带走。

关键词:化工设计;冷凝器;设计选用引言冷凝器的作用就是换热,简单的来说就是把室内的热量通过冷凝器转换到室外,让室内与外面的空气得到流通,有点新鲜空气,利用压缩机工作排出高温高压的制冷剂。

冷凝器在化工厂和生活方面都得到了广泛的运用,我们应当利用好冷凝器造福我们的社会推动社会发展,改善我们的生活。

1.1冷凝器的研究和概念随着我们生活质量的提高,对冷凝器的需求随之也开始慢慢的提升,不同的冷凝器的制冷散热功能效果不同。

最常见的其中几种是空气冷却式冷凝器很多地方已经流行使用了、化工常用的冷凝器方法是蒸汽压缩制冷的变化,通过制冷剂的流动变化和外部进行热量的交换。

冷凝器是比较重要的现代化电气,是换热器的一种产品,它能够选择性把气体存在的气流和蒸汽转化为液体流通出去。

一般的制冷电器的制冷原理就是把压缩机的工质由低温的气压压缩成为高温的气压。

我们在选择制冷器时一定要选择实用的,合理的选择和使用冷凝器,能够使冷凝器延长寿命,增长冷凝器的使用周期。

1.2 制冷原理及应用当压缩机在工作的时候会对新进入的气体进行压缩,经过压缩机的压缩过后,气体会从低压变成高压。

压缩机的很多的特点,它的制冷范围比较大,在低温的情况下都可以正常的使用,它的容量大规格多。

但是蒸汽式压缩的方法综合性能不太理想,在外界的低温环境下可靠性不是很高,制冷器成本也会增加。

利用制冷剂会对环境造成污染。

很多不同的杂质,因为杂质的不同本质上也会发生一定的变化。

1.3 制冷系统的工作原理在我们的生活中制冷器已经占领主要位置,大部分工作需要制冷系统,我们需要通过结合现场实际情况了解分析,确保制冷系统能被运用到实际工作中,既然能保证制冷系统正常运行的相应需求,还能降低各种影响的不利因素给制冷系统带来严重的干扰。

化工原理甲醇冷凝器的设计

化工原理甲醇冷凝器的设计

化工原理甲醇冷凝器的设计
甲醇冷凝器的设计是为了将甲醇蒸气冷凝成液体形式,以便进一步进行分离、提纯或者回收利用。

以下是甲醇冷凝器设计的一般步骤和要点:
1. 确定甲醇蒸气的冷凝温度和压力:根据工艺要求和操作条件,确定甲醇蒸气的冷凝温度和压力,通常根据甲醇蒸气的饱和蒸气压和冷凝器的设计温度确定。

2. 选择冷凝器类型:根据工艺要求和操作条件,选择合适的冷凝器类型,常见的有管壳式冷凝器、板式冷凝器、螺旋板式冷凝器等。

根据具体情况选择合适的冷凝器结构,例如在腐蚀性环境中选择耐腐蚀材料的冷凝器。

3. 计算冷凝器传热面积:根据甲醇蒸气的质量流量和冷凝温度差,计算出冷凝器需要的传热面积。

传热面积可以根据传热系数和传热温差来计算,也可以从经验或类似设备中获取。

4. 确定冷凝介质:根据甲醇蒸气和冷凝器结构的材料特性,选择合适的冷凝介质。

常用的冷凝介质有水、空气、冷冻液等,根据经济性和操作要求选择合适的介质。

5. 确定冷凝器布置和结构:根据具体情况,确定冷凝器的布置方式和结构,并进行细节设计。

例如冷凝管的排列方式、管道的布置、冷凝器与其他设备的连接方式等。

6. 考虑安全性和可靠性:在设计过程中,要考虑冷凝器的安全性和可靠性。

例如选择合适的安全阀和压力表,考虑冷凝器的排水和清洗等问题。

7. 进行性能计算和优化:完成初步设计后,进行性能计算和优化。

根据计算结果调整设计参数,以达到最佳的冷凝效果和经济性。

以上是甲醇冷凝器设计的一般步骤和要点,具体的设计还需要根据具体的工艺要求、操作条件和设备参数等因素进行详细的计算和分析。

化工设计中冷凝器的设计选型

化工设计中冷凝器的设计选型

化工设计中冷凝器的设计选型摘要:冷凝器是冷却经制冷压缩机压缩后的高温制冷剂蒸汽并使之液化的热交换器。

石化工业中用冷凝器将烃类及其它化学蒸气冷凝。

本文阐述了冷凝器基本原理,并提出在化工设计中合理选择冷凝器的方法和计算冷凝器平均温差的方法。

关键词:化工设计冷凝器传热系数冷凝段过热段过冷段冷凝器是石化、炼油、化工、电力及制冷等行业工艺流程的主要设备之一。

冷凝器中的气体必须通过很长的管道,以便热量传导到空气中。

钢材、铜材等导热金属常用于输送蒸气。

为提高冷凝器的效率,通常在管道上附加散热片以加速散热。

这类冷凝器一般还要用风机迫使空气经过散热片并把热量带走。

冷凝过程在石化、炼油、化工等装置中应用广泛。

但由于设计人员对冷凝器设计中的影响因素分析不够,导致冷凝器在实际运行中达不到设计负荷。

以下就设计中选用冷凝器的问题,阐述个人的一些看法。

1 冷凝器工作原理在一般制冷机的制冷原理中,压缩机的作用是把压力较低的蒸汽压缩成压力较高的蒸汽,使蒸汽的体积减小,压力升高。

压缩机吸入从蒸发器出来的较低压力的工质蒸汽,将压力升高后送入冷凝器,在冷凝器中冷凝成压力较高的液体,经过节流阀节流后,成为压力较低的液体,送入蒸发器,在蒸发器中吸热蒸发而成为压力较低的蒸汽,然后再送入蒸发器的入口,从而完成制冷循环的过程[1]。

1.1 蒸汽压缩式制冷原理蒸汽压缩制冷系统,由制冷压缩机、冷凝器、蒸发器和节流阀4个基本部件组成。

它们之间用管道依次连接,形成一个密闭的系统,制冷剂在系统中不断地循环流动,发生状态变化,与外界进行热量交换。

1.2 制冷系统的基本原理液体制冷剂在蒸发器中吸收被冷却的物体热量之后,汽化成低温低压的蒸汽,被压缩机吸入,压缩成高压高温的蒸汽后排入冷凝器,在冷凝器中向冷却介质(水或空气)放热,冷凝为高压液体,经节流阀节流为低压低温的制冷剂,再次进入蒸发器吸热汽化,达到循环制冷的目的。

这样,制冷剂在系统中经过蒸发、压缩、冷凝、节流四个基本过程完成一个制冷循环。

化工原理冷凝器课程设计说明书

化工原理冷凝器课程设计说明书

第一章列管换热器设计概述1.1.换热器系统方案的确定进行换热器的设计,首先应根据工艺要求确定换热系统的流程方案并选用适当类型的换热器,确定所选换热器中流体的流动空间及流速等参数,同时计算完成给定生产任务所在地需的传热面积,并确定换热器的工艺尺寸且根据实际流体的腐蚀性确定换热器的材料,根据换热器内的压力来确定其壁厚。

1.1.1全塔流程的确定从塔底出来的釜液一部分进入再沸器再沸后回到精馏塔内,一部分进入到冷却器中。

为了节约能源,提高热量的利用率,采用原料液冷却塔底釜液,这样不仅冷却了釜液又加热了原料液,既可以减少预热原料所需要的热量,又可减少冷却水的消耗。

从冷却器出来的釜液直接储存,从冷却器出来的原料液再通往原料预热器预热到所需的温度。

塔顶蒸出的乙醇蒸汽通入塔顶全凝器进行冷凝,冷凝完的液体进入液体再分派器,其中的2/3回流到精馏塔内,另1/3进入冷却器中进行冷却,流出冷却器的液体直接储存作为产品卖掉。

1.1.2加热介质冷却介质的选择在换热过程中加热介质和冷却介质的选用应根据实际情况而定。

除应满足加热和冷却温度外,还应考虑来源方面,价格低廉,使用安全。

在化工生产中常用的加热剂有饱和水蒸气、导热油,冷却剂一般有水和盐水。

综合考虑,在本次设计中的换热器加热介质选择饱和水蒸气,冷却介质选择水。

1.1.3换热器类型的选择列管式换热器的结构简单、牢固,操作弹性大,应用材料广,历史悠久,设计资料完善,并已有系列化标准,特别是在高温、高压和大型换热设备中占绝对优势。

所以本次设计过程中的换热器都选用列管式换热器。

由于本次设计过程中所涉及的换热器的中冷热流体温差不大(小于70℃),各个换热器的工作压力在1.6MP以下,都属于低压容器,因固定管板式换热器两端管板与壳体连在一起,这类换热器结构简单、价格低廉、管子里面易清洗,所以可选择列管式换热器中的固定管板式换热器。

1.1.4流体流动空间的选择哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例)。

化工原理课程设计纯苯冷凝器的设计

化工原理课程设计纯苯冷凝器的设计

化工原理课程设计设计题目:纯苯蒸汽冷凝器的设计指导老师:***系别:环境与安全工程系专业:安全工程班级学号:*********姓名:***目录一、设计任务: (2)1、处理能力:常压下5950kg/h的纯苯蒸汽 (2)2、设备型式:立式列管式冷凝器 (2)二、操作条件 (2)三、设计内容 (2)1、确定设计方案 (2)2、确定流体的流动空间 (2)3、计算流体的定性温度,确定流体的物性参数 (2)4、计算热负荷 (3)5、计算平均有效温度差 (3)6、选取经验传热系数k值 (3)7、估算传热面积 (3)8、结构尺寸设计 (3)(1)换热管规格、管子数、管长、管壳数的确定 (3)(2)传热管排列和分程方法 (4)(3)壳体内径内内径 (4)(4)折流板 (4)四、换热器核算 (5)1、换热器面积校核 (5)2、换热器内压降的核算 (7)五、换热器主要结构尺寸和计算结果一、设计任务:处理能力:1、常压下5950kg/h 的纯苯蒸汽 2、设备型式:立式列管式冷凝器二、操作条件1、常压下苯蒸气的冷凝温度为80.1℃,冷凝液在饱和温度下排出。

2、冷却介质:采用20℃自来水。

3、允许管程压降不大于50KPa 。

三、设计内容本设计的工艺计算如下:此为一侧流体恒温的列管式换热器的设计 1、确定设计方案 两流体的温度变化情况热流体(饱和苯蒸气)入口温度 80.1℃,(冷凝液)出口温度 80.1℃ 冷流体 水 入口温度 20℃,出口温度 40℃ 2、确定流体的流动空间冷却水走管程,苯走壳程,有利于苯的散热和冷凝。

3、计算流体的定性温度,确定流体的物性参数苯液体在定温度(80.1摄氏度)下的物性参数(查化工原理附录) ρ=815kg/,μ=3.09×Pa.s,=1.880KJ/kg.k ,ƛ=0.1255W/m.K, r=394.2kJ/kg 。

自来水的定性温度:入口温度:=20℃, 出口温度 =40℃则水的定性温度为:=(+)/2=(20+40)/2=30℃3m 410 PC 1t 2t m t 1t 2t根据热量衡算方程:=(-)得=/(-)=1.65×394.2/4.173(40-20)=7.79kg/s(式中=1.65kg/s )两流体在定性温度下的物性参数如下表计算热负荷ƍ==1.65×394.2=651.52kw 5、计算平均有效温度差 逆流温差=℃温差>50℃故选择固定管板式换热器需加补偿圈 6、选取经验传热系数k 值查《化工原理课程及设计》附录8,查的K 取430~850,暂取K=8507、估算传热面积==15.51m q 1r 2m q 2p c 2t 1t 2m q 1m q 1r 2p c 2t 1t 1m q 1r 1m q 逆m △t 43.4940)]-/(80.120)-(80.1[㏑40-80.1-20-1.80=)()(逆m t K Q S △=49.43×85010×52.65132m8、结构尺寸设计(1)换热管规格、管子数、管长、管壳数的确定选传热管,内径,外径,材料为碳钢。

化工毕业设计题目

化工毕业设计题目

题目一:苯-氯苯精馏塔工艺设计与原料液预热器选型设计(一)设计题目某化工厂拟采用一板式塔分离苯-氯苯混合液已知:生产能力为年产 70000 吨99%的氯苯产品;进精馏塔的料液含氯苯40%(质量分数下同)其余为苯;塔顶的氯苯含量不得高于2%;残液中氯苯含量不得低于99%;料液初始温度为30℃用流量为 20000 kg/h、温度为 160 ℃的中压热水加热至沸点进料试根据工艺要求进行:(1)板式精馏塔的工艺设计;(2)标准列管式原料预热器的选型设计(二)操作条件1.塔顶压强4kPa(表压);2.进料热状况泡点进料;3.回流比1.8Rmin;4.塔釜加热蒸汽压力0.5MPa(表压);5.单板压降不大于0.7kPa;6.年工作日300天每天24小时连续运行(三)设计内容1.设计方案的确定及工艺流程的说明;2.塔的工艺计算;3.塔和塔板主要工艺结构的设计计算;4.塔内流体力学性能的设计计算;5.塔板负荷性能图的绘制;6.塔的工艺计算结果汇总一览表;7.生产工艺流程图及精馏塔工艺条件图的绘制;8.对本设计的评述或对有关问题的分析与讨论(四)基础数据1.组分的饱和蒸汽压(mmHg)温度(℃)8090100110120130131.8苯760102513501760225028402900氯苯1482052934005437197602.组分的液相密度(kg/m3)温度(℃)8090100110120130苯817805793782770757氯苯1039102810181008997985纯组分在任何温度下的密度可由下式计算苯推荐:氯苯推荐:式中的t为温度℃3.组分的表面张力(mN/m)温度(℃)8085110115120131苯21.220.617.316.816.315.3氯苯26.125.722.722.221.620.4双组分混合液体的表面张力可按下式计算:(为A、B组分的摩尔分率)4.氯苯的汽化潜热常压沸点下的汽化潜热为35.3×103kJ/kmol 纯组分的汽化潜热与温度的关系可用下式表示:(氯苯的临界温度:)5.其他物性数据可查化工原理附录题目二:苯-氯苯精馏塔工艺设计与塔顶冷凝器选型设计(一)设计题目某化工厂拟采用一板式塔分离苯-氯苯混合液已知:生产能力为年产 65000 吨99%的氯苯产品;进精馏塔的料液含氯苯45%(质量分数下同)其余为苯;塔顶的氯苯含量不得高于2%;残液中氯苯含量不得低于99%;塔顶冷凝器用流量为30000 kg/h、温度为 30 ℃的冷水冷却试根据工艺要求进行:(1)板式精馏塔的工艺设计;(2)标准列管式塔顶冷凝器的选型设计(二)操作条件1.塔顶压强4kPa(表压);2.进料热状况泡点进料;3.回流比1.8Rmin;4.塔釜加热蒸汽压力0.5MPa(表压);5.单板压降不大于0.7kPa;6.年工作日300天每天24小时连续运行(三)设计内容1.设计方案的确定及工艺流程的说明;2.塔的工艺计算;3.塔和塔板主要工艺结构的设计计算;4.塔内流体力学性能的设计计算;5.塔板负荷性能图的绘制;6.塔的工艺计算结果汇总一览表;7.生产工艺流程图及精馏塔工艺条件图的绘制;8.对本设计的评述或对有关问题的分析与讨论(四)基础数据1.组分的饱和蒸汽压(mmHg)温度(℃)80100110120130131.8苯760102513501760225028402900氯苯1482052934005437197602.组分的液相密度(kg/m3)温度(℃)8090100110120130苯817805793782770757氯苯103910181008997985纯组分在任何温度下的密度可由下式计算苯推荐:氯苯推荐:式中的t为温度℃3.组分的表面张力(mN/m)温度(℃)8085110115120131苯21.220.617.316.816.315.3氯苯26.125.722.722.221.620.4双组分混合液体的表面张力可按下式计算:(为A、B组分的摩尔分率)4.氯苯的汽化潜热常压沸点下的汽化潜热为35.3×103kJ/kmol 纯组分的汽化潜热与温度的关系可用下式表示:(氯苯的临界温度:)5.其他物性数据可查化工原理附录题目三:苯-氯苯精馏塔工艺设计与塔底再沸器选型设计(一)设计题目某化工厂拟采用一板式塔分离苯-氯苯混合液已知:生产能力为年产 65000 吨99%的氯苯产品;进精馏塔的料液含氯苯35%(质量分数下同)其余为苯;塔顶的氯苯含量不得高于2%;残液中氯苯含量不得低于99%;塔底再沸器用流量为27000 kg/h、温度为 150 ℃的中压热水加热试根据工艺要求进行:(1)板式精馏塔的工艺设计;(2)标准列管式塔底再沸器的选型设计(二)操作条件1.塔顶压强4kPa(表压);2.进料热状况泡点进料;3.回流比1.8Rmin;4.塔釜加热蒸汽压力0.5MPa(表压);5.单板压降不大于0.7kPa;6.年工作日300天每天24小时连续运行(三)设计内容1.设计方案的确定及工艺流程的说明;2.塔的工艺计算;3.塔和塔板主要工艺结构的设计计算;4.塔内流体力学性能的设计计算;5.塔板负荷性能图的绘制;6.塔的工艺计算结果汇总一览表;7.生产工艺流程图及精馏塔工艺条件图的绘制;8.对本设计的评述或对有关问题的分析与讨论(四)基础数据1.组分的饱和蒸汽压(mmHg)温度(℃)8090100110120130131.8苯760102513501760225028402900氯苯1482052934005437197602.组分的液相密度(kg/m3)温度(℃)8090100110120130苯817805793782770757氯苯1039102810181008997985纯组分在任何温度下的密度可由下式计算苯推荐:氯苯推荐:式中的t为温度℃3.组分的表面张力(mN/m)温度(℃)8085110115120131苯21.220.617.316.816.315.3氯苯26.125.722.722.221.620.4双组分混合液体的表面张力可按下式计算:(为A、B组分的摩尔分率)4.氯苯的汽化潜热常压沸点下的汽化潜热为35.3×103kJ/kmol纯组分的汽化潜热与温度的关系可用下式表示:(氯苯的临界温度:)5.其他物性数据可查化工原理附录题目四:苯-乙苯精馏塔工艺设计与原料液预热器选型设计(一)设计题目某化工厂拟采用一板式塔分离苯-甲苯混合液已知:生产能力为年产 34000 吨98%的乙苯产品;进精馏塔的料液含乙苯40%(质量分数下同)其余为苯;塔顶的乙苯含量不得高于2%;残液中乙苯含量不得低于98%;料液初始温度为30℃用流量为 11500 kg/h、温度为 160 ℃的中压热水加热至沸点进料试根据工艺要求进行:(1)板式精馏塔的工艺设计;(2)标准列管式原料预热器的选型设计(二)操作条件1.塔顶压力 4kPa(表压)2.进料热状态泡点进料3.回流比 2倍最小回流比4.加热蒸气压力 0.5MPa(表压)5.单板压降≤0.7kPa(三)塔板类型板式塔(四)工作日每年工作日为300天每天24小时连续运行(五)主要物性数据1、苯、乙苯的物理性质项目分子式分子量沸点℃临界温度℃临界压强Pa苯AC6H678.1180.1288.56833.4乙苯BC8H10106.16136.2348.574307.72、苯、乙苯在某些温度下的表面张力t/℃2040608010012014028.826.2523.7421.2718.8516.4914.1729.327.1425.0122.9220.8516.823、苯、乙苯在某些温度下的粘度t/℃204060801001201400.7420.6380.4850.3810.3080.2550.2150.1840.8740.6660.5250.4260.3540.3000.2590.2264、苯、乙苯的液相密度t/℃20406080100120140877.4857.3836.6815.0768.9744.1867.7849.8931.8913.6795.2776.2756.75、不同塔径的板间距塔径D/m0.3-0.50.5-0.80.8-1.61.6-2.42.4-4.0板间距HT/mm200-300250-350300-450350-600400-600题目五:苯-乙苯精馏塔工艺设计与塔顶冷凝器选型设计(一)设计题目某化工厂拟采用一板式塔分离苯-甲苯混合液已知:生产能力为年产 40000 吨98%的乙苯产品;进精馏塔的料液含乙苯50%(质量分数下同)其余为苯;塔顶的乙苯含量不得高于2%;残液中乙苯含量不得低于98%;塔顶冷凝器用流量为16000 kg/h、温度为 30 ℃的冷水冷却试根据工艺要求进行:(1)板式精馏塔的工艺设计;(2)标准列管式塔顶冷凝器的选型设计(二)操作条件1.塔顶压力 4kPa(表压)2.进料热状态泡点进料3.回流比 2倍最小回流比4.加热蒸气压力 0.5MPa(表压)5.单板压降≤0.7kPa(三)塔板类型板式塔(四)工作日每年工作日为300天每天24小时连续运行(五)主要物性数据6、苯、乙苯的物理性质项目分子式分子量沸点℃临界温度℃临界压强PaC6H678.1180.1288.56833.4乙苯BC8H10106.16136.2348.574307.77、苯、乙苯在某些温度下的表面张力t/℃2040608010012014028.826.2523.7421.2718.8516.4914.1729.327.1425.0122.9220.8518.8116.828、苯、乙苯在某些温度下的粘度t/℃204060801201400.7420.6380.4850.3810.3080.2550.2150.1840.8740.6660.5250.4260.3540.3000.2590.2269、苯、乙苯的液相密度t/℃20406080100120140877.4857.3836.6815.0792.5768.9744.1867.7849.8931.8913.6795.2756.710、不同塔径的板间距塔径D/m0.3-0.50.5-0.80.8-1.61.6-2.42.4-4.0板间距HT/mm200-300250-350300-450350-600400-600题目六:苯-乙苯精馏塔工艺设计与塔底再沸器选型设计(一)设计题目某化工厂拟采用一板式塔分离苯-甲苯混合液已知:生产能力为年产 35000 吨98%的乙苯产品;进精馏塔的料液含乙苯45%(质量分数下同)其余为苯;塔顶的乙苯含量不得高于2%;残液中乙苯含量不得低于98%;塔底再沸器用流量为 14000 kg/h、温度为 150 ℃的中压热水加热试根据工艺要求进行:(1)板式精馏塔的工艺设计;(2)标准列管式塔底再沸器的选型设计(二)操作条件1.塔顶压力 4kPa(表压)2.进料热状态泡点进料3.回流比 2倍最小回流比4.加热蒸气压力 0.5MPa(表压)5.单板压降≤0.7kPa(三)塔板类型板式塔(四)工作日每年工作日为300天每天24小时连续运行(五)主要物性数据1.苯、乙苯的物理性质项目分子式分子量沸点℃临界温度℃临界压强Pa苯AC6H678.1180.1288.56833.4乙苯B106.16136.2348.574307.72.苯、乙苯在某些温度下的表面张力t/℃2040608010012014028.826.2523.7421.2718.8516.4914.1729.327.1425.0122.9220.8518.8116.823.苯、乙苯在某些温度下的粘度t/℃204060801001201400.7420.6380.4850.3080.2550.2150.1840.8740.6660.5250.4260.3540.3000.2590.2264.苯、乙苯的液相密度t/℃20406080100120140877.4857.3836.6815.0792.5768.9744.1867.7849.8931.8913.6795.2776.2756.75.不同塔径的板间距塔径D/m0.3-0.50.5-0.80.8-1.61.6-2.42.4-4.0板间距HT/mm200-300250-350300-450350-600400-600题目七:乙醇-水精馏塔工艺设计与原料液预热器选型设计(一)设计题目某化工厂拟采用一板式塔分离乙醇-水混合液已知:年处理原料能力为 1700 吨;进精馏塔的料液含乙醇45%(质量分数下同);塔顶的乙醇含量为93%;残液中乙醇含量不得高于5%;料液初始温度为30℃用流量为 1500 kg/h、温度为 160 ℃的中压热水加热至沸点进料试根据工艺要求进行:(1)板式精馏塔的工艺设计;(2)标准列管式原料液预热器的选型设计(二)操作条件1.塔顶压力 4kPa(表压)2.进料热状态泡点进料3.回流比 1.6倍最小回流比4.加热蒸气压力 0.5MPa(表压)5.单板压降≤0.7kPa(三)工作日每年工作日为300天每天24小时连续运行(四)主要物性数据1.乙醇和水的物理性质(表一)项目分子量沸点﹙℃﹚临界温度﹙℃﹚临界压强﹙Kpa﹚乙醇46.0778.3240.776.148水18.01100373.9122.052.乙醇和水的粘度(表二)温度﹙℃﹚20304050607090100110水的粘度﹙mpa.s﹚1.0020.8020.6620.5920.4690.4000.3300.3180.2480.259乙醇的粘度﹙mpa.s﹚1.221.000.830.690.380.480.4150.3510.3050.2623.乙醇和水的表面张力(表三)温度﹙℃﹚2030405060708090100110水的表面张力﹙mN﹚72.771.069.366.064.362.760.158.456.8乙醇的表面张力﹙mN﹚22.321.220.419.818.818.017.116.215.214.44.乙醇和水的密度(表四)温度﹙℃﹚2030405060708090100110乙醇的密度﹙kg/m3﹚795785777765755746735730716703水的密度﹙kg/m3﹚995.7992.2988.1983.2977.8971.8965.3958.4951.05.常压下乙醇--水的汽液平衡数据(表五)沸点t/乙醇分子/%(液相)乙醇分子/%(气相)沸点t/乙醇分子/%(液相)乙醇分子/%(气相)10099.999.899.799.599.29998.7597.6495.895.591.389.087.986.785.385.284.183.7582.782.382.30.0040.040.050.23 0.31 0.390.791.61 1.90 4.16 7.21 7.41 9.66 12.38 12.6416.6117.41 23.3725.7526.08 00.053 0.510.771.572.903.725 45 8.7616.3417.00 29.9238.9139.61 43.75 47.04 47.4950.8951.6754.4555.74 55.8082 81.5 81.380.6 80.1 79.85 79.8 79.7 79.5 79.3 79.278.95 78.75 78.74 78.6 78.4 78.27 78.2 78.15 78.1527.332.7333.24 39.65 42.09 48.92 52.6850.7951.98 61.02 57.32 65.64 68.92 72.3674.7275.99 79.82 83.87 85.97 89.41 89.4356.44 59.26 58.7862.2264.7066.2865.6465.9970.2968.4172.7174.6976.9378.1579.2681.8384.9186.4089.4189.43题目八:乙醇-水精馏塔工艺设计与塔顶冷凝器选型设计(一)设计题目某化工厂拟采用一板式塔分离乙醇-水混合液已知:年处理原料能力为 2000 吨;进精馏塔的料液含乙醇40%(质量分数下同);塔顶的乙醇含量为94%;残液中乙醇含量不得高于4%;塔顶冷凝器用流量为1600 kg/h、温度为 30 ℃的冷水冷却试根据工艺要求进行:(1)板式精馏塔的工艺设计;(2)标准列管式塔顶冷凝器的选型设计(二)操作条件1.塔顶压力 4kPa(表压)2.进料热状态泡点进料3.回流比 1.6倍最小回流比4.加热蒸气压力 0.5MPa(表压)5.单板压降≤0.7kPa(三)工作日每年工作日为300天每天24小时连续运行(四)主要物性数据1.乙醇和水的物理性质(表一)项目分子量沸点﹙℃﹚临界温度﹙℃﹚临界压强﹙Kpa﹚乙醇46.0778.3240.776.148水18.01100373.9122.052.乙醇和水的粘度(表二)温度﹙℃﹚2030405060708090100110水的粘度﹙mpa.s﹚1.0020.8020.6620.5920.4690.4000.3300.3180.2480.259乙醇的粘度﹙mpa.s﹚1.221.000.830.690.380.480.4150.3510.3050.2623.乙醇和水的表面张力(表三)温度﹙℃﹚2030405060708090100110水的表面张力﹙mN﹚72.771.069.367.766.064.362.760.158.456.8乙醇的表面张力﹙mN﹚21.220.419.818.818.017.116.215.214.44.乙醇和水的密度(表四)温度﹙℃﹚2030405060708090100110乙醇的密度﹙kg/m3﹚795785777765755746735730716703水的密度﹙kg/m3﹚998.2995.7992.2988.1983.2977.8971.8965.3951.05.常压下乙醇--水的汽液平衡数据(表五)沸点t/乙醇分子/%(液相)乙醇分子/%(气相)沸点t/乙醇分子/%(液相)乙醇分子/%(气相)10099.999.899.799.599.29998.7597.6495.895.591.389.087.986.785.385.284.183.7582.782.382.30.0040.040.050.120.230.310.390.791.611.904.167.41 9.66 12.38 12.6416.6117.41 23.3725.7526.08 00.053 0.510.771.572.903.725 45 8.7616.3417.00 29.9238.9139.61 43.75 47.04 47.4950.8951.6754.4555.74 55.8082 81.5 81.3 80.7 80.6 80.1 79.85 79.8 79.7 79.5 79.378.95 78.75 78.74 78.6 78.4 78.27 78.2 78.15 78.1527.332.7333.24 39.65 42.09 48.92 52.6850.7951.98 61.02 57.32 65.64 68.92 72.3674.7275.99 79.82 83.87 85.97 89.41 89.4356.44 59.26 58.7861.2262.22 64.70 66.28 65.64 65.99 70.29 68.4174.6976.9378.1579.2681.8384.9186.4089.4189.43题目九:乙醇-水精馏塔工艺设计与塔底再沸器选型设计(一)设计题目某化工厂拟采用一板式塔分离乙醇-水混合液已知:年处理原料能力为 1900 吨;进精馏塔的料液含乙醇35%(质量分数下同);塔顶的乙醇含量为95%;残液中乙醇含量不得高于5%;塔底再沸器用流量为 1400 kg/h、温度为 150 ℃的中压热水加热(二)操作条件1.塔顶压力 4kPa(表压)2.进料热状态泡点进料3.回流比 1.6倍最小回流比4.加热蒸气压力 0.5MPa(表压)5.单板压降≤0.7kPa(三)工作日每年工作日为300天每天24小时连续运行(四)主要物性数据1.乙醇和水的物理性质(表一)项目分子量沸点﹙℃﹚临界温度﹙℃﹚临界压强﹙Kpa﹚乙醇46.0778.3240.776.148水18.01100373.9122.052.乙醇和水的粘度(表二)温度﹙℃﹚2030405060708090100110水的粘度﹙mpa.s﹚1.0020.8020.6620.5920.4690.4000.3300.3180.2480.259乙醇的粘度﹙mpa.s﹚1.221.000.690.380.480.4150.3510.3050.2623.乙醇和水的表面张力(表三)温度﹙℃﹚2030405060708090100110水的表面张力﹙mN﹚72.771.069.367.766.064.362.760.158.456.8乙醇的表面张力﹙mN﹚22.321.220.419.818.818.017.116.215.214.44.乙醇和水的密度(表四)温度﹙℃﹚30405060708090100110乙醇的密度﹙kg/m3﹚795785777765755746735730716703水的密度﹙kg/m3﹚998.2995.7992.2988.1983.2977.8971.8965.3958.4951.05.常压下乙醇--水的汽液平衡数据(表五)沸点t/乙醇分子/%(液相)乙醇分子/%(气相)沸点t/乙醇分子/%(液相)乙醇分子/%(气相)10099.999.7 99.5 99.2 99 98.75 97.64 95.8 95.5 91.3 89.0 87.9 86.7 85.3 85.2 84.1 83.75 82.7 82.3 82.3 00.004 0.04 0.05 0.12 0.23 0.31 0.390.791.61 1.90 4.16 7.21 7.41 9.66 12.38 12.6416.6117.41 23.3725.7526.08 00.0530.771.572.903.725 458.7616.3417.00 29.9238.9139.61 43.75 47.04 47.4950.8951.6754.4555.74 55.808281.5 81.3 80.7 80.6 80.1 79.85 79.8 79.7 79.5 79.3 79.278.95 78.75 78.74 78.6 78.4 78.27 78.2 78.15 78.1527.332.7333.24 39.65 42.09 48.92 52.6850.7951.98 61.02 57.32 65.64 68.92 72.3674.7275.99 79.82 83.87 85.97 89.41 89.4356.44 59.26 58.7861.2262.22 64.70 66.28 65.64 65.99 70.29 68.41 72.71 74.69 76.9378.1579.26 81.83 84.91 86.40 89.41 89.43设计要求(一)设计说明书内容要求1、目录2、任务书3、前言(不少于1500字内容包括:设计目的及意义、成果展望、设计指导思想、数据的来源及先进性论证、鸣谢等);4、设计内容(按统一格式分栏显示内容包括步骤名称、计算内容及结果、备注--引用公式及参数的来源);5、设计结果一览表(将换热器、浮阀塔的结构参数及技术特性列表);6、结束语(不少于500字内容包括:对设计的自我评价、存在哪些设计问题及解决方法、设计心得体会)(二)附图1、用AutoCAD绘制理论塔板数计算图、系统操作温度计算图(t-x-y关系曲线)、精提馏段的负荷性能图各一张;2、用AutoCAD绘制精馏塔的装配图(包括塔体剖面图、塔板分块结构图、进出口接管图)一张(三)其它设计进度安排表周次内容1查资料2查资料3板式精馏塔的工艺设计4板式精馏塔的工艺设计5标准列管换热器选型设计6浮阀塔装配图绘制7编写设计说明书8整理、答辩??????坏人固然要防备,但坏人毕竟是少数,人不能因噎废食,不能为了防备极少数坏人连朋友也拒之门外。

化工原理课程设计-标准系列管壳式立式冷凝器的设计

化工原理课程设计-标准系列管壳式立式冷凝器的设计

化工原理课程设计标准系列管壳式立式冷凝器的设计姓名:学号:专业:应用化学班级设计时间:目录一、设计题目二、设计条件三、设计内容3.1概述3.2 换热3.3 换热设备设计步骤四、设计说明4.1选择换热器的类型4.2流动空间的确定五、传热过程工艺计算5.1计算液体的定性温度,确定流体的物性数据5.1.1正戊烷流体在定性温度(51.7℃)下的物性数据5.1.2水的定性温度5.2估算传热面积5.2.1换热器热负荷计算5.2.2平均传热温差5.2.3估算传热面积5.2.4初选换热器规格5.2.5立式固定管板式换热器的规格5.2.6计算面积裕度H及该换热器所要求的总传热系数K05.2.7折流板5.2.8换热器核算5.3核算壁温与冷凝液流型5.3.1核算壁温5.3.2核算流型5.4计算接口直径5.4.1计算壳程接口直径5.5计算管程接口直径5.6计算压强降5.6.1计算管程压降5.6.2计算壳程压降六、其他七、计算结果八、化工课程设计心得九、参考文献一.设计题目标准系列管壳式立式冷凝器的设计二.设计条件生产能力:正戊烷23760t/a,冷凝水流量70000Kg/h操作压力:常压正戊烷的冷凝温度51.7℃,冷凝水入口温度32℃每年按330天计,每天24小时连续生产要求冷凝器允许压降100000Pa三、设计内容3.1概述换热器在石油、化工生产中应用非常广泛。

在炼油厂中,原油常减压蒸馏装置中换热器的投资占总投资的20%;在化工厂中,换热器约占总投资的11%以上。

由于在工业生产中所用换热器的目的和要求不同,所以换热器的种类也多种多样。

列管式换热器在石油化工生产中应用最为广泛,而且技术上比较成熟。

在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。

在换热器中至少要有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。

35%~40%。

随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。

化工原理课程设计---苯-甲苯冷凝器工艺设计-(2).

化工原理课程设计---苯-甲苯冷凝器工艺设计-(2).

课程设计(论文)题目名称苯-甲苯冷凝器工艺设计课程名称化工原理学生姓名学号1040902015系、专业生化系2010级化学工程与工艺指导教师胡建明2013年1 月4 日目录一、课程设计任务书 (3)二、概述 (5)三、设计依据 (8)四、工艺设计计算 (8)五、物料衡算 (8)2.1 精馏塔物料衡算 (8)2.2 冷凝器物料衡算 (9)六、热量衡算 (11)3.1 冷凝器热量衡算 (11)七、设备设计与选型 (14)八、设备设计 (14)1、流体流径选择 (14)2、冷凝器热负荷 (14)3、流体两端温度的确定 (14)4、总传热系数 (14)5、换热面积 (14)6、初选管程及单管长度 (14)7、筒体直径计算 (15)8、数据核算 (15)九、设备选型 (19)十、总结 (25)十一、参考文献 (26)十二、致谢 (27)十三、附工程图纸 (28)10级化学工程专业《化工原理》课程设计任务书设计课题:苯-甲苯精馏装置进料冷凝器设计一、设计条件1、年产苯:70000吨2、产品苯组成:C6H699.5% (质量分数,下同) 、C6H5-CH30.5%3、原料液为常温液体;原料组成:C6H670%,C6H5-CH330%4、分离要求:塔釜苯含量≤0.5%二、设计内容1、物料衡算(精馏塔、冷凝器)2、热量衡算(冷凝器)3、冷凝器热负荷计算4、冷凝器换热面积计算5、冷凝器结构、材质选择6、冷凝器结构尺寸、工艺尺寸的设计计算等7、冷凝器总传热系数的校核8、冷凝器装配图的绘制三、设计要求1、设计方案简介对给定或选定的工艺流程、主要设备的型式进行简要的论述。

2、工艺设计选定工艺参数,对单个设备作出衡算示意图,进行物料衡算、热量衡算,以表格形式表达衡算结果,其中的数据(非给定数据)及计算公式(经验公式)必须交待来源(即何种参考书目,并在参考文献中列出)。

3、设备计算选择设备的结构形式,并说明理由。

进行设备的结构尺寸和工艺尺寸的设计计算。

蒸发式冷凝器的设计与应用

蒸发式冷凝器的设计与应用

蒸发式冷凝器的设计与应用摘要:蒸发式冷凝器是一种常用的热交换器,广泛应用于化工、制药、食品、能源等领域。

它通过将热量从高温的气体或液体转移到低温的冷却介质,实现了能量的转换和利用。

本文主要介绍了蒸发式冷凝器的设计与应用,对于提高蒸发式冷凝器的性能和应用价值具有重要意义。

关键词:蒸发式冷凝器;设计;应用1蒸发式冷凝器工作原理蒸发式冷凝器是一种广泛用于空气调节系统、冷冻机组和其他制冷设备中的设备,它的作用是将水或蒸汽从空气或其他气体中凝结出来。

蒸发式冷凝器的工作原理如下:(1)工作介质:蒸汽或水。

蒸发式冷凝器中通常使用蒸汽或水作为工作介质,这取决于应用的具体场合和要求。

(2)工作过程:当蒸汽或水进入蒸发式冷凝器时,它会通过蒸发器进入蒸气室中。

在蒸汽室中,蒸汽或水与热交换器中的热源接触,从而产生蒸汽或水蒸气。

(3)冷凝过程:蒸汽或水蒸气进入冷凝管或散热器,在这里,它与周围的空气或水接触。

由于温度差异的存在,蒸汽或水蒸气会冷凝成水。

这个过程会释放热量,因为凝结过程会将热量转移到周围的空气或水中。

(4)循环:冷凝后的水被回收,然后重新循环流回蒸发器中,等待下一次蒸发过程。

综上所述,蒸发式冷凝器通过将工作介质(蒸汽或水)引入到蒸汽室中,然后使其蒸发,并通过冷凝过程将其冷凝成水,从而实现水/蒸汽从空气或其他气体中凝结出来的目的。

2蒸发式冷凝器主要设计参数的选择2.1冷凝温度和进风湿球温度的选择冷凝温度是指在蒸发式冷凝器中,冷凝器内部的温度。

选择冷凝温度时,需要考虑到冷凝器的工作效率和能耗。

一般来说,冷凝温度越低,冷凝器的效率越高,但能耗也会相应增加。

因此,需要根据具体的使用情况和要求来选择合适的冷凝温度。

进风湿球温度是指进入蒸发式冷凝器空气的湿球温度。

选择进风湿球温度时,需要考虑到空气的湿度和温度对冷凝器影响。

一般来说,进风湿球温度越高,冷凝器的效率越低,因为空气的湿度会影响冷凝器的蒸发效率。

因此,需要根据具体的使用情况和要求来选择合适的进风湿球温度。

冷凝器生产工艺

冷凝器生产工艺

冷凝器生产工艺冷凝器是现代化工生产中不可或缺的设备之一,其作用是将蒸汽或气体等高温状态的流体由冷却水或其他冷却介质冷却后,使其转化为液体或半液体的现象。

这种过程不仅可以节约能源,减轻环境负担,还能提高产品的质量。

下面我们将分步骤介绍冷凝器的生产工艺。

一、工艺设计冷凝器的生产首先需要进行工艺设计,设计时要考虑设备的功能、结构、材料、制造工艺等各种因素,将这些因素合理的结合在一起,才能保证设备的效率和寿命,实现生产的目标。

二、材料选用现代冷凝器采用的主要材料包括不锈钢、铜、铝、锡等,这些材料具有很好的抗腐蚀性,耐高温性能优良,不会对生产造成污染等优点。

根据设备的使用环境以及要求,选择适合的材料是生产中非常关键的步骤。

三、加工制造冷凝器的生产需要经过加工制造工序,主要包括气割、钻孔、点焊等过程。

这些工序需要使用高精密的现代化设备和先进的制造工艺,保证冷凝器的尺寸精度,达到工程要求。

在加工制造过程中,要严格按照工艺流程进行操作,确保每个环节都符合生产规范。

四、装配调试在生产好的冷凝器部件装配组合好后,还需要进行检查、调整以及性能测试,确保其正常使用。

拥有先进的检测设备和专业的工程师团队,可以更好地保证冷凝器的品质。

五、样品确认冷凝器生产结束后,一定要按照产品标准进行样品确认,并进行严格的检测和测试,确保设备达到设计和制造要求。

并对样品进行记录和保留,以备后续的检测和维护。

总之,冷凝器的生产工艺需要经过多个环节,包括工艺设计、材料选用、加工制造、装配调试以及样品确认等过程,这些步骤之间互相配合,才能保证设备的效率和品质。

在生产中,还需要有严格的质量控制流程,以确保设备的质量和稳定性。

固定管板式冷凝器毕业设计

固定管板式冷凝器毕业设计

固定管板式冷凝器毕业设计
固定管板式冷凝器是一种常用于石油、化工、电力、制药等行业的换热器设备,其结构简单、安装方便、运行稳定、节能效果显著等优点得到了广泛应用。

固定管板式冷凝器毕业设计的主要内容和步骤建议:
1. 设计目标确定:根据实际需求和设备的参数要求,确定设计目标,包括换热量、热传导系数、表面积等方面。

2. 定义设计参数:根据设计目标,确定设计参数,如板间距、板数量、板厚及板材质等参数。

3. 设计方案制定:结合实际情况制定多种设计方案,包括板式冷凝器的热传导模型、流体模型、结构参数及经济效益评估等。

4. 设计计算与分析:基于设计方案,对固定管板式冷凝器的各项参数进行计算和分析,如板间距、传热系数、板材质量、板厚度等。

5. 结构设计:基于计算和分析的结果,确定固定管板式冷凝器的结构设计,并绘制设计图,进行模拟分析和标准化检验。

6. 生产组装:生产组装前,进行现场质保和环保、安全检验,确保生产过程满足安全、环保、健康和技术要求。

7. 装配安装调试:根据生产完成后的固定管板式冷凝器装配、安装、调试,最终确定其性能指标和经济效益。

8. 结论总结:对固定管板式冷凝器的设计和实践进行总结,提出合理化建议。

塔顶直连冷凝器布置设计

塔顶直连冷凝器布置设计

ZOZOQOO 张传武等塔顶直连冷凝器布置设计31塔顶直连冷凝器布置设计张传武*肖桓华陆工程科技有限责任公司西安610065扌商要 本文通过工程实例,根据塔顶直连冷凝器工艺介质参数、外形特征、工艺特点等内容,提出设备布置要点;针对不同设备布置结构形式,从设备吊装、检修、操作、应力消除等方面综合考虑,对直连式塔顶冷凝器布置进行优化设计探讨。

关键词塔塔顶冷凝器弹性支撑热位移塔与塔顶冷凝器是化工生产过程中的重要生产设备,是产品精制、分离过程中的典型工艺设备组合装 置。

直连式塔顶冷凝器在塔顶高回流比、阻力降较敏感系统等特殊工况下,因其布置上的优势而经常被使 用。

因此,其优化合理的设备布置非常重要。

1塔顶直连冷凝器分类塔顶直连冷凝器根据冷凝器的型式不同,一般分为立式和卧式两种类型,见图4图2o立式塔顶直连冷凝器因换热面积受塔的直径、塔顶压降等参数的限制,塔顶气相量较小时一般采 用立式塔顶直连冷凝器;相比立式塔顶直连冷凝器而言,卧式塔顶直连冷凝器的换热面积不受塔的直径和塔顶压降等参数的影响,因此换热面积相对较 大,换热效率会相对较高,塔顶气相量较大时一 般采用卧式。

2塔顶直连式冷凝器布置特点2.1立式塔顶直连冷凝器布置立式塔顶直连冷凝器与塔顶管口采用法兰连接,整个冷凝器的荷载垂直作用于塔体,布置初期需设备专业提前对塔的壁厚、裙座的受力和地脚螺 栓的强度进行核算确认。

一般立式塔顶直连冷凝器更适合独立塔安装布置设计。

2.2卧式塔顶直连冷凝器布置卧式塔顶直连冷凝器与塔顶管口既可以采用法兰也可以采用焊接型式连接,当采用独立塔安装布置时,整个冷凝器的荷载垂直作用于塔体,布置初期需设备专业提前对塔的壁厚、裙座的受力和地脚螺栓的强度、冷凝器支撑稳定性进行核算确认;当 采用框架式塔安装布置设计利用框架来支撑冷凝器 时,由于塔的热位移,冷凝器需要使用弹簧或者气缸等弹性支撑。

下面将结合实际工程项目,以卧式塔顶冷凝器的布置为例,从布置方案的选取、优化直至确定方面,详细分析不同布置型式的可行性和优缺点。

304冷凝器设计压力与温度

304冷凝器设计压力与温度

304冷凝器设计压力与温度304不锈钢是一种常用的材料,广泛应用于化工、石油、制药等行业。

在这些行业中,冷凝器作为一个重要的设备,起着将气体或蒸汽冷却成液体的作用。

而在冷凝器的设计中,设计压力与温度是非常重要的参数,对冷凝器的性能和安全性有着直接影响。

一、304冷凝器的设计压力304不锈钢是一种具有优良耐腐蚀性的材料,其在常温下的设计工作压力可以达到2000 KPa左右。

但是,需要根据具体的工作条件和使用要求来确定冷凝器的设计压力。

一般而言,在设计冷凝器时,需要考虑以下几个方面的因素:1. 工作条件:冷凝器的工作条件包括工作介质的压力和温度。

对于不同的工作介质,其要求的设计压力也不同。

还需要考虑到工作介质在冷凝器内部的压降,以及冷却介质和冷凝器之间的传热效果等因素。

2. 安全性考虑:在冷凝器的设计中,安全性是至关重要的因素。

设计压力应该选取在工作条件下的最大压力值,并且要考虑到冷凝器的强度和抗压能力。

还需要考虑到压力脉动和传热对冷凝器的影响。

3. 法律法规:在一些特殊的行业或工作环境中,可能存在一些特定的法律法规对冷凝器的设计压力有要求。

在设计冷凝器时,需要遵守这些法律法规的规定。

二、304冷凝器的设计温度304不锈钢在常温下的设计工作温度一般可以达到550℃左右。

但是,在实际应用中,冷凝器的设计温度还需要根据具体的工作条件和使用要求来确定。

主要需要考虑以下几个方面的因素:1. 工作条件:冷凝器的工作条件包括冷凝介质的温度和冷却介质的温度。

不同的工作条件对冷凝器的设计温度要求也不同。

还需要考虑到冷凝器在工作过程中可能出现的温度变化和温度脉动等因素。

2. 耐热性能:304不锈钢具有一定的耐热性能,但在高温下,其力学性能和耐蚀性能会受到影响。

在设计冷凝器时,需要考虑到冷凝器在高温下的使用情况,并选择合适的材料和工艺来提高冷凝器的耐热性能。

3. 安全性考虑:冷凝器设计温度的选择还需要考虑到安全性。

在设计冷凝器时,需要考虑到材料的热膨胀系数、高温下的应力和变形等因素,以保证冷凝器在高温下的工作安全性。

冷凝器设计说明书

冷凝器设计说明书

摘要根据设计条件,依据GB151和GB150及相关规范,对卧式壳程冷凝器进行了工艺计算,结构计算和强度计算。

工艺计算部分主要是根据给定的设计条件估算换热面积,从而进行冷凝器的选型,校核传热系数,计算出实际的换热面积,最后进行压力降和壁温的计算。

结构和强度的设计主要是根据已经选定的冷凝器型式进行设备内各零部件(如接管、折流板、定距管、管箱等)的设计,包括:材料的选择、具体尺寸确定、确定具体位置、管板的计算、法兰的计算、开孔补强计算等。

最后设计结果再通过装配图零件图等表现出来。

关于卧式壳程冷凝器设计的各个环节,设计说明书中都有详细的说明。

关键词:管壳式换热器卧式壳程冷凝器管板法兰AbstractAccording to the design condition, GB151 and GB150 and related norms, design a horizontal shell condenser, which included technology calculate of condenser, the structure and intensity of condenser.The technology calculation process. Mainly, the process of technology calculate is according to the given design conditions to estimate the heat exchanger area, and then, select a suitable condenser to check heat transfer coefficient ,just for the actual heat transfer area .Meanwhile the process above still include the pressure drop and wall temperature calculation . The design is about the structure and intensity of the design. This part is just on the selected type of condenser to design the condenser’s components and parts ,such as vesting ,baffled plates, the distance control tube, tube boxes. This part of design mainly include:the choice of materials,identify specific size, identify specific location, the thickness calculation of tube sheet, the thickness calculation of flange, the opening reinforcement calculation etc. In the end, the final design results through and parts drawing to display.The each aspects of the horizontal shell condenser has detailed instructions in the design manual.Key word: Shell-Tube heat exchanger; Horizontal shell condenser; Tube sheet; Flange.目录摘要 (I)Abstract (II)第1章绪论 (1)冷凝器概述 (1)冷凝器类型 (1)卧式壳程冷凝器 (1)卧式管程冷凝器 (2)立式壳程冷凝器 (2)管内向下流动的立式管程冷凝器 (3)向上流动的立式管程冷凝器 (3)冷凝器发展前景 (4)第2章工艺计算 (5)设计条件 (5)确定物性数据 (5)冷凝器的类型与流动空间的确定 (5)未考虑冬季因素 (5)估算传热面积 (5)选工艺尺寸计算 (7)冷凝器核算 (10)冬季因素考虑 (17)综合考虑 (18)估算传热面积 (19)选工艺尺寸计算 (19)冷凝器核算 (20)换热器主要结构尺寸和计算结果 (25)第3章结构设计 (26)壳体、管箱壳体和封头的设计 (26)壁厚的确定 (26)管箱壳体壁厚的确定 (27)标准椭圆封头的设计 (27)管板与换热管设计 (28)管板 (28)换热管 (29)进出口设计 (30)接管的设计 (30)接管外伸长度 (30)排气、排液管 (30)接管最小位置 (31)折流板或支持板 (32)折流板尺寸 (32)折流板和折流板孔径 (32)折流板的布置 (33)防冲挡板 (34)拉杆与定距管 (34)拉杆的结构和尺寸 (34)拉杆的位置 (35)定距管尺寸 (35)鞍座选用及安装位置确定 (35)第4章强度计算 (36)壳体、管箱壳体和封头校核 (36)壳体体校核 (36)管箱壳体校核 (36)椭圆封头校核 (37)接管开孔补强 (37)蒸汽进出口开孔补强 (37)管箱冷却水接管补强的校核 (39)膨胀节 (40)膨胀节 (40)膨胀节计算 (41)管板校核 (42)结构尺寸参数 (42)各元件材料及其设计数据 (43)管子许用应力 (44)结构参数计算 (45)法兰力矩 (46)换热管与壳体圆筒的热膨胀应变形差 (46)管箱圆筒与法兰的旋转刚度参数 (46)管子加强系数 (47)旋转刚度无量纲参数 (47)设计条件不同危险组合工况的应力计算 (48)四种危险工况的各种应力计算与校核: (50)设计值总汇 (52)第5章安装使用及维修 (53)安装 (53)维护和检修 (53)结论 (56)参考文献 (57)致谢 (58)第1章绪论冷凝器概述在蒸馏过程中,把蒸气转变成液态的装置称为冷凝器[1]。

化工装置蒸汽管道设计知识考题(附答案)

化工装置蒸汽管道设计知识考题(附答案)

化工装置蒸汽管道设计知识考题一、选择题(20个)1.设计蒸汽管道时,需要对蒸汽进行_________计算。

(饱和/过热)A.饱和B.过热答案:A2.在蒸汽系统中,通常使用的管道材质是_________。

(铁/铜/不锈钢)A.铁B.铜C.不锈钢D.碳钢答案:C3.安装控制阀时需要考虑的问题有_________。

(4个答案)A.调节范围B.流量系数C.压降D.材质E.A、B、CF.A、B、DG.B、C、D答案:E4.在调节阀设置中,设定的流量系数一般在_______范围内。

A.0.01~0.1B.0.1~1C.1~10D.10~100答案:B5.蒸汽管道中蒸汽的流速应控制在_________范围内。

(5~10m/s/15~20m/s/25~30m/s)A.5~10m/sB.15~20m/sC.25~30m/sD.30~40m/s答案:C6.通常将控制阀设置在_________段或_________段上。

(进气/出气/稳态/变化)A.进气段或出气段B.稳态段或变化段C.进气段或变化段D.出气段或稳态段答案:A7.蒸汽系统中的减压阀主要用于_________。

(控制蒸汽温度/保护设备安全/调节流量/维护管道)A.控制蒸汽温度B.保护设备安全C.调节流量D.维护管道答案:B8.放气活门应设置在蒸汽管道的_________处。

(高点/低点/任意处)A.高点B.低点C.任意处D.垂直位置答案:A9.蒸汽系统中的_________主要用于启动蒸汽发生器。

(进水泵/循环泵/循环管/排污管)A.进水泵B.循环泵C.循环管D.排污管答案:A10.调节阀的选型需要根据设计流量、所需调节范围、安装位置和_________等因素进行考虑。

(减压方式/管道材质/介质性质/压力变化)A.介质性质B.管道材质C.减压方式D.压力变化答案:A11.蒸汽管道中的过热蒸汽温度应控制在_________范围内。

(100℃左右/200℃左右/300℃左右/400℃左右)A.100℃左右B.200℃左右C.300℃左右D.400℃左右答案:D12.蒸汽管道中的疏水阀主要用于排放管道中的_________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈化工设计中常用冷凝器的设计选用
摘要:分析了目前设计选用的冷凝器所存在的达不到冷凝器负荷和浪费能源的其他问题以及设计人员容易忽视的问题,对在设计中如何合理的选择冷凝器进行了分析,阐述了冷凝器的平均温差的计算方法以及在实际工况中的冷凝段、过冷段和过热段的传热系数的计算方法。

关键词:冷凝器;传热系数;冷凝段;过热段;过冷段
冷凝是气体或液体遇冷而凝结,如水蒸气遇冷变成水,水遇冷变成冰。

温度越低,冷凝速度越快,效果越好。

化工生产中一般以比较容易得到,所以成本低的水或空气作冷凝的介质,经过冷凝操作后,水或空气温度会升高,如果直接排放会造成热污染。

冷凝过程在炼油、化工和石油化工等装置中的应用极其广泛,但是,冷凝过程是复杂的,实际工况是多样的,对于纯组分冷凝工况,会因气相分率的显著变化,引起冷凝器内沿长度方向上气液两相流况的改变,并导致局部传热性能和压力降梯度的变化,对于多组分混合物的冷凝过程,伴随着热量传递、质量传递和动量传递。

对此,一些设计人员在设计中对多种因素的综合分析不够,使选用的冷凝器在实际运行中达不到设计的负荷值。

本文对选用冷凝器时经常遇到和值得注意的几个问题进行了分析和阐述。

一、问题剖析及处理方案
对于单组分的冷凝,虽然不存在化学变化,但是会因气相分率的显著变化,致使介质在冷凝器内的气液两相流况发生很大的变化,
所以,简单的按进出口温度值直接计算传热平均温差的计算方法是很不准确的;对于多组分的冷凝,由于不同介质的物化性质不同,随着冷凝过程的不断进行,气相分率会出现不等的变化情况,而且气液两相的组成与温度的关系曲线和温度与汽化率的关系曲线往
往呈现强烈的非现性,所以更不能简单的按进出口的温度值直接计算传热平均温差。

为了考虑上述变化的影响,对于冷凝段、过热段、过冷段应分别采取不同的计算方法。

1.冷凝段
对于冷凝段,应把整个冷凝过程分割成若干小段,先计算出每一小段的热量及对应的温度分段点和气相分率,再由热平衡关系推算出冷流体的各点对应温度,并由这些分段点温度数据计算出各小段的传热平均温差△ti,然后按各小段热量所占总热负荷的比例进行加权平均,计算出全过程的传热平均温差。

2.过热段
当几股气相物流混合后在进行冷凝,由于系统压力的降低,冷凝器进口状态可能为过热态,当过热段热量所占的比例很小时,则不需要详细计算,而把过热段的热量直接并入冷凝段,在计算传热温差时,进口温度取露点温度,当过热段热量所占比例较大时,则应单独计算过热段的传热计算,可先分别按湿壁和干壁两种机理考虑所谓湿壁机理是基于管壁温度低于冷凝介质的露点温度这一假设,而干壁机理则是基于管壁温度高于冷凝介质的露点温度这一假设,将过热段当作气体的热传递过程来处理,计算传热温差时,湿壁机
理冷凝介质温度取露点温度,而干壁机理则取实际过热段的气相温度,即:
qw=kw△tw(湿壁)
qd=kd△td(干壁)
一般情况下,kw>kd,△tw<△td,这里qw、qd分别为湿壁和干壁机理计算的热量,kw、△tw、kd、△td分别为按湿壁和干壁机理计算的过热段传热系数和传热温差,ts和ts分别为冷凝介质的露点温度和被加热介质的温度,t1为热流体的进口温度,t2为热流体的出口温度,t1为冷流体的进口温度,t2为冷流体的出口温度。

在kw项中,热流体侧的传热系数按冷凝过程计算,而kd项中,热流体侧的传热系数按气体显热过程计算。

3.过冷段
过冷段的传热计算一般只限于管程。

对于壳程过冷,通常是由操作控制来调节的,当设计选用的传热面积留有较大的余量时,操作中可利用冷凝液掩埋管子的多少来控制冷凝液的出口温度。

若在同一设备内既有冷凝段又有过冷段是,往往难以保证较高的过冷段传热系数,因此,当过冷段热量所占比例较大时,通常单独设计一台后冷器。

对于管内全凝过程,过冷段可按单纯液体显热传热过程计算,对于含不凝气的冷凝过程,若有过冷段,则应视为非冷凝两相流动传热过程,尽管不凝气的重量所占的比例可能较小,但体积分率则可能很大,因此,这时应按两相流体传热过程计算。

对于同时存在冷凝段和过冷段的情况,过冷段应单独作为一段处
理,膜传热系数、压力降及平均温差均应与冷凝段分开计算。

4.不互溶混合物的冷凝传热问题不互溶混合物的冷凝传热问题在实际工况中是很常见的
最典型的离子是含蒸汽的烃类混合物的冷凝过程,这类混合物冷凝时,在某一温度范围内(通常为60~90℃),蒸汽和油气同时冷凝,形成不互溶的两个液相,对此,在进行气液平衡计算和分段计算时应多分几段进行计算,否则所选的分段点数据不准,则传热平均温差就算不准确。

由于单位重量蒸气的冷凝潜热约为油气的8倍多,即使蒸气含量较少,但其冷凝热还是很可观的,所以在计算传热系数时,应把气液两相传热系数按照两相所占冷凝液的体积分率进行加权平均。

二、结语
本文对设计选用冷凝器的若干问题进行了分析和阐述,如果按照文中所述的计算方法进行冷凝器的设计选用,既能使冷凝器在实际运行中达到设计的负荷值,又能减少热能的浪费。

参考文献:
[1]王玉珏,黎立新,季建刚,倪海.管壳式冷凝器设计程序研究[j].制冷与空调,2008,(03).
[2]胡骏.管壳式冷凝器工艺设计浅析[j].硫磷设计与粉体工程,2003,(06).
[3]晏刚,马贞俊,周晋,吴亚卫,白晓丹.蒸发式冷凝器的设计与应用[j].制冷与空调,2003,(03).
[4]黄勇超,侯泽飞.冷凝器的流路设计浅析[j].家电科技,2008,(23).
[5]刘岭梅.管壳式冷凝器工艺设计要点分析[j].中国氯碱,2002,(03).
[6]杨红波,鲁洪波,冯昊艳.蒸发式冷凝器配管设计的注意事项[j].制冷,2005,(01).。

相关文档
最新文档