矿物的化学成分

合集下载

矿石成分1

矿石成分1

850矿物矿物是地壳中化学元素在各种地质作用下所形成的,具有必然化学成分和物理性质的天然单质或化合物,矿物是组成岩石和矿石的底子单元。

矿物可以是由几种元素组成的化合物,如磁铁矿〔Fe3O4〕、方解石〔CaCO3〕;也可以是由一种元素组成的单质,如金刚石〔C〕、自然金〔Au〕。

自然界中矿物存在的状态有三种:固态〔石英、正长石、云母〕;液态〔水、自然汞〕;气态〔二氧化碳、硫化氢〕。

自然界中的矿物很多,已发现的有三千多种,绝大大都是固态无机物,液态、气态和固态有机物〔琥珀〕仅数十种。

最常见的矿物有五、六十种。

构成岩石的矿物,叫做造岩矿物,如方解石是组成石灰岩的主要矿物。

能被人们操纵的有益矿物称为造矿矿物,如磁铁矿、黄铁矿等。

造矿矿物是组成矿石的主要成分。

851矿物的鉴定方法分两个步调,第一步是地质工作者按照矿物的外形和物理性质进行肉眼鉴定,其主要依据是:852 石英成分SiO2常呈六方柱状晶体,硬度7〔大于小刀〕。

无色透明的石英称为“水晶〞。

呈肾状、钟乳状的隐晶质石英称为石髓。

呈结核状的称为燧石。

具有各种色彩的二氧化硅变胶体呈平行带状的称为玛瑙。

石英是地壳上分布最广泛的矿物之一,占地壳重量的12.6%,是重要的造岩矿物。

石英的用途广泛,压电石英〔质地透明、无裂隙、无双晶者〕可制谐振器、滤波器,应用于雷达、导航、遥控、遥测、电子、电讯设备等。

其他可作光学仪器、玻璃、研磨材料、精密仪器轴承、研磨材料等。

853正长石成分K[AlSi3O8]晶体常呈短柱状、厚板状。

双晶较发育。

常为肉红色、浅黄红色、浅黄白色,玻璃光泽,硬度6,两组板面完全解理,解理交角90°,故名正长石。

在自然条件下,易风化成高岭石。

正长石是陶瓷及玻璃工业的重要原料,还可以制造钾肥。

854斜长石 Na[AlSi3O8]和Ca[Al2Si2O8],斜长石是由钠长石和钙长石所组成的混合物,二者可按任意比例混合,按照不同比例可分为酸性斜长石、中性斜长石和基性斜长石。

矿物的物理性质和化学性质

矿物的物理性质和化学性质

矿物的物理性质和化学性质矿物是地球内部成分在自然界中形成的固体物质,具有一定的物理性质和化学性质。

本文将介绍矿物的物理性质和化学性质,并探讨其在地质学和矿物学中的重要性。

一、矿物的物理性质1. 密度矿物的密度是指矿物质量与体积之间的比值,通常用克/立方厘米(g/cm³)表示。

矿物的密度与其成分和结构有关,不同矿物的密度差异较大。

例如,金刚石的密度为3.52g/cm³,而方解石的密度为2.71g/cm³。

2. 硬度矿物的硬度是指矿物表面抵抗划伤的能力。

莫氏硬度尺是衡量矿物硬度的常用工具,将矿物按照其硬度分为10个等级,从1级到10级。

例如,石膏的硬度为2,而钻石的硬度为10。

3. 断口矿物的断口是指矿石断裂后的表面形貌。

常见的断口有贝壳状断口、贝壳状断口和贝壳状断口等。

不同矿物的断口形态可以提供有关矿物内部结构的信息。

4. 光泽矿物的光泽是指矿物在光线照射下反射光的特性。

常见的光泽有金属光泽、玻璃光泽、树脂光泽等,不同矿物的光泽类型可以帮助对其进行初步鉴定。

5. 色彩矿物的颜色是指其表面呈现的颜色特征,可以通过肉眼观察。

然而,颜色可能会受到杂质的影响,因此不能仅凭颜色来确定矿物的种类。

二、矿物的化学性质1. 化学成分矿物的化学成分是指矿物中各种化学元素的含量和组合方式。

不同矿物具有不同的化学成分,这些成分直接决定了矿物的性质和特征。

例如,方解石的化学成分为CaCO3,而石英的化学成分为SiO2。

2. 反应性矿物的反应性是指矿物与其他物质发生化学反应的能力。

例如,含铁矿物在受热条件下可以发生氧化反应,产生石锰矿等。

3. 溶解性矿物的溶解性是指矿物在不同溶剂中的溶解程度。

某些矿物可以在水中溶解而形成溶液,而其他矿物则不能溶解。

溶解性也是鉴定矿物的重要性质之一。

4. 酸碱性矿物的酸碱性是指矿物在酸性或碱性环境中的反应性。

有些矿物可以与酸、碱反应,产生溶液或沉淀等。

这种反应性可以帮助矿物学家确定矿物的种类。

安山岩矿石化学成份

安山岩矿石化学成份

安山岩矿石化学成份
安山岩(Andesite)是一种常见的火成岩,其化学成分相对复杂,通常包含以下主要矿物和化学元素:
主要矿物成分:
1. 钙长石(Plagioclase Feldspar):钠长石和钙长石,包括斜长石和安长石。

2. 斜长石(Orthoclase Feldspar):也被称为正长石,是钾长石的一种。

3. 斜长脉石(Clinopyroxene):如辉石和角闪石。

4. 黑云母(Biotite):属于云母矿物。

化学元素成分(典型值,以质量分数表示):
1. 硅(SiO2):约58-63%
2. 铝(Al2O3):约13-18%
3. 钙(CaO):约3-8%
4. 钠(Na2O):约2-5%
5. 钾(K2O):约2-5%
6. 镁(MgO):约1-5%
7. 铁(FeO、Fe2O3):约1-8%
8. 钛(TiO2):约0.5-2.5%
请注意,安山岩的具体化学成分可能会因不同的岩石类型和地质环境而有所变化。

实际的安山岩样本化学成分可以通过岩石分析实验进行准确测定。

3第三讲矿物的化学成分和分类

3第三讲矿物的化学成分和分类

如石英SiO2、方解石Ca[CO3]、白云母K{Al2
[(Si3Al)O10 ](OH)2},铁闪锌矿(Zn,Fe)S。 (2) 对复化合物,阳离子按碱性由强至弱、价态从低 到高的顺序排列。 如白云石CaMg[CO3]2、磁铁矿FeFe2O4。
(3) 附加阴离子通常写在阴离子或络阴离子之后。
非化学计量——成分标型:
含金石英脉中黄铁矿(FeS2), Fe/(S+As)>0.500,——形成深度小; Fe/(S+As)<0.500,——成矿深度大 (Н о в г о р о д о в а ,М .И .等,1980)。—— 判断剥蚀程度。
五、胶体矿物的化学成分特点
1、胶体与胶体矿物 一种或多种粒径介于1-100nm之间的物质微粒(分散质) 分散在另一种物质(分散媒)中形成的不均匀细分散体系,称 为胶体。分散媒多于分散质的胶体称胶溶体;反之称胶凝体。 胶体矿物一般是以水为分散媒、以固相为分散质的水胶凝 体,属非晶质或隐晶质矿物。如蛋白石(SiO2 . nH2O)。 胶体矿物经过长时间,转变为隐晶质的,或继续转变为显 晶质的,叫做胶体的老化。 2、胶体矿物的特殊性质 (1) 胶体矿物的比表面积极大,表面张力也极大,其形态 多为球形或半球形。 (2)分散质和分散媒的量比不固定,可发生老化。 (3)易吸附其他物质。
蛭石 ( Mg,C a) 0.34.5(H 2O)n { Mg3 (SiO1 0)( OH )2 }
层间 水 Interla yer water
H2 O
层间 域
110℃
层间 域缩 小 可再 吸附
写入
胶体水为特殊的吸附水,需写入化学式。
说明
1)单矿物的化学全分析数据中,H2O-称为负水,通 常意指不参加晶格的吸附水,当样品烘干到110度之 前即全部逸出:而正水H2O+系指参加晶格的结构水或 结晶水,其失水温度通常高于110度 2)有些参加晶格的的层间水、沸石水及部分结晶水 在低于110度也可逸出晶格,故分析时应以特殊方法 处理样品中的水。

第二章 矿物-矿物的化学性质、分类

第二章 矿物-矿物的化学性质、分类

2.胶体及其吸附作用
1)胶体:一种或几种物质的微细质点(粒径0.001-0.1um)分散在另一种 物质之中所形成的不均匀分散体系。 包括分散相(分散质、胶体颗粒)和分散介质(分散媒)。 自然界胶体主要形成于表生作用,难溶矿物破碎成微细颗粒( 0.0010.1um)时,分散在水中形成胶体溶液。 2)胶体矿物的形成 胶体颗粒带有电荷,与带不同电荷的胶体颗粒或离子发生相互作用时,胶 体颗粒便相互中和而失去电荷凝聚下沉与分散介质分离,逐渐凝固而形成胶 体矿物。如带负电荷的SiO2胶体颗粒与带正电荷的Fe(OH)3胶体颗粒相遇 时,凝聚成含SiO2的褐铁矿, SiO2含量不固定,因此,胶体矿物的化学组 成常常不固定,成分可以发生变化。 3)胶体吸附作用 除胶体矿物形成时本身的含量变化大,另外胶体颗粒还能吸附分散介质中 的离子,使其矿物成分不稳定而发生变化。如硬锰矿(mMnO2· MnO· 2O) nH 中常混入少量K2O、BaO、CaO、ZnO等组分,原因是带负电荷的MnO2胶 体颗粒能够从水溶液中吸附K+、Ba+、Ca+、Zn+等阳离子。
第三节 矿物的化学性质
矿物的形态和物理性质是其化学成分和内部构造在一定地质 条件下的综合反映,因此研究矿物的化学成分和内部构造对于 鉴定矿物、利用矿物和分析矿物的形成条件极其重要。 一、矿物的化学成分 矿物形成于地壳中,组成元素来自于地壳及其深处,是地壳中 元素永不停止的迁移运动中的相对静止状态的聚集形式,包括 单质和化合物。矿物的化学成分并不是绝对固定的,它可以在 一定范围内发生变化。引起矿物化学成分变化的原因有以下几 种: 二、矿物化学成分变化 1.固溶体:两种或两种以上彼此不能化合的组分,相互混溶成 均匀的固态物质,如日常所见的合金。按其组成方式分为: 1)交替固溶体:类质同像; 2)侵入固溶体:一种组分侵入于另一种组分结晶构造的间隙 之中,其中一部分就是以机械混入物形式出现的杂质。

矿物的分类与特征

矿物的分类与特征

矿物的分类与特征矿物是地壳中自然形成的固体物质,具有一定的化学成分和晶体结构。

它们在地球岩石圈中占据着重要的地位,对于地球科学的研究和资源开发具有重要意义。

矿物的分类与特征不仅是地质学和矿物学的重要内容,也关乎我们对地球的认识与理解。

本文将介绍矿物的分类与特征,并探讨其在地壳演化过程中所起的作用。

一、矿物分类矿物可以根据其组成元素进行分类。

常见的矿物元素有金属元素、非金属元素和半金属元素。

金属矿物是指以金属元素为主要成分的矿物,如铁矿石、铜矿石等。

非金属矿物是指以非金属元素为主要成分的矿物,如石膏、石墨等。

半金属矿物则含有一部分金属元素,一部分非金属元素,如硫铅矿石等。

此外,矿物还可以按照其晶体结构进行分类。

晶体结构是矿物的内部排列方式,决定了矿物的物理性质和化学性质。

根据晶体结构的不同,矿物可以分为六晶系,分别是立方晶系、四方晶系、正交晶系、单斜晶系、三斜晶系和六斜晶系。

二、矿物特征1. 化学成分:矿物的化学成分是确定其分类和特征的重要依据。

矿物的主要成分可以通过化学分析来确定,这样可以了解其组成元素及其含量。

矿物的化学成分决定了其性质和用途,不同的化学成分使不同的矿物具有各自独特的特征和功能。

2. 晶体结构:矿物的晶体结构是由其元素组成的晶格形成的。

晶体结构直接影响着矿物的物理性质和化学性质。

不同的晶体结构使得不同的矿物具有不同的硬度、光泽、颜色和密度等特征,这些特征有助于我们识别和区分不同的矿物。

3. 外部形态:每种矿物都有其独特的外部形态。

矿物的外部形态是由其晶体和晶面的生长方式决定的,包括晶体的形状、表面特征和断口特征等。

通过观察矿物的外部形态,我们可以初步判断其可能的矿物种类,并进一步确认其物种。

4. 物理性质:矿物的物理性质包括硬度、光泽、颜色、密度、磁性等。

这些性质对于矿物的鉴定和分类非常重要。

例如,矿物的硬度可以通过莫氏硬度刮痕实验来确定,光泽可以通过观察其表面反射光线的方式来判断。

化学鉴定教案二——了解矿物的化学成分和检测方法

化学鉴定教案二——了解矿物的化学成分和检测方法

化学鉴定教案二——了解矿物的化学成分和检测方法矿物是地球上含有某一或某些元素的自然物质,在矿产资源开发和利用过程中至关重要。

了解矿物的化学成分和检测方法对于地质勘探、选矿、冶炼等方面都有着重要的意义。

本文将介绍化学鉴定教案二中所涉及的矿物化学成分和检测方法。

一、矿物的化学成分矿物的化学成分是指矿物所含的元素以及这些元素在矿物中的化学结合方式。

矿物的化学成分对其物理、化学和矿物学特性均有影响,是矿物学最基本的方面。

1.矿物所含元素矿物所含元素是指矿物中的元素种类及其相对含量。

矿物中含有的元素种类可能非常多,但是其相对含量却往往是少数几个元素起主导作用。

例如,石英(SiO2)是包含硅元素最多的矿物之一,其它元素的含量很低。

2.元素的化学结合方式元素的化学结合方式是指元素与其他元素在矿物中所形成的化学键和晶格结构。

不同元素之间的化学键和晶格结构会影响矿物的物理、化学和矿物学特性。

例如,石英中硅元素形成了四面体结构,并且硅氧键的键能很高,在高温下仍然稳定。

这使得石英成为许多产业的重要原材料。

二、矿物的检测方法1.矿物形态检测矿物形态是指矿物在外部所显示的形状、大小、颜色、光泽等特征。

通过观察矿物的形态可以判断其是否为某一种矿物,例如,石英通常呈现透明或灰白色,并且具有玻璃状光泽,可以轻松辨认。

2.矿物物理特性检测矿物的物理特性是指矿物在外部环境下的导电、磁性、密度、硬度和光学等特征。

这些特性可以通过实验来检测。

例如,针对石英这种硬度相当高的矿物,我们可以用研磨机和粉末库来检测其硬度。

3.矿物化学成分检测矿物的化学成分是指矿物中所含的元素及其化学结合方式。

通过化学分析可以得出化学成分的定量和定性信息。

一般采用的化学分析方法有火焰光度法、电感耦合等离子体发射光谱法、拉曼光谱法等多种。

4.矿物结构检测矿物的结构是指矿物微观结构中的晶格结构和晶体形态。

现代化学检测技术,如X射线衍射、电子显微镜等,可帮助研究人员确定矿物的结构和晶体形态。

结晶学与矿物学-矿物的化学成分

结晶学与矿物学-矿物的化学成分
➍ 以显微包裹体形式存在的机械混入物…
§3 胶体矿物及其化学成分特点
一、胶体矿物的概念
1.胶体(colloid)
一种或多种物质的微粒(粒径一般1~100nm)
分散在另一种物质之中而形成的不均匀的细分散系。
前者称分散相(分散质),后者称分散媒(分散剂)。
注意: 1)胶体系2相或多相物质的混合物。 2)分散相和分散媒均可是固体、液体或气体。 3)胶体: ➊ 胶溶体:分散媒远多于分散相 ➋ 胶凝体:分散媒远少于分散相
独立的矿物种,而常常作为微量的类质同像混入物
赋存于主要由其他元素所组成的矿物中。
三、离子类型
1.惰性气体型离子
(inert-gas type ions)
2.铜型离子
(chalcophile type ions)
3.过渡型离子
(siderophile type ions)
§2 矿物的化学成分
一、矿物的化学成分类型
Chap.11
矿物的化学成分
研究意义:
➊ 矿物的化学成分是区别不同矿物 的重要依据;
➋ 矿物化学成分的变化特点常作为 反映矿物形成条件的标志;
➌ 矿物化学成分是人类利用矿物资源 的一个重要方面。
§1 地壳中化学元素的丰度
一、元素克拉克值
克拉克值(clarke):各种化学元素在地壳中的
平均含量(即元素在地壳中的丰度)之百分数。
非化学计量矿物(nonstoichiometric minerals):
某些含变价元素的矿物,因形成过程中常处于
不同的氧化还原条件下,其价态会发生变化。 由于受化合物电中性的制约,其内部必然存在
某种晶格缺陷,致使其化学组成偏离理想化合比,
不再遵循定比定律。

矿物的化学成分讲解

矿物的化学成分讲解
中国自建国以来,矿物学得到迅速发展。 1950年发现了我国第一个新矿物-香花石;至今 陆续发现并被国际矿物学会(IMA)通过的中国 新矿物已达数十种。
3、矿物学与其他学科的关系
岩 石 学 胶 体 化 学
矿材

床料

学科



结晶学与矿物学
地 球 化 学
环 境 工 程

地普

学通

原化

理学
矿物的化学组成
二、矿物化学成分的变化
矿物按化学成分可分成两种类型: 单 质-是由同种元素的原子自相结合组 成的,
如金刚石,自然金等; 化合物-是由两种或两种以上不同的化学元素的原子
组成的。又可分为: 简单化合物:由一种阳离子和一种阴离子组成。
NaCl、PbS 单盐化合物:由一种阳离子和一种络阴离子组成。
Ca[CO3]、Mg[SiO4] 复化合物(复盐):由两种以上阳离子与同种
氢氧化铁胶体颗粒的结构示意图
(2) 胶体对介质中离子的吸附具有选择性 是指胶粒在不同溶液中仅能吸附一定的与
胶粒电荷相反的离子,而对其它物质则不吸附 或吸附程度很小。
胶体对离子的选择性,还表现在对一些离 子吸附的难易程度不同,进而表现为被吸附离 子之间的交换。通常,阳离子电价越高,置换 能力越强,一旦被胶体吸附,就难被置换;在 电价相等时,置换能力随离子半径增大而增强。
胶体及胶体矿物的特点
细 胶分 体散

胶体
极大比表面积 带电荷 选择性吸附
胶体的特点
非晶质 无规则几何外形 可变性和复杂性
胶体矿物的特点
胶体矿物形成 ——海滨地带和岩石风化壳 中
矿物/岩石中的水

矿物学基础知识(矿物及其化学成分)

矿物学基础知识(矿物及其化学成分)

第二章矿物及其化学成分第一节矿物的概念在古代,矿物泛指从矿山采据且未经加工的天然物体,随着人类对自然认识的深入和科学技术的进步,矿物的概念也在不断发展变化。

现代对矿物的定义是,地质作用或宇宙作用过程中形成的具有相对固定的化学组成以及确定的晶体结构的均匀固体。

它们具有一定的物理、化学性质,在一定的物理化学条件范用内稳定,是组成岩石和矿石的基本单元。

现代的矿物概念,重点强调以下几个特征。

一、矿物是地质作用或宇宙作用的产物这一特征使矿物区别于在工厂或实验室由人工制造的产物。

由人工制造的、各方面性质与大然产出的矿物相同或相似的产物,可以称人造矿物或合成矿物,如人造水晶、人造金刚石等;而那些在自然界无对应矿物的人工合成物,则不能称为合成矿物,如钛酸锶、钇铝榴石等。

那些来自月球或陨石的矿物,为了强调其来源,特别称为月岩矿物和陨石矿物,或统称宇宙矿物。

二、矿物具有相对固定的化学成分矿物成分可用化学式来表达。

如方解石、闪锌矿,其化学成分可分别用化学式CaCO3和ZnS表示。

然而,由于形成环境的复杂性,矿物的成分可在一定范围内变化。

如闪锌矿中的Zn经常被Fe代替,但Fe的含量最高不能超过26%,向且Zn、Fe一起与S仍保持1:1的定比关系,化学式可表示为(Zn,Fe)S。

因此,可以说矿物成分是相对固定的。

三、矿物具有确定的晶体结构这表明矿物应该是晶体,但只有天然产出的晶体才属于矿物。

外观表现为固体的无晶体结构的物质,如蛋白石、水铝英石等不能称为矿物,这类在地质作用或宇宙作用中形成的具有相对固定的化学成分,但无确定晶体结构的均匀固体,称为准矿物或似矿物。

天然非晶质的火山玻璃,因无一定的化学成分,不属准矿物之列。

四、矿物是均匀固体这一特征排除了天然产出的气体和液体,它们可以是自然资源,但不属于矿物,如自然汞;同时也与岩石和矿石区分开来。

矿物作为组成岩石和矿石的基本单元,应该是各部分均匀的。

五、矿物并非固定不变任何矿物都稳定于一定的物理化学条件范围内,超出这个范围,矿物会发生变化,生成新条件下稳定的矿物。

矿物成分空间及晶体化学计算

矿物成分空间及晶体化学计算

B.含氢氧根的矿物化学式氧原子计算法
运用公式“某阳离子系数=某阳离子数/氧原子总 数/通式中氧原子总数”时,“通式中氧原子总数” 改为“通式中(O2-+OH1-)”
H1+离子数与其他阳离子数求法相同。 OH1- 的数 目等于H1+离子系数。 注意:符合进入硅氧骨干的氧原子数不超过理论 数,其他氧原子作为附加阴离子处理。

3
3.1 Droop公式 计算公式(Droop,1987)
F=2X(1-T/S) 式中: F为分子式中Fe3+的系数; X为分子式中的氧原子数; T为阳离子的理论数目; S为将Fe均作为Fe2+时的阳离子数。
计算步骤
b.计算S值,如果S>T,进入下一步计算。否则,所有 Fe均应为Fe2+ ;
a.以X个氧为基准,计算全Fe均作为Fe2+时的离子系数;
为了避免对水类型判断不准造成 误差,根据与除氢以外的其他阳 离子结合的氧之和计算公约数 。
例:孔雀石化学式计算。 通式:Cu2[CO3](OH)2 实验式:2CuO· CO2· H2 O
组分
CuO ZnO CO2 H2O 总和 公约数
含量%
71.31 0.45 19.78 8.80 100.34
分子数
3.3 剩余氧法
原理:
由于Fe2O3=2FeO+O, EMPA把 Fe3+ 当成Fe2+ 换算FeO时损失了部分 氧(Ox),即EMPA给出的FeO未包 含Ox。据此可求出Fe3+ 。
计算步骤:
(1)按EMPA的百分含量算出阳离子总数; (2)按EMPA的百分含量算出阴离子总数; (3)根据理论阴阳离子比计算理论上的阴 离子总数;则Ox=理论阴离子总数- 实际算出的阴离子总数; (4)求出Fe2O3 的分子数(与Ox原子数相 同)和百分含量,并求出FeO的百分 含量 。

矿物学

矿物学
标型矿物:只限于某种特定的成岩、成矿作用中才能形成的矿物,亦即单成因矿物。只产于碱性火山岩和次火山岩中的白榴石。只生成在低温热液矿床中的辰砂、辉锑矿。只产于变质岩中的十字石,标志中级变质作用环境。蓝闪石是低温高压变质带产物的特征。柯石英超高压变质的产物。标型矿物可以表征特定的地质作用条件。因此,标型矿物本身就是成因上的标志。
辰砂HgS 结构特点: 三方晶系, 晶体结构属变形NaCl型结构。晶体形态: 双晶常见,常呈以c轴为双晶轴的贯穿双晶。物理性质: 猩红色;条痕红色;金刚光泽。硬度2~2.5;解理平行{1010}完全; 比重8.05
黄铜矿 CuFe2+S2 结构特点: 四方晶系。晶体结构类似闪锌矿。晶体形态: 单晶体不常见,晶形呈四方四面体、四方偏三角面体、四方双锥。物理性质: 黄铜色,条痕绿黑色;金属光泽; 硬度3~4;性脆。比重4.1~4.3。
雌黄As2S3 结构特点:单斜晶系。晶体形态: 单晶体呈板状或短柱状, 集合体成片状、梳状、土状等。物理性质: 柠檬黄色;条痕鲜黄色;油脂光泽至金刚光泽。硬度1.5~2;解理平行{010}极完全 ,薄片具挠性。比重3.5。
雄黄 AsS 结构特点: 单斜晶系。晶体形态: 单晶体通常细小,呈柱状。物理性质: 桔红色;条痕淡桔红色;晶面金刚光泽,断面上现树脂光泽。硬度1.5~2;性脆;解理平行{010}完全。比重3.6。
第六讲 硫化物及其类似化合物
化学成分:与硫组成化合物的最主要元素为Fe、Co、Ni、Mo、Cu、Pb、Zn、Ag、Hg、Cd、Bi、Sb、As等。
晶体化学特征:类质同像替代广泛,同质多像普遍。
物理性质:绝大多数硫化物及其类似化合物呈金属色、显金属光泽、条痕色深而不透明。仅少数硫化物如雄黄、雌黄、辰砂、闪锌矿等具金刚光泽,半透明。单硫化物和硫盐矿物硬度低,硬度在2-4,双硫化物及其类似化合物,其硬度增高至5-6.5,同时缺乏解理或解理不完全,其它硫化物大多具有明显解理性。这一类矿物的熔点低,比重一般在4以上。

第二章 矿物的化学成分

第二章 矿物的化学成分

五. 矿物中的水
1. 根据矿物中的水的存在形式及在矿物结构中的作用,矿物中的水 分为吸附水和结合水。在常量元素的分析结果上分别以H2O- 和H2O+。 2. 结合水包括:结晶水和结构水。 3. 具有双重性质的水:沸石水和层间水。 4. 吸附水:是指被机械地吸附于矿物颗粒表面及裂隙中,或渗透入 到矿物集合体中的中性水分子。其不参与晶格中,不属于矿物的化学 组成。矿物中的吸附水含量是不固定的随环境的温度和湿度而变化,, 常压下,在温度为100~110℃条件下,吸附水全部从矿物中逸出而不 破坏矿物的结构。
第二章 矿物的化学成分
一.地壳的化学成分
1. 丰度:地质体中的化学元素含量即为丰度。 2. 克拉克值:地壳中化学元素的含量即为克拉克值。 3. 地壳中分布最广的八种元素:详见表2-1,前八种元素总量占99% 以上,因此可以说地壳主在是由这八种元素所组成。但人们常要开 采的重要矿产资源如:铜、铅、锌、金、银、铀、钨等矿产资源都 不在此八元素之列。 4.聚集元素:有一些元素虽然丰度值低,但它们趋于集中,易形成 独立的矿物,甚至富集成矿床,这些元素即为聚集元素,如:Sb、 Bi、Hg、Ag、Au等。 5.分散元素:有一些元素虽然丰度值高,但它们趋于分散,很少形 成独立的矿物,常常作为微量元素的混入物赋存于其它矿物中,这 些元素即为分散元素,如:Rb、Cs、GA、In、Sc等。这些元素多为 碱金属、碱土金属元素等。 6.小结:地壳中矿物形成不仅与丰度值有关,还与矿物的地球化学 性质有关
四. 胶体矿物的成分
胶体矿物是以水为分散媒,以固相为分散相的水胶凝体而形成的 非晶质或超显微隐晶质的矿物,前者如蛋白石(SiO2.nH2O),后者 如大多数粘土矿物。严格地讲,胶体矿物只是含水量吸附水的准确 性矿物。

矿物的主要类型

矿物的主要类型

矿物的主要类型
矿物是地球上具有一定物理性质和化学成分的天然物质。

根据化学成分和物理性质的不同,可以将矿物分为以下几类:
1. 硅酸盐矿物:主要成分为硅和氧,包括石英、长石、云母等。

这类矿物是地球上最常见的矿物。

2. 硫化物矿物:主要成分为硫和金属,包括黄铁矿、黄铜矿等。

这类矿物常常是金属矿的主要来源。

3. 氧化物矿物:主要成分为氧和金属,包括赤铁矿、磁铁矿等。

这类矿物也是金属矿的重要来源之一。

4. 碳酸盐矿物:主要成分为碳酸盐和金属,包括方解石、菱镁矿等。

这类矿物在建筑和制造业中有很广泛的用途。

5. 硫酸盐矿物:主要成分为硫酸盐和金属,包括石膏、芒硝等。

这类矿物也广泛用于建筑和化工领域。

以上是矿物的主要类型,不同的矿物有不同的用途,对我们的生产和生活有很大的影响。

- 1 -。

宝石矿物的化学成分

宝石矿物的化学成分
第四章 宝石矿物的化学成分
第一节 宝石矿物的化学成分特点
一、宝石矿物多属于含氧盐类硅酸盐、氧 化物类和自然元素类,一些次要的宝石 可以是硼酸盐、碳酸盐、磷酸盐、硫酸 盐、卤化物、硫化物等
(一)含氧盐类
大部分宝石矿物属于含氧盐类,其中 又以硅酸盐类矿物居多。据统计,宝石矿 物中硅酸盐类矿物约占一半。还有少量宝 石矿物属磷酸盐类等。
硫盐矿物,硫与半金属元素砷、锑或铋组成锥状 络阴离子[AsS3]3-、[BiS3]3-,以及由这些锥状 络阴离子相互联接组成复杂形式的络阴离子与阳
离子结合而成。
(五)硫化物类
闪锌矿ZnS、黄铁矿FeS2、辰砂HgS等
二、宝石矿物的化学组成 具有一定范围的可变性
许多宝石矿物的化学组成并不是固定不变的, 而是有一定的变化幅度。
(4)层状硅酸盐
硅氧四面体SiO4成层连接,两层硅氧骨干 层错开联成“双层”构造。在硅氧骨干中, 阳离子八面体层中以及双层之间的离子都 可以发生其他相似离子的替代。
(4)层状硅酸盐
蛇纹石质玉(岫玉)
蛇纹石:Mg6(Si4O10)(OH)8 雕刻石,如寿山石、青田石、鸡血石等的矿物成分为地开石、 高岭石、伊利石、叶蜡石等层状硅酸盐。
中等较大 中等-
较小 较小 较弱
较小 较小 较弱
2.硼酸盐类
[BO3]3-、 [BO4]5-两种络阴离子是硼酸盐的 基本构造单位,在晶体结构中他们可以独立出现, 形成岛状结构;也可以通过共角顶联结成复杂的 络阴离子,形成环状、链状、层状、架状结构的 硼酸盐。
硼铝镁石:MgAlBO4 (岛状结构)
3.磷酸盐类
地开石、高岭石: Al4(Si4O10)(OH)8 叶蜡石:Al2(Si4O10)(OH)2 葡萄石: Ca2Al (AlSi3O10)(OH)2

矿物的基本特性(精)

矿物的基本特性(精)

黄铁矿
方铅矿
自然金
(愚人金)
半金属光泽
半金属光泽较金属光泽稍弱,暗淡而不刺目。如黑钨 矿具有这种光泽。
半金属光泽(黑钨矿)
金刚光泽
金刚光泽——光泽闪亮耀眼。如金刚石、闪锌矿。
金刚光泽(金刚石)
金刚光泽(闪锌矿)
玻璃光泽
玻璃光泽——象普通玻璃一样的光泽。大约占矿物总 数70%的矿物,如水晶、萤石、方解石等具此光泽。
2.1.2.晶质体和非晶质体
晶质体——就是化学元素的离子、离子 团或原子按一定规则重复排列而成的固体。 晶质体是具有格子构造的固体。 非晶质或非晶质体——有些看起来像晶 体的物质如玻璃、琥珀、松香等,它们内部 质点的排列,不具有格子构造,而被称之为 非晶质或非晶质体。 晶体——具有良好几何外形的晶质体, 通称为晶体。 晶质体生长时,如果有足够的空间,则 晶质体往往表现为一定的几何外形,即具有 晶面、晶棱。就形成了晶体。 晶质体和晶体除了外表形态有区别外, 内部结构并无任何区别,所以二者概念基本 相同。
在同一格子构造中, 在不同的方向上质点的排列一般是不一样 的,因此,晶体的性质也随方向不同而有所改变,这就是晶体的 异向性。如蓝晶石(又名二硬石)的硬度,随方向的不同而有显 著的差别,平行晶体延长的方向可用小刀刻动,而垂直于晶体延 长的方向则小刀不能刻动。
晶体的特性
对称性
在晶体的外形上,也常有相同的晶面、晶棱和角顶重 复出现。这种相同的性质在不同的方向或位置上作有规律 地重复。
矿物丰富多彩的颜色
2.1.5.2 矿物的条痕
条痕——矿物粉末的颜色。 通常是利用条痕板(无釉瓷板),观察矿物在其上划 出的痕迹的颜色。由于矿物的粉末可以消除一些杂质 和物理方面的影响,所以比其颜色更为固定。因此条 痕在鉴定矿物上具有重要意义。 有些矿物如赤铁矿,其颜色可能有赤红、黑灰等色, 但其条痕则为樱红色,是一致的;有些矿物如黄金、 黄铁矿,其颜色大体相同,但其条痕则相差很远,前 者为金黄色,后者则为黑或黑绿色。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、胶体矿物的化学成分特点
1、胶体与胶体矿物 一种或多种粒径介于1-100nm之间的物质微粒(分散相
或分散质)分散在另一种物质(分散媒或分散剂)中形成的不 均匀细分散体系,称为胶体。
分散相和分散媒均可以是固体、液体或气体
胶溶体:分散媒多物:一般是以水为分散媒、以固相为分散相的水胶 凝体,属非晶质或隐晶质矿物。如蛋白石(SiO2 . nH2O)。
二、元素的离子类型
天然矿物,除少数(约30种)元素以单质存在外,绝大多 数是由两种或两种以上化学元素组成的化合物。在化合物 中,阴、阳离子间的结合,主要受其外层电子的构型所制 约。通常根据离子的外层电子的构型,将其分为三种类型:
惰性气体型离子:外层电子8或2(与惰性气体原子相同) 铜型离子:外层电子18或18+2(与Cu+相似) 过渡型离子:外层电子9~17,有未满的d电子。
注意:元素的离子类型与矿物种的关系不是绝对的,在极端 外部条件下,也可改变,如:Cu+在氧化环境下也可形成氧 化物:赤铜矿Cu2O
三、矿物的化学计量性与非化学计量性
自然界中,只有少数矿物的化学成分是相当固定的,其 化学组成遵守物理化学分配定律——定比定律和倍比定律, 各组分间具严格的化合比,如水晶,即几乎由纯SiO2组成。
元素的离子类型与矿物种类的关系:
惰性气体型离子:易失去电子,与氧形成离子键, 形成氧化物、含氧盐矿物和卤化物,故称为亲氧元 素或亲石元素;
铜型离子:电离势高,不易失去电子,与硫形成共 价键,形成硫化物,故称为亲硫元素或亲铜元素;
过渡型离子:性质介于上述两类离子之间,可形成 氧化物、含氧盐,也可形成硫化物,取决于元素在 周期表中的位置(靠近惰性气体型离子还是靠近铜型 离子),也取决于外部氧化-还原条件。
克拉克值对矿物化学成分的影响:
克拉克值高的元素组成的矿物种含量也高,地壳上的 矿物种主要是由前述8种元素组成的硅酸盐(占地壳 总质量的3/4)和氧化物(占地壳总质量的1/5) ;
但是,地壳上的矿物种除了受克拉克值影响外,还要 受到元素的地球化学性质的影响,有的元素含量低, 但它能够形成独立矿物种, 而有的元素尽管含量多 ,却不能够形成独立矿物种。这就涉及到元素是趋于 “聚集”或“分散”的地球化学性质。
元素在地壳中的平均含量的百分数,叫克拉克 值,可分为:质量克拉克值,原子克拉克值。
地壳中元素丰度极不均匀,最多的氧(O)与最 少的氡(Rn)含量相差1018倍。
地壳中最常见的元素为: O,Si,Al,Fe,Ca,Na,K,Mg 这8种,占地壳总质量的 99%。
常见8种元素的克拉克值
元 素 质量克拉克值(%) 原子克拉克值 (%) 体积百分比 (%)
(3)胶体矿物随着时间的推移或热力学因素的改变,胶粒会 自发地凝聚,并发生脱水,颗粒逐渐增大而成为隐晶质, 最终可转变为显晶质矿物,这一过程称为胶体的老化或 陈化。由胶体矿物老化形成的隐晶质或显晶质矿物称为 变胶体矿物
胶体的特殊性质决定了胶体矿物的化学成分具有可变性 和复杂性的特 点。(1)胶体矿物的分散相与分散媒的量比 不固定,即其含水量是可变的。(2)胶体微粒表面具有很 强的吸附性,致使胶体矿物可吸附介质中的其他成分而改变 成分,其吸附量有时相当可观,甚至可富集形成有工业价值 的矿床。
2、胶体矿物的特殊性质 (1)胶体微粒非常小,具有极大的比表面积和很高的表面
能,因此胶体矿物不稳定,具有吸附其他物质和自发 地转化为结晶质的趋势,从而降低其表面能,达到稳 定状态
(2)胶粒表面的电荷未达到饱和,带电的胶体微粒能够选择 性的吸附周围介质中与胶体所带电荷相反的其他离子, 此即胶体的吸附性。
非化学计量——成分标型:
含金石英脉中黄铁矿(FeS2), Fe/(S+As)>0.500,——形成深度小; Fe/(S+As)<0.500,——成矿深度大。
判断剥 蚀程度
质同像替代和非化学计量性是引起矿物成分 在一定范围内变化的主要原因,其他因素还有阳 离子的可交换性、胶体的吸附作用、矿物中含水 量的变化,及以显微包裹体形式存在的机械混入 物等
O
46.60
Si
27.72
Al
8.13
Fe
5.00
Ca
3.63
Na
2.83
K
2.59
Mg
2.09
62.55 21.22 6.47 1.92 1.94 2.64 1.42 1.84
93.77 0.86 0.47 0.43 1.03 1.32 1.83 0.29
可以形象地比喻:整个地壳是由O离子作最紧密堆积,阳离 子充填在空隙中。
例如:蛋白石,由许多许多的非常细的SiO2胶粒及水 组成。单个SiO2胶粒可能有晶体结构,但太小了; 许多胶粒组合是杂乱的,因此,整体不显晶态特征 而是非晶态或超显微隐晶态。
天然矿物并非理想化学纯的物质。由于外界环境的复杂 性,致使其化学组成在一定范围内变化
(1)化学计量矿物 在各晶格位置上的组分之间遵守定比定律、具严格化 合比的矿物。 例:水晶SiO2、铁闪锌矿(Zn,Fe)S、 橄榄石(Mg,Fe)2[SiO4]。 (2)非化学计量矿物 化学组成偏离理想化合比,不再遵循定比定律的矿物 。 —— 矿物标型 例:磁黄铁矿 Fe1-xS(有部分Fe3+ 存在)。
第十二章 矿物的化学成分
地壳中化学元素的丰度 元素的离子类型 矿物的化学计量性与非化学计量性 胶体矿物的化学成分特点 矿物中的水 矿物的化学式及其计算
一、地壳中化学元素的丰度
矿物的化学成分是确定一个矿物的基本依据之一, 化学元素是形成矿物的物质基础。地壳中化学元 素的丰度与矿物的化学组成有着密切的关系。
克拉克值对矿物化学成分的影响:
聚集元素:Au(金)、Ag(银)、Bi(铋)、 Sb(锑)等,尽管克拉克值很低,但它们的地 球化学性质是趋于聚集的,所以能够形成独立 的矿物种,甚至富集成矿;
分散元素:Ru(钌)、Cs(铯)、Ga(镓)、 In(铟)等,尽管克拉克值较高,但它们的地 球化学性质是趋于分散的,所以不能够形成独 立的矿物种,往往以微量元素混入物(如类质 同像形式)赋存于其他矿物种中。
相关文档
最新文档