半导体二极管的特性及主要参数PPT课件

合集下载

《模拟电子技术》课件第2章半导体二极管及其基本电路

《模拟电子技术》课件第2章半导体二极管及其基本电路
成为本自由征电半子导(体带负电), 同时的共价导键电中机留理下一个空
位,称为空穴(带正电)。
+4
+4
+4
+4 空穴
&;4
4
自由电子
空穴:共价键中的空位。
空穴的移动:相邻共价
+4
键中的价电子依次充填
空穴来实现。 +4
电子空穴对:由热激发
而产生的自由电子和空
+4
穴对。
§1.1 半导体的基本知识
P型半导体——掺入三价杂质元素(如硼)的 半导体。【Positive】
1. P型半导体
三、杂质半导体
掺入三价元素(如硼)
Si
Si
BS–i
Si
空穴
掺杂后空穴数 目大量增加,空穴导电 成为这种半导体的主要 导电方式,称为空穴半 导体或 P型半导体。
接受一个 电子变为 负离子
硼原子
空穴:多子(多数载流子)
26
三、二极管的主要参数: (1) 最大整流电流IF
§3.3 二极管
二极二管极长管期反连向续电工流作急时, 允许剧通增过加二时极对管应的的最反大 整流向电电流压的值平称均为值反。向
击穿电压VBR。
(2) 反向击穿电压VBR和最大反向工为作安全电计压,V在R实M际工作
(3) 反向电流IR (4) 极间电容Cj
当vI = 6 sinωt (V)时,分别对于理想模型和恒压降模型绘出相应
的输出电压vO的波形。
R
+a.理想模型 D
当AVI=0V时 +
D截止
当VI=4V时
D导通
当VI=6V时
D导通
vI
VREF

第一章二极管-PPT课件

第一章二极管-PPT课件

本征半导体:
四价元素
外层四个电子
原子实或惯性核 为原子核和内层电子组成
价电子为相邻两原子所共有
3.本征激发:
本征激发 电子空穴 成对产生
自由电子(带负电-e)
+4
+4
+4
+4
+4
+4
+4
4.载流子 :自由 +4 运动的带电粒子:
电子带负电: +4 -e=-1.6×10-19c,
空穴带正电:
e=1.6×10-19c.
锗管UD(on)=0.2V。
(2)反向特性: 二极管两端加上反向 电压时,反向饱和电流IS很小(室温下, 小功率硅管的反向饱和电流IS小于0.1μA。 (3)反向击穿特性 二极管两端反向电压 超过U(BR)时,反向电流IR随反向电压的增大 而急剧增大, U(BR) 称为反向击穿电压。
(5)齐纳击穿:由高浓度掺杂材料制成的PN结中耗尽区宽度很窄,即使反向电
压不高也容易在很窄的耗尽区中形成很强的电场,将价电子直接从共价键中拉出 来产生电子-空穴对,致使反向电流急剧增加,这种击穿称为齐纳击穿。
§1 .2 二极管的特性及主要参数 一、 半导体二极管的结构和类型
构成:PN 结 + 引线 + 管壳 = 二极管(Diode) 符号:阳极(正极) 阴极(负极) 分类: 1.根据材料 硅二极管、锗二极管 2.根据结构 点接触型、面接触型、平面型 1.二极管的结构和符号
空穴(带正电+e)
5.复 合: 自由电子和空穴在运动 中相遇重新结合成对消 失的过程。 电子电流:IN
空穴电流:IP 共有电子 递补运动
+4
+4

模拟电子课件第一章_半导体材料及二极管

模拟电子课件第一章_半导体材料及二极管
–10 0 0.2 0.4
–20
I/uA
锗管的伏安特性
图 二极管的伏安特性
ID
UD
-
UD / V
34
1.正偏伏安特性
当正向电压比较小时,正向电流很小,几乎为零。,
相应的电压叫死区电压。
死区电压: 硅二极管为0.5V左右 锗二极管为0.1V左右
i/mA 30
当正向电压超过死区电压后,二极 管导通, 电流与电压关系近似指数关 系。
42
3.二极管的其它主要参数
➢最大平均整流电流 : I F 允许通过的最大正向平均电流 ➢最高反向工作电压 : 最V大R 瞬时值,否则二极管击穿
1
18
半导体中某处的扩散电流 主要取决于该处载流子的浓 度差(即浓度梯度),而与 该处的浓度值无关。即扩散 电流与载流子在扩散方向上 的浓度梯度成正比,浓度差 越大,扩散电流也越大。
图1.6 半导体中载流子的浓度分布
1
19
即:某处扩散电流正比于浓度分布曲线上该点处的斜率
和。
dn( x) dx
dp ( x) dx
在硅或锗的晶体中掺入少量的 5 价杂质元素,即构成 N 型半导体 (或称电子型半导体)。
常用的 5 价杂质元素有磷、锑、砷等。
1
10
原来晶格中的某些硅原子将 被杂质原子代替。 杂质原子与周围四个硅原子 组成共价键时多余一个电子。 这个电子只受自身原子核吸引, 在室温下可成为自由电子。
5价的杂质原子可以提供电子, 所以称为施主原子。
Problem: N型半导体是否呈电中性?
1
+4
+4
+5
+4
+4
+4

半导体二极管

半导体二极管

(1-4)
1. 4 二极管的主要参数
1. 最大整流电流 IFM
在规定的环境温度和散热条件下,二极管长 期使用时,所允许流过二极管的最大正向平 均电流。
2. 最高反向工作电压URM
通常称耐压值或额定工作电压,是指保证二 极管截止的条件下,允许加在二极管两端的 最大反向电压。手册上给出的最高反向工作 电压URM一般是击穿电压UBR的一半。
(1-5)
3. 反向电流 IR
指二极管未击穿时的反向电流。反向电流 越小越好。通常反向电流数值很小,但受 温度影响很大,温度越高反向电流越大, 一般温度每升高10o,反向电流约增大一倍。 硅管的反向电流较小,锗管的反向电流要 比硅管大几十到几百倍。
4. 最最高工作频率fM
指保证二极管导向导电作用的最高工作频 率。当工作频率超过fM时,二极管将失去导 向导电性。
模拟电子技术
半导体二极管
1. 1 半导体二极管的结构和符号
PN 结加上管壳和引线,就成为半导体二极管。
点接触型
触丝线
PN结
引线 外壳线
基片
面接触型
二极管的ห้องสมุดไป่ตู้路符号: 阳极
阴极
(1-2)
二极管的主要特性---单向导电
1、二极管的偏置:二极管单向导电的特性,只有外加一定极 性的电压(称为偏置)才能表现出来。阳极电位高于阴极 电位称为二极管的正向偏置,反之称为反向偏置。
2、二极管的主要特性:单向导电,即正向导通,反向截止。 或曰:只能一个方向导电,另一个方向不导电,即由阳极 向阴极可以顺利的流电流,反方向不流电流。
只能一个方向 电,
(1-3)
1. 3 二极管的伏安特性
I
反向击穿 电压UBR

1.2 半导体二极管

1.2 半导体二极管

面接触型管子的特点是,PN 结的结面积大,能通过较大电流,但结电容也大,适用于低频较低整流电路。

半导体二极管半导体二极管是由一个PN 结构成的二端元件。

其端钮有确定的命名,即一端叫阳极a ,一端叫阴极k 。

1.2 半导体二极管1.2.1 半导体二极管结构和类型(1)点接触型二极管(2)面接触型二极管(3)平面型二极管点接触型管子的特点是,PN 结的结面积小,因而结电容小,主要用于高频检波和开关电路。

既不能通过较大电流,也不能承受高的反向电压。

平面型管子的特点是,PN 结的结面积大时,能通过较大电流,适用于大功率整流电路;结面积较小时,结电容较小,工作频率较高,适用于开关电路。

1.结构2. 分类普通二极管特殊二极管变容二极管发光二极管光电二极管激光二极管二极管稳压二极管稳压光电转换调谐按材料的不同,常用的二极管有硅管和锗管两种;按其用途二极管分为普通二极管和特殊二极管两大类:整流、滤波、限幅、钳位、检波及开关等。

忽略正向导通压降和电阻,二极管相当短路;二极管反向截止时忽略反向饱和电流,反向电阻无穷大,二极管相当开路路。

I S uiU R 二极管是一种非线性元件,其特性就是PN 结的特性,而电流i D 与两端的电压u D 的关系近似为:1.2.2 二极管的伏安特性普通二极管是应用PN 结的饱和区、死区和导通区的特性制成的二端元件。

电路符号为:(1)伏安关系(2)理想二极管)(1-=T D V u S D e I i I S —反向饱和电流;V T —温度的电压当量,当常温(T=300K )时,V T =26mV 。

在正常工作范围内,当电源电压远大于二极管正向导通压降时,可将二极管当作理想二极管处理,其伏安特性如图示。

k a D最大整流电流又称为额定正向平均电流,是指二极管长时间使用时,允许通过的最大正向平均电流。

此值取决于PN 结的面积、材料和散热情况。

1.2.3 二极管的主要电参数1)最大整流电流I F2)最高反向工作电压U R3)最大反向电流I RM I F I RM ui U R 最大反向电流是指二极管加上最高反向工作电压时的反向电流值。

二极管及其应用PPT课件

二极管及其应用PPT课件

.
37
.
38
2 半导体二极管的模型
半导体二极管是一种非线性器件 理想二极管模型
(a)伏安特性曲线 (b)代表符号(c)正向偏置
时的电路模型 (d)反向偏置时的电路模型
图13 理想模型
.
39
例1 电路如图14所示。
三只性能相同的
二极管 D1、D2、D3和三只
220V,40W 的灯泡 L1、L2、
.
31
2、二极管的主要参数
(1)最大整流电流 IF 在规定散热条件下,二极管长期使用时,
允许通过二极管的最大正向平均电流。由 PN 结的面积和散热条件决定,如果电流超 过这个值,很可能烧坏二极管。
(2)最高反向工作电压 URM 二极管工作时允许加的最大反向电压。
为确保管子安全运行,通常规定URM约为击 穿电压UBR的一半。
++ + +
多数载流子——自由电子
少数载流子—— 空穴
.
施主离子
10
(2) P型半导体(空穴型半导体)
在本征半导体中掺入三价的元素(硼)
空穴
空穴
+4
+4
+4
ห้องสมุดไป่ตู้
+4
+4
+43
+43
+4
+4
+4
+4
+4
.
返11 回
2. P型半导体
在本征半导体中掺入三价杂质元素,如硼、镓等。
硅原子
+4
空穴
+4
硼原子
+4
当反向电压增加到反向击穿电压UBR时,反向电流急剧增大,这种 现象称为“反向击穿”。反向击穿破坏了二极管的单向导电性,如果 没有限流措施,二极管可能因电流过大而损坏。

二极管PPT课件

二极管PPT课件

二极管的单向导电性
综上所述,二极管加正向电压大 于死区电压时才会导通,加反向电压 时管子处于截止状态,这一特性称为 二极管的单向导电性。
第13页/共21页
[例1.1] 图1-3所示电路中,当开关S闭合后,H1、H2两个指 示解 :灯 ,由哪电 路一图个可可知能,发开光关 S?闭 合 后 , 只 有 二 极 管 V 1 正 极 电 位 高 于 负 极 电 位 ,
(b)面接触型
结面积大、正向电流大、结 电容大,用于大电流整流电路。
金属触丝 N型锗片
阳极引线
阴极引线
( a ) 点接触型 外壳
铝合金小球 阳极引线
N型硅
PN结 金锑合金
底座
阴极引线 ( b ) 面接触型
第8页/共21页
(c) 平面型
用于集成电路制作工艺中。 PN结结面积可大可小,用于高频整 流和开关电路中。
1、半导体的特点:
(1)半导体的导电能力介于导体与绝缘体之间 。 (2)半导体受外界光和热的刺激时,其导电能力将会有显著变化。 (3)在纯净半导体中,加入微量的杂质,其导电能力会急剧增强 。
半导体中两种携带电荷粒子: (1)空穴(带正电荷) (2)自由电子(带负电荷)
载流子
第1页/共21页
2、P型半导体和N型半导体
即处于正向导通状态,所以H1指示灯发光。
图1-3 [例1.1]电路图
第14页/共21页
4. 晶体二极管的主要参数
(1)最大整流电流IFM
指管子长期运行时,允许通过的最大直流电流。
(2)反向击穿电压UBR
指管子反向击穿时的电压值。
(3)最高反向工作电压URM
二极管正常工作时允许承受的最高反向电压 (约为UBR的一半)。

(整理)半导体二极管 (2).

(整理)半导体二极管 (2).

5.1.1 PN结导入:提问:物体按导电性能可分为哪几类?导体、绝缘体和半导体。

导电性能良好的物体叫导体,导电性性能很差的物体叫绝缘体。

导电性能处于导体和绝缘体之间的物体叫半导体。

新课:一、半导体基本特性及常用半导体半导体导电性能处天导体和绝缘体之间。

除此之外,半导体还有很多重要特性,热敏、光敏和掺杂特性。

热敏讲解:光敏讲解:掺杂讲解:掺杂后导电能力大大增强。

纯净的半导体称为本征半导体。

常用半导体有硅、锗。

硅介绍:石头的主要成份,原来叫矽,1952年后因与 硒 同音,改称硅。

台湾仍称矽,香港可称矽,也可称硅。

在地球上含量非常多。

锗含量较少,在半导体中用得也较少。

二、P型半导体和N型半导体纯净半导体经过掺后,有电子导电和空穴导电两种方式。

空穴导电讲解:以空穴导电为主的叫P型半导体。

电子导电讲解:以电子导电为主的叫N型半导体。

三、PN结的概念及单向导电性1、PN结概念将P型半导体和N型半导体结合在一结,在结合处形成PN结。

PN结是构成各种半导体器件的基础。

P是英语单词正极(Positive)的第一个字母,N是英语单词负极(Negative)的第一个字母。

PN结如果用中文来解释就是 正负结 。

2、PN结单向导电性演示实验(请同学们上台一起做):2.1接通电源,小灯泡点亮。

提问:交换电源正负极,小灯泡是否还亮?2.2交换电源正负极,小灯泡还亮。

结论:小灯泡双向导通,不分正负极。

2.3在电路中间插入二极管(二极管内部结构主要是PN结)。

做同样实验,发现有一种情况下灯亮,还有一种情况下灯泡不亮了。

2.4简化实验,保持电源正负极不变,只改变二极管的方向,发现一个方向小灯泡亮,一个方向小灯泡不亮了。

2.5结论:PN结具有单向导电性,即只有一个方向导通,另一个方向不导通(专有名称:截止)。

2.6以自行车气嘴为例说明PN结单向导电的工作原理:2.7正向偏置:P接+,N接-;反向偏置:P接-,N接+。

简化理解:正接+,负接-,正向偏置;正按-,负椄+,反向偏置。

半导体二极管的参数及温度特性

半导体二极管的参数及温度特性
(1) 当温度上升时,死区电压缩小, 正向管压降降低。
△uD/ △T = –(2∽2.5)mV/℃。
T2 T1
iD
O
uD
即 温度每升高1°C,管压降
降低(2∽2.5)mV
T2 T1
T1>T2
模拟电子技术
1 半导体二极管及其应用
(2) 温度升高,反向饱和电流增大。
模拟电子技术
T2 T1
iD
即 平均温度每升高10°C,反向饱和电流 增大一倍
死区 电压
O
uD
模拟电子技术
1 半导体二极管及其应用
(6)最高工作频率 fM 当工作频率过高时,其单向导 电性明显变差。
模拟电子技术
1 半导体二极管及其应用
二极管电路仿真:
模拟电子技术
1 半导体二极管及其应用
大幅提高信号频率,二极管失去单向导电性:
模拟电子技术
1 半导体二极管及其应用
2. 半导体二极管的温度特性
U(BR)
流的平均值。
(2)反向击穿电压 U(BR)
击穿 电压
二极管能承受的最高反向电压。
O
uD
普通二极管的最高反向电压一般在几十伏以上。

模拟电子技术
1 半导体二极管及其应用
(3)最高允许反向工作电压 UR
iD
为了确保管子安全工作,所允许的最高
反向电压。
IR
UR=(1/2~2/3)U(BR)
(4)反向电流 IR 室温下加上规定的反向电压 测得的电流。
U(BR)
击穿 电压
硅管为(nA)级,锗管为微安(μA)级
死区 电压
O
uD
模拟电子技术
1 半导体二极管及其应用

电子课件电子技术基础第六版第一章半导体二极管

电子课件电子技术基础第六版第一章半导体二极管

当反向电压增加到反向击穿电压 UBR 时,反向电流会急 剧增大,这种现象称为“反向击穿”。反向击穿会破坏二极管 的单向导电性,如果没有限流措施,二极管很可能因电流过 大而损坏。
无论硅管还是锗管,即使工作在最大允许电流下,二极管 两端的电压降一般也都在 0.7 V 以下,这是由二极管的特殊 结构所决定的。所以,在使用二极管时,电路中应该串联限 流电阻,以免因电流过大而损坏二极管。
§1-1 半导体的基本知识 §1-2 半导体二极管
§1-1 半导体的基本知识
学习目标
1. 了解半导体的导电特性。 2. 理解 PN 结正偏、反偏的含义。 3. 掌握 PN 结的单向导电性。
一、半导体的导电特性
物质按导电能力强弱不同可分为导体、半导体和绝缘体三 大类。半导体的导电能力介于导体和绝缘体之间。目前,制 造半导体器件用得最多的是硅和锗两种材料。由于硅和锗是 原子规则排列的单晶体,因此用半导体材料制成的半导体管 属于晶体管。
半导体具有不同于导体和绝缘体的导电特性,见表。
半导体的导电特性
纯净的半导体称为本征半导体,它的导电能力是很弱的。 利用半导体的掺杂特性,可制成 P 型和 N 型两种杂质半导体 。
二、PN 结及其单向导电性
1. PN 结 用特殊的工艺使 P 型半导体和 N 型半导体结合在一起,就会在交界处 形成一个特殊薄层,该薄层称为“PN 结”,如图所示。PN 结是制造半导体 二极管、半导体三极管、场效应晶体 管等各种半导体器件的基础。
2. 分类
二极管的种类
二、二极管的伏安特性
为了直观地说明二极管的性质,通常用二极管两端的电压 与通过二极管的电流之间的关系曲线,即二极管的伏安特性 曲线来描述,如图所示。
在下图所示的坐标图中,位于第一象限的曲线表示二极管 的正向特性,位于第三象限的曲线表示二极管的反向特性。

二极管PPT课件完整版

二极管PPT课件完整版
二极管导通和截止工作状态判断方法
分析二极管工作状态时,应判断二极管是导通还是截止。
下表是二极管工作状态识别方法,表中,“+”表示正极性电
压,“-”表示负极性电压。
电压极性及状态
工作状态
+ 正向偏置电压足够大 二极管正向导通,两引脚间电阻很小.
-
正向偏置电压不够大
二极管不足以正向导通,两引脚间内阻 还比较大.
几百KΩ
正向电阻很大,说明二极管已经开路。
几十KΩ
二极管正向电阻较大,正向特性不好。
测量时表针不稳定
测量时表针不能稳定在某一阻值上,二极 管稳定性能差。
火 灾 袭 来 时 要迅速 疏散逃 生,不 可蜂拥 而出或 留恋财 物,要 当机立 断,披 上浸湿 的衣服 或裹上 湿毛毯 、湿被 褥勇敢 地冲出 去
2.二极管故障处理方法
二极管故障种类和特征
故障名称
故障特征
开路
二极管正、负极之间已经断开,正向和反向电阻均 为无穷大。二极管开路后,它的负极没有电压输出。
击穿
二极管正负极间已经通路,正反向电阻一样大。二 极管击穿后,不一定表现为正负极间电阻为零,会 有一些电阻值。负极没有正常信号电压输出,会出 现电路过流故障。
解说
新电路符号
电路符号中表示出两根引脚,通过三角 形表示正极、负极引脚.
旧电路符号
比较新旧两种符号的不同之处是,三角 形老符号要涂黑,新符号不涂黑.
发光二极管 在普通二极管符号的基础上,用箭头形
符号
象的表示了这种二极管能够发光。
稳压二极管 它的电路符号与普通二极管电路符号不
符号
同之处在于负极表示方式不同。
火 灾 袭 来 时 要迅速 疏散逃 生,不 可蜂拥 而出或 留恋财 物,要 当机立 断,披 上浸湿 的衣服 或裹上 湿毛毯 、湿被 褥勇敢 地冲出 去
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
第一章 半导体二极管
温度对二极管特性的影响
IV / mA 80C
60
20C
40
20 –50 –25
0 0.4
– 0.02
UV / V
T 升高时,
UV(th)以 (2 2.5) mV/ C 下降
6
第一章半导体二极管
IV / mA
60 40 20 –50 –25
0 0.4 0.8 UV / V
第一章 半导体二极管
1.2 半导体二极管的特性及 主要参数
一、 二极管的结构与符号 二、 二极管的伏安特性 三、 二极管的主要参数 四、 二极管电路的分析方法
1
第一章 半导体二极管
一、 半导体二极管的结构
构成: PN 结 + 引线 + 管壳 = 二极管
符号:
分类:
VD 硅二极管
点接触型
按材料分
按结构分 面接触型
S
uV
2、恒压降模型
iV Uth uV
0.7 V (Si) uv = Uth 0.2 V (Ge)
3、二极管的折线近似模型
iv
斜率1/ rD Uth U
I uv
rv
U I
rv
S
Uth
Uth
10
第一章 半导体二极管
4、小信号模型 如果二极管在它的伏安特性的某一小范围
内工作,例如静态工作点Q 附近工作,则可把 伏安特性看成一条直线,其斜率的倒数就是所 求的小信号模型的微变电阻。 如果二极管在它的伏安特性的某一小范围内工作,例如静态工作点Q(此时有
锗二极管
平面型
正极 引线
N 型锗片
铝合金 负极 小球 引线
正极引线 PN 结
正极 负极 引线 引线
N型锗 金锑
P
合金
N
外壳
触丝 负极引线
底座
点接触型
面接触型
P 型支持衬底
集成电路中平面2 型
3
第一章 半导体二极管
二、二极管的伏安特性
iV /mA
0 U Uth iV = 0
U BR IR
反 向
iv

等效电路模型
un
伏安特性
11
个人观点供参考,欢迎讨论!
– 0.02
– 0.04
硅管的伏安特性
IV / mA
15
10
5
– 50 – 25
–0.01 0 0.2 0.4
–0.02
UV / V
锗管的伏安特性
7
第一章 半导体二极管
三、 二极管的主要参数
IV IF
U (BR) URM O
UV
1. IF — 最大整流电流(最大正向平均电流) 2. URM — 最高反向工作电压,为 UBR / 2 3. IR — 反向饱和电流(越小单向导电性越好) 4. fM — 最高工作频率(超过时单向导电性变差)
4
第一章 半导体二极管
反向击穿类型: 电击穿 — PN 结未损坏,断电即恢复。 热击穿 — PN 结烧毁。
特别注意: 温度对二极管的特性有显著影响。当温度升高
时,正向特性曲线向左移,反向特性曲线向下移。 变化规律是:在室温附近,温度每升高1℃,正向 压降约减小2~2.5mV,温度每升高10℃,反向电 流约增大一倍。
反向特性 O

死区
穿
电压
正向特性 Uth uV /V
Uth = 0.5 V (硅管) 0.1 V (锗管)
U Uth iV 急剧上升
Uth = (0.6 0.8) V 硅管 0.7 V (0.1 0.3) V 锗管 0.2 V
UBR U 0 U < UBR
iV = IR < 0.1 A(硅) 几十 A (锗) 反向电流急剧增大 (反向击穿)
8
第一章 半导体二极管
影响工作频率的原因 — PN 结的电容效应
结论: 1. 低频时,因结电容很小,对 PN 结影响很小。
高频时,因容抗减小,使结电容分流,导致单向 导电性变差。 2. 结面积小时结电容小,工作频率高。
9
第一章 半导体二极管
四、二极管电路的分析方法
1、理想模型
特性
iV
符号及 等效模型
相关文档
最新文档