2018七年级数学竞赛试题(含答案)
2018年全国初中数学联合竞赛试题(含解答)
2018年全国初中数学联合竞赛试题(含解答)2018年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准。
第一试,选择题和填空题只设7分和0分两档;第二试各题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次。
如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数。
第一试一、选择题(本题满分42分,每小题7分)1.已知$x,y,z$满足$\frac{2355x-y}{y+2z}=\frac{x}{z-z^2}$,则$\frac{y+2z}{3x-y-z}$的值为()A) 1.(B) $\frac{5}{3}$。
(C) $-\frac{1}{3}$。
(D) $-\frac{3}{5}$.答】B.解:由$\frac{2355x-y}{y+2z}=\frac{x}{z-z^2}$,得$5x-3y=3xz-3xz^2$,即$y=\frac{5}{3}x-\frac{3}{3}z+\frac{3}{3}xz^2$,所以$\frac{y+2z}{3x-y-z}=\frac{\frac{5}{3}x+\frac{1}{3}z}{\frac{4}{3}x-\frac{2}{3}z}=\frac{5}{3}$,故选(B)。
注:本题也可用特殊值法来判断。
2.当$x$分别取值$1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{2005},\frac{1}{2006}, \frac{1}{2007}$时,计算$\frac{1}{2007}+\frac{x}{21+x^2}$代数式的值,将所得的结果相加,其和等于()A) $-1$。
(B) $1$。
(C) $0$。
(D) $2007$.答】C.解:$\frac{1}{2007}+\frac{x}{21+x^2}=\frac{1}{21}\left(\frac{21}{ 2007}+\frac{21x}{21+x^2}\right)=\frac{1}{21}\left(\frac{1}{1+x ^{-2}}\right)$,所以当$x=1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{2005},\frac{1}{200 6},\frac{1}{2007}$时,计算所得的代数式的值之和为$0$,故选(C)。
2018年七年级下册数学竞赛试题及答案
2018年汇星学校七年级下学期数学竞赛试题班级: 姓名: 分数:一. 选择题(每小题5分,共30分)1.若a<0 , ab<0 , 那么51---+-b a a b 等于( )A . 4B .-4C . -2a+2b+6 D. 19962.数轴上坐标是整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2009厘米的线段AB,则线段AB 盖住的整点的个数是( )A.2008 或2009 B . 2008或 2010 C . 2009 或2010 D . 2010 或20113.已知{a x b y ==是方程组{5272=+=+y x y x 的解, 则a-b 的值为( )A . 2B . 1 C. 0 D. -14.若a<3 , 则不等式(a-3)x<a-3的解集是( )A. x>1 B .x<1 C . x>-1 D . x<-15.方程2x+y=7的正整数解有( )A. 一组 B .二组 C .三组 D . 四组6.不等式组{5335+<-<x x a x 的解集为x<4, 则a 满足的条件是( ) A. a<4 B .a=4 C .a ≤4 D .a ≥4二. 填空题(每小题4分,共24分)1.不等式组{4252>+<-a x b x 的解集是0<x<2, 则a+b 的值等于_______2.已知543z y x==, 且10254=+-z y x , 则z y x +-52的值等于________3.计算200920081431321211⨯+⋅⋅⋅+⨯+⨯+⨯ = _________4.一个角的补角的31等于它的余角, 则这个角等于_____度.5.计算(1+715131++)×-91715131⎪⎪⎭⎫⎝⎛+++(1+91715131+++)×(715131++)=.6。
2018—2019学年第二学期七年级数学期末检测试题1江苏版苏科版七下含答案解析
2018—2019学年第二学期七年级数学期末检测试题之七年级数学期末考试重组10套【江苏版】01第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.已知,下列不等式中,变形正确的是A.B.C.D.2.下列计算正确的是()A.3x+5y=8xy B.(﹣x3)3=x6C.x6÷x3=x2D.x3•x5=x83.如图,与是同位角的为A.B.C.D.4.下列命题是真命题的是( )A.如果,则B.如果|a|=|b|,那么a=bC.两个锐角的和是钝角D.如果一点到线段两端的距离相等,那么这点是这条线段的中点5.世界上最小的开花结果植物是出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076g,将数0.000000076用科学记数法表示为()A.0.76×10﹣7B.7.6×10﹣8C.7.6×10﹣9D.76×10﹣106.下列各式能用平方差公式计算的是A.B.C.D.7.一个多边形的内角和等于,这个多边形的边数为A.9 B.6 C.7 D.88.已知不等式组有解,则的取值范围是()A.B.C.D.9.已知是方程组的解,则a﹣b的值是()A.B.C.D.10我们知道:、、、、……,通过计算,我们可以得出的计算结果中个位上的数字为()A.3 B.9 C.7 D.1第Ⅱ卷(非选择题共120分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在试卷规定的区域内.二、填空题(本大题共8小题,每小题3分,共24分)11.不等式的解集为______.12直接写出计算结果:______;________.13将“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式为.14如图,,,则=____°.15已知代数式与是同类项,则_______,________.16若三角形三条边分别是2,x,其中x为整数,则x可取的值有______个17已知,,则2x3y+4x2y2+2xy3=_________.18.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a、b的代数式表示).三、解答题(本大题共8小题,共96分)19计算:;.20解不等式:,并把解集表示在数轴上.21因式分解:(1);(2)25(a+b)2-9(a-b)2 .22请将下列证明过程补充完整:已知:如图,AB∥CD,CE平分∠ACD.求证:∠1=∠2.证明:∵CE平分∠ACD (),∴∠=∠(),∵AB∥CD(),∴(),∴∠1=∠2().23解方程组:(1);(2)24如图,方格纸中每一个小方格的边长为1个单位,试解答下列问题:的顶点都在方格纸的格点上,先将向右平移2个单位,再向上平移3个单位,得到,其中点、、分别是A,B、C的对应点,试画出.连接、,则线段、的位置关系为______,线段、的数量关系为______;平移过程中,线段AB扫过部分的面积为______平方单位25某隧道长1200米,现有一列火车从隧道通过,测得该火车从开始进隧道到完全出隧道共用了70秒,整列火车完全在隧道里的时间是50秒,求火车的速度和长度.26已知BM、CN分别是△的两个外角的角平分线,、分别是和的角平分线,如图△;、分别是和的三等分线(即,),如图△;依此画图,、分别是和的n等分线(即,),,且为整数.(1)若,求的度数;(2)设,请用和n的代数式表示的大小,并写出表示的过程;(3)当时,请直接写出+与的数量关系.2018—2019学年第二学期七年级数学期末检测试题之七年级数学期末考试重组10套【江苏版】01第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.已知,下列不等式中,变形正确的是A.B.C.D.【来源】江苏省扬州市高邮市2017-2018学年期末【答案】C【解析】【分析】根据不等式的两边都加(或减)同一个数,不等号的方向不变;不等式的两边都乘以(或除以)同一个正数,不等式的方向不变;不等式的两边都乘以(或除以)同一个负数,不等式的方向改变,可得答案.【详解】、不等式的两边同时减去,不等式仍成立,即,故本选项错误;、不等式的两边同时乘以再减去,不等式仍成立,即,故本选项错误;、不等式的两边同时乘以,不等式的符号方向改变,即,故本选项正确;、不等式的两边同时除以,不等式仍成立,即,故本选项错误.故选:.【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等式的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.2.下列计算正确的是()A.3x+5y=8xy B.(﹣x3)3=x6C.x6÷x3=x2D.x3•x5=x8【来源】江苏省常州市2016-2017学年期末【答案】D【解析】A、3x+5y,无法计算,故此选项错误;B、(﹣x3)3=﹣x9,故此选项错误;C、x6÷x3=x3,故此选项错误;D、x3•x5=x8,故此选项正确.故选:D.3.如图,与是同位角的为A.B.C.D.【来源】江苏省扬州市高邮市2017-2018学年期末【答案】C【解析】【分析】同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角.【详解】解:根据同位角的定义得与是同位角,故选:D.【点睛】本题考查了同位角,解答此类题确定三线八角是关键,可直接从截线入手对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.4.下列命题是真命题的是( )A.如果,则B.如果|a|=|b|,那么a=bC.两个锐角的和是钝角D.如果一点到线段两端的距离相等,那么这点是这条线段的中点【来源】江苏省丹阳市2017-2018学年下学期期末【答案】A【解析】分析:根据不等式的性质对A进行判断;根据绝对值的意义对B进行判断;根据锐角在大小对C进行判断;根据中点的定义对D进行判断.【解答】解:A、因为,所以,所以A选项正确;B、|a|=|b|,则a=b或a=-b,所以B选项错误;B、三角形的一个外角大于与之不相邻的任何一个内角,所以B选项错误;C、两个锐角的和有可能是锐角,有可能是直角,也有可能是钝角,所以C选项错误;D、线段上一点到该线段两端的距离相等,那么这点是这条线段的中点,所以D选项错误.故选:A.点睛:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.5.世界上最小的开花结果植物是出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076g,将数0.000000076用科学记数法表示为()A.0.76×10﹣7B.7.6×10﹣8C.7.6×10﹣9D.76×10﹣10【来源】江苏省常州市2016-2017学年期末【答案】B【解析】根据科学记数法的书写规则,,a只含有一位整数,易得:0.000 0000 76=7.6×10﹣8,故选:B.6.下列各式能用平方差公式计算的是A.B.C.D.【来源】江苏省淮安市淮安区2017-2018学年期末【答案】B【解析】【分析】运用平方差公式时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.【详解】中不存在互为相同或相反的项,不能用平方差公式计算,故本选项错误;中是相同的项,互为相反项是与,符合平方差公式的要求,故本选项正确;中不存在相反的项,不能用平方差公式计算,故本选项错误;中符合完全平方公式,不能用平方差公式计算,故本选项错误.故选:.【点睛】考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.7.一个多边形的内角和等于,这个多边形的边数为A.9 B.6 C.7 D.8【来源】江苏省淮安市淮安区2017-2018学年期末【答案】D【解析】【分析】多边形的内角和可以表示成,依次列方程可求解.设这个多边形边数为,则,解得.故选:.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要回根据公式进行正确运算、变形和数据处理.8.已知不等式组有解,则的取值范围是()A.B.C.D.【来源】江苏省盐城市射阳县2016年期末【答案】C【解析】∵不等式组有解,∴,故选:C点睛:本题是反向考查不等式组的解集,也就是在不等式组有实数解的情况下确定不等式中字母的取值范围,解答本题时,把不等式的解集在数轴上表示出来,利用数轴可以直观地表示不等式组的解集.9.已知是方程组的解,则a﹣b的值是()A.B.C.D.【来源】江苏省泗阳县2016-2017学年期末考试【答案】D【解析】试题分析:根据方程组解的定义将代入方程组,得到关于a,b的方程组.两方程相减即可得出答案:∵是方程组的解,∵.两个方程相减,得a﹣b=4.考点:1.二元一次方程组的解;2.求代数式的值;3.整体思想的应用.10我们知道:、、、、……,通过计算,我们可以得出的计算结果中个位上的数字为()A.3 B.9 C.7 D.1【来源】江苏省宿迁市宿豫区2017-2018学年期末【答案】C【解析】分析:由、、、、……可知3n的个位数分别是3,9,7,1,…,四个数依次循环,用的指数2019除以4得到的余数是几就与第几个数字的个位数字相同,由此解答即可.详解:由题意可知,3的乘方的末位数字以3、9、7、1四个数字为一循环,∵2019÷4=504…3,∵的末位数字与33的末位数字相同是7.故选C..点睛:此题考查了尾数特征及规律探究:数字的变化类,通过观察得出3的乘方的末位数字以3、9、7、1四个数字为一循环是解决问题的关键.第Ⅱ卷(非选择题共120分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在试卷规定的区域内.二、填空题(本大题共8小题,每小题3分,共24分)11.不等式的解集为______.【来源】江苏省丹阳市2017-2018学年下学期期末【答案】x>-1 ,【解析】分析:不等式移项合并,将x系数化为1,即可求出解集.【解答】解:不等式1-x<2,移项合并得:-x<1,解得:x>-1.故答案为:x>-1点睛:此题考查了解一元一次不等式,熟练掌握不等式的解法是解本题的关键.请在此填写本题解析!12直接写出计算结果:______;________.【来源】江苏省南京玄武区2016年期末考试【答案】【解析】,.故答案为:,.13将“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式为.【来源】江苏省南京玄武区2016年期末考试【答案】如果两条直线平行于同一条直线,那么这两条直线平行.【解析】试题分析:命题由题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.命题可以改写为:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.考点:命题的改写点评:任何一个命题都可以写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.在改写过程中,不能简单地把题设部分、结论部分分别塞在“如果”、“那么”后面,要适当增减词语,保证句子通顺而不改变原意.14如图,,,则=____°.【来源】江苏省扬州市江都区2016-2017学年期末【答案】【解析】利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.连接AC并延长,标注点E,∵∠DCE=∠D+∠DAC, ∠BCE=∠B+∠BAC, ∠BCE+∠DCE=106°,∠A+∠B=47°, ∴∠BCE+∠DCE=∠D+∠DAB+∠B=106°,∴∠D=106°-47°-47°=12°.故答案为:12.15已知代数式与是同类项,则_______,________.【来源】江苏省宿迁市宿豫区2017-2018学年期末【答案】3 1【解析】分析:根据同类项的定义列方程组求解即可.详解:由题意得,,解之得,.故答案为:3,1.点睛:本题考查了利用同类项的定义求字母的值,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可.16若三角形三条边分别是2,x,其中x为整数,则x可取的值有______个【来源】江苏省淮安市淮安区2017-2018学年期末【答案】3【解析】【分析】根据已知边长求第三边的取值范围为:,进而解答即可.【详解】设第三边长为,则,,故取、、.故答案为:.【点睛】本题考查了三角形三边关系定理:三角形两边之和大于第三边,两边之差小于第三边.17已知,,则2x3y+4x2y2+2xy3=_________.【来源】江苏省宿迁市宿豫区2017-2018学年期末【答案】-25【解析】分析:先用提公因式法和完全平方公式法把2x3y+4x2y2+2xy3因式分解,然后把,代入计算即可.详解:∵,,∴2x3y+4x2y2+2xy3=2xy(x2+2xy+y2)=2xy(x+y)2=2×() ×52=-25.故答案为:-25.点睛:此题主要考查了提取公因式法以及公式法分解因式,整体代入法求代数式的值,,熟练掌握因式分解的方法是解答本题的关键.18.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a、b的代数式表示).【答案】ab【解析】试题解析:设大正方形的边长为x1,小正方形的边长为x2,由图∵和∵列出方程组得,解得,∵的大正方形中未被小正方形覆盖部分的面积=()2-4×()2=ab.考点:平方差公式的几何背景.三、解答题(本大题共8小题,共96分)19计算:;.【来源】江苏省常州市2017-2018年第二学期期末联考【答案】;.【解析】分析:(1)先根据零指数幂、绝对值的意义、负整数指数幂的意义逐项化简,然后合并同类项即可;(2)第一项根据完全平方公式计算,第二项根据平方差公式计算,然后合并同类项即可. 详解:原式;原式.点睛:本题考查了实数的运算和整式的运算,熟练掌握完全平方公式和平方差公式是解答本题的关键.20解不等式:,并把解集表示在数轴上.【来源】江苏省泰州市姜堰区2016-2017学下学期期末【答案】x≤﹣2【解析】【试题分析】不等式的两边同时乘以6,去分母得:;去括号得:移项得:系数化为1得:解集在数轴上表示见解析.【试题解析】去分母得:;去括号得:移项及合并得:系数化为1得:不等式的解集为x≥-2,在数轴上表示如图所示:21因式分解:(1);(2)25(a+b)2-9(a-b)2 .【来源】江苏省兴化市2017-2018学年期末【答案】(1) 6ab(2bc-1);(2)4(4a+b)(a+4b)【解析】分析:(1)根据本题特点,直接使用“提公因式法”分解即可;(2)根据本题特点,先用“平方差公式”分解,再提公因式即可.详解:(1)原式=6ab·2bc-6ab·1=6ab(2bc-1);(2)原式=[5(a+b)]2-[3(a-b)]2=(5a+5b+3a-3b)(5a+5b-3a+3b)=(8a+2b)(2a+8b)=4(4a+b)(a+4b).点睛:熟练掌握“综合提公因式法和公式法分解因式的方法”是解答本题的关键.22请将下列证明过程补充完整:已知:如图,AB∥CD,CE平分∠ACD.求证:∠1=∠2.证明:∵CE平分∠ACD (),∴∠=∠(),∵AB∥CD(),∴(),∴∠1=∠2().【来源】江苏省盐城市射阳县2016年期末【答案】已知,2,ECD ,角平分线的性质或定义,已知,∠1=∠ ECD ,两直线平行,内错角相等,等量代换【解析】试题分析:由角平分线定义和平行线的性质及等量代换即可证明.试题解析:证明:∵CE平分∠ACD (已知),∴∠2 =∠ECD (角平分线的性质或定义),∵AB∥CD(已知),∴∠1= ∠ECD (两直线平行,内错角相等),∴∠1=∠2(等量代换).23解方程组:(1);(2)【来源】江苏省盐城市射阳县2016年期末【答案】(1);(2)【解析】试题分析:(1)方程组利用加减消元法求出解即可(2)先①+③得x与y的方程④,然后将②④联立求出x和y的值,最后将x和y的值代入①中求出z即可;试题解析:(1),①7得,③②2得,④③④得,,∴,将代入方程①,解得.∴原方程组的解为.(2)①+③得,,②2得,⑤,+⑤得,将代入方程②,解得,将,代入方程①,解得,∴原方程组的解为.24如图,方格纸中每一个小方格的边长为1个单位,试解答下列问题:的顶点都在方格纸的格点上,先将向右平移2个单位,再向上平移3个单位,得到,其中点、、分别是A,B、C的对应点,试画出.连接、,则线段、的位置关系为______,线段、的数量关系为______;平移过程中,线段AB扫过部分的面积为______平方单位【来源】江苏省扬州市高邮市2017-2018学年期末【答案】(1)作图见解析,(2)平行;相等;(3)15【解析】【分析】直接利用平移的性质分别得出对应点位置进而得出答案;利用平移的性质得出线段、的位置与数量关系;利用三角形面积求法进而得出答案.【详解】解:如图所示:,即为所求;线段、的位置关系为平行,线段、的数量关系为:相等.故答案为:平行,相等;平移过程中,线段AB扫过部分的面积为:.故答案为:15.【点睛】此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.25某隧道长1200米,现有一列火车从隧道通过,测得该火车从开始进隧道到完全出隧道共用了70秒,整列火车完全在隧道里的时间是50秒,求火车的速度和长度.【来源】江苏省南京玄武区2016年期末考试【答案】火车速度20m/s, 长度200m【解析】试题分析: 设火车的车身长为x米,速度是ym/s,根据行程问题的数量关系路程=速度×时间建立方程组求出其解即可.试题解析:设火车的车身长为x米,速度是ym/s,根据题意可得:,解得,答:火车的车身长为200米,速度是20m/s.26已知BM、CN分别是△的两个外角的角平分线,、分别是和的角平分线,如图△;、分别是和的三等分线(即,),如图△;依此画图,、分别是和的n等分线(即,),,且为整数.(1)若,求的度数;(2)设,请用和n的代数式表示的大小,并写出表示的过程;(3)当时,请直接写出+与的数量关系.【来源】江苏省盐城市射阳县2016年期末【答案】(1);(2),过程见解析;(3)【解析】(1)先根据三角形内角和定理求出,根据角平分线求出,再根据三角形内角和定理求出即可;(2)先根据三角形内角和定理求出+,根据n等分线求出,再根据三角形内角和定理得出,代入求出即可(3)试题分析:试题解析:(1),∵、分别是和的角平分线,∴∴.(2)在△中,+,,(3)点睛:本题以三角形为载体,主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质、角平分线的性质、三角形的内角和是的性质,熟记性质然灵活运用有关性质来分析、推理、解答是解题的关键.。
山西省太原市2017-2018学年七年级下学期阶段性测评数学试卷【PDF版】
解:(1)答案不惟一.例如:C2a + 6 ) U + 2 6 ) = 2a2 + 5M + 2 6 2.
4
(2) A . 如图
X — . < ■ " ■ ■ ■
----->■
X
分6
!
p
t
B. 如图
< X ..... ...... ----
分
X
T
<i
'4
评 分 说 明 :只 要 求 画 出 图 形 并 标 明 字 母 ,不 必 写 出 结 论 .
用含的式子表示七年级数学第6页共6页2017?2018学年第二学期七年级阶段性测评数学试题参考答案及评分标准择题本大是题号g含101个小题2毎小是3这3甘45j678910答案bcacbbddca二填空题本大题含5八小题每小题3分共i5分11
2017〜 2018学年第二学期七年级阶段性测评
数学试卷
(考试时间:上午8: 00— 9:30) 说 明 :本试卷为闭卷笔答,考试时不允许携带科学计算器,时 间 9 0 分钟,满分1〇〇分.
B. j
2.下列说法正确的是
C. - 4
D. 4
A . 同旁内角互补 C. 对顶角相等 3.下列运算正确的是
B•在同一平面内,若 0 丄 6 , 6 丄 (?,则 a 丄 D. —个角的补角一定是钝角
A . a _3 + a -5 = a2 C. (x - 1 )( 1 - x ) = x 2 - 1
= Z i3.
要求:不写作法,保留作图痕迹,标明字母.
容
〇
M
N
20.(本 题 6 分)
根据几何图形的面积关系可以形象直观地表示多项式的乘法.例如:(2a + 6 ) U + 6 ) =
2018年全国中学生数学能力竞赛(决赛)试题(七年级)
2018年全国中学生数学能力竞赛(决赛)试题七年级(初一)组(试题总分120分;答题时间120分钟)一、画龙点睛(本大题共8小题,每小题3分,总计24分)1.现在儿子的年龄是8岁,父亲的年龄是儿子年龄的4倍,()年后父亲的年龄是儿子年龄的3倍。
2.如果(a+5)x|a+4|+8=0是关于x的一元一次方程,那么a2+a-x=()。
3.已知a2+bc=14,b2-2bc=-6,则3a2+4b2-5bc=( )。
4.一串有黑有白其排列有一定规律的珠子,被盒子遮住一部分(如图所乐),则这串珠子被盒子遮住的部分有()颗。
第4题图5.探究数字“黑洞”:“黑洞”原指非常奇怪的天体,它体积小,密度大,吸引力强,任何物体到了它那里都别想再“爬”出来,无独有偶,数字中也有类似的“黑洞”。
满足某种条件的所有数,通过一种运算,都能被它吸进去,无一能逃脱它的魔掌。
譬如:任意找一个3的倍数的数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数位上的数字再立方,再求和……重复运算下去,就能得到一个固定的数T=()。
我们称之为数字“黑洞”。
6.如图,4个半径为1cm的圆相靠着放在一个正方形内,则阴影部分的面积是( )cm2。
(π取3.14).第6题图7.已知A,B,C,D,E代表1至9中不同的数字,ABCD+EEE=2018,则ABCD•EEE的最大值等于()。
8.已知三角形的内角和是180°,如果一个三角形的三个内角的度数都是小于120的质数,则这个三角形三个内角的度数分别是()。
二、一锤定音(本大题共4道小题,每小题3分,总计12分)9.甲、乙、丙三个人,一个姓张,一个姓李,一个姓王。
他们一个是银行职员,一个是计算机程序员,一个是秘书。
已知甲既不是银行职员也不是秘书;丙不是秘书;张不是银行职员;王不是乙,也不是丙。
请问:甲、乙、丙三人的姓氏依次是()。
A.李,王,张B.张,王,李C.王,李,张D.王,张,李10.如图,小圆圈表示网络的结点,结点之间的线段表示它们有网线相连。
山西省2018-2019学年第二学期七年级阶段二质量评估试题·数学(华师版)·试题+答案
七年级数学答案(华师版) 第 2 页 (共 4 页)
20. 解:(1)分类讨论 !!!!!!!!!!!!!!!!!!!!!!!!! 2 分
(2)①当 2x-1≥0 时,2x-1=5,!!!!!!!!!!!!!!!!!!!! 3 分
解得 x=3,!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 4 分
的解互为相反数,则 k 的值是 ________.
x+2y=-1
15. 对于 x,y 定义一种新运算“☆”,x☆y=ax+by,其中 a,b 是常数,等式右边是通常的加法
和乘法运算.已知 3☆5=15,4☆7=28,则 1☆1 的值为 ________.
七年级数学(华师版) 第 2 页 (共 4 页)
A. 0 个
B. 1 个
C. 2 个
D. 3 个
第Ⅱ卷 非选择题 (共 90 分)
二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)
11.“m 的 2 倍与 8 的和不大于 2 与 m 的和”用不等式表示为 ________.
12. 若 x+y=7,3x-5y=-3,则 3(x+y)-(3x-5y)的值是 ________.
项符合题目要求)
沿 1. 下列选项中,是一元一次方程的是
此 A. 3x+y=1
B. a2+2ab+b2
线
C. 3x-3=2(x-2)
D. 2x-3<0
折
2. 若 x>y,则下列式子中错误的是
叠 A. x-3>y-3
B.
x 3
>
y 3
C. x+3>y+3
D. -3x>-3y
3. 若 x=2 是ቤተ መጻሕፍቲ ባይዱ于 x 的方程 2x+3m-1=0 的解,则 m 的值为
人教版2017~2018学年七年级上期末考试数学试题及答案
人教版2017~2018学年七年级上期末考试数学试题及答案2017-2018学年度(上)七年级期末质量监测数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.-3的相反数是()A。
3B。
-3C。
0D.无法确定2.下列各组数中,相等的是()A。
(-3)与-3B。
|-3|与-3C。
(-3)与-3D。
|3|与-33.下列说法中正确的个数是()①a一定是正数;②- a一定是负数;③- (- a)一定是正数;④a一定是分数。
A。
0个B。
1个C。
2个D。
3个4.下列图形不是正方体的展开图的是()A。
B。
C。
D。
5.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第7个图案中▲的个数为().A.28B.25C.22D.216.方程2x-1=-5的解是()A.3B.-3C.2D.-27.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心。
据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A。
5×1010千克B。
50×109千克C。
5×109千克D。
0.5×1011千克8.如图所示四个图形中,能用∠α、∠AOB、∠O三种方法表示同一个角的图形是()A。
B。
C。
D。
9.下列结论正确的是()A。
直线比射线长B。
一条直线就是一个平角C。
过三点中的任两点一定能作三条直线D。
经过两点有且只有一条直线10.文具店老板以每个144元的价格卖出两个计算器,其中一个赚了20%,另一个亏了20%,则卖这两个计算器总的是()A。
不赚不赔B。
亏12元C。
盈利8元D。
亏损8元二、填空题(本题有6小题,每小题3分,共18分)11.数轴上的点A、B位置如图所示,则线段AB的长度为3.12.单项式- ab的系数是-1;多项式xy+2x+5y-25是次项式2x。
2018-2019年江苏省常州市七年级下期末联考数学考试试题(有答案)
常州市教育学会学业水平监测七年级数学试题一、选择题(本大题共8小题)1.下列计算中,正确的是()A. B. C. D.2.下列图形中,由,能得到的是()A. B.C. D.3.不等式组的解集在数轴上表示正确的是A.B.C.D.4.下列各组线段能组成一个三角形的是A. 4cm,6cm,11cmB. 3cm,4cm,5cmC. 4cm,5cm,1cmD. 2cm,3cm,6cm5.若方程组的解满足,则a的值是()A. 6B. 7C. 8D. 96.下列命题是真命题的是()A. 同旁内角相等,两直线平行B. 若,则C. 如果,那么D. 平行于同一直线的两直线平行7.《九章算术》中有这样的问题:只闻隔壁人分银,不知多少银和人;每人6两少6两,每人半斤多半斤;试问各位善算者,多少人分多少银注:这里的斤是指市斤,1市斤两设共有x人,y两银子,下列方程组中正确的是()A. B. C. D.8.若关于x的不等式组所有整数解的和是10,则m的取值范围是()A. B. C. D.二、填空题(本大题共8小题)9.计算:.10.分解因式:.11.生物具有遗传多样性,遗传信息大多储存在DNA分子上一个DNA分子的直径约为,这个直径用科学记数法可表示为________cm.12.写出命题“互为倒数的两个数乘积为1”的逆命题:_______________________________________.13.若,,则.14.下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案需8根火材棒,图案需15根火柴棒,,按此规律,图案需________________根火材棒.15.已知,则n的值是________________.16.如图,已知,,,则________________.三、计算题(本大题共4小题)17.计算:;.18.分解因式:;.19.解方程组和不等式组:20.求代数式的值,其中,,.21.22.23.24.25.26.四、解答题(本大题共5小题)27.如图,已知点E在AB上,CE平分,求证:.28.为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗已知2棵A种树苗和3棵B种树苗共需270元,3棵A种树苗和6棵B种树苗共需480元.、B两种树苗的单价分别是多少元该小区计划购进两种树苗共28棵,总费用不超过1550元,问最多可以购进A种树苗多少棵29.如图,从四边形ABCD的纸片中只剪一刀,剪去一个三角形,剩余的部分是几边形请画出示意图,并在图形下方写上剩余部分多边形的内角和.30.已知关于x、y的方程组求代数式的值;若,,求k的取值范围;若,请直接写出两组x,y的值.31.如图,直线,垂足为O,直线PQ经过点O,且点B在直线l上,位于点O下方,点C在直线PQ上运动连接BC过点C作,交直线MN于点A,连接点A、C与点O都不重合.小明经过画图、度量发现:在中,始终有一个角与相等,这个角是________________;当时,在图中画出示意图并证明;探索和之间的数量关系,并说明理由.常州市教育学会学业水平监测2018.6七年级数学试题答案和解析【答案】1. A2. C3. B4. B5. C6. D7. D8. A9.10.11.12. 如果两个数的乘积为1,那么这两个数互为倒数13. 2214.15. 516.17. 解:原式;原式.18. 解:原式;原式.19. 解:,,得:,将代入,得:,解得:,方程组的解为;,解不等式,得:;解不等式,得:,不等式组的解集为.20. 解:原式,当,,时,原式.21. 证明:平分,,又,,.22. 解:设A种树苗单价为x元,B种树苗单价为y元,根据题意,得,解方程组,得,答:A种树苗单价为60元,B中树苗单为50元.设购进A种树苗m棵,则购进B种树苗棵,根据题意,得,解不等式,得,因为m为整数,所以m的最大值是15,答:最多可以购进A种树苗15棵.23. 解:如图,剩余的部分是三角形,其内角和为,如图,剩余的部分是四边形,其内角和为,如图,剩余的部分是五边形,其内角和为.24. 解:,,得,,把代入,得,,,,,;,,,解得;,.25. 解:如图所示:,,,,,,.如图,设BC与OA相交于点E,在和中,,,又,,;如图,,,在四边形ABCO中,,即和互补,和的数量关系是相等或互补.【解析】1. 【分析】本题主要考查同底数幂的乘法,合并同类项,幂的乘方,同底数数幂的除法掌握法则是解题的关键根据同底数幂的乘法:底数不变,指数相加;合并同类项:把同类项的系数相加,字母和字母的指数不变;幂的乘方:底数不变,指数相乘;同底数幂的除法:底数不变,指数相减是解题的关键.【解答】解:,故A正确;B.,故B错误;C.,故C错误;D.,故D错误.故选A.2. 【分析】此题考查的是平行线的性质,根据两直线平行,同位角相等结合对顶角相等易得答案.【解答】解:由,能得到,故不合题意;B.由,根据两直线平行,内错角相等能得到,故不合题意;C.如图:,,又,.故C合题意;D.观察图形与为同旁内角,由,不能得到,故不合题意.故选C.3. 【分析】本题主要考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,再表示在数轴上即可判断.【解答】解:,解不等式,得,解不等式,刘,所以不等式组的解集为,不等式组的解集在数轴上表示如下:.故选B.4. 【分析】此题考查了三角形的三边关系判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,逐一进行分析即可.【解答】解:,不能组成三角形,故不合题意;B.,能组成三角形,故合题意;C.,不能组成三角形,故不合题意;D.,不能组成三角形,故不合题意;故选B.5. 【分析】此题考查的是二元一次方程组的解法以及二元一次方程组的解和一元一次方程的解法,利用加减消元法解方程组,将x,y的值用含a的代数式表示,将其代入,转化为关于a的一元一次方程求解即可.【解答】解:,,得:,解得:,,得:,解得:,,,解得:.故选C.6. 【分析】本题主要考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理利用平行线的判定定理,绝对值的性质,有理数的乘方进行判断即可.【解答】解:同旁内角互补,两直线平行,故A错误;B.若,则,则B错误;C.如果,,则,故C错误;D.平行于同一直线的两直线平行,故D正确.故选D.7. 【分析】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组根据题意“每人6两少6两,每人半斤多半斤”可以列出相应的方程组,从而得出答案【解答】解:根据题意得:.故选D.8. 【分析】本题主要考查了一元一次不等式组的整数解,是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于m的不等式组,要借助数轴做出正确的取舍首先确定不等式组的解集,先利用含m的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m的不等式,从而求出m的范围.【解答】解:,由得;由得;故原不等式组的解集为.又因为不等式组的所有整数解的和是,由此可以得到.故选A.9. 【分析】此题考查的是多项式乘多项式用其中一个多项式中的每一项去乘另一个多项式的每一项,再把所得的积相加即可.【解答】解:.故答案为.10. 【分析】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键直接提取公因式xy进而分解因式得出即可.【解答】解:.故答案为.11. 【分析】本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数绝对值小于1的正数也可以利用科学记数法表示,一般形式为与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:.故答案为.12. 【分析】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理根据逆命题的概念,交换原命题的题设与结论即可的出原命题的逆命题.【解答】解:命题“互为倒数的两个数乘积为1”的逆命题为如果两个数的乘积为1,那么这两个数互为倒数.故答案为如果两个数的乘积为1,那么这两个数互为倒数.13. 【分析】此题考查的是完全平方公式的灵活应用以及代数式的求值将已知条件中的两边平方,利用完全平方公式变形后整体代入即可求出的值.【解答】解:,,,,.故答案为22.14. 【分析】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化根据图案、、中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒根,令可得答案.【解答】解:图案需火柴棒:8根;图案需火柴棒:根;图案需火柴棒:根;图案n需火柴棒:根.故答案为.15. 【分析】此题考查的是幂的乘方法则的逆用以及同底数幂的乘法法则将已知条件逆用幂的乘法法则变形后根据等式性质即可求解.【解答】解:,,,,解得:.故答案为5.16. 【分析】本题考查了三角形外角性质,平行线的性质的应用,解此题的关键是求出的度数,注意:两直线平行,同位角相等延长ED交BC于F,根据平行线的性质求出,求出,根据三角形外角性质得出,代入求出即可.【解答】解:延长ED交AC于F,如图所示:,,,,,.故答案为.17. 此题考查的是实数的运算以及整式的混合运算熟练掌握相关的运算性质和运算法则是关键.根据零指数幂的性质、实数绝对值的性质以及负整数指数幂的性质化简即可;先根据完全平方公式和平方差公式进行去括号运算,再合并同类项即可.18. 此题主要考查了提公因式法与公式法的综合运用,关键是掌握分解因式的步骤,先提公因式,后用公式法.首先提公因式5m,再利用平方差进行分解即可;首先提公因式3b,再利用完全平方公式进行分解即可.19. 此题考查的是二元一次方程组的解法以及一元一次不等式组的解法熟练掌握解答步骤是关键.利用加减消元法即可求解;先分别求出每个不等式的解集,再找出它们解集的公共部分即可.20. 本题主要考查整式的化简求值掌握法则是解题的关键先根据单项式乘多项式的法则计算,再合并同类项,然后提公因式2y,最后把x、y、z的值代入化简后的代数式计算即可.21. 此题考查的是角平分线的定义以及平行线的判定方法根据角平分线定义可得,结合已知条件利用等量代换得到,利用内错角相等,两直线平行可得答案.22. 本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:找准等量关系,列出二元一次方程组;根据总费用不超过1550元,列出关于m的一元一次不等式.设购进A种树苗每棵需要x元,B种树苗每棵需要y元,根据“购进2棵A种树苗与3棵B 种树苗共需270元;购进3棵A种树苗与6棵B种树苗共需480元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;设购进A种树苗m棵,则购进B种树苗棵,根据总费用不超过1550元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,即可得最多可以购进A种树苗的棵数.23. 此题考查的是图形的裁剪与多边形的内角和定理注意分情况讨论过四边形的两个顶点剪一刀,剩余图形为三角形;故其中一个顶点和一条边剪一刀,剩余图形为四边形;过四边形的两边剪一刀,剩余图形为五边形,利用多边形内角和定理分别求其内角和即可.24. 此题考查了解二元一次方程组,一元一次不等式组的解法,同底数幂的乘法解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.先解方程组求出x、y的值,然后根据同底数幂的乘法计算,最后代入计算即可;根据,,列出不等式组,解不等式组求出k的取值范围即可;由,即可得x、y的值.25. 【分析】此题考查的是平行线的判定和性质以及三角形内角和定理的应用通过观察图形结合已知条件联想相关的几何定理找出各角间的关系是关键.通过观察和动手操作易得答案;根据平行线的性质可得,结合已知条件易得,根据同旁内角互补,两直线平行可得答案;分情况讨论根据三角形内角和结合角的和差关系可得答案.【解答】解:经过画图、度量发现:在中,始终有一个角与相等,这个角是.故答案为;见答案;见答案.。
2018年初中数学联赛试题(含答案)
12018年初中数学联赛试题说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分42分,每小题7分)1.设二次函数2222a y x ax =++的图象的顶点为A ,与x 轴的交点为B ,C .当△ABC 为等边三角形时,其边长为( )A.6B.22C.23D.322.如图,在矩形ABCD 中,∠BAD 的平分线交BD 于点E ,AB =1,∠CAE =15°,则BE=( )A.33 B.222-1 33.设p ,q 均为大于3的素数,则使p 2+5pq+4q 2为完全平方数的素数对(p ,q )的个2数为( )A.1B.2C.3D.44.若实数a ,b 满足a-b=2,()()22114a b ba-+-=,则a 5-b 5=( )A.46B.64C.82D.1285.对任意的整数x ,y ,定义xy =x +y -xy ,则使得(xy )z +(yz )x +(zx )y =0的整数组(x ,y ,z )的个数为( )A.1B.2C.3D.46.设11112018201920202050M =++++,则1M的整数部分是( ) A.60 B.61 C.62 D.63二、填空题:(本题满分28分,每小题7分)1.如图,在平行四边形ABCD 中,BC =2AB ,CE ⊥AB 于E ,F 为AD 的中点,若∠AEF=48°,则∠B=_______.32.若实数x ,y 满足()3311542x y x y +++=,则x +y 的最大值为_______. 3.没有重复数字且不为5的倍数的五位数的个数为_______.4.已知实数a ,b ,c 满足a +b +c =0,a 2+b 2+c 2=1,则555a b cabc++=_______.第一试(B)一、选择题:(本题满分42分,每小题7分)1.满足(x 2+x-1)x+2的整数x 的个数为( )A.1B.2C.3D.42.已知x 1,x 2,x 3 (x 1<x 2<x 3)为关于x 的方程x 3-3x 2+(a+2)x-a=0的三个实数根,则22211234x x x x -++=( )A.5B.6C.7D.83.已知点E ,F 分别在正方形ABCD 的边CD ,AD 上,CD=4CE ,∠EFB=∠FBC ,则tan ∠AB F =( )4A.12B.35C.2D.24.=的实数根的个数为( )A.0B.1C.2D.35.设a ,b ,c 为三个实数,它们中任何一个数加上其余两数之积的2017倍都等于2018,则这样的三元数组(a ,b ,c )的个数为( )A.4B.5C.6D.76.已知实数a ,b 满足a 3-3a 2+5a=1,b 3-3b 2+5b=5,则a +b =( )A.2B.3C.4D.5二、填空题:(本题满分28分,每小题7分)1.已知p ,q ,r 为素数,且pqr 整除pq +qr +rp -1,则p +q +r =_______.2.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数为_______.3.已知D是△ABC内一点,E是AC的中点,AB=6,BC=10,∠BAD=∠BCD,∠EDC=∠ABD,则DE =_______.4.已知二次函数y=x2+2(m+2n+1)x+(m2+4n2+50)的图象在x轴的上方,则满足条件的正整数对(m,n)的个数为_______.第二试(A)一、(本题满分20分)设a,b,c,d为四个不同的实数,若a,b为方程x2-10cx-11d=0的根,c,d为方程x2-10ax-b=0的根,求a+b+c+d的值.二、(本题满分25分)如图,在扇形OAB中,∠AOB=90°,OA=12,点C在OA 上,AC=4,点D为OB的中点,点E为弧AB上的动点,OE与CD的交点为F.56(1)当四边形ODEC 的面积S 最大时,求EF ; (2)求CE +2DE 的最小值.三、(本题满分25分)求所有的正整数m ,n ,使得()33222m n m n m n +-+是非负整数.第二试(B )一、(本题满分20分)若实数a ,b ,c 满足(a+b+c)11195555a b c b c a c a b ⎛⎫++= ⎪+-+-+-⎝⎭,求(a+b+c)111a b c ⎛⎫++ ⎪⎝⎭的值.二、(本题满分25分)如图,点E在四边形ABCD的边AB上,△ABC和△CDE都是等腰直角三角形,AB=AC,DE=DC.. (1)证明:ADBC;(2)设AC与DE交于点P,如果∠ACE=30°,求DPPE三、(本题满分25分)设x是一个四位数,x的各位数字之和为m,x+1的各位数字之和为n,并且m与n的最大公约数是一个大于2的素数.求x.7。
(完整版)(完整版)2018年(第59届)国际数学奥林匹克(IMO)竞赛试题及答案图片版
岁马尼亚克卢日蜻沐卡第一天«1. itΓ<HΛ三角砒4〃C的外44圈・点D和EAru殳/CAC上∙^nAD ≈ AEφ BI)^CE的•克羊分线⅛Γ上劣弧AB AC分別文于点FG im ADE⅜FG1 ⅛A÷*t•⅛ 2.求所有的整4⅛□23∙便俗存在实软5皿2.・・・.<¼+2∙滿足"*ι = <M∙ 5∙2 Ua2异且<≡∙<<∙⅛1 + 1 = α∣÷3— 1.2. - - ■” 戍立・題3・反忖斷卡三蔦砒是由铁俎戎的一个正三角外障•港足除了鬟下方一行.孕个敦是它下方相你两金铁之屋的绘对值•例*\下而是一金四忡的反恤浙卡三角耐・由Hl MlO tt⅛.42 65 7 18 3 10 9请MΛ5 4Λ2018fτ的反帕浙卡三 E 包含IMl +2十・∙∙ + 2018所亦的蹩典?鈿二夭« 4.我们呀谓一个(IJL是斯d角坐栋丰而上的一个A(X.,V)∙乳中工・"需足不雄述20的正史软.最初时•所有400个位豆那是空的.甲乙两人轮濃霖放石子•由甲先遗ft∙毎次伦刘甲时.他41 一个空的住I±Λ±-¼*的化也若子•要求任急两金红己石子舸息<1 Jt之问的距离都不#于%・每次伦刘乙片•他/1任直一个空的CiJt上崔上一个M6⅛2Lt>&子.(Jl色石子所在位直与戻它石于所在位直之问雎禹可以是任倉值・)4此UAitfTT去直至某金人无法再霖放石子•试确岌遥大的位再无论乙知何报就這色若予.Y⅛*Ef⅛Ui∙>∙4X⅛K个红已若子・« 5. Ha i.a2.…走一个>LfPil正整软斥列.已知4在於敦N>l∙使碍对每个^Kn > .V t Oi i o2 . I Q*1“ I OH――+ — + ・• • + ・■■■・ + —。
2018年太原市初中数学竞赛试题(含答案)
2018年太原市初中数学竞赛一、选择题(每小题7分,共42分)1.若x+y=1,x3+y3=13,则x5+y5的值是().(A)11311131 ()()() 8181243243B C D2.已知(x>0),则222241629x xy yx xy y+-+-的值是().(A)241616 ()()() 392527B C D3.在凸多边形中,四边形有两条对角线,五边形有5条对角线.观察探索凸十边形有()条对角线.(A)29 (B)32 (C)35 (D)384.已知△ABC中,AD=8,则△ABC外接圆的半径为().(A)8 (B)9 (C)10 (D)125.若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=22-12,16=52-32).已知智慧数按从小到大顺序构成如下数列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,….则第2 006年智慧数是()(A)2 672 (B)2 675 (C)2 677 (D)2 6806.图1是山西省某古宅大院窗棂图案:图形构成10×21的长方形,•空格与实木的宽度均为1,那么,这种窗户的透光率(即空格面积与全部面积之比)是().(A)25(B)345()()7911C D二、填空题(每小题7分,共42分)1.如图2,已知正方形ABCD 的顶点坐标为A (1,1),B (3,1),C (3,3),D (1,3),直线y=2x+b 交AB 于点E ,交CD 于点F .则直线在y 轴上的截距b 的变化范围是_______. 2.一次函数y=ax+b•的图像L 1关于直线y=•-•x•轴对称的图像L 2的函数解析式是____________. 3.不论m 取任何实数,抛物线y=x 2+2mx+m 2+m-1的顶点都在一条直线上,则这条直线的函数解析式是_______. 4.当a<0时,方程x │x │+│x │-x-a=0的解为__________.5.某广场地面铺满了边长为36cm 的正六边形地砖.现在向上抛掷半径为的圆碟,圆碟落地后与地砖间的间隙不相交的概率大约是________.6.将红、白、黄三种小球,装入红、白、黄三个盒子中,•每个盒子中装有相同颜色的小球.已知:(1)黄盒中的小球比黄球多; (2)红盒中的小球与白球不一样多; (3)白球比白盒中的球少.则红、白、黄三个盒子中装有小球的颜色依次是________.三、(16分)将一个三位数abc 的中间数码去掉,成为一个两个数ac ,且满足abc =9ac +4c (•如155=9×15+4×5).试求出所有这样的三位数.四、(16分)已知二次函数y=a x2+4ax+4a-1的图像是C1.(1)求C1关于点R(1,0)中心对称的图像C2的函数解析式;(2)设曲线C1、C2与y轴的交点分别为A、B,当│AB│=18时,求a的值.五、(17分)求方程2x2+5xy+2y2=2 006的所有正整数解.六、(17分)如图3,已知AB为⊙O的弦,M为AB的中点,P为⊙O上任意一点,以点P 为圆心、2MO为半径作圆并交⊙O于点C、D,AC、BD交于点Q,请问:(1)点Q是△PAB的什么“心”?(2)点Q是否在⊙P上?试证明你的结论.提示:(1)三角形的三条高线交于一点,称为垂心定理,此点称为垂心.(2)三角形有内心、外心、重心、垂心等.参考答案一、1.A.由x3+y3=(x+y)(x2-xy+y2)=13,x+y=1,有x2-xy+y2=13.又因x2+2xy+y2=1,则3xy=23,xy=29.由21,,321,.93x y xxyy⎧+==⎧⎪⎪⎪⎨⎨=⎪⎪=⎩⎪⎩解得故x5+y5=321331124324324381+==.2.D由原方程得2(xy)-2=0.=t,则方程变形为2t2-3t-2=0,即(2t+1)(t-2)=0.解得t1=2,t2=-12(舍去),故xy=4.将x=4y代入分式,得222241629x xy yx xy y+-+-=22(161616)16(3249)27yy+-=+-.3.C 画图观察探索知多边形:四五六七八九十对角线条数: 2 5 9 14 20 27 35规律是: 2+3 5+4 9+5 14+6 20+7 27+8 4.D如图,延长AD交外接圆于点E,则AE为直径.联结BE,知△ABE•为直角三角形,•有AB2=AD·AE.因此,半径为12.5.C观察探索规律,知全部智慧数从小到大可按每三个数分一组,从第2•组开始每组的第一个数都是4的倍数.归纳可得第n组的第一个数为4n(n≥2).因2 006=3×668+2,所以,第2 006个智慧数是第669组中的第2•个数,•即为4•×669+1=2 677.6.B观察图1的结构规律,知长方形面积为10×21=210,空格图形面积为2(9+8+7+6+5+4+3+2+1)=90.则透光率=903 2107=.二、1.-3≤b≤-1.由直线y=2x+b随b的数值不同而平行移动,知当直线通过点A时,得b=-1;• 当直线通过点C时,得b=-3.故-3≤b≤-1.2.y=1ax+ba.直线y=ax+b与x轴、y轴的交点分别为A1(-ba,0),B(0,b),则点A1、B2关于直线y=-x•轴对称的点为A2(0,ba),B2(-b,0),利用待定系数法或斜率、截距关系知,过点A2、B2的直线为y=1ax+ba.故一次函数y=ax+b的图像关于直线y=-x轴对称的图像的函数解析式为y=1ax+ba.3.y=-x-1.将二次函数变形为y=(x+m)2+m-1,知抛物线的顶点坐标为,1. x my m=-⎧⎨=-⎩.消去m,得x+y=-1.4.当a<0时,若x≥0,方程为x2-a=0,得x2=a<0,无解;若x<0,方程为-x2-2x-a=0,即 x2+2x+a=0.此时,△=4-4a>0.解得=-15.49欲使圆碟不压地砖间的间隙,则圆碟的圆心必须落在与地砖同中心、•且边与地砖边彼此平行、距离为的小正六边形内(如图).作OC1⊥A1A2,且C1C2.因A1A2=A2O=36,A2C1=18,所以,C12则C2O=C1O-C1C2=又因C22O,所以,B22.而B1B2=B2O,则小正六边形的边长为24cm.故所求概率为P=221222122436B BA A==小正六边形的面积正六边形地砖面积=49.6.黄、红、白.由条件(2)知红盒不装白球,由条件(3)知白盒不装白球,故黄盒装白球.假设白盒装黄球,由条件(3)知白球比黄球少,这与条件(1)矛盾,故白盒装红球,红盒装黄球.三、因abc=100a+10b+c=,ac=10a+c,由题意得100a+10b+c=9(10a+c)+4c.化简得5(a+b )=6c . 这里0≤a 、b 、c ≤9,且a ≠0. 因为5是质数,所以,5,1,2,3,4,5,6,6.5,4,3,2,1,0.c a a b b ==⎧⎧⎨⎨+==⎩⎩故 则abc =155,245,335,425,515,605.四、(1)由y=a (x+2)2-1,可知抛物C 1的顶点为M (-2,-1).由图知点M (-2,-1)关于点R (1,0)中心对称的点为N (4,1),以N (4,1)为顶点,与抛物线C 1关于点R (1,0)中心对称的图像C 2也是抛物线,且C 1与C 2的开口方向相反,故抛物线C 2的函数解析式为y=-a (x-4)2+1,即y=-a x 2+8ax-16a+1.(2)令x=0,得抛物线C 1、C 2与y 轴的交点A 、B 的纵坐标分别为4a-1和-16a+1,故│AB │=│(4a-1)-(-16a+1)│=│20a-2│. 注意到│20a-2│=18.当a ≥110时,有20a-2=18,得a=1; 当a<110时,有2-20a=18,得a=-45.五、方程两端分解因式得(2x+y )(x+2y )=2×17×59. 不妨先设x ≥y ≥1,则有 ① 2x+y ≥x+2y>x+y>1. 由此,只有三种情况: 259,2118,21003,234,217,2 2.x y x y x y x y x y x y +=+=+=⎧⎧⎧⎨⎨⎨+=+=+=⎩⎩⎩或或 由式②、③得x+y=31. 再由31,28259,3;x y x x y y +==⎧⎧⎨⎨+==⎩⎩解得由式④、⑤得x+y=45,与式①矛盾;由式⑥、⑦得x+y=335,与式①矛盾.故原方程的正整数解为2833;28. x xy y==⎧⎧⎨⎨==⎩⎩.六、分析:当点P在弦AB的垂直平分线MO上时,点Q也在直线MO上,此时,PQ⊥AB,•故考虑Q为△PAB的垂心.(1)如图,作⊙O的直径BE,联结PD、DE、EA.因为∠BAE=90°,所以,AE∥MO.因M为AB中点,则AE=2MO.于是,有AE=PD.故四边形APDE为等腰梯形,DE∥PA.又因为∠BDE=90°,BD⊥DE,所以,BD⊥PA,即点Q在△PAB的顶点B到底边PA•的垂线上.联结PE、PC.因AE=PC=2MO,则四边形ACPE也为等腰梯形,所以,PE∥AC.又∠BPE=90°,PE⊥PB,则AC⊥PB,即点Q在△PAB的顶点A到底边PB的垂线上.因Q是△PAB两条高的交点,故Q为△PAB的垂心.(2)联结PQ.根据垂心定理知PQ⊥AB,但AE⊥AB,则PQ∥AE.又因PE∥AC,即有PE∥AQ,则四边形AQPE为平行四边形.所以,PQ=AE=PC=2MO.故点Q在⊙P上.。
2018-2019学年辽宁省沈阳市和平区七年级(上)期末数学试卷(解析版)
2018-2019学年辽宁省沈阳市和平区七年级(上)期末数学试卷一、选择题(共10小题,每小题2,满分20)1.在﹣1,﹣2,0,1四个数中最小的数是()A.﹣1B.﹣2C.0D.12.如图是由五个相同的小立方块搭成的几何体,从左面看到几何体的形状图是()A.B.C.D.3.以下问题,适合用普查的是()A.调查某一电视节目的收视率B.调查一批冷饮的质量是否合格C.调查你们班同学是否喜欢科普类书籍D.调查我国中学生的节水意识4.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为()①正方体;②圆柱;③圆锥;④正三棱柱.A.①②③④B.①③④C.①④D.①②5.单顶式的系数与次数分别是()A.B.C.D.6.从多边形一个顶点出发向其余的顶点引对角线,将多边形分成6个三角形,则此多边形的边数为()A.6B.7C.8D.97.如图,甲从A点出发向北偏东60°方向走到点B,乙从点A出发向南偏西20°方向走到点C,则∠BAC的度数是()A.80°B.100°C.120°D.140°8.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市9.如图,根据流程图中的程序,当输出数值y为1时,输入数值x为()A.﹣8B.8C.﹣8或8D.﹣410.小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,若小明得了94分,则小明答对的题数是()A.17B.18C.19D.20二、填空题(共10小题,每小题3分,满分30分)11.将数据32500000用科学记数法表示为.12.下列各数中:,0,﹣(﹣3),(﹣2)3,正数的个数有个.13.如图,这是一个正方体的展开图,则原正方体中与“创“字所在的面相对的面上标的字是.14.若x与3互为相反数,则|x+2|=.15.已知x=5是方程x+a=的解,则a=.16.如图所示,在一条笔直公路p的两侧,分别有甲、乙两个村庄,现要在公路p上建一个汽车站,使汽车站到甲、乙两村的距离之和最小,你认为汽车站应该建在处(填A或B或C),理由是.17.已知a2+2a=1,则3a2+6a+2的值为.18.如图,AB=18,点M是线段AB中点,C点将线段MB分成MC:CB=1:2,则线段AC的长度为.19.如图,小明想把一长为a,宽为b的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形纸片的四个角各剪去一个边长为x的小正方形,用代数式表示纸片剩余部分的周长.20.如图,在数轴上,A1,P两点表示的数分别是1,2,若A1与A2到点O的距离相等,A2与A3到点P的距离相等,A3与A4到点O的距离相等,A4与A5到点P的距离相等……依此规律,则点A10表示的数是.三、解答题(共8小题,满分70分)21.(6分)计算:22.(6分)解方程:(x﹣1)=2﹣(x+2).23.(8分)先化简,再求值:4(a2+ab﹣1)﹣3(2a2﹣ab),其中a=﹣1,b=﹣2.24.(8分)为深化课程改革,某校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中最受欢迎的程度,学校随机抽取七年级m名学生进行调查,从A:文学鉴赏,B:科学探究,C:文史天地,D:趣味数学四门课程中选出你喜欢的课程(被调查的每名学生必选且只能选择一门课程),并将调查结果制成如下两幅不完整的统计图:(1)m=,n=:(2)扇形统计图中,”D”所对应的扇形的圆心角度数是度;(3)请根据以上信息直接在答题卡中补全条形统计图.25.(8分)如图,分别用火柴棍连续搭建正三角形和正方形,公共边只用一根火柴棍.(1)连续搭建n个三角形需要火柴棍根,连续搭建n个正方形需要火柴棍根;(2)若搭建正三角形和正方形共用了2018根火柴棍,正三角形的个数比正方形的个数多3个,则搭建的正三角形个数是,正方形的个数是.26.(10分)如图,已知∠AOB=100°,OC,OD分别是∠AOB内部的两条射线.(1)若OC是∠AOB的角平分线,∠BOD=35°,求∠COD的度数;(2)若∠BOC=∠AOD=3∠COD,求∠COD的度数.27.(12分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,小彬从该网店购买了3筒甲种羽毛球和2筒乙种羽毛球、一共花费270元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定购进甲、乙两种羽毛球各80筒.已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元,元旦期间该网店开展优惠促销活动,甲种羽毛球打折销售,乙种羽毛球售价不变,若所购进羽毛球均可全部售出,要使全部售出所购进的羽毛球的利润率是10%,那么甲种羽毛球是按原销售价打几折销售的.28.(12分)已知A,B,C三点在数轴上对应的位置如图如示,其中点B对应的数为2,BC=3,AB=14.(1)点A对应的数是,点C对应的数是:(2)动点P,Q分别同时从A,C两点出发,分别以每秒8个单位和3个单位的速度沿数轴正方向运动.点M为AP的中点,点N在CQ上,且CN=CQ,设运动时间为t (t>0).①请直接用含t的代数式表示点M,N对应的数;②当OM=2BN时,求t的值.2018-2019学年辽宁省沈阳市和平区七年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题2,满分20)1.在﹣1,﹣2,0,1四个数中最小的数是()A.﹣1B.﹣2C.0D.1【分析】根据正数大于零,零大于负数,可得答案.【解答】解:由正数大于零,零大于负数,得1>0>﹣1>﹣2,故选:B.【点评】本题考查了有理数大小比较,正数大于零,零大于负数,注意两个负数比较大小,绝对值大的数反而小.2.如图是由五个相同的小立方块搭成的几何体,从左面看到几何体的形状图是()A.B.C.D.【分析】找到从左面看所得到的图形即可.【解答】解:该几何体的左视图是故选:B.【点评】本题考查了简单几何体的三视图,主视图是从正面看得到图形是主视图,从上面看得到的图形是俯视图,从左面看得到的图形是左视图.3.以下问题,适合用普查的是()A.调查某一电视节目的收视率B.调查一批冷饮的质量是否合格C.调查你们班同学是否喜欢科普类书籍D.调查我国中学生的节水意识【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:A、调查某一电视节目的收视率适合抽样调查;B、调查一批冷饮的质量是否合格适合抽样调查;C、调查你们班同学是否喜欢科普类书籍适合全面调查;D、调查我国中学生的节水意识适合抽样调查;故选:C.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为()①正方体;②圆柱;③圆锥;④正三棱柱.A.①②③④B.①③④C.①④D.①②【分析】用一个平面去截一个几何体,根据截面的形状即可得出结论.【解答】解:①立方体截去一个角,截面为三角形,符合题意;②圆柱体只能截出矩形或圆,不合题意;③圆锥沿着中轴线截开,截面就是三角形,符合题意;④正三棱柱从平行于底面的方向截取,截面即为三角形,符合题意;故选:B.【点评】此题主要考查了截一个几何体,根据已知得出圆柱三视图是解决问题的关键,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.5.单顶式的系数与次数分别是()A.B.C.D.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:的系数与次数分别是:﹣π,4,故选:D.【点评】本题考查了单项式.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.注意π属于数字因数.6.从多边形一个顶点出发向其余的顶点引对角线,将多边形分成6个三角形,则此多边形的边数为()A.6B.7C.8D.9【分析】根据从一个n边形一个顶点出发的对角线可将这个多边形分成(n﹣2)个三角形进行计算即可.【解答】解:设这个多边形的边数是n,由题意得,n﹣2=6,解得,n=8.故选:C.【点评】本题考查的是n边形的对角线的知识,从n边形从一个顶点出发可引出(n﹣3)条对角线,可将这个多边形分成(n﹣2)个三角形.7.如图,甲从A点出发向北偏东60°方向走到点B,乙从点A出发向南偏西20°方向走到点C,则∠BAC的度数是()A.80°B.100°C.120°D.140°【分析】∠BAC等于三个角的和,求出各角的度数,相加即可.【解答】解:如图,由题意,可知:∠AOD=60°,∴∠CAE=30°,∵∠BAF=20°,∴∠BAC=∠CAE+∠EAF+∠BAF=30°+90°+20°=140°,故选:D.【点评】本题主要考查方向角,解决此题时,能准确找到方向角是解题的关键.8.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市【分析】根据折线图中各月的具体数据对四个选项逐一分析可得.【解答】解:A、甲超市的利润逐月减少,此选项正确;B、乙超市的利润在1月至4月间逐月增加,此选项正确;C、8月份两家超市利润相同,此选项正确;D、乙超市在9月份的利润不一定超过甲超市,此选项错误;故选:D.【点评】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.9.如图,根据流程图中的程序,当输出数值y为1时,输入数值x为()A.﹣8B.8C.﹣8或8D.﹣4【分析】根据流程,把输出的函数值分别代入函数解析式求出输入的x的值即可.【解答】解:∵输出数值y为1,∴①当x≤1时,0.5x+5=1,解得x=﹣8,符合,②当x>1时,﹣0.5x+5=1,解得x=8,符合,所以,输入数值x为﹣8或8.故选:C.【点评】本题考查了函数值求解,比较简单,注意分两种情况代入求解.10.小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,若小明得了94分,则小明答对的题数是()A.17B.18C.19D.20【分析】设小明答对了x,就可以列出方程,求出x的值即可.【解答】解:设小明答对了x题,根据题意可得:6x﹣2(25﹣x)=94,解得:x=18,故选:B.【点评】此题主要考查了一元一次方程的应用,解决问题的关键是读懂题意,找到关键描述语,正确利用代数式表示出小明的得分.二、填空题(共10小题,每小题3分,满分30分)11.将数据32500000用科学记数法表示为 3.25×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:32500000=3.25×107.故答案为:3.25×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.下列各数中:,0,﹣(﹣3),(﹣2)3,正数的个数有2个.【分析】根据相反数和有理数的乘方的定义及正负数的定义判断可得.【解答】解:在所列实数中,正数有,﹣(﹣3)=3这2个,故答案为:2.【点评】本题主要考查有理数的乘方,解题的关键是掌握相反数和有理数的乘方的定义及正负数的定义.13.如图,这是一个正方体的展开图,则原正方体中与“创“字所在的面相对的面上标的字是明.【分析】利用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“明”与面“创”相对,故答案为:明.【点评】本题考查了正方体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.14.若x与3互为相反数,则|x+2|=1.【分析】直接利用互为相反数的定义得出x的值,进而结合绝对值的性质化简得出答案.【解答】解:∵x与3互为相反数,∴x=﹣3,∴|x+2|=1.故答案为:1.【点评】此题主要考查了绝对值,正确掌握绝对值的性质是解题关键.15.已知x=5是方程x+a=的解,则a=.【分析】把x=5代入已知方程,列出关于a的新方程,解新方程即可求得a的值.【解答】解:依题意得:×5+a=,解得a=﹣.故答案是:﹣.【点评】考查了一元一次方程的解.把方程的解代入原方程,等式左右两边相等.16.如图所示,在一条笔直公路p的两侧,分别有甲、乙两个村庄,现要在公路p上建一个汽车站,使汽车站到甲、乙两村的距离之和最小,你认为汽车站应该建在B处(填A 或B或C),理由是两点之间线段最短.【分析】根据两点之间线段最短可得汽车站的位置是B处.【解答】解:汽车站应该建在B处,理由是两点之间线段最短.故答案为:B;两点之间线段最短.【点评】此题主要考查了线段的性质,关键是掌握两点之间线段最短.17.已知a2+2a=1,则3a2+6a+2的值为5.【分析】将a2+2a=1整体代入原式即可求出答案.【解答】解:当a2+2a=1时,原式=3(a2+2a)+2=3+2=5,故答案为:5【点评】本题考查代数式求值,解题的关键是将a2+2a=1作为一个整体代入原式,本题属于基础题型.18.如图,AB=18,点M是线段AB中点,C点将线段MB分成MC:CB=1:2,则线段AC的长度为12.【分析】由已知条件知AM=BM=0.5AB,根据MC:CB=1:2,得出MC,CB的长,故AC=AM+MC可求.【解答】解:∵长度为18的线段AB的中点为M,∴AM=BM=9,∵C点将线段MB分成MC:CB=1:2,∴MC=3,CB=6,∴AC=9+3=12.故答案为:12.【点评】考查了两点间的距离,本题的关键是根据图形弄清线段的关系,求出AC的长.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.19.如图,小明想把一长为a,宽为b的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形纸片的四个角各剪去一个边长为x的小正方形,用代数式表示纸片剩余部分的周长2a+2b.【分析】根据题意可以用相应的代数式表示出剩余部分的周长,从而可以解答本题.【解答】解:由题意可得,剩余部分的周长是:2(a﹣2x)+2(b﹣2x)+8x=2a+2b,故答案为:2a+2b.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.20.如图,在数轴上,A1,P两点表示的数分别是1,2,若A1与A2到点O的距离相等,A2与A3到点P的距离相等,A3与A4到点O的距离相等,A4与A5到点P的距离相等……依此规律,则点A10表示的数是﹣17.【分析】按照题意写出A1到A6对应数字,可发现A2n与A2n表示数字的绝对值相同,﹣1且与下一组的绝对值依次增加4.【解答】解:由题意可得,点A1表示的数为:1,点A2表示的数为:﹣1,点A3表示的数为:2×2﹣(﹣1)=5,点A4表示的数为:﹣5,点A5表示的数为:2×2﹣(﹣5)=9,点A6表示的数为:﹣9,…………∴A10=﹣[1+4(10÷2﹣1)]=﹣17,故答案为:﹣17.【点评】此题考查了数轴,熟练掌握变化规律是解本题的关键.三、解答题(共8小题,满分70分)21.(6分)计算:【分析】根据有理数的乘除法和减法可以解答本题.【解答】解:==×9+2=﹣3+2=﹣1.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.22.(6分)解方程:(x﹣1)=2﹣(x+2).【分析】先去括号再去分母然后解答.【解答】解:去分母得:5(x﹣1)=20﹣2(x+2),去括号得:5x﹣5=20﹣2x﹣4,移项合并得:7x=21,系数化为1得:x=3.【点评】本题考查解一元一次方程的知识,比较简单,但出错率较高,同学们要注意细心运算.23.(8分)先化简,再求值:4(a2+ab﹣1)﹣3(2a2﹣ab),其中a=﹣1,b=﹣2.【分析】原式去括号,再合并同类项化简原式,继而将a,b的值代入计算可得.【解答】解:原式=4a2+4ab﹣4﹣6a2+3ab=﹣2a2+7ab﹣4,当a=﹣1,b=﹣2时,原式=﹣2×1+7×(﹣1)×(﹣2)﹣4=﹣2+14﹣4=8.【点评】本题主要考查整式的化简求值,解题的关键是掌握去括号和合并同类项法则.24.(8分)为深化课程改革,某校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中最受欢迎的程度,学校随机抽取七年级m名学生进行调查,从A:文学鉴赏,B:科学探究,C:文史天地,D:趣味数学四门课程中选出你喜欢的课程(被调查的每名学生必选且只能选择一门课程),并将调查结果制成如下两幅不完整的统计图:(1)m=160,n=15:(2)扇形统计图中,”D”所对应的扇形的圆心角度数是108度;(3)请根据以上信息直接在答题卡中补全条形统计图.【分析】(1)根据B课程的人数和所占的百分比求出m的值,再根据A课程的人数求出n;(2)用D课程所占的百分比乘以360°求出D所对应的扇形的圆心角度数;(3)用总人数减去A、B、D的人数,求出C的人数,从而补全统计图.【解答】解:(1)m=56÷35%=160;n%=×100%=15%,则n=15;故答案为:160,15;(2)“D”所对应的扇形的圆心角度数是×360°=108°,故答案为:108;(3)最受欢迎的文史天地人数有160﹣24﹣56﹣48=32(人),补图如下:【点评】本题考查了条形图和扇形图及用样本估计总体等知识,难度不大,综合性较强.注意三个公式:①该项所占的百分比=,②圆心角=该项的百分比×360°,③欢迎某项人数=总人数×该项所占的百分比.25.(8分)如图,分别用火柴棍连续搭建正三角形和正方形,公共边只用一根火柴棍.(1)连续搭建n个三角形需要火柴棍(2n+1)根,连续搭建n个正方形需要火柴棍(3n+1)根;(2)若搭建正三角形和正方形共用了2018根火柴棍,正三角形的个数比正方形的个数多3个,则搭建的正三角形个数是405,正方形的个数是402.【分析】(1)搭建三角形的火柴数是连续的奇数,搭建正方形的火柴数是在4条基础上依次增加3根;(2)根据设三角形x个,则正方形(x﹣3)个,根据“共用了2018根”列方程求解.【解答】解:(1)搭建三角形的火柴数是连续的奇数(2n+1),根搭建正方形的火柴数是在4条基础上依次增加3根即4+3(n﹣1)=(3n+1)根,故答案为:2n+1,3n+1;(2)根据设三角形x个,则正方形(x﹣3)个,根据题意得2x+1+3(x﹣3)+1=2018,解得x=405,x﹣3=402,故答案为:405,402.【点评】本题考查一元一次方程应用.确定第n个图形边数是解答关键.26.(10分)如图,已知∠AOB=100°,OC,OD分别是∠AOB内部的两条射线.(1)若OC是∠AOB的角平分线,∠BOD=35°,求∠COD的度数;(2)若∠BOC=∠AOD=3∠COD,求∠COD的度数.【分析】(1)根据角平分线的定义和角的和差关系即可求解;(2)根据题意可知∠BOD=∠AOC=2∠COD,再根据∠AOB=100°即可求解.【解答】解:(1)∵OC是∠AOB的角平分线,∠AOB=100°,∴∠COB=50°,∵∠BOD=35°,∴∠COD=15°;(2)∵∠BOC=∠AOD=3∠COD,∴∠BOD=∠AOC=2∠COD,∴∠COD=100°×=20°.【点评】考查了角的计算,角平分线的定义,关键是熟练掌握角平分线的定义.27.(12分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,小彬从该网店购买了3筒甲种羽毛球和2筒乙种羽毛球、一共花费270元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定购进甲、乙两种羽毛球各80筒.已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元,元旦期间该网店开展优惠促销活动,甲种羽毛球打折销售,乙种羽毛球售价不变,若所购进羽毛球均可全部售出,要使全部售出所购进的羽毛球的利润率是10%,那么甲种羽毛球是按原销售价打几折销售的.【分析】(1)设甲羽毛球每筒售价x元,则乙羽毛球每筒售价(x﹣15)元,根据“3筒甲种羽毛球和2筒乙种羽毛球、一共花费270元”列方程求解;(2)设甲种羽毛球是按原销售价打x折销售,根据“利润率是10%”列方程求解.【解答】解:(1)设甲羽毛球每筒售价x元,则乙羽毛球每筒售价(x﹣15)元,根据题意得3x+2(x﹣15)=270解得x=60,x﹣15=45,答:甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)设甲种羽毛球是按原售价打x折销售,根据题意得80(60×﹣50)+80(45﹣40)=80×(50+40)×10%解得x=9,答:甲种羽毛球是按原售价打九折销售.【点评】本题考查列一元一次方程解应用题.确定数量关系是解答关键.28.(12分)已知A,B,C三点在数轴上对应的位置如图如示,其中点B对应的数为2,BC=3,AB=14.(1)点A对应的数是﹣12,点C对应的数是5:(2)动点P,Q分别同时从A,C两点出发,分别以每秒8个单位和3个单位的速度沿数轴正方向运动.点M为AP的中点,点N在CQ上,且CN=CQ,设运动时间为t (t>0).①请直接用含t的代数式表示点M,N对应的数;②当OM=2BN时,求t的值.【分析】(1)点A对应的数是0﹣12,点C对应的数是2+3;(2)①点M表示的数是4t﹣12,点N表示的数是t+5;②分点M在原点左右两侧两种可能来考虑.【解答】解:(1)点A对应的数是0﹣12=﹣12,点C对应的数是2+3=5,故答案为﹣12,5;(2)①点M表示的数是﹣12+=4t﹣12,点N表示的数是t+5;②点M在原点左边时,∵OM=2BN∴﹣(4t﹣12)=2(t+5﹣2),解得t=1;点M在原点右边时,∵OM=2BN∴4t﹣12=2(t+5﹣2),解得t=9,所以当t=1秒或t=9秒时,OM=2BN.【点评】本题借助数轴考查一元一次方程应用.表示点对应数字以及分类讨论是解答关键.。
2018-2019学年七年级上学期期末考试数学试题(解析版)
2018-2019学年七年级上学期期末考试数学试题一、选择题(本大题共10小题,共30.0分)1.的相反数是A. B. C. 3 D.【答案】C【解析】解:.故选:C.根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.本题主要考查了相反数的定义,根据相反数的定义做出判断,属于基础题,比较简单.2.下列方程属于一元一次方程的是A. B. C. D.【答案】D【解析】解:A、不是一元一次方程,故本选项不符合题意;B、不是一元一次方程,故本选项不符合题意;C、不是一元一次方程,故本选项不符合题意;D、是一元一次方程,故本选项符合题意;故选:D.根据一元一次方程的定义逐个判断即可.本题考查了一元一次方程的定义,能熟记一元一次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是1次的整式方程,叫一元一次方程.3.在2018年的国庆假期里,我市共接待游客4435000人次,数4435000用科学记数法可表示为A. B. C. D.【答案】B【解析】解:数4435000用科学记数法可表示为.故选:B.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.4.给出四个数0,,,,其中最小的数是A. B. C. 0 D.【答案】B【解析】解:四个数0,,,中,最小的数是,故选:B.根据有理数的大小比较法则得出即可.本题考查了有理数的大小比较法则,能熟记有理数的大小比较法则的内容是解此题的关键,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.5.下列各式正确的是A. B. C. D.【答案】D【解析】解:A.,此选项计算错误;B.,此选项计算错误;C.,此选项计算错误;D.,此选项计算正确;故选:D.根据算术平方根和立方根及有理数的乘方的定义逐一计算可得.本题主要考查立方根,解题的关键是熟练掌握算术平方根和立方根及有理数的乘方的定义.6.如图,将一三角板按不同位置摆放,其中 与 互余的是A. B.C. D.【答案】C【解析】解:C中的 ,故选:C.根据余角的定义,可得答案.本题考查了余角,利用余角的定义是解题关键.7.若单项式与单项式是同类项,则的值为A. 1B. 0C.D.【答案】D【解析】解:单项式与单项式是同类项,,,解得,,,则,故选:D.直接利用同类项的定义得出关于m,n的等式进而得出答案.此题主要考查了同类项,正确掌握同类项的定义是解题关键.8.已知,则代数式的值为A. B. C. D.【答案】A【解析】解:,,故选:A.将代入,计算可得.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.9.已知一个两位数,个位数字为b,十位数字比个位数字大a,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为A. B. C. 9a D.【答案】C【解析】解:由题意可得,原数为:;新数为:,故原两位数与新两位数之差为:.故选:C.分别表示出愿两位数和新两位数,进而得出答案.此题主要考查了列代数式,正确理解题意得出代数式是解题关键.10.已知:有公共端点的四条射线OA,OB,OC,OD,若点,,,如图所示排列,根据这个规律,点落在A. 射线OA上B. 射线OB上C. 射线OC上D. 射线OD上【答案】A【解析】解:由图可得,到顺时针,到逆时针,,点落在OA上,故选:A.根据图形可以发现点的变化规律,从而可以得到点落在哪条射线上.本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本大题共10小题,共30.0分)11.如果向东走60m记为,那么向西走80m应记为______【答案】【解析】解:如果向东走60m记为,那么向西走80m应记为.故答案为:.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12. 的补角是______.【答案】【解析】解: .故答案为: .利用补角的意义:两角之和等于,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.此题考查补角的意义,以及度分秒之间的计算,注意借1当60.13.16的算术平方根是______.【答案】4【解析】解:,.故答案为:4.根据算术平方根的定义即可求出结果.此题主要考查了算术平方根的定义一个正数的算术平方根就是其正的平方根.14.若,则a应满足的条件为______.【答案】【解析】解:,,故答案为:.根据绝对值的定义和性质求解可得.本题主要考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.15.如图所示,,,BP平分 则______度【答案】60【解析】解:, ,,平分 ,.故填60.本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到.16.若关于x的方程的解为最大负整数,则a的值为______.【答案】2【解析】解:最大负整数为,把代入方程得:,解得:,故答案为:2.求出最大负整数解,再把代入方程,即可求出答案.本题考查了有理数和一元一次方程的解,能得出关于a的一元一次方程是解此题的关键.17.如图,在数轴上点A,B表示的数分别是1,,若点B,C到点A的距离相等,则点C所表示的数是______.【答案】【解析】解:数轴上点A,B表示的数分别是1,,,则点C表示的数为,故答案为:.先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.18.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x人,则可列方程______.【答案】.【解析】解:设应派往甲处x人,则派往乙处人,根据题意得:.故答案为:.设应派往甲处x人,则派往乙处人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.19.已知a,b是正整数,且,则的最大值是______.【答案】【解析】解:,,,,则原式,故答案为:根据题意确定出a的最大值,b的最小值,即可求出所求.此题考查了估算无理数的大小,熟练掌握估算的方法是解本题的关键.20.已知A,B,C是同一直线上的三个点,点O为AB的中点,,若,则线段AB的长为______.【答案】4或36【解析】解:,设,,若点C在线段AB上,则,点O为AB的中点,,若点C在点B右侧,则,点O为AB的中点,,故答案为:4或36分点C在线段AB上,若点C在点B右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB的长.本题考查了两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键.三、计算题(本大题共3小题,共18.0分)21.计算【答案】解:原式;原式.【解析】先计算括号内的减法,再进一步计算减法可得;先计算乘方和括号内的减法,再计算乘法可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.22.先化简,再求值:,其中,.【答案】解:原式当,时,原式.【解析】根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.23.解方程【答案】解:,,;,,,,.【解析】移项、合并同类项、系数化为1可得;依次去分母、去括号、移项、合并同类项、系数化为1计算可得.本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向形式转化.四、解答题(本大题共3小题,共22.0分)24.如图,已知四个村庄A,B,C,D和一条笔直的公路1.要修建一条途经村庄A,C的笔直公路,请在图中画出示意图;在中的公路某处修建超市Q,使得它到村庄B,D的距离之和最小. 请在图中画出超市Q的位置;请在图中画出从超市Q到公路的最短路线QP.【答案】解:直线AC如图所示;连接BD交直线AC于点Q,等Q即为所求;作直线l于P,线段PQ即为所求;【解析】直线AC如图所示;连接BD交直线AC于点Q,等Q即为所求;作直线l于P,线段PQ即为所求;本题考查作图应用与设计,轴对称最短问题等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.某水果店用500元购进甲、乙两种水果共50kg,这两种水果的进价、售价如下表所示如果这批水果当天售完,水果店除进货成本外,还需其它成本元,那么水果店销售完这批水果获得的利润是多少元?利润售价成本【答案】解:设甲种水果购进了x千克,则乙种水果购进了千克,根据题意得:,解得:,则.答:购进甲种水果20千克,乙种水果30千克;元.元.答:水果店销售完这批水果获得的利润是175元.【解析】设甲种水果购进了x千克,则乙种水果购进了千克,根据总价格甲种水果单价购进甲种水果质量乙种水果单价购进乙种水果质量即可得出关于x的一元一次方程,解之即可得出结论;根据总利润每千克甲种水果利润购进甲种水果质量每千克乙种水果利润购进乙种水果质量,净利润总利润其它销售费用,代入数据即可得出结论.本题考查了一元一次方程的应用,根据数量关系总价单价数量列出一元一次方程是解题的关键.26.定义:从一个角的顶点出发,在角的内部引两条射线,如果这两条射线所成的角等于这个角的一半,那么这两条射线所成的角叫做这个角的内半角如图1,若,则 是 的内半角.如图1,已知 , , 是 的内半角,则______;如图2,已知 ,将 绕点O按顺时针方向旋转一个角度至 ,当旋转的角度 为何值时, 是 的内半角.已知 ,把一块含有角的三角板如图3叠放,将三角板绕顶点O 以3度秒的速度按顺时针方向旋转如图,问:在旋转一周的过程中,射线OA,OB,OC,OD能否构成内半角?若能,请求出旋转的时间;若不能,请说明理由.【答案】【解析】解:是 的内半角, ,,,,故答案为:,,,是 的内半角,,,旋转的角度 为时, 是的内半角;在旋转一周的过程中,射线OA,OB,OC,OD能否构成内半角;理由:设按顺时针方向旋转一个角度 ,旋转的时间为t,如图1,是 的内半角, ,,,解得:,;如图2,是 的内半角, ,,,,;如图3,是 的内半角, ,,,,,如图4,是 的内半角, ,,,解得: ,,综上所述,当旋转的时间为或30s或110s或时,射线OA,OB,OC,OD能构成内半角.根据内半角的定义解答即可;根据内半角的定义解答即可;根据根据内半角的定义列方程即可得到结论.本题考查了角的计算,角的和差,准确识图理清图中各角度之间的关系是解题的关键.。
2018年“大梦杯”福建省初中数学竞赛试题参考答案及评分标准(解析版)
2018年“大梦杯”福建省初中数学竞赛试题参考答案及评分标准考试时间 2018年3月18日 9∶00-11∶00 满分150分一、选择题(共5小题,每小题7分,共35分)。
每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.若关于x 的方程244310x mx m +--=有两个相等的实数根,则32442m m m ++-的值为( )A .3-B .2-C .1-D .1 【答案】 A【解答】依题意,21616(31)0m m =++=△。
因此,2310m m ++=。
∴ 231m m =--,231m m +=-。
∴ 3222442(31)44232123m m m m m m m m m ++-=--++-=+-=--=-。
2.如图,ABCD 、DEFG 都是正方形,边长分别为m 、n (m n <)。
坐标原点O 为AD 的中点,A 、D 、E 在y 轴上。
若二次函数2y ax =的图像过C 、F 两点,则nm=( ) A .31+ B .21+ C .231- D .221- 【答案】 B【解答】依题意,点C 坐标为()2mm ,,点F 的坐标为()2mn n -+,。
由二次函数2y ax =的图像过C 、F 两点,得222()2m am m n a n ⎧=⎪⎪⎨⎪+=-⎪⎩,消去a ,得2220n mn m --=。
∴ 2()210n n m m -⨯-=,解得21nm=+(舍负根)。
∴ 21nm=+。
(第2题图)3.如图,G 为ABC △的重心,点D 在CB 延长线上,且12BD BC =,过D 、G 的直线交AC 于点E ,则AEAC=( ) A .25 B .35 C .37 D .47【答案】 D【解答】如图,连AG ,并延长交BC 于点F 。
∵ G 为ABC △的重心,且12BD BC =, ∴ F 为BC 中点,且21AG GF =,DB BF FC ==。
“时代杯”2018年江苏省中学数学应用与创新邀请赛初赛试题(含答案)
“时代杯”2018年江苏省中学数学应用与创新邀请赛初赛试题(初中组)(2018年12月6日下午14∶00~15∶40)题号一二三总分1—1011—1819202122得分注意事项:1.本试卷有22题共4页.满分150分.考试时间100分钟.2.用钢笔或圆珠笔(蓝色或黑色)直接答在试卷上.3.答卷前将密封线内的项目及考号填写清楚.一、选择题(下列各题的四个选项中,只有一个是正确的.每小题5分,共50分)1.已知m ≠0,下列计算正确的是().A .m 2+m 3=m5B .m2·m 3=m6C .m 3÷m 2=m D .(m 2)3=m 52.已知四个数:2,-3,-4,5,任取其中两个数相乘,所得积的最大值是().A .20B .12C .10D .-6 3.设a +1与2(a -1)的值互为相反数,则a 的值是().A .3B .1C .0D .134.(n +1)边形的内角和比n 边形的内角和大().A .360°B .180°C .90°D .60°5.现有二○○八年奥运会福娃卡片5张,卡片正面分别印着贝贝、晶晶、欢欢、迎迎、妮妮,每张卡片大小、质地和背面图案均相同.若将卡片正面朝下反扣在桌面上,从中随机一次抽出两张,则抽到卡片贝贝的概率是().A .15B .14C .25D .456.There is a piece of work .It takes Mr. A alone 20 days to finish ,and Mr. B 30 alone days to finish .It takes them ()days to work together to finish the work .A .10B .12C .15D .50 7.如图,已知⊙O 的半径为5,直线l 与⊙O 相交,点O 到直线l 的距离为2,则⊙O 上到直线l 的距离为3的点的个数是().A .4B .3C .2D .18.已知方程x 2-2│x │-15=0,则此方程的所有实数根的和为().A .0B .-2C .2D .89.已知实数a ,b 同时满足a2+b 2-11=0,a 2-5b -5=0,则b 的值是().A .1B .1,-6C .-1D .-610.如图,在△ABC 中,D 、E 分别是BC 、AC 的中点.已知∠ACB =90°,BE =4,AD =7,则AB 的长为().A .10B .5 3C .213D .215二、填空题(每小题5分,共40分)11.某人使用计算器计算全班50名学生的一次数学测验的平均分时,如果错将其中的一个成绩115分输入为15分,那么由此求出的平均分比实际平均分低分.密封线姓名学校考号.Ol(第7题)ABEC(第10题)D12.已知函数y 1与y 2分别由下表给出,那么满足y 1>y 2的x 的值是.x 1 2 3 x 1 2 3 y 1131y 232113.设a >0,5-a 是整数,则a 的值为.14.在图示的运算流程中,若输出的数y =5,则输入的数x =.15.如图,在矩形ABCD 中,点E 、F 分别在AB 、CD 上,AF ∥EC ,△AFD 与四边形AECF 的面积相等.已知AB =6cm ,BC =3cm ,则AF 与CE 之间的距离是cm .16.设直线l 1是函数y =2x -4的图象,将直线l 1绕原点按逆时针方向旋转90°得到直线l 2,则l 2与两条坐标轴所围成的三角形的面积是.17.如图,在△ABC 中,已知∠ABC =90°,D 是AC 的中点,过点D 作DE ⊥AC ,与CB 的延长线交于点E ,以BA 、BE 为邻边作长方形BAFE ,连接FD .若∠C =60°,DF =3cm ,则BC 的长为cm .18.在△ABC 中,已知∠ACB=90o ,∠A =40o .若以点C 为中心,将△ABC 旋转θ角到△DEC 的位置,使B 点恰好落在边DE 上(如图所示).则θ=o .三、解答题(第19—21题每题14分,第22题18分,共60分)19.已知关于x 的方程(a -1)x 2-4x -1+2a =0的一个根为x =3.(1)求a 的值及方程的另一个根;(2)如果一个三角形的三条边长都是这个方程的根,求这个三角形的周长.FABDEC(第15题)EADCFB(第17题)θ ACD BE(第18题)减1是否是否偶数输入x输出y 除以2(第14题)20.(1)已知恒等式x 3-x 2-x +1=(x -1)(x 2+kx -1),求k 的值;(2)若x 是整数,求证:x 3-x 2-x +1x 2-2x +1是整数.21.甲、乙两个水池同时放水,其水面高度(水面离池底的距离)h (米)与时间t (小时)之间的关系如图所示(甲、乙两个水池底面相同).(1)在哪一段时间内,乙池的放水速度快于甲池的放水速度?(2)求点P 的坐标,由此得到什么结论?(3)当一个池中的水先放完时,另一个池中水面的高度是多少米?t h O5876543214321QP乙甲(米)(小时)22.某人用一张面积为S 的三角形纸片ABC ,剪出一个平行四边形DEFG .记□DEFG 的面积为T,(1)如图1,如果□DEFG 的顶点都在△ABC 的各边上,D 、G 分别是AB 、AC 的中点.求T (用S 表示);(2)如图2,如果□DEFG 的顶点都在△ABC 的各边上,求证:T ≤12S ;(3)对任意剪得的□DEFG ,T ≤12S 还成立吗?请说明理由.图1ABCDEFGAB CFEDG图22008年“时代杯”江苏省中学数学应用与创新邀请赛初赛试题参考答案一、选择题(每小题5分,共50分)1.C 2.B 3.D4.B5.C6.B7.B8.A9.A10.C .二、填空题(每小题5分,共40分)11.212.213.1,4,514.10,或1115.1.216.417.118.80.(说明:第13题答对1个给1分,对2个给2分;第14题答对1个给2分)三、解答题(第19题~第21题每题14分,第22题18分.共60分)19.解:(1)由题设,得9(a -1)-4×3-1+2a =0.解得a =2.……………3分所以原方程为x 2-4x +3=0.它的另一个根是1.……………………………7分(2)由题设知,三角形的三边中至少有两条边相等,则有下列两种情形:①三边相等,边长为1,1,1;或3,3,3.那么三角形的周长是3或9;………………………11分②仅有两边相等,因为1+1=2<3,所以三角形的边长只能为3,3,1.那么三角形的周长是7.由①、②知,三角形的周长可以是3,或7,或9.………………………14分20.解:(1)由题设知,232(1)(1)(1)(1)1x x kx xk xk x ,………………3分所以32321(1)(1)1xxx xk x k x ,从而有11,11.k k 解得k =0.………………………………7分(2)322221(1)(1)121(1)xxx x x x xx x .因为x 是整数,所以x +1是整数.故322121xxx x x 是整数.………………14分21.解:(1)由图知,甲池的放水速度为824(米/小时).当0≤t ≤3时,乙池的放水速度为13(米/小时);当3<t ≤5时,乙池的放水速度为52(米/小时).因为13<2,2<52,所以3<t ≤5时,乙池的放水速度快于甲池的放水速度.……………………4分(2)甲池中水面高度h (米)与时间t (小时)的函数关系为h =-2t +8.当0≤t ≤3时,乙池中水面高度h (米)与时间t (小时)的函数关系为631th.由.631,82tht h解得.528,56ht 所以628(,)55P ,即(1.2,5.6)P .由此说明,当t =1.2小时时,两池中水面的高度相等.…………………10分(3)由图知,甲池中的水4小时放完.当3<t ≤5时,乙池中水面高度h (米)与时间t (小时)的函数关系为22525th.当t =4时,25h,即h =2.5.所以当甲池中的水先放完时,乙池中水面的高度是 2.5米.……………………14分注:(1)中,答3<t ≤4,不扣分.22.解:(1)因为D 、G 分别是AB 、AC 的中点,所以DG ∥BC ,且DG =12BC .分别过点A 、D 作AM ⊥BC ,DN ⊥BC .则∠DNB =∠AMB .因为∠B =∠B ,所以△DNB ∽△AMB .又因为DB =12AB ,所以DN =12AM .故T =12S .………………………6分(2)过点G 作GH ∥AB ,交BC 于点H .则∠B =∠GHF .因为DE =GF ,DE ∥GF ,所以∠DEB =∠GFH .从而有△DBE ≌△GHF .因为DG ∥BC ,所以∠ADG =∠B ,从而有△ADG ∽△ABC .同理,△GHC ∽△ABC .设AD =kAB (0<k <1),则S △ADG =k 2S .同理,S △GHC =(1-k )2S .T =S -S△ADG-S △GHC =[1-k 2-(1-k )2] S=(-2 k 2+2 k )S =-2[(k -12)2-14] S=-2(k -12)2 S +12S ≤12S .…………………12分(3)分以下四种情形讨论:第一种情形:如果剪得的平行四边形有三个顶点在三角形的边上,第四个顶点不在三角形的边上.①当其中有两个顶点在同一边时,如图3-1所示,延长DG 交AC 于点G ′,过点G ′作G ′F ′∥GF ,交BC 于点F ′,易知四边形DEF ′G ′是平行四边形,则T ≤S □DEF ′G ′.由(2)知,S □DEF ′G ′≤12S.所以T ≤12S .②当三点分别在三角形的三边时,如图3-2,过A 点作AH ∥DE 交EF 、DG 于F ′、G ′,问题转化为(2)和图3-1两种情形,则图3-1ABCDEF GG ′F ′A图3-2BCDEFGH F ’G ’T= S□DEF′G’’+ S□F′G′GF≤12S△ABH+12S△AHC=S.第二种情形:如果剪得的平行四边形有两个顶点在三角形的边上,另两个顶点不在三角形的边上.①当这两个顶点在同一边上时,如图3-3,延长DG与三角形的两边AB、AC分别交于点L、K,作平行四边形MNKL.问题转化为(2).则T=S□DEFG≤S□MNKL≤12 S.②当这两个顶点分别在三角形的两边上时,如图3-4.延长DE、GF交BC于点K、M,过点K作KN∥DG,交G M于点N.易得四边形DKNG是平行四边形,从而问题转化为图3-2的情形,则T=S□DEFG≤S□DKN′G≤12 S.第三种情形:如果剪得的平行四边形只有一个顶点在三角形的的边上,另三个顶点不在三角形的边上.如图3-5,延长ED、FG分别交AB、AC于点K、M,过点K作KN∥DG,交FM于点N.易得四边形EFNK是平行四边形,从而问题转化为图3-4 的情形,则T=S□DEFG≤S□EFNK≤1 2 S第四种情形:如果剪得的平行四边形没有顶点在三角形的边上时,如图3-6,延长ED、FG分别交AB、AC于点K、M,过点K作KN∥DG,交FM于点N.易得四边形EFNK 是平行四边形,从而问题转化为图3-5的情形,则T=S□DEFG≤S□EFNK≤12 S.综上,对任意剪得的□DEFG,T≤12S成立.…………………18分图3-3AB CDE FGM NKL图3-4AB CDEFGK MN图3-5AB CDEFGKMNAB CDEFG图3-6KMN。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
益师艺术实验学校2018年下学期学科竞赛试卷
七年级数学
(时量90分钟满分100分)
一、选择题(每小题3分,共24分)
1.下列各组算式中,其值最小的是()
A.﹣3 B.﹣(﹣3)C.|﹣3| D.﹣
2.数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2018厘米的线段AB,则线段AB盖住的整点个数有()
A.2016或2017 B.2017或2018 C.2018或2019 D.2019或2020 3.设M=x2+8x+12,N=﹣x2+8x﹣3,那么M与N的大小关系是()A.M=N B.M>N C.M<N D.无法确定
4.数学的符号语言简练、准确;而文字语言通俗易懂,但有时不够精炼,甚至容易引起歧义,下面4句文字语言没有歧义的是()
A.a与b的平方的和B.a,b两数相差8
C.a除以b与c的和D.a与b的和的平方
5.今年某月的月历上圈出了相邻的三个数a、b、c,并求出了它们的和为39,这三个数在月历中的排布不可能是()
A.B.C.D.
6.已知数轴上两点A、B表示的数分别为﹣3、1,点P为数轴上任意一点,其表示的数为x,如果点P到点A、点B的距离之和为6,则x的值是()
A.﹣4 B.2 C.4 D.﹣4或2
7.一位油漆匠站在梯子的某一阶上,他看出在他所站阶下面的阶数是上面阶数的两倍.当他下降4阶后,在他所站阶下面的阶数与上面的阶数相等.则梯子的阶数是()A.21 B.24 C.25 D.37
8.如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()
A.点A B.点B C.A,B之间D.B,C之间
二、填空题(每小题4分,共24分)
9.在数﹣5,﹣3,﹣1,2,4,6中任取三个相乘,所得的积中最大的是.10.当x=﹣1时,代数式2ax3﹣3bx+8的值为18,这时,代数式9b﹣6a+2=.
11.一列数a1,a2,a3,…,a n,其中a1=,a2=,a3=,…,a n=,则
a2=,a1+a2+a3+…+a2018=.
12.“*”表示一种运算符号,其意义是a*b=2a﹣b,如果x*(2*1)=3,那么x=.13.关于x的方程||x﹣2|﹣1|=a恰有三个整数解,则a的值为.
14.如图,C是线段AB上的一点,D是线段CB的中点.已知图中所有线段的长度之和为23,线段AC的长度与线段CB的长度都是正整数,则线段AC长度是.
三、解答题(共52分)
15. (10分)
(1)计算:﹣14﹣
(2)已知|a﹣b|=a﹣b,且|a|=2,|b|=5,求a+b的值.
16. (10分)解方程:
(1)x﹣[x﹣(x﹣)]=(x﹣)
(2)=1.6.
17. (6分)已知:|m|=,|n|=,且mn>0,m+n<0.
求代数式4m2n+{﹣3mn2+mn﹣[﹣2mn2+(7mn﹣8m2n)]}的值.
18. 8分)已知m,n满足算式(m﹣6)2+|n﹣2|=0.
(1)求m,n的值;
(2)已知线段AB=m,在直线AB上取一点P,恰好使AP=nPB,点Q为PB的中点,求线段AQ的长.
19. (8分)一只巡逻艇在一段河流中行驶,已知顺水速度是逆水速度的2倍,它在静水中的速
度是40千米/小时,一位航监员来电报告:“半小时前,有一只有安全隐患的竹筏从你当前位置漂流而下,请快速截住.”
(1)求水流速度;
(2)请问巡逻艇能否完成任务?若能,需要多长时间才能追上竹筏,排除隐患?
20. (10分)如图,已知点A、B、C是数轴上三点,O为原点.点C对应的数为6,BC=4,
AB=12.
(1)求点A、B对应的数;
(2)动点P、Q分别同时从A、C出发,分别以每秒6个单位和3个单位的速度沿数轴正方向运动.M为AP的中点,N在CQ上,且CN=CQ,设运动时间为t(t>0).
①求点M、N对应的数(用含t的式子表示);②t为何值时,OM=2BN.
参考答案,仅供参考
一、选择题(每小题3分,共24分)
1.A
2.C
3.B
4.D
5.A
6.D
7.C
8.A
二、填空题(每小题4分,共24分)
9.90.10. 32.11. 2,1010.12. 3.13. 1.14.3.
三、解答题(共52分)
15.解:(1)﹣14﹣
=﹣1﹣0.1÷0.1×[﹣2﹣9]=﹣1﹣1×(﹣11)=﹣1+11=10;
(2)∵|a﹣b|=a﹣b,∴a﹣b≥0,∴a≥b,
∵|a|=2,|b|=5,∴a=±2 b=±5,
∴当a=2时,b=﹣5,∴a+b=﹣3
当a=﹣2时,b=﹣5.∴a+b=﹣7
16.解:(1)去括号得:x﹣x+(x﹣)=(x﹣),
整理得:x=0,解得:x=0;
(2)方程整理得:﹣=1.6,即2x﹣6﹣5x﹣20=1.6,
移项合并得:﹣3x=27.6,解得:x=﹣9.2.
17.解:∵|m|=,|n|=,且mn>0,m+n<0.∴m=﹣,n=﹣,
则原式=4m2n﹣3mn2+mn+2mn2﹣7mn+8m2n=12m2n﹣mn2﹣6mn
=﹣9+﹣6=﹣13.
18.解:(1)由条件可得(m﹣6)2=0,|n﹣2|=0,所以m=6,n=2.
(2)当点P在线段AB之间时,AP=2PB,所以AP=4,PB=2,
而Q为PB的中点,所以PQ=1,故AQ=AP+PQ=5.
当点P在线段AB的延长线上时,AP﹣PB=AB,即2PB﹣PB=6,所以PB=6,
而Q为PB的中点,所以BQ=3,AQ=AB+BQ=6+3=9.故线段AQ的长为5或9.19.解:(1)设水流速度为x千米/小时.根据题意得40+x=2(40﹣x).解得x=.答:水流速度为千米/小时;
(2)巡逻艇能完成任务.设需要y小时追上竹筏.根据题意得
(40+)y=(y+)×.解得y=.
答:巡逻艇需要小时即10分钟追上竹筏.
20.解:(1)∵点C对应的数为6,BC=4,∴点B表示的数是6﹣4=2,
∵AB=12,∴点A表示的数是2﹣12=﹣10.
(2)①∵动点P、Q分别同时从A、C出发,分别以每秒6个单位和3个单位的速度,时间是t,∴AP=6t,CQ=3t,
∵M为AP的中点,N在CQ上,且CN=CQ,∴AM=AP=3t,CN=CQ═t,
∵点A表示的数是﹣10,C表示的数是6,∴M表示的数是﹣10+3t,N表示的数是6+t.②∵OM=|﹣10+3t|,BN=BC+CN=4+t,OM=2BN,∴|﹣10+3t|=2(4+t)=8+2t,
由﹣10+3t=8+2t,得t=18,由﹣10+3t=﹣(8+2t),得t=,
故当t=18秒或t=秒时OM=2BN.。