四川省广元市苍溪县实验中学校2019_2020学年高一数学下学期第二次月考试题理

合集下载

四川省广元市2019-2020年度高一下学期数学期中考试试卷(II)卷

四川省广元市2019-2020年度高一下学期数学期中考试试卷(II)卷

四川省广元市 2019-2020 年度高一下学期数学期中考试试卷(II)卷姓名:________班级:________成绩:________一、 单选题 (共 10 题;共 20 分)1. (2 分) (2017 高二上·马山月考) 函数的最小正周期是( )A. B. C. D.2. (2 分) (2017 高一下·邢台期末) 在△ABC 中,角 A,B,C 的对边分别为 a,b,c,已知 tanA= ,B= ,b=1,则 a 等于( )A. B.1C.D.23. (2 分) 若为任意向量,m∈R,则下列等式不一定成立的是( )A.B.C.D.第1页共9页4. (2 分) 在等差数列 中, 小值为( ),且, 为数列 的前 项和,则使 的 的最A . 10B . 11C . 20D . 215. (2 分) 函数 f(x)=Asin(ϖx+φ)(A>0,ϖ>0,|φ|<π)的部分图象如图所示,则函数 f(x)的解 析式为( )A.B.C.D.6. (2 分) 已知 α∈(0,π),且 cosα=- , 则 tanα=( )A.B.-C.D.-第2页共9页7. (2 分) (2016 高一下·武城期中) 在△ABC 中,若 acosA﹣bcosB=0,则三角形的形状是( ) A . 等腰三角形 B . 直角三角形 C . 等腰直角三角形 D . 等腰三角形或直角三角形8. (2 分) 已知等比数列 的首项, 公比, 等差数列 的首项中插入 中的项后从小到大构成新数列 , 则 的第 100 项为( ), 公差,在A . 270B . 273 C . 276 D . 2799. (2 分) (2016·四川模拟) 在△A BC 中,若 =(1,2), =(﹣2,3),则△ABC 的面积为( )A. B.4 C.7 D.810. (2 分) (2020 高一下·温州期中) 已知函数,,为x 轴上的点,且满足,若以为顶点的三角形与以(),过点分别作 x 轴垂线交为顶点的三角形相似,其中于点,,则满足条件的 p,q 共有A . 0对B . 1对第3页共9页C . 2对D . 无数对二、 双空题 (共 3 题;共 4 分)11.(1 分)(2017·天津) 在△ABC 中,∠A=60°,AB=3,AC=2.若=2, =λ﹣ (λ∈R),且=﹣4,则 λ 的值为________.12. (2 分) (2020·贵州模拟) 已知数列 的各项均为正数,其前 项和为 ,且满足,则________.13. (1 分) (2015 高三上·包头期末) 已知 a,b,c 分别为△ABC 的三个内角 A,B,C 的对边,a=2 且(2+b) (sinA﹣sinB)=(c﹣b)sinC,则△ABC 面积的最大值为________.三、 填空题 (共 3 题;共 3 分)14. (1 分) (2017 高三上·盐城期中) 设函数 f(x)=Asin(ωx+φ)(其中 A,ω,φ 为常数且 A>0,ω>0,)的部分图象如图所示,若(),则的值为________.15. (1 分) 已知 , 是两个非零向量,且 与 的夹角为________.=+,= +2 ,= +3 ,则16. (1 分) (2020·阿拉善盟模拟) 已知数列 前 项和等于________.是递增的等比数列,,则数列 的四、 解答题 (共 4 题;共 35 分)17. (10 分) (2020·贵州模拟) .的内角 , , 的对边分别为 , , ,已知(1) 求 ;第4页共9页(2) 若为锐角三角形,且的面积为 ,求边 的取值范围.18. (10 分) 空间四边形 OABC 各边以及 AC、BO 的长都是 1,点 D、E 分别是边 OA,BC 的中点,连接 DE.(1)求直线 AC 与 OB 所成角;(2)计算 DE 的长.19. (5 分) (2016 高二上·南昌开学考) 在△ABC 中,AC=6,cosB= ,C= . (1) 求 AB 的长;(2) 求 cos(A﹣ )的值.20. (10 分) (2018 高二上·会宁月考) 已知数列 满足,.(1) 求数列 的通项公式;(2) 令,求数列 的前 项和 。

四川省广元市苍溪县实验中学校2019-2020高一下学期期中考试数学试卷(wd无答案)

四川省广元市苍溪县实验中学校2019-2020高一下学期期中考试数学试卷(wd无答案)

四川省广元市苍溪县实验中学校2019-2020高一下学期期中考试数学试卷(wd无答案)一、单选题(★) 1. 计算sin43°cos13°-cos43°sin13°的结果等于A.B.C.D.(★★) 2. 下列说法中正确的是()A.若,,成等差数列,则,,成等差数列B.若,,成等差数列,则,,成等差数列C.若,,成等差数列,则,,成等差数列D.若,,成等差数列,则,,成等差数列(★★) 3. 在△ABC中,角A、B、C所对的边分别为,己知A=60°,,则B=()A.45°B.135°C.45°或135°D.以上都不对(★) 4. 若,是平面内的一组基底,则下列四组向量能作为平面向量的基底的是()A.,B.,C.,D.,(★★★) 5. 化简等于()A.B.C.D.(★★) 6. 设向量,向量,且,则等于()A.B.C.D.(★★) 7. 在中,角,,所对的边分别是,,,,则是()A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形(★) 8. 已知,,是的三边,,则的值是()A.大于0B.小于0C.等于0D.不确定(★★) 9. 若,则等于()A.B.C.D.(★★★) 10. 已知,则的值等于()A.B.C.D.(★★) 11. 数列满足且,则的值是()A.-2B.C.2D.(★) 12. 若圆的半径为4, a、 b、 c为圆的内接三角形的三边,若 abc=16 ,则三角形的面积为( )A.2B.8C.D.二、填空题(★★) 13. 已知向量,则___________.(★) 14. 已知数列2,,4,…,,…,则8是该数列的第________项(★★★) 15. 设的内角所对的边分别为,若,则角= __________ .(★★) 16. 如图所示,在地面上共线的三点,,处测得一建筑物的仰角分别为,,,且,则建筑物的高度为 ______三、解答题(★★★) 17. (1)已知,,与的夹角是,求实数,使得与垂直.(2)若,,求的值.(★★) 18. 已知数列满足且(1)求证:数列为等差数列(2)求数列的通项公式(★★) 19.已知函数.(1)若,且,求的值;(2)求函数的最小正周期及单调递增区间.(★) 20. 如图,在中,已知,是边上的一点,,,.(1)求的面积;(2)求边的长.(★★★) 21. 在中,角的对边分别为,已知向量,,且.(1)求角的大小;(2)若,,求的周长.(★★★) 22. 已知向量 m=(cos ,sin ), n=(2 +sin x,2 -cos ),函数=m· n,x∈ R.(1) 求函数的最大值;(2) 若且=1,求的值.。

四川省广元市2019-2020学年中考数学第二次押题试卷含解析

四川省广元市2019-2020学年中考数学第二次押题试卷含解析

四川省广元市2019-2020学年中考数学第二次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.计算3a2-a2的结果是()A.4a2B.3a2C.2a2D.32.有6个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.3.如图是由5个大小相同的正方体组成的几何体,则该几何体的左视图是()A.B.C.D.4.二次函数y=﹣12(x+2)2﹣1的图象的对称轴是()A.直线x=1 B.直线x=﹣1 C.直线x=2 D.直线x=﹣25.对于反比例函数2yx=,下列说法不正确的是()A.点(﹣2,﹣1)在它的图象上B.它的图象在第一、三象限C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小6.一元二次方程210x x--=的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断7.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=26°,则∠OBC的度数为()A.54°B.64°C.74°D.26°8.下列运算结果正确的是()A.(x3﹣x2+x)÷x=x2﹣x B.(﹣a2)•a3=a6C.(﹣2x2)3=﹣8x6D.4a2﹣(2a)2=2a29.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.10.从标号分别为1,2,3,4,5的5张卡片中随机抽取1张,下列事件中不可能事件是()A.标号是2 B.标号小于6 C.标号为6 D.标号为偶数11.如图是一个由5个相同的正方体组成的立体图形,它的三视图是( )A.B.C.D.12.如图,淇淇一家驾车从A地出发,沿着北偏东60°的方向行驶,到达B地后沿着南偏东50°的方向行驶来到C地,C地恰好位于A地正东方向上,则()①B地在C地的北偏西50°方向上;②A地在B地的北偏西30°方向上;③cos∠BAC=32;④∠ACB=50°.其中错误的是()A .①②B .②④C .①③D .③④二、填空题:(本大题共6个小题,每小题4分,共24分.)13.化简1111x x -+-的结果是_______________. 14.如果a c e b d f===k (b+d+f≠0),且a+c+e=3(b+d+f ),那么k=_____. 15.若关于x 的一元二次方程230x x m -+=有实数根,则m 的取值范围是________.16.计算(5ab 3)2的结果等于_____.17.若反比例函数y =﹣6x的图象经过点A(m ,3),则m 的值是_____. 18.若代数式315x -的值不小于代数式156x -的值,则x 的取值范围是_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某翻译团为成为2022年冬奥会志愿者做准备,该翻译团一共有五名翻译,其中一名只会翻译西班牙语,三名只会翻译英语,还有一名两种语言都会翻译.求从这五名翻译中随机挑选一名会翻译英语的概率;若从这五名翻译中随机挑选两名组成一组,请用树状图或列表的方法求该纽能够翻译上述两种语言的概率.20.(6分)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,∠AED=∠B ,射线AG 分别交线段DE ,BC 于点F ,G ,且AD DF AC CG =.求证:△ADF ∽△ACG ;若12AD AC =,求AF FG的值.21.(6分)某校初三进行了第三次模拟考试,该校领导为了了解学生的数学考试情况,抽样调查了部分学生的数学成绩,并将抽样的数据进行了如下整理.(1)填空m =_______,n =_______,数学成绩的中位数所在的等级_________.(2)如果该校有1200名学生参加了本次模拟测,估计D 等级的人数;(3)已知抽样调查学生的数学成绩平均分为102分,求A 级学生的数学成绩的平均分数.①如下分数段整理样本等级等级 分数段 各组总分 人数A110120X <≤ P 4 B 100110X <≤ 843n C90100X <≤ 574 mD 8090X <≤ 171 2②根据上表绘制扇形统计图22.(8分)如图,A ,B ,C 三个粮仓的位置如图所示,A 粮仓在 B 粮仓北偏东26°,180 千米处;C 粮仓在 B 粮仓的正东方,A 粮仓的正南方.已知 A ,B 两个粮仓原有存粮共 450 吨,根据灾情需要,现从 A 粮仓运出该粮仓存粮的35支援 C 粮仓,从 B 粮仓运出该粮仓存粮的25支援 C 粮仓,这时 A ,B 两处粮仓的存粮吨数相等.(tan26°=0.44,cos26°=0.90,tan26°=0.49)(1)A ,B 两处粮仓原有存粮各多少吨?(2)C 粮仓至少需要支援 200 吨粮食,问此调拨计划能满足 C 粮仓的需求吗?(3)由于气象条件恶劣,从 B 处出发到 C 处的车队来回都限速以每小时 35 公里的速度匀速行驶,而司机小王的汽车油箱的油量最多可行驶 4 小时,那么小王在途中是否需要加油才能安全的回到 B 地?请你说明理由.23.(8分)如图,在平面直角坐标系中,点O 为坐标原点,已知△ABC 三个定点坐标分别为A (﹣4,1),B (﹣3,3),C (﹣1,2).画出△ABC 关于x 轴对称的△A 1B 1C 1,点A ,B ,C 的对称点分别是点A 1、B 1、C 1,直接写出点A 1,B 1,C 1的坐标:A 1( , ),B 1( , ),C 1( , );画出点C 关于y 轴的对称点C 2,连接C 1C 2,CC 2,C 1C ,并直接写出△CC 1C 2的面积是 .24.(10分)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形DEBF是矩形;(2)若AF平分∠DAB,AE=3,BF=4,求▱ABCD的面积.25.(10分)如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.写出图中小于平角的角.求出∠BOD的度数.小明发现OE平分∠BOC,请你通过计算说明道理.26.(12分)如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.请用列表或画树状图的方法写出所有的可能;求一次函数y=kx+b的图象经过一、二、四象限的概率.27.(12分)如图,在△ABC中,点D,E分别在边AB,AC上,且BE平分∠ABC,∠ABE=∠ACD,BE,CD交于点F.(1)求证:AB AE AC AD;(2)请探究线段DE,CE的数量关系,并说明理由;(3)若CD⊥AB,AD=2,BD=3,求线段EF的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据合并同类项法则进行计算即可得.【详解】3a2-a2=(3-1)a2=2a2,故选C.【点睛】本题考查了合并同类项,熟记合并同类项的法则是解题的关键.合并同类项就是把同类项的系数相加减,字母和字母的指数不变.2.C【解析】试题分析:根据主视图是从正面看得到的图形,可得答案.解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形.故选C.考点:简单组合体的三视图.3.B【解析】【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】解:从左面看易得下面一层有2个正方形,上面一层左边有1个正方形.故选:B .【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.D【解析】【分析】根据二次函数顶点式的性质解答即可.【详解】∵y=﹣12(x+2)2﹣1是顶点式, ∴对称轴是:x=-2,故选D.【点睛】本题考查二次函数顶点式y=a(x-h)2+k 的性质,对称轴为x=h ,顶点坐标为(h ,k )熟练掌握顶点式的性质是解题关键.5.C【解析】【详解】由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A 正确;因为2大于0所以该函数图象在第一,三象限,所以B 正确;C 中,因为2大于0,所以该函数在x >0时,y 随x 的增大而减小,所以C 错误;D 中,当x <0时,y 随x 的增大而减小,正确,故选C.考点:反比例函数【点睛】本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化6.A【解析】【分析】把a=1,b=-1,c=-1,代入24b ac ∆=-,然后计算∆,最后根据计算结果判断方程根的情况.【详解】21,1,14145a b c b ac ==-=-∴∆-=+=Q∴方程有两个不相等的实数根.故选A.【点睛】本题考查根的判别式,把a=1,b=-1,c=-1,代入24b ac ∆=-计算是解题的突破口.7.B【解析】【分析】根据菱形的性质以及AM =CN ,利用ASA 可得△AMO ≌△CNO ,可得AO =CO ,然后可得BO ⊥AC ,继而可求得∠OBC 的度数.【详解】∵四边形ABCD 为菱形,∴AB ∥CD ,AB =BC ,∴∠MAO =∠NCO ,∠AMO =∠CNO ,在△AMO 和△CNO 中,MAO NCO AM CNAMO CNO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AMO ≌△CNO(ASA),∴AO =CO ,∵AB =BC ,∴BO ⊥AC ,∴∠BOC =90°,∵∠DAC =26°,∴∠BCA =∠DAC =26°,∴∠OBC =90°﹣26°=64°.故选B .【点睛】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.8.C【解析】【分析】根据多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则计算可得.【详解】A、(x3-x2+x)÷x=x2-x+1,此选项计算错误;B、(-a2)•a3=-a5,此选项计算错误;C、(-2x2)3=-8x6,此选项计算正确;D、4a2-(2a)2=4a2-4a2=0,此选项计算错误.故选:C.【点睛】本题主要考查整式的运算,解题的关键是掌握多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则.9.A【解析】试题分析:几何体的主视图有2列,每列小正方形数目分别为2,1.故选A.考点:三视图视频10.C【解析】【分析】利用随机事件以及必然事件和不可能事件的定义依次分析即可解答.【详解】选项A、标号是2是随机事件;选项B、该卡标号小于6是必然事件;选项C、标号为6是不可能事件;选项D、该卡标号是偶数是随机事件;故选C.【点睛】本题考查了随机事件以及必然事件和不可能事件的定义,正确把握相关定义是解题关键.11.D【解析】【分析】找到从正面、左面、上看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【详解】解:此几何体的主视图有两排,从上往下分别有1,3个正方形;左视图有二列,从左往右分别有2,1个正方形;俯视图有三列,从上往下分别有3,1个正方形,故选A .【点睛】本题考查了三视图的知识,关键是掌握三视图所看的位置.掌握定义是关键.此题主要考查了简单组合体的三视图,准确把握观察角度是解题关键.12.B【解析】【分析】先根据题意画出图形,再根据平行线的性质及方向角的描述方法解答即可.【详解】如图所示,由题意可知,∠1=60°,∠4=50°,∴∠5=∠4=50°,即B 在C 处的北偏西50°,故①正确;∵∠2=60°,∴∠3+∠7=180°﹣60°=120°,即A 在B 处的北偏西120°,故②错误;∵∠1=∠2=60°,∴∠BAC=30°,∴cos ∠BAC=32,故③正确; ∵∠6=90°﹣∠5=40°,即公路AC 和BC 的夹角是40°,故④错误.故选B .【点睛】本题考查的是方向角,平行线的性质,特殊角的三角函数值,解答此类题需要从运动的角度,正确画出方位角,再结合平行线的性质求解.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.221x -- 【解析】【分析】。

四川省广元苍溪县联考2019-2020学年中考数学模拟考试试题

四川省广元苍溪县联考2019-2020学年中考数学模拟考试试题

四川省广元苍溪县联考2019-2020学年中考数学模拟考试试题一、选择题1.如图,AB ∥CD ,∠1=45°,∠3=80°,则∠2的度数为( )A.30°B.35°C.40°D.45°2.如图,⊙M 的半径为2,圆心M 的坐标为(3,4),点P 是⊙M 上的任意一点,PA ⊥PB ,且PA 、PB 与x 轴分别交于A 、B 两点,若点A 、点B 关于原点O 对称,则AB 的最小值为( )A.3B.4C.6D.83.某地今年计划栽插这种超级杂交水稻3000亩,预计该地今年收获这种超级杂交水稻的总产量是2460000千克.用科学记数法表示是( ) A.62.510⨯千克B.52.510⨯千克C.62.4610⨯千克D.52.4610⨯千克4.如图,在扇形AOB 中,∠AOB =90°,OA =2,点C 、D 分别为OA 、OB 的中点,分别以C 、D 为圆心,以OA 、OB 为直径作半圆,两半圆交于点E ,则阴影部分的面积为( )A.142π- B.12π- C.184π-D.142π+5.弹簧原长(不挂重物)15cm ,弹簧总长L (cm )与重物质量x (kg )的关系如下表所示:A.22.5B.25C.27.5D.306.已知3a →=,2b =,而且b 和a 的方向相反,那么下列结论中正确的是( ) A .32a b →→= B .23a b →→=C .32a b →→=-D .23a b →→=-7.如图,O 与正八边形OABCDEFG 的边OA ,OG 分别相交于点M 、N ,则弧MN 所对的圆周角MPN ∠的大小为( )A .30°B .45︒C .67.5︒D .75︒8.下列图形中,不是轴对称图形的为( )A .B .C .D .9.已知,关于x 的一元二次方程(m ﹣2)x 2+2x+1=0有实数根,则m 的取值范围是( ) A .m <3B .m≤3C .m <3且m≠2D .m≤3且m≠210.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC 相似的三角形所在的网格图形是( )A .B .C .D .11.一元二次方程经过配方后可变形为( )A. B.C.D.12.下列说法不一定成立的是( ) A .若a >b ,则a+c >b+c B .若a+c >b+c ,则a >b C .若a >b ,则ac 2>bc 2D .若a >b ,则1+a >b ﹣1二、填空题13.已知关于x 的方程240x x m -+=有一个根为3,则m 的值为_______. 14.某景区在“春节”假期间,每天接待的游客人数统计如下:(单位:万人)15.已知a ,b 为两个连续的整数,且a b ,则a+b=______. 16.抛物线y =x 2﹣2x+m 与x 轴只有一个交点,则m 的值为_____.17.如图,直线AB 、CD 相交于点E ,DF ∥AB .若∠AEC=100°,则∠D 等于( )A.70°B.80°C.90°D.100°18的平方根是.三、解答题19.如图,线段AB为的直径,点C、E在上,弧BC=弧CE,连接BE、CE,过点C作CM∥BE交AB的延长线于点M.(1)求证:直线CM是圆O的切线;(2)若sin∠ABE=35,BM=4,求圆O的半径.20.已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,点E是AD上一点,过点B作BF∥EC,交AD的延长线于点F,连接BE,CF.(1)求证:△BDF≌△CDE;(2)当ED与BC满足什么数量关系时,四边形BECF是正方形?请说明理由.21.先化简,再求值:(a+22ab ba+)÷222a ba ab--,其中a=﹣2,b=3.22.某人为了测量瞭美塔的高度,小张在山下与山脚B在同一水平面的A处测得塔尖点D的仰角为45°,再沿AC方向前进45米到达山脚点B,测得塔尖点D的仰角为60°,塔底点E的仰角为30°,并画出了如图所示的示意图.请你根据相关数据求出塔ED≈1.41,结果保留整数)23.如图,四边形ABCD中,CD∥AB,∠ABC=90°,AB=BC,将△BCD绕点B逆时针旋转90°得到△BAE,连接CE,过点B作BG⊥CE于点F,交AD于点G.(1)如图1,CD=AB.①求证:四边形ABCD是正方形;②求证:G是AD中点;(2)如图2,若CD<AB,请判断G是否仍然是AD的中点?若是,请证明:若不是,请说理由.24.(1)解方程:x2+x=8.(2)解不等式组:53165142x xxx≤+⎧⎪⎨-<+⎪⎩.25.如图,已知抛物线y=x2+bx+c与x轴交于点A,B,AB=2,与y轴交于点C,对称轴为直线x=2.(1)求抛物线的函数表达式;(2)设D为抛物线的顶点,连接DA、DB,试判断△ABD的形状,并说明理由;(3)设P为对称轴上一动点,要使PC﹣PB的值最大,求出P点的坐标.【参考答案】***一、选择题13.14.3 215.1116.117.B18.±2.三、解答题19.(1)见解析;(2)6.【解析】【分析】(1)连接OC交BE于G,根据垂径定理得到OC⊥BE,根据平行线的性质得到∠OCM=∠OGB=90°,于是得到结论;(2)根据平行线的性质得到∠ABE=∠OMC ,根据三角函数的定义即可得到结论. 【详解】(1)证明:连接OE ,OC∵弧BC=弧CE ∴OC ⊥BE ∵CM ∥BE ∴OC ⊥CM∴直线CM 是圆O 的切线 (2)设半径为r ∵CM ∥BE ∴∠CMO=∠ABE 在Rt △OCM 中 sin ∠CMO=OC OM =sin ∠ABE=35r 3r 6r 45∴==+,解得 ∴圆O 的半径是6 【点睛】本题考查了切线的判定和性质,圆周角定理,解直角三角形,正确的作出辅助线是解题的关键. 20.(1)详见解析;(2)当DE =12BC 时,四边形BECF 是正方形. 【解析】 【分析】(1)根据等腰三角形的性质得到BD=CD ,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到BF=CE ,DE=DF ,推出四边形BECF 是平行四边形,得到四边形BECF 是菱形,于是得到结论. 【详解】(1)证明:∵AD 是BC 边上的中线,AB =AC , ∴BD =CD , ∵BF ∥EC , ∴∠DBF =∠DCE , ∵∠BDF =∠CDE , ∴△BDF ≌△CDE (ASA ); (2)解:当DE =12BC 时,四边形BECF 是正方形, 理由:∵△BDF ≌△CDE , ∴BF =CE ,DE =DF , ∵BF ∥CE ,∴四边形BECF 是平行四边形, ∵AB =AC ,AD 是中线,∴四边形BECF是菱形,∵DE=12BC,DE=DF=12EF,∴EF=BC,∴四边形BECF是正方形【点睛】本题考查了正方形的判定,菱形的判定和性质,全等三角形的判定和性质,正确的识别图形是解题的关键.21.a+b,1.【解析】【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a与b的值代入计算即可求出值.【详解】原式=2222()()()()()()()a ab b a a b a b a a ba ab a b a a b a b++-+-⋅=⋅+-+-=a+b,当a=﹣2,b=3时,原式=1.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.71m.【解析】【分析】先求出∠DBE=30°,∠BDE=30°,得出BE=DE,然后设EC=xm,则BE=2xm,DE=2xm,DC=3xm,BC,然后根据∠DAC=45°,可得AC=CD,列出方程求出x的值,然后即可求出塔DE的高度.【详解】解:由题知,∠DBC=60°,∠EBC=30°,∴∠DBE=∠DBC﹣∠EBC=60°﹣30°=30°.又∵∠BCD=90°,∴∠BDC=90°﹣∠DBC=90°﹣60°=30°.∴∠DBE=∠BDE.∴BE=DE.设EC=xm,则DE=BE=2EC=2xm,DC=EC+DE=x+2x=3xm,BC,由题知,∠DAC=45°,∠DCA=90°,AB=45,∴△ACD为等腰直角三角形,∴AC=DC.=3x,解得:x=2,2x=答:塔高约为71m.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据仰角和俯角构造直角三角形,利用三角函数的知识求解,难度一般.23.(1)①见解析;②见解析;(2)是,证明见解析.【解析】【分析】(1)①由旋转的性质可得:AB=BC,进而得到AB与CD平行且相等,判定四边形ABCD为平行四边形,再根据有一组邻边相等及有一个内角是90°,判定其为正方形.②设AB与EC交于P点,证△PAE≌△PBC≌△GAB,即可证明.(2)延长CD、BG,相交于点M,延长EA交CM于点N.证△BCM≌△CNE与△ABG≌△DMG即可得证.【详解】(1)①由旋转的性质可得:AB=BC∵CD=AB∴AB=BC=CD又∵CD∥AB,∴四边形ABCD是平行四边形因为∠ABC=90°,AB=BC∴平行四边形ABCD是正方形.②设AB与EC交于P点,∵BG⊥CE,∠ABC=90°,∴∠PCB+∠BPC=90°,∠ABG+∠BPC=90°∴∠PCB=∠ABG又∵BC=AB,∠ABC=∠BAG=90°∴△PBC≌△GAB∴AG=AP又∵AE=BC,∠ABC=∠EAB=90°,ED∥BC∴∠BCP=∠AEP∴△PAE≌△PBC∴AP=PB=12AB∴AG=12AD即G是AD中点(2)G仍然是AD的中点;证明:延长CD 、BG ,相交于点M ,延长EA 交CM 于点N. 由旋转可知, AB ⊥EN ,AE =CD ∴四边形ABCN 是正方形. ∴AN =CN =BC ,AN ⊥CM 易证:△BCM ≌△CNE∴CM =NE, CM -CD =NE -AE ,即:DM =AN ∴AB =AN =DM. ∴△ABG ≌△DMG ∴AG =DG.【点睛】本题考查的是正方形的性质及判定,掌握旋转的性质及正方形的性质与判定是关键. 24.(1)x;(2)﹣1<x≤8. 【解析】 【分析】(1)利用根的判别式即可解答 (2)分别求出不等式的解集,即可解答 【详解】(1)整理得:x 2+x ﹣8=0, ∵a =1、b =1、c =﹣8,∴b 2﹣4ac =12﹣4×1×(﹣8)=1+32=33>0, 则x=-12± ; (2)解不等式组:53165142x x x x ≤+⎧⎪⎨-+⎪⎩①<② ,解不等式①得:x≤8, 解不等式②得:x >﹣1,∴原不等式组的解集是﹣1<x≤8. 【点睛】此题考查解一元二次方程和不等式组的解,解题关键在于掌握运算法则25.(1)抛物线的函数表达式为y =x 2﹣4x+3;(2)△ADB 是等腰直角三角形;理由见解析;(3)P (2,﹣3). 【解析】【分析】(1)根据抛物线对称轴的定义易求A(1,0),B(3,0).所以1、3是关于x的一元二次方程x2+bx+c=0的两根.由韦达定理易求b、c的值;(2)先求出顶点D的坐标,再由勾股定理的逆定理证明△ABD是直角三角形,再由对称得AD=BD,进而得△ABD是等腰直角三角形;(3)连接CA,延长CA与直线x=2交于点P,连接BP,此时P点就是PC﹣PB的值最大的点,求出直线AC的解析式,再求直线AC与直线x=2的交点坐标便可.【详解】(1)如图,∵AB=2,对称轴为直线x=2.∴点A的坐标是(1,0),点B的坐标是(3,0).∵抛物线y=x2+bx+c与x轴交于点A,B,∴1、3是关于x的一元二次方程x2+bx+c=0的两根.由韦达定理,1+3=﹣b,1×3=c,∴b=﹣4,c=3,∴抛物线的函数表达式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴D(2,﹣1),∴AD2+BD2=(2﹣1)2+(﹣1)2+(2﹣3)2+(﹣1)2=4,∵AB2=22=4,∴AD2+BD2=AB2,∴△ADB是直角三角形,由对称性有AD=BD,∴△ADB是等腰直角三角形;(3)连接CA,延长CA与直线x=2交于点P,连接BP,如图2,∵A、B两点关于直线x=2对称,∴PB=PA,∴PC﹣PB=PC﹣PA=AC其值最大(∵另取一点P′,有P′C﹣P′B=P′C﹣P′A<AC),令x=0,得y=x2﹣4x+3=3,∴C(0,3),∵A(1,0),∴易求直线AC的解析式为:y=﹣3x+3,当x=2时,y=﹣3x+3=﹣3,∴P(2,﹣3).【点睛】考查了二次函数综合题,待定系数法求抛物线的解析式,等腰直角三角形,勾股定理的应用,待定系数法求直线的解析式,解题关键在于作辅助线。

四川省广元市2019-2020学年高一下学期期末教学质量监测数学试题(解析版)

四川省广元市2019-2020学年高一下学期期末教学质量监测数学试题(解析版)
【分析】根据向量的垂直的条件,以及向量的数量积计算即可. 解: =(1,0), =(1,1),( +λ )⊥ , ∴( +λ )• = +λ =1×1+0×1+λ(12+12)=0,
8
解得 λ=﹣ ,
故答案为:﹣
14.如图所示,直观图四边形 A′B′C′D′是一个底角为 45°,腰和上底均为 1 的等腰梯形,那
20.已知函数 f(x)=cos2x+2cos2(x﹣ ). (Ⅰ)求函数 f(x)的最小正周期; (Ⅱ)若 α∈(0, ),f(α)= ,求 cos2α.
21.在△ABC 中,角 A,B,C 的对应边分别为 a,b,c,且


(Ⅰ)求角 B 的大小; (Ⅱ)若△ABC 的面积为 ,a+c=2 ,D 为 AC 的中点,求 BD 的长. 22.设{an}是等差数列,{bn}是等比数列,公比大于 0.已知 a1=b1=3,b2=a3,b3=4a2+3. (Ⅰ)求{an}和{bn}的通项公式;
9
数列任意两项 an=an+1,即数列是常数列,②正确. 解:数列 1,2,1,2,…,显然是等和数列,但不是常数列,①错;
既等差又等和的数列 an 满足
,所以 an=an+1,即数列是常数列,
②正确; 数列 1,﹣1,1,﹣1,…,显然是等和数列,又是等比数列,但不是常数列,③错; 数列 1,49,1,49,…,则其前 n 项之和 Sn=50n 对于 n 是偶数时成立,但奇数时不成 立,④错. 故答案为:②. 三、解答题:本大题共 6 小题,共 70 分.解答应写出文字说明,证明过程或演算步骤.
C.a2﹣b2<0
D.b+a>0

四川省广元市重点中学2019-2020学年高一下学期期末2份数学调研试题

四川省广元市重点中学2019-2020学年高一下学期期末2份数学调研试题

2019-2020学年高一下学期期末数学模拟试卷一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯 A .1盏 B .3盏 C .5盏D .9盏2.在正四棱柱1111ABCD A B C D -,11,3AB BC AA ===,则异面直线1BC 与11D B 所成角的余弦值为 A .24B .144C .2814D .223.设n S 为等比数列{}n a 的前n 项和,若2580a a +=,则52S S =( ) A .-11B .-8C .5D .114.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于A .14B .13 C .12D .235.设函数()122,1 1,1x x f x log x x -⎧≤=⎨->⎩,则()()4f f =( )A .2B .4C .8D .166.为了调查某工厂生产的一种产品的尺寸是否合格,现从500件产品中抽出10件进行检验,先将500件产品编号为000,001,002,…,499,在随机数表中任选一个数开始,例如选出第6行第8列的数4开始向右读取(为了便于说明,下面摘取了随机数表附表1的第6行至第8行),即第一个号码为439,则选出的第4个号码是( )A .548B .443C .379D .2177.已知()2tan 3πα-=-,则()()()cos 3sin cos 9sin απαπαα-++-+的值为A .37-B .15-C .15D .378.向量()2,a x =,()6,8b =,若//a b ,则实数x 的值为 A .32B .32-C .83D .83-9.某公司在甲、乙、丙、丁四个地区分别有150,120,180,150个销售点.公司为了调查产品销售情况,需从这600个销售点中抽取一个容量为100的样本.记这项调查为①;在丙地区有20个大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②,则完成①,②这两项调查宜采用的抽样方法依次是( ) A .分层抽样法,系统抽样法 B .分层抽样法,简单随机抽样法 C .系统抽样法,分层抽样法 D .简单随机抽样法,分层抽样法10.已知向量(2,tan ),(1,1)a b θ==-,且//a b ,则tan()4πθ-=( )A .2B .3-C .1-D .13-11.在天气预报中,有“降水概率预报”,例如预报“明天降水的概率为”,这是指( )A .明天该地区有的地方降水,有的地方不降水B .明天该地区降水的可能性为C .气象台的专家中有的人认为会降水,另外有的专家认为不降水D .明天该地区有的时间降水,其他时间不降水12.不等式220ax bx +-≥的解集为1{|2}4x x -≤≤-,则实数,a b 的值为( ) A .8,10a b =-=- B .1,9a b =-= C .4,9a b =-=- D .1,2a b =-=二、填空题:本题共4小题 13.等比数列{}n a 中,153,48a a ==,则公比q =____________.14.已知向量()3,1a =,则a =________15.若1sin cos 3αα+=-,则sin 2α=_______.16.已知向量()cos ,sin a θθ=,()1,3b =,则a b -的最大值为_______.三、解答题:解答应写出文字说明、证明过程或演算步骤。

四川省广元市2019-2020学年新高考高一数学下学期期末调研试题

四川省广元市2019-2020学年新高考高一数学下学期期末调研试题

一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,...,960,分组后某组抽到的号码为1.抽到的32人中,编号落入区间[]401,755 的人数为( ) A .10B .11C .12D .132.已知x 、y 的取值如下表: x 0 1 3 4 y2.24.34.86.7从散点图可以看出y 与x 线性相关,且回归方程0.95y x a =+,则当5x =时,估计y 的值为( ) A .7.1B .7.35C .7.95D .8.63.l :2360x y +-=与两坐标轴所围成的三角形的面积为A .6B .1C .52D .34.直线330x y -+=的倾斜角是( ) A .6π B .3π C .23π D .56π 5.用数学归纳法(1)(2)()213(21)n n n n n n +++=⋅⋅-时,从“k 到1k +”左边需增乘的代数式是( ) A .21k + B .211k k ++ C .()221k +D .2(21)1k k ++6.在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若::4:3:2a b c =,则2sin sin sin 2A BC-=( )A .37B .57C .97D .1077.把一块长是10,宽是8,高是6的长方形木料削成一个体积最大的球,这个球的体积等于( ) A .36π B .480C .2563πD .5003π8.函数tan()42y x ππ=-的部分图象如图,则(OA OB +)AB ⋅=( )A .0B .3 C .3D .69.[]x 表示不超过x 的最大整数,设函数2()ln(1)h x x x =++,则函数()[()][()]f x h x h x =+-的值域为( ) A .{0}B .{2,0}-C .{1,0,1}-D .{1,0}-10.已知数列{}n a 为等比数列,且263a a π⋅=,则35a a ⋅=( )A .3π B .4π C .2π D .43π 11.三角函数是刻画客观世界周期性变化规律的数学模型,单位圆定义法是任意角的三角函数常用的定义方法,是以角度(数学上最常用弧度制)为自变量,任意角的终边与单位圆交点坐标为因变量的函数.平面直角坐标系中的单位圆指的是平面直角坐标系上,以原点为圆心,半径为单位长度的圆.问题:已知角α的终边与单位圆的交点为34,55P ⎛⎫- ⎪⎝⎭,则cos()sin()παα++-=( ) A .15-B .15C .75-D .7512.已知数列{}log a n b (0a >且)1a ≠是首项为2,公差为1的等差数列,若数列{}n a 是递增数列,且满足lg n n n a b b =,则实数a 的取值范围是( ) A .2,13⎛⎫⎪⎝⎭B .()2,+∞C .()2,11,3⎛⎫+∞⎪⎝⎭D .()20,1,3⎛⎫+∞ ⎪⎝⎭二、填空题:本题共4小题 13.在数列{}()*n a n N∈中,12a=,n S 是其前n 项和,当2n ≥时,恒有n a 、n S 、2n S -成等比数列,则()2lim 1n n n n a →∞++⋅=________. 14.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率为________.15.四棱柱1111ABCD A B C D -中,1A A ⊥平面ABCD ,平面ABCD 是菱形,14AA =,6AB =,3BAD π∠=,E 是BC 的中点,则点C 到平面1C DE 的距离等于________.16.化简:cos()sin()tan(2)2cot()cos()cos()2x x x x x x πππππ++--+=-+-++________三、解答题:解答应写出文字说明、证明过程或演算步骤。

广元市苍溪县实验中学校2020届高三数学下学期第二次适应性考试试题理

广元市苍溪县实验中学校2020届高三数学下学期第二次适应性考试试题理

四川省广元市苍溪县实验中学校2020届高三数学下学期第二次适应性考试试题理第I卷选择题(60分)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给的四个选项中,只有一项是符合题目要求的。

1.设全集为,集合,,则A.B.C.D.2.已知复数z的实部和虚部相等,且()()z i bi b R+=-∈,则z=23A.32B.22C.3D.23.如图是国家统计局于2020年1月9日发布的2018年12月到2019年12月全国居民消费价格的涨跌幅情况折线图。

(注:同比是指本期与同期作对比;环比是指本期与上期作对比。

如:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比)根据该折线图,下列结论错误的是A.2019年12月份,全国居民消费价格环比持平B.2018年12月至2019年12月全国居民消费价格环比均上涨C.2018年12月至2019年12月全国居民消费价格同比均上涨D .2018年11月的全国居民消费价格高于2017年12月的全国居民消费价格4.若变量x ,y 满足约束条件310260x y x y x y +≥⎧⎪-+≤⎨⎪+-≤⎩,则目标函数2z x y =-的最小值是 A .3- B .0C .13D .1035.函数225()2xx x f x e +=的大致图像是A .B .C .D .6.已知{}na 为等差数列,135246105,99a aa a a a ++=++=,则20a 等于A .1-B .1C .3D .77.已知35sin(),(,)4524πππαα-=∈,则sin =α A .210 B .210- C .210± D .210- 或2108.已知函数()sin()(0,0)f x x ωϕωπϕ=+>-<<的最小正周期是π,将函数()f x 的图象向左平移3π个单位长度后所得的函数图象过点(0,1)P ,则下列结论中正确的是 A .()f x 的最大值为2 B .()f x 在区间ππ(,)63-上单调递增C .()f x 的图像关于直线12x π=对称 D .()f x 的图像关于点(,0)3π对称9.某四棱锥的三视图如图所示,该四棱锥的表面积是 A .2025+B .1445+C .26D .1225+10.五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币,若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着,那么,没有相邻的两个人站起来的概率为A .516B .1132C .1532D .1211.设抛物线22ypx= (0p >)的焦点为F ,准线为l ,过焦点的直线分别交抛物线于,A B 两点,分别过,A B 作l 的垂线,垂足为,C D .若3AF BF=,且三角形CDF 的面积为3,则p 的值为A .233B .33C .62D .26312.已知e为自然对数的底数,若对任意的1,1e x ⎡⎤∈⎢⎥⎣⎦,总存在唯一的(0,)y ∈+∞,使得ln ln 1y y x x a y+++=成立,则实数a 的取值范围是A .(),0-∞B .(],0-∞C .2,e e ⎛⎤ ⎥⎝⎦D .(],1-∞-第II 卷 非选择题(90分)二、填空题:本题共4小题,每小题5分,共20分。

四川省广元市2019-2020年度高一下学期期末数学试卷(II)卷

四川省广元市2019-2020年度高一下学期期末数学试卷(II)卷

四川省广元市2019-2020年度高一下学期期末数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2016高一下·双峰期中) ﹣495°与下列哪个角的终边相同()A . 135°B . 45°C . 225°D . ﹣225°2. (2分)将参加夏令营的编号为:1,2,3,…,52的52名学生,采用系统抽样的方法抽取一个容量为4的样本,已知6号,32号,45号学生在样本中,则样本中还有一名学生的编号是()A . 3B . 12C . 16D . 193. (2分)为了考察两个变量x和y之间的线性相关性,甲、乙两同学各自独立地做100次和150次试验,并且利用线性回归方法,求得回归直线分别为t1和t2 ,已知两个人在试验中发现对变量x的观测值的平均值都是s,对变量y的观测值的平均值都是t,那么下列说法正确的是()A . t1和t2有交点(s,t)B . t1和t2相交,但交点不是(s,t)C . t1和t2必定重合D . t1和t2必定不重合4. (2分)一组抛物线,其中a为2,4,6,8中任取的一个数,b为1,3,5,7中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线x=1交点处的切线相互平行的概率是()A .B .C .D .5. (2分)下列一段程序执行后输出结果是()A=2A=A+2A=A+6PRINT AENDA . 2B . 8C . 10D . 186. (2分) (2016高三上·辽宁期中) 已知M为△ABC内一点, = + ,则△ABM和△ABC 的面积之比为()A .B .C .D .7. (2分)投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币数字一面向上”为事件A,“骰子向上的点数是偶数”为事件B,则事件A,B中至少有一件发生的概率是()A .B .C .D .8. (2分)函数f(x)=2cos(x﹣)的单调递增区间是()A . [2kπ+ ,2kπ+ ](k∈Z)B . [2kπ﹣,2kπ+ ](k∈Z)C . [2kπ﹣,2kπ+ ](k∈Z)D . [2kπ﹣,2kπ+ ](k∈Z)9. (2分)在区间上随机取一实数x,则该实数x满足不等式的概率为()A .B .C .D .10. (2分)为得到的图象,可将函数的图象向左平移m个单位长度或者向右平移n 单位长度,m,n均为正数,则的最小值为()A .B .C .D .11. (2分)已知x、y取值如表:x01456y 1.3m3m 5.67.4画散点图分析可知:y与x线性相关,且求得回归方程为=x+1,则m的值(精确到0.1)为()A . 1.5B . 1.6C . 1.7D . 1.812. (2分)(2016·连江模拟) 函数f(x)=sin(ωx+φ)的部分图象如图所示,则f(x)的对称轴为()A . x=﹣+kπ,k∈ZB . x=﹣+2kπ,k∈ZC . x=﹣ +k,k∈ZD . x=﹣ +2k,k∈Z二、填空题 (共4题;共4分)13. (1分) (2016高三上·杭州期中) 已知△ABC中,AB=4,AC=2,|λ +(2﹣2λ) |(λ∈R)的最小值为2 ,若P为边AB上任意一点,则• 的最小值是________.14. (1分)(2018高二上·沧州期中) 已知一组数据的方差为2,若数据的方差为8,则的值为________.15. (1分)已知α为锐角,且tan(π﹣α)+3=0,则sinα的值是________.16. (1分)按如图所示的程序框图输入n=4,则输出C的值是________.三、解答题 (共6题;共42分)17. (5分) (2016高一下·邢台期中) 化简.18. (2分)写出图1、图2中程序框图的运行结果:(1)图1中输出S=________;(2)图2中输出a=________.19. (10分) (2016高二上·浦城期中) 北京市为了缓解交通压力,计划在某路段实施“交通限行”,为调查公众对该路段“交通限行”的态度,某机构从经过该路段的人员中随机抽查了80人进行调查,将调查情况进行整理,制成表:年龄(岁)[15,30)[30,45)[45,60)[60,75)人数24261614赞成人数1214x3(1)若经过该路段的人员对“交通限行”的赞成率为0.40,求x的值;(2)在(1)的条件下,若从年龄在[45,60),[60,75)内的两组赞成“交通限行”的人中在随机选取2人进行进一步的采访,求选中的2人中至少有1人来自[60,75)内的概率.20. (15分) (2016高一下·抚顺期末) 已知 =(sinx,cosx), =(sinx,sinx),函数f(x)= .(1)求f(x)的对称轴方程;(2)求使f(x)≥1成立的x的取值集合;(3)若对任意实数,不等式f(x)﹣m<2恒成立,求实数m的取值范围.21. (5分)空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,解代表空气污染越严重:PM2.5日均浓度0~3535~7575~115115~150150~250>250空气质量级别一级二级三级四级五级六级空气质量类别优良轻度污染中度污染重度污染严重污染某市2012年3月8日﹣4月7日(30天)对空气质量指数PM2.5进行检测,获得数据后整理得到如图条形图:(1)估计该城市一个月内空气质量类别为良的概率;(2)从空气质量级别为三级和四级的数据中任取2个,求至少有一天空气质量类别为中度污染的概率.22. (5分) (2016高一下·新疆开学考) 已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<)的最小正周期为2 π,最小值为﹣2,且当x= 时,函数取得最大值4.(I)求函数 f(x)的解析式;(Ⅱ)求函数f(x)的单调递增区间;(Ⅲ)若当x∈[ , ]时,方程f(x)=m+1有解,求实数m的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共42分)17-1、18-1、18-2、19-1、19-2、20-1、20-2、20-3、21-1、22-1、。

2019-2020学年度第二学期检测试题高一数学【含答案】

2019-2020学年度第二学期检测试题高一数学【含答案】

33 (Ⅱ)若∥ ABC 的面积为 2 ,求 b 的值.
【答案】(Ⅰ) 45 ;(Ⅱ) 14
B π
【解析】(Ⅰ)∵ a 2 , b 3 ,
3,
2 3
a b sin A sin π
∴由正弦定理得 sin A sin B 即
2,
sin A 2

2,
∵ a b , A (0, π) ,
∴ A 45 .
7x 1
选项 D ,
7x ,当且仅当 7x 即 x 0 时取等号,故正确.
故选: D .
6.在∥ ABC 中,内角 A , B , C 所对的边分别是 a , b , c .已知 8b 5c , C 2B ,则 cosC ( ).
7 A. 25
7 B. 25
7 C. 25
24 D. 25
某同学用综合法证明第(Ⅰ)问,用分析法证明第(Ⅱ)问,证明过程如下,请你在横线上填上合适 的内容.
P E
A
N
D
M
证明:(Ⅰ)取 PD 的中点 E ,连结 EN , AE .
在△PCD 中,因为 E , N 分别为所在边的中点,
所以___________________,
又 AM CD ,
所以______________________,
1(I)解:n= 2 50
1分
0.04
(II)解:补全数据见下表(3 分);
组号
分组
频数
频率
1
[5,6) 2
0.04
2
[6,7) 10
0.20
3
[7,8) 10
0.20
4
[8,9) 20
0.40
5
[9,10 8

四川省广元市苍溪县实验中学校2019_2020学年高一数学下学期第二次月考试题文

四川省广元市苍溪县实验中学校2019_2020学年高一数学下学期第二次月考试题文

四川省广元市苍溪县实验中学校2019-2020学年高一数学下学期第二次月考试题 文总分:150分 考试时间:120分钟一、选择题(每题5分,共60分) 1。

sin15cos15=( )A. 12B. 14C 。

D.2.计算sin13cos17cos13sin17︒︒+︒︒的值为( )A .2B .12C .12-D .2-3.已知31tan ,21tan ==βα,则()tan αβ-等于( ) A 。

17B. 17- C.56D 。

56-4.已知向量()()1,3,0,2a b =-=-,则a 与b的夹角为( )A 。

6πB. 3πC 。

56π D 。

23π5。

在ABC △中,3,5a b ==,1sin 3A =,则sinB = ( )A .15B .59C D .1 6。

在ABC △中,222a b c bc =+-,则A 等于( )A .45︒B .120︒C .60︒D .30︒7。

设向量(1,2),(,4)a b x ==,若//a b ,则实数 x 的值为( ) A 。

2 B.3 C 。

-4 D 。

68。

已知α是第三象限角,且()3sin 5πα-=-,则tan 2α的值为( ) A 。

45 B 。

237-C 。

247D.249-9。

已知sin cos αα-,()0,απ∈,则sin 2α=( )A 。

1-B 。

C.D. 110。

在ABC ∆中,若cos cos sin sin 0A B A B ->,则这个三角形一定是( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D.以上都有可能11、已知平面向量b a , 的夹角为60°,)1,3(=a , 1=b +=( )A. 2B.7C 。

72D 。

3212。

在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,若ABC ∆的面积为S ,且221,41a S b c ==+-,则ABC ∆外接圆的面积为( )A.2πB 。

四川省广元市苍溪县实验中学校2019-2020学年高一下学期期中考试化学试卷

四川省广元市苍溪县实验中学校2019-2020学年高一下学期期中考试化学试卷

化学一、选择题(本题包括25小题,每小题2分,共50分,每小题只有一个正确答案)1、某元素原子最外层上只有两个电子,则该元素()。

A.一定是金属元素B.一定是第ⅡA族元素C.一定是过渡元素D.可能是金属元素,也可能不是金属元素2、下列原子中最易形成阴离子的是()。

A.Cl B.F C.Na D.K3、下列各组微粒具有相同的质子数和电子数的是()。

A.OH-、H2O B.NH3、NH4+C.F-、NH4+D.HCl、F24、碘131是碘元素的一种放射性核素。

下列关于131 53I的说法正确的是()。

A.质量数为131 B.质子数为78 C.核外电子数为78 D.中子数为535、第三周期元素中,与氢气反应生成的气态氢化物最稳定的是()。

A.钠B.硅C.硫D.氯6、各组性质比较的表示中,正确的是()。

A.酸性:HI < HBr < HCl < HF B.稳定性:HF< HCl < HBr < HIC.氧化性:F2 < Cl2 < Br2 < I2D.沸点:F2 < Cl2 < Br2 < I27、X、Y、Z和R分别代表四种不同的元素,如果a X m+、b Y n+、c Z n-、d R m-四种离子的电子层结构相同(a、b、c、d为元素的原子序数),则下列关系正确的是()。

A.a-c=m-n B.a-b=n-m C.c-d=m+n D.b-d=n+m8、如图为周期表中的一部分,若a原子最外层电子数比次外层电子数少3个,则下列说法不正确的是()。

A.a、b、c最高价氧化物对应的水化物的酸性强弱关系是c>b>aB.a、b、c的氢化物水溶液的酸性强弱关系是a<b<cC.a和d的原子结合可以形成带3个单位负电荷的阴离子D.原子半径由大到小的顺序是c>b>d>a9、下列关于有机物和无机物的说法错误的是()。

四川省广元市2019-2020学年高一下学期数学期中考试试卷(II)卷

四川省广元市2019-2020学年高一下学期数学期中考试试卷(II)卷

四川省广元市2019-2020学年高一下学期数学期中考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)用随机数表法进行抽样有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定开始的数字,这些步骤的先后顺序应为()A . ①②③B . ③②①C . ①③②D . ③①②2. (2分)从5位男生和2位女生共7位同学中任意选派3人,属必然事件的是()A . 3位都是女生B . 至少有1位是女生C . 3位都不是女生D . 至少有1位是男生3. (2分)下列问题中,最适合用分层抽样方法抽样的是()A . 某电影院有32排座位,每排有40个座位,座位号是1~40.有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈B . 从10台冰箱中抽出3台进行质量检查C . 某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量D . 从50个零件中抽取5个做质量检验4. (2分) (2016高一下·正阳期中) 如果数据x1 , x2 ,…,xn的平均数是,方差是S2 ,则2x1+3,2x2+3,…,2xn+3的平均数和方差分别是()A . 和SB . 2 +3和4S2C . 和S2D . 和4S2+12S+95. (2分)(2016·海南模拟) 已知具有线性相关的两个变量x,y之间的一组数据如表:x01234y 2.2 4.3 4.5 4.8t且回归方程是 =0.95x+2.6,则t=()A . 6.7B . 6.6C . 6.5D . 6.46. (2分)一只蚂蚁在边长为5的等边三角形的边上爬行,某时刻该蚂蚁距离三角形的三个顶点的距离均超过1的概率为()A .B .C .D .7. (2分)定义某种运算,运算原理如图所示,则式子的值为()A . 13B . 11C . 8D . 48. (2分)已知随机变量X的分布列如表,则X取负数的概率为()X﹣2﹣101P0.10.40.30.2A . 0.1B . 0.4C . 0.5D . 0.049. (2分)(2018·延边模拟) 执行下面的程序框图,如果输入的N=4,那么输出的S=()A . 1+B . 1+C . 1+D . 1+10. (2分) (2016高一下·会宁期中) 某社区有400个家庭,其中高等收入家庭120户,中等收入家庭180户,低收入家庭100户.为了调查社会购买力的某项指标,要从中抽取一个容量为100的样本,记作①;某校高一年级有13名排球运动员,要从中选出3人调查学习负担情况,记作②.那么,完成上述2项调查宜采用的抽样方法是()A . ①用简单随机抽样,②用系统抽样B . ①用分层抽样,②用简单随机抽样C . ①用系统抽样,②用分层抽样D . ①用分层抽样,②用系统抽样11. (2分)一个口袋内有带标号的7个白球,3个黑球,作有放回抽样,连摸2次,每次任意摸出1球,则2次摸出的球为一白一黑的概率是()A .B .C .D .12. (2分)(2018·茂名模拟) 投掷两枚质地均匀的正方体散子,将两枚散子向上点数之和记作 .在一次投掷中,已知是奇数,则的概率是()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2016高二上·黄骅期中) 在区间[1,5]和[2,4]分别各取一个数,记为m和n,则方程表示焦点在x轴上的椭圆的概率是________14. (1分)(2017·东城模拟) 如图茎叶图记录了甲,乙两班各六名同学一周的课外阅读时间(单位:小时),已知甲班数据的平均数为13,乙班数据的中位数为17,那么x的位置应填________;y的位置应填________.15. (1分) (2019高二下·上海期末) 数列是公差不为零的等差数列,其前n项和为,若记数据,,,,的标准差为,数据,,,,的标准差为,则 ________16. (1分)根据如图所示的程序框图操作,使得当成绩不低于60分时,输出“及格”,当成绩低于60分时,输出“不及格”,则框1中填________,框2中填________.三、解答题 (共6题;共70分)17. (10分) (2020高二下·双流月考) 某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.(1)根据频率分布直方图计算图中各小长方形的宽度;(2)估计该公司投入4万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:广告投入x(单位:万元)12345销售收益y(单位:万元)1347表中的数据显示,x与y之间存在线性相关关系,请将(2)的结果填入上表的空白栏,并计算y关于x的回归方程.回归直线的斜率和截距的最小二乘法估计公式分别为, .18. (15分)某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)x:y1:12:13:44:519. (10分) (2019高二上·昌平月考) 某初级中学共有学生2000名,各年级男生、女生人数如表: 已知在全校学生中随机抽取1名,抽到的是初二年级女生的概率是0.19.初一年级初二年级初三年级女生373x y男生377370z(1)求x的值.(2)现用分层抽样法在全校抽取48名学生,问应在初三年级学生中抽取多少名?(3)已知y≥245,z≥245,求初三年级女生比男生多的概率.20. (15分) (2019高二下·牡丹江期末) 某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为 .现有10件产品,其中6件是一等品,4件是二等品.(Ⅰ)随机选取1件产品,求能够通过检测的概率;(Ⅱ)随机选取3件产品,其中一等品的件数记为,求的分布列;(Ⅲ)随机选取3件产品,求这三件产品都不能通过检测的概率.21. (5分)某中学团委组织了“弘扬奥运精神,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如下部分频率分布直方图.观察图形给出的信息,回答下列问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分;(3)从成绩是[40,50)和[90,100]的学生中选两人,求他们在同一分数段的概率.22. (15分)端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个。

四川省广元市2019-2020学年中考第二次适应性考试数学试题含解析

四川省广元市2019-2020学年中考第二次适应性考试数学试题含解析

四川省广元市2019-2020学年中考第二次适应性考试数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一个几何体的三视图如图所示,这个几何体是()A.棱柱B.正方形C.圆柱D.圆锥2.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是( )A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同3.如图,数轴上表示的是下列哪个不等式组的解集()A.53xx≥-⎧⎨>-⎩B.53xx>-⎧⎨≥-⎩C.53xx<⎧⎨<-⎩D.53xx<⎧⎨>-⎩4.定义运算“※”为:a※b=()()22ab bab b⎧>⎪⎨-≤⎪⎩,如:1※(﹣2)=﹣1×(﹣2)2=﹣1.则函数y=2※x的图象大致是()A.B.C.D.5.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±36.下列分式中,最简分式是( )A .2211x x -+ B .211x x +- C .2222x xy y x xy -+- D .236212x x -+ 7.要使分式337x x -有意义,则x 的取值范围是( ) A .x=73 B .x>73 C .x<73 D .x≠738.由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是 ()A .B .C .D .9.已知点A(1,y 1)、B(2,y 2)、C(﹣3,y 3)都在反比例函数y =6x 的图象上,则y 1、y 2、y 3的大小关系是( ) A .y 1<y 2<y 3 B .y 3<y 2<y 1 C .y 2<y 1<y 3 D .y 3<y 1<y 210.若一组数据2,3,4,5,x 的平均数与中位数相等,则实数x 的值不可能是( )A .6B .3.5C .2.5D .111.如图,在ABC ∆中,90,4,3C AC BC ︒∠===,将ABC ∆绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,则,B D 两点间的距离为( )A 10B .2C .3D 512.在2014年5月崇左市教育局举行的“经典诗朗诵”演讲比赛中,有11名学生参加决赛,他们决赛的成绩各不相同,其中的一名学生想知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的( )A .众数B .中位数C .平均数D .方差二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一等腰三角形,底边长是18厘米,底边上的高是18厘米,现在沿底边依次从下往上画宽度均为3厘米的矩形,画出的矩形是正方形时停止,则这个矩形是第_____个.14.化简:÷(﹣1)=_____.15.用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个、的等式为________.关于a b16.2018年1月4日在萍乡市第十五届人民代表大会第三次会议报告指出,去年我市城镇居民人均可支配收入33080元,33080用科学记数法可表示为__.17.如图,在△ABC中,CA=CB,∠ACB=90°,AB=4,点D为AB的中点,以点D为圆心作圆,半圆恰好经过三角形的直角顶点C,以点D为顶点,作90°的∠EDF,与半圆交于点E,F,则图中阴影部分的面积是____.18.如图,AB∥CD,BE交CD于点D,CE⊥BE于点E,若∠B=34°,则∠C的大小为________度.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.20.(6分)如图,已知∠ABC=90°,AB=BC.直线l与以BC为直径的圆O相切于点C.点F是圆O上异于B、C的动点,直线BF与l相交于点E,过点F作AF的垂线交直线BC于点D.如果BE=15,CE=9,求EF的长;证明:①△CDF∽△BAF;②CD=CE;探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=3CD,请说明你的理由.21.(6分)先化简,再求值:x(x+1)﹣(x+1)(x﹣1),其中x=1.22.(8分)如图,直线y=﹣x+3分别与x轴、y交于点B、C;抛物线y=x2+bx+c经过点B、C,与x轴的另一个交点为点A(点A在点B的左侧),对称轴为l1,顶点为D.(1)求抛物线y=x2+bx+c的解析式.(2)点M(1,m)为y轴上一动点,过点M作直线l2平行于x轴,与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),且x2>x1>1.①结合函数的图象,求x3的取值范围;②若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,求m的值.23.(8分)在连接A、B两市的公路之间有一个机场C,机场大巴由A市驶向机场C,货车由B市驶向A市,两车同时出发匀速行驶,图中线段、折线分别表示机场大巴、货车到机场C的路程y(km)与出发时间x(h)之间的函数关系图象.直接写出连接A、B两市公路的路程以及货车由B市到达A市所需时间.求机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式.求机场大巴与货车相遇地到机场C的路程.24.(10分)我市正在开展“食品安全城市”创建活动,为了解学生对食品安全知识的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A非常了解、B了解、C了解较少、D不了解”四类分别进行统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:此次共调查了名学生;扇形统计图中D所在扇形的圆心角为;将上面的条形统计图补充完整;若该校共有800名学生,请你估计对食品安全知识“非常了解”的学生的人数.25.(10分)如图,在顶点为P的抛物线y=a(x-h)2+k(a≠0)的对称轴1的直线上取点A(h,k+14a),过A作BC⊥l交抛物线于B、C两点(B在C的左侧),点和点A关于点P对称,过A作直线m⊥l.又分别过点B,C作直线BE⊥m和CD⊥m,垂足为E,D.在这里,我们把点A叫此抛物线的焦点,BC 叫此抛物线的直径,矩形BCDE叫此抛物线的焦点矩形.(1)直接写出抛物线y=14x2的焦点坐标以及直径的长.(2)求抛物线y=14x2-32x+174的焦点坐标以及直径的长.(3)已知抛物线y=a(x-h)2+k(a≠0)的直径为32,求a的值.(4)①已知抛物线y=a(x-h)2+k(a≠0)的焦点矩形的面积为2,求a的值.②直接写出抛物线y=14x2-32x+174的焦点短形与抛物线y=x2-2mx+m2+1公共点个数分别是1个以及2个时m的值.26.(12分)如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).(1)求点B ,C 的坐标;(2)判断△CDB 的形状并说明理由;(3)将△COB 沿x 轴向右平移t 个单位长度(0<t <3)得到△QPE .△QPE 与△CDB 重叠部分(如图中阴影部分)面积为S ,求S 与t 的函数关系式,并写出自变量t 的取值范围.27.(12分)如图,已知二次函数2y x bx c =-++与x 轴交于A 、B 两点,A 在B 左侧,点C 是点A 下方,且AC ⊥x 轴.(1)已知A(-3,0),B(-1,0),AC=OA .①求抛物线解析式和直线OC 的解析式;②点P 从O 出发,以每秒2个单位的速度沿x 轴负半轴方向运动,Q 从O 出发,以每秒2个单位的速度沿OC 方向运动,运动时间为t.直线PQ 与抛物线的一个交点记为M,当2PM=QM 时,求t 的值(直接写出结果,不需要写过程)(2)过C 作直线EF 与抛物线交于E 、F 两点(E 、F 在x 轴下方),过E 作EG ⊥x 轴于G ,连CG ,BF,求证:CG ∥BF参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题解析:根据主视图和左视图为矩形可判断出该几何体是柱体,根据俯视图是圆可判断出该几何体为圆柱.故选C.2.B【解析】【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选B.【点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.3.B【解析】【分析】根据数轴上不等式解集的表示方法得出此不等式组的解集,再对各选项进行逐一判断即可.解:由数轴上不等式解集的表示方法得出此不等式组的解集为:x≥-3,A 、不等式组53x x ≥-⎧⎨>-⎩的解集为x >-3,故A 错误; B 、不等式组53x x >-⎧⎨≥-⎩的解集为x≥-3,故B 正确; C 、不等式组53x x <⎧⎨<-⎩的解集为x <-3,故C 错误; D 、不等式组53x x <⎧⎨>-⎩的解集为-3<x <5,故D 错误. 故选B .【点睛】本题考查的是在数轴上表示一元一次不等式组的解集,根据题意得出数轴上不等式组的解集是解答此题的关键.4.C【解析】【分析】根据定义运算“※” 为: a ※b=()()2200ab b ab b ⎧>⎪⎨-≤⎪⎩,可得y=2※x 的函数解析式,根据函数解析式,可得函数图象. 【详解】解:y=2※x=()()222020x x x x ⎧>⎪⎨-≤⎪⎩, 当x>0时,图象是y=22x 对称轴右侧的部分;当x <0时,图象是y=22x -对称轴左侧的部分,所以C 选项是正确的.【点睛】本题考查了二次函数的图象,利用定义运算“※”为: a ※b=()()2200ab b ab b ⎧>⎪⎨-≤⎪⎩得出分段函数是解题关键.5.B【解析】解:由题意得:x ﹣2≥0,2﹣x≥0,解得:x=2,∴y=1,则y x =9,9的算术平方根是1.故选B . 6.A试题分析:选项A为最简分式;选项B化简可得原式==;选项C化简可得原式==;选项D化简可得原式==,故答案选A.考点:最简分式.7.D【解析】【分析】本题主要考查分式有意义的条件:分母不能为0,即3x−7≠0,解得x.【详解】∵3x−7≠0,∴x≠73.故选D.【点睛】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.8.A【解析】从左面看,得到左边2个正方形,中间3个正方形,右边1个正方形.故选A.9.B【解析】【分析】分别把各点代入反比例函数的解析式,求出y1,y2,y3的值,再比较出其大小即可.【详解】∵点A(1,y1),B(2,y2),C(﹣3,y3)都在反比例函数y=6x的图象上,∴y1=61=6,y2=62=3,y3=63=-2,∵﹣2<3<6,∴y3<y2<y1,故选B.【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数值的大小比较,熟练掌握反比例函数图象上的点的坐标满足函数的解析式是解题的关键.10.C【分析】因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间;结尾;开始的位置.【详解】(1)将这组数据从小到大的顺序排列为2,3,4,5,x,处于中间位置的数是4,∴中位数是4,平均数为(2+3+4+5+x)÷5,∴4=(2+3+4+5+x)÷5,解得x=6;符合排列顺序;(2)将这组数据从小到大的顺序排列后2,3,4,x,5,中位数是4,此时平均数是(2+3+4+5+x)÷5=4,解得x=6,不符合排列顺序;(3)将这组数据从小到大的顺序排列后2,3,x,4,5,中位数是x,平均数(2+3+4+5+x)÷5=x,解得x=3.5,符合排列顺序;(4)将这组数据从小到大的顺序排列后2,x,3,4,5,中位数是3,平均数(2+3+4+5+x)÷5=3,解得x=1,不符合排列顺序;(5)将这组数据从小到大的顺序排列后x,2,3,4,5,中位数是3,平均数(2+3+4+5+x)÷5=3,解得x=1,符合排列顺序;∴x的值为6、3.5或1.故选C.【点睛】考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.11.A【解析】【分析】先利用勾股定理计算出AB,再在Rt△BDE中,求出BD即可;【详解】解:∵∠C=90°,AC=4,BC=3,∴AB=5,∵△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=AC=4,DE=BC=3,∴BE=AB-AE=5-4=1,在Rt△DBE中,=故选A.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.12.B【解析】【分析】【详解】解:11人成绩的中位数是第6名的成绩.参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.故选B.【点睛】本题考查统计量的选择,掌握中位数的意义是本题的解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.5【解析】【分析】根据相似三角形的相似比求得顶点到这个正方形的长,再根据矩形的宽求得是第几张.【详解】解:已知剪得的纸条中有一张是正方形,则正方形中平行于底边的边是3,所以根据相似三角形的性质可设从顶点到这个正方形的线段为x,则=,解得x=3,所以另一段长为18-3=15,因为15÷3=5,所以是第5张.故答案为:5.【点睛】本题主要考查了相相似三角形的判定和性质,关键是根据似三角形的性质及等腰三角形的性质的综合运用解答.14.﹣.【解析】【分析】直接利用分式的混合运算法则即可得出.【详解】原式.故答案为:.【点睛】此题主要考查了分式的化简,正确掌握运算法则是解题关键.15.(a+b)2﹣(a﹣b)2=4ab【解析】【分析】根据长方形面积公式列①式,根据面积差列②式,得出结论.【详解】S阴影=4S长方形=4ab①,S阴影=S大正方形﹣S空白小正方形=(a+b)2﹣(b﹣a)2②,由①②得:(a+b)2﹣(a﹣b)2=4ab.故答案为(a+b)2﹣(a﹣b)2=4ab.【点睛】本题考查了完全平方公式几何意义的理解,此题有机地把代数与几何图形联系在一起,利用几何图形的面积公式直接得出或由其图形的和或差得出.16.3.308×1.【解析】【分析】正确用科学计数法表示即可.【详解】解:33080=3.308×1【点睛】科学记数法的表示形式为10na⨯的形式, 其中1<|a|<10,n为整数.确定n的值时, 要看把原数变成a时, 小数点移动了多少位, n的绝对值与小数点移动的位数相同. 当原数绝对值大于10时, n是正数; 当原数的绝对值小于1时,n是负数.17.π﹣1.【解析】【分析】连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则S四边形DGCH=S四边形DMCN,求得扇形FDE的面积,则阴影部分的面积即可求得.【详解】连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=12AB=1,四边形DMCN是正方形,则扇形FDE的面积是:2902360π⨯=π.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA.又∵DM⊥BC,DN⊥AC,∴DM=DN.∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN.在△DMG和△DNH中,∵DMG DNHGDM HDNDM DN∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=1.则阴影部分的面积是:π﹣1.故答案为π﹣1.【点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG ≌△DNH ,得到S 四边形DGCH =S 四边形DMCN 是关键.18.56【解析】【详解】解:∵AB ∥CD,34B ∠=o ,∴34CDE B ∠=∠=o ,又∵CE ⊥BE ,∴Rt △CDE 中,903456C ∠=-=o o o ,故答案为56.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)12;(2)规则是公平的; 【解析】试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可; (2)分别计算出小王和小李去植树的概率即可知道规则是否公平.试题解析:(1)画树状图为:共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,所以P (小王)=34; (2)不公平,理由如下:∵P (小王)=34,P (小李)=14,34≠14, ∴规则不公平.点睛:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.20.(1)275(2)证明见解析(3)F在直径BC下方的圆弧上,且»»23BF BC=【解析】【分析】(1)由直线l与以BC为直径的圆O相切于点C,即可得∠BCE=90°,∠BFC=∠CFE=90°,则可证得△CEF∽△BEC,然后根据相似三角形的对应边成比例,即可求得EF的长;(2)①由∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,根据同角的余角相等,即可得∠ABF=∠FCD,同理可得∠AFB=∠CFD,则可证得△CDF∽△BAF;②由△CDF∽△BAF与△CEF∽△BCF,根据相似三角形的对应边成比例,易证得CD CEBA BC=,又由AB=BC,即可证得CD=CE;(3)由CE=CD,可得BC=3CD=3CE,然后在Rt△BCE中,求得tan∠CBE的值,即可求得∠CBE的度数,则可得F在⊙O的下半圆上,且»»23BF BC=.【详解】(1)解:∵直线l与以BC为直径的圆O相切于点C.∴∠BCE=90°,又∵BC为直径,∴∠BFC=∠CFE=90°,∵∠FEC=∠CEB,∴△CEF∽△BEC,∴CE EF BE CE=,∵BE=15,CE=9,即:9159EF=,解得:EF=275;(2)证明:①∵∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,∴∠ABF=∠FCD,同理:∠AFB=∠CFD,∴△CDF∽△BAF;②∵△CDF∽△BAF,∴CF CD BF BA=,又∵∠FCE=∠CBF,∠BFC=∠CFE=90°,∴△CEF∽△BCF,∴CF CE BF BC =, ∴CD CE BA BC =, 又∵AB=BC ,∴CE=CD ;(3)解:∵CE=CD ,∴BC=3CD=3CE ,在Rt △BCE 中,tan ∠CBE=3CE BC =, ∴∠CBE=30°,故»CF 为60°,∴F 在直径BC 下方的圆弧上,且»»23BF BC =.【点睛】考查了相似三角形的判定与性质,圆的切线的性质,圆周角的性质以及三角函数的性质等知识.此题综合性很强,解题的关键是方程思想与数形结合思想的应用.21.x+1,2.【解析】【分析】先根据单项式乘以多项式的运算法则、平方差公式计算后,再去掉括号,合并同类项化为最简后代入求值即可.【详解】原式=x 2+x ﹣(x 2﹣1)=x 2+x ﹣x 2+1=x+1,当x=1时,原式=2.【点睛】本题考查了整式的化简求值,根据整式的运算法则先把知识化为最简是解决问题的关键.22.(2)y=x2﹣4x+3;(2)①2<x3<4,②m的值为11317或2.【解析】【分析】(2)由直线y=﹣x+3分别与x轴、y交于点B、C求得点B、C的坐标,再代入y=x2+bx+c求得b、c的值,即可求得抛物线的解析式;(2)①先求得抛物线的顶点坐标为D(2,﹣2),当直线l2经过点D时求得m=﹣2;当直线l2经过点C时求得m=3,再由x2>x2>2,可得﹣2<y3<3,即可﹣2<﹣x3+3<3,所以2<x3<4;②分当直线l2在x轴的下方时,点Q在点P、N之间和当直线l2在x轴的上方时,点N在点P、Q之间两种情况求m的值即可.【详解】(2)在y=﹣x+3中,令x=2,则y=3;令y=2,则x=3;得B(3,2),C(2,3),将点B(3,2),C(2,3)的坐标代入y=x2+bx+c得:,解得∴y=x2﹣4x+3;(2)∵直线l2平行于x轴,∴y2=y2=y3=m,①如图①,y=x2﹣4x+3=(x﹣2)2﹣2,∴顶点为D(2,﹣2),当直线l2经过点D时,m=﹣2;当直线l2经过点C时,m=3∵x2>x2>2,∴﹣2<y3<3,即﹣2<﹣x3+3<3,得2<x3<4,②如图①,当直线l2在x轴的下方时,点Q在点P、N之间,若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PQ=QN.∵x2>x2>2,∴x3﹣x2=x2﹣x2,即x3=2x2﹣x2,∵l2∥x轴,即PQ∥x轴,∴点P、Q关于抛物线的对称轴l2对称,又抛物线的对称轴l2为x=2,∴2﹣x2=x2﹣2,即x2=4﹣x2,∴x3=3x2﹣4,将点Q(x2,y2)的坐标代入y=x2﹣4x+3得y2=x22﹣4x2+3,又y2=y3=﹣x3+3∴x22﹣4x2+3=﹣x3+3,∴x22﹣4x2=﹣(3x2﹣4)即x22﹣x2﹣4=2,解得x2=,(负值已舍去),∴m=()2﹣4×+3=11317-如图②,当直线l2在x轴的上方时,点N在点P、Q之间,若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PN=NQ.由上可得点P、Q关于直线l2对称,∴点N在抛物线的对称轴l2:x=2,又点N在直线y=﹣x+3上,∴y3=﹣2+3=2,即m=2.故m 11317-2.【点睛】本题是二次函数综合题,本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、线段的中点及分类讨论思想等知识.在(2)中注意待定系数法的应用;在(2)①注意利用数形结合思想;在(2)②注意分情况讨论.本题考查知识点较多,综合性较强,难度较大.23.(1)连接A 、B 两市公路的路程为80km ,货车由B 市到达A 市所需时间为43h ;(2)y=﹣80x+60(0≤x≤34);(3)机场大巴与货车相遇地到机场C 的路程为1007km . 【解析】【分析】 (1)根据AB AC BC =+可求出连接A 、B 两市公路的路程,再根据货车13h 行驶20km 可求出货车行驶60km 所需时间; (2)根据函数图象上点的坐标,利用待定系数法即可求出机场大巴到机场C 的路程y (km )与出发时间x (h )之间的函数关系式;(3)利用待定系数法求出线段ED 对应的函数表达式,联立两函数表达式成方程组,通过解方程组可求出机场大巴与货车相遇地到机场C 的路程.【详解】解:(1)60+20=80(km),14802033÷⨯=(h) ∴连接A. B 两市公路的路程为80km ,货车由B 市到达A 市所需时间为43h . (2)设所求函数表达式为y=k x+b(k≠0),将点(0,60)、3(,0)4代入y=kx+b , 得:6030,4b k b =⎧⎪⎨+=⎪⎩ 解得:8060k b =-⎧⎨=⎩, ∴机场大巴到机场C 的路程y(km)与出发时间x(h)之间的函数关系式为38060(0).4y x x =-+≤≤(3)设线段ED 对应的函数表达式为y=mx+n(m≠0) 将点14(,0)(,60)33、代入y=mx+n , 得:103460,3m n m n ⎧+=⎪⎪⎨⎪+=⎪⎩ 解得:6020m n =⎧⎨=-⎩, ∴线段ED 对应的函数表达式为146020().33y x x =-≤≤ 解方程组80606020,y x y x =-+⎧⎨=-⎩得471007x y ⎧=⎪⎪⎨⎪=⎪⎩,∴机场大巴与货车相遇地到机场C 的路程为1007km .【点睛】本题考查一次函数的应用,掌握待定系数法求函数关系式是解题的关键,本题属于中档题,难度不大,但过程比较繁琐,因此再解决该题是一定要细心.24.(1)120;(2)54°;(3)详见解析(4)1.【解析】【分析】(1)根据B 的人数除以占的百分比即可得到总人数;(2)先根据题意列出算式,再求出即可;(3)先求出对应的人数,再画出即可;(4)先列出算式,再求出即可.【详解】(1)(25+23)÷40%=120(名),即此次共调查了120名学生,故答案为120;(2)360°×10+8120=54°, 即扇形统计图中D 所在扇形的圆心角为54°,故答案为54°;(3)如图所示:;(4)800×30120=1(人), 答:估计对食品安全知识“非常了解”的学生的人数是1人.【点睛】本题考查了条形统计图、扇形统计图,总体、个体、样本、样本容量,用样本估计总体等知识点,两图结合是解题的关键.25.(1)4(1)4(3)23±(4)①a=±12;②当时,1个公共点,当<m≤1或5≤m <时,1个公共点,【解析】【分析】(1)根据题意可以求得抛物线y=14x 1的焦点坐标以及直径的长; (1)根据题意可以求得抛物线y=14x 1-32x+174的焦点坐标以及直径的长; (3)根据题意和y=a (x-h )1+k (a≠0)的直径为32,可以求得a 的值; (4)①根据题意和抛物线y=ax 1+bx+c (a≠0)的焦点矩形的面积为1,可以求得a 的值;②根据(1)中的结果和图形可以求得抛物线y=14x 1-32x+174的焦点矩形与抛物线y=x 1-1mx+m 1+1公共点个数分别是1个以及1个时m 的值.【详解】(1)∵抛物线y=14x 1, ∴此抛物线焦点的横坐标是0,纵坐标是:0+1144⨯=1,∴抛物线y=14x 1的焦点坐标为(0,1), 将y=1代入y=14x 1,得x 1=-1,x 1=1, ∴此抛物线的直径是:1-(-1)=4;(1)∵y=14x 1-32x+174=14(x-3)1+1, ∴此抛物线的焦点的横坐标是:3,纵坐标是:1+1144⨯=3, ∴焦点坐标为(3,3),将y=3代入y=14(x-3)1+1,得 3=14(x-3)1+1,解得,x 1=5,x 1=1, ∴此抛物线的直径时5-1=4; (3)∵焦点A (h ,k+14a ), ∴k+14a=a (x-h )1+k ,解得,x 1=h+12a ,x 1=h-12a ,∴直径为:h+12a-(h-12a)=1a=32,解得,a=±23,即a的值是23 ;(4)①由(3)得,BC=1 a,又CD=A'A=12a.所以,S=BC•CD=1a•12a=212a=1.解得,a=±12;②当时,1个公共点,当<m≤1或5≤m<1个公共点,理由:由(1)知抛,物线y=14x1-32x+174的焦点矩形顶点坐标分别为:B(1,3),C(5,3),E(1,1),D(5,1),当y=x1-1mx+m1+1=(x-m)1+1过B(1,3)时,或,过C(5,3)时,(舍去)或,∴当时,1个公共点;当<m≤1或5≤m<时,1个公共点.由图可知,公共点个数随m的变化关系为当m<当1个公共点;当<m≤1时,1个公共点;当1<m<5时,3个公共点;当5≤m<时,1个公共点;当1个公共点;当m>时,无公共点;由上可得,当或1个公共点;当<m≤1或5≤m<时,1个公共点.【点睛】考查了二次函数综合题,解答本题的关键是明确题意,知道什么是抛物线的焦点、直径、焦点四边形,找出所求问题需要的条件,利用数形结合的思想和二次函数的性质、矩形的性质解答.26. (Ⅰ)B(3,0);C(0,3);(Ⅱ)CDB ∆为直角三角形;(Ⅲ)22333(0)221933(3)222t t t S t t t ⎧-+<≤⎪⎪=⎨⎪=-+<<⎪⎩. 【解析】【分析】(1)首先用待定系数法求出抛物线的解析式,然后进一步确定点B ,C 的坐标.(2)分别求出△CDB 三边的长度,利用勾股定理的逆定理判定△CDB 为直角三角形.(3)△COB 沿x 轴向右平移过程中,分两个阶段:①当0<t≤32时,如答图2所示,此时重叠部分为一个四边形; ②当32<t <3时,如答图3所示,此时重叠部分为一个三角形. 【详解】解:(Ⅰ)∵点()1,0A -在抛物线()21y x c =--+上, ∴()2011c =---+,得4c =∴抛物线解析式为:()214y x =--+,令0x =,得3y =,∴()0,3C ;令0y =,得1x =-或3x =,∴()3,0B .(Ⅱ)CDB ∆为直角三角形.理由如下:由抛物线解析式,得顶点D 的坐标为()1,4.如答图1所示,过点D 作DM x ⊥轴于点M ,则1OM =,4DM =,2BM OB OM =-=.过点C 作CN DM ⊥于点N ,则1CN =,1DN DM MN DM OC =-=-=.在Rt OBC ∆中,由勾股定理得:BC ==在Rt CND ∆中,由勾股定理得:CD ===在Rt BMD ∆中,由勾股定理得:BD ==∵222BC CD BD +=,∴CDB ∆为直角三角形.(Ⅲ)设直线BC 的解析式为y kx b =+,∵()()3,0,0,3B C ,∴303k b b +=⎧⎨=⎩, 解得1,3k b =-=,∴3y x =-+,直线QE 是直线BC 向右平移t 个单位得到,∴直线QE 的解析式为:()33y x t x t =--+=-++;设直线BD 的解析式为y mx n =+,∵()()3,0,1,4B D ,∴304m n m n +=⎧⎨+=⎩,解得:2,6m n =-=, ∴26y x =-+.连续CQ 并延长,射线CQ 交BD 交于G ,则3,32G ⎛⎫⎪⎝⎭. 在COB ∆向右平移的过程中:(1)当302t <≤时,如答图2所示:设PQ 与BC 交于点K ,可得QK CQ t ==,3PB PK t ==-.设QE 与BD 的交点为F ,则:263y x y x t=-+⎧⎨=-++⎩. 解得32x t y t =-⎧⎨=⎩, ∴()3,2F t t -. 111222QPE PBK FBE F S S S S PE PQ PB PK BE y ∆∆∆=--=⋅-⋅-⋅ ()221113333232222t t t t t =⨯⨯---⋅=-+. (2)当332t <<时,如答图3所示:设PQ 分别与BC BD 、交于点K 、点J .∵CQ t =,∴KQ t =,3PK PB t ==-.直线BD 解析式为26y x =-+,令x t =,得62y t =-,∴(),62J t t -.1122PBJ PBK S S S PB PJ PB PK ∆∆=-=⋅-⋅()()()211362322t t t =---- 219322t t =-+. 综上所述,S 与t 的函数关系式为:2233302219333222t t t S t t t ⎧⎛⎫-+<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪=-+<< ⎪⎪⎝⎭⎩. 27. (1)①y=-x 2-4x -3;y=x ;②;(2)证明见解析. 【解析】【分析】(1)把A(-3,0),B(-1,0)代入二次函数解析式即可求出;由AC=OA 知C 点坐标为(-3,-3),故可求出直线OC 的解析式;②由题意得OP=2t,P(-2t ,0),过Q 作QH ⊥x 轴于H, 得OH=HQ=t,可得Q(-t,-t),直线 PQ 为y =-x -2t ,过M 作MG ⊥x 轴于G ,由12PG PM GH QM ==,则2PG =GH ,由2P G G H x x x x -=-,得2P M M Q x x x x -=-, 于是22M M t x x t --=+,解得533M M x t x t =-=-或,从而求出M(-3t,t)或M (51,33t t --),再分情况计算即可; (2) 过F 作FH ⊥x 轴于H ,想办法证得tan ∠CAG=tan ∠FBH ,即∠CAG=∠FBH ,即得证.【详解】2y x bx c =-++解:(1)①把A(-3,0),B(-1,0)代入二次函数解析式得09301b c b c =--+⎧⎨=--+⎩解得43b c =-⎧⎨=-⎩∴y=-x 2-4x -3;由AC=OA 知C 点坐标为(-3,-3),∴直线OC 的解析式y=x ;②OP=2t,P(-2t ,0),过Q 作QH ⊥x 轴于H,∵,∴OH=HQ=t,∴Q(-t,-t),∴PQ :y =-x -2t ,过M 作MG ⊥x 轴于G , ∴12PG PM GH QM ==, ∴2PG =GH ∴2P G G H x x x x -=-,即2P M M Q x x x x -=-,∴ 22M M t x x t --=+, ∴533M M x t x t =-=-或,∴M(-3t,t)或M (51,33t t --) 当M(-3t,t)时:29123t t t =-+-,∴t =当M (51,33t t --)时:2125203393t t t -=-+-,∴6350t ±=综上:t =t = (2)设A(m,0)、B(n,0),∴m 、n 为方程x 2-bx -c=0的两根,∴m+n=b,mn =-c,∴y =-x2+(m+n)x -mn =-(x -m)(x -n),∵E 、F 在抛物线上,设()()2111E x x m n x mn -++-,、()()2222,F x x m n x mn -++-, 设EF :y =kx+b,∴E E FE y kx b y kx b =+⎧⎨=+⎩ , ∴()EF E F y y k x x -=- ∴()()2212121212E F E F x x m n x x y y k m n x x x x x x -+++--===+---- ∴()()()()12111:F y m n x x x x x m x n =+------,令x =m∴()()()()12111c y m n x x m x x m x n =+------=()()()()112112+m x m n x x x n m x m x -+---=--∴AC=()()12m x m x ---,又∵1A E AG x x m x =-=-,∴tan ∠CAG=2AC x m AG=-, 另一方面:过F 作FH ⊥x 轴于H ,∴()()22FH x m x n =--,2BH x n =-,∴tan ∠FBH=2FH x m BH=- ∴tan ∠CAG=tan ∠FBH∴∠CAG=∠FBH∴CG ∥BF【点睛】此题主要考查二次函数的综合问题,解题的关键是熟知相似三角形的判定与性质及正确作出辅助线进行求解.。

四川省广元市苍溪县实验中学校2019_2020学年高一化学下学期期中试题含解析

四川省广元市苍溪县实验中学校2019_2020学年高一化学下学期期中试题含解析
答案选D。
9.下列关于有机物和无机物的说法错误的是( )
A. 有机物一定含有碳元素B. 无机物可能含有碳元素
C. 无机物的熔点一般较高D. 常温下有机物都是液体
【答案】D
【解析】
【详解】A.绝大多数含有碳元素 化合物叫有机化合物简称有机物,有机物都含碳,A正确;
B.无机物也可能是含有碳元素的化合物,如一氧化碳、二氧化碳等含碳化合物属于无机物,B正确;
某某省某某市苍溪县实验中学校2019-2020学年高一化学下学期期中试题(含解析)
一、选择题(每小题只有一个正确答案)
1. 某元素原子最外电子层上只有两个电子,该元素
A. 一定是金属元素B. 一定是ⅡA族元素
C. 一定是过渡元素D. 可能是金属元素也可能不是金属元素
【答案】D
【解析】
【分析】
某元素原子最外层上只有两个电子,可能 稀有气体He,也可能为第ⅡA族元素,如Mg,还有可能为副族元素,以此来解答。
B.甲烷、乙烯与碳酸钠溶液都不反应,不能鉴别,B错误;
C.甲烷、乙烯与酒精溶液都不反应,不能鉴别,C错误;
D.甲烷、乙烯与四氯化碳都不反应,不能鉴别,D错误。
答案选A。
12.下列物质属于同分异构体的一组是( )
A. 甲烷与乙烷B. CH3-CH2-CH2-CH3和
C.1H与2HD. O2与O3
【答案】B
B. 不带支链的含有多个碳原子的烷烃,其碳链是锯齿状,不是直线形;苯属于烃类,不带支链但分子构型为平面形等,故B项错误;
C. 甲烷是最简单的烃,分子中1个碳原子结合4个氢原子,氢原子含量最高,故碳的含量最低,故C正确;
D.新戊烷支链多,沸点较低,在常温下是气体,故D项错误;
答案选C。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省广元市苍溪县实验中学校2019-2020学年高一数学下学期第二
次月考试题 理
总分:150分 考试时间:120分钟
一、选择题(每题5分,共60分) 1.若1
sin 3
α=
,则cos2α=( ) A.
89 B.
79
C.79
-
D.89
-
2.sin20cos10cos160sin10︒︒︒-︒=( )
A ..12- D .12 3.已知11
, 3233tan tan ππαβ⎛⎫⎛⎫
⎪ ⎪=-⎝⎝⎭
=⎭-,则()tan αβ-等于( )
A.
17 B. 17- C. 56 D. 56
-
4.函数22 44y cos x sin x ππ=+
-⎛


⎫ ⎪ ⎪⎝
⎭⎝
⎭+的最小正周期为( ) A. 2π B. π C.
2π D. 4
π
5.ABC ∆的面积为222
4
a b c s +-=,则C ∠=( )
A.
π2
B.
π
3
C.
π
4
D.
π6
6.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若1
cos ,2
A a =
=则sin sin sin a b c
A B C
++=++ ( )
A.
1
2
D. 2
7.已知ABC △中,4,30a b A ==∠=︒ ,则B ∠等于( )
A.30︒
B.30︒或150︒
C.60︒
D.60︒或120︒ 8.在ABC ∆中,若sin :sin :sin 3:4:6A B C =,则 cos C = ( )
A.
1124 B. 1324 C. 1124- D. 13
24
-
9.已知向量()()(),24,3,,21,1a a b c x +===,若//b c ,则x 的值为( )
A .-4
B .4
C .2
D .-2
10.已知向量(1,3)b =,向量a 在b 方向上的投影为-6,若()a b b λ+⊥,则实数λ的值为( )
A.13
B.13
-
C.
23
D.3
11.已知在平行四边形ABCD 中,点E 为CD 的中点,设a =,b =,则= ( )
A.1322
-+a b
B.13
22
-a b
C.31
22
-a b D.31
22
--a b
12.已知,ABC O ∆为平面内一点,动点P 满足
OA OP +=λ,()0,λ∈+∞,则动点P 的轨迹一定通过ABC ∆的
( )
A.重心
B.垂心
C.外心
D.内心 二、填空题(每题5分,共20分)
13、计算 )20tan 10(tan 320tan 10tan 0
000++ = 。

14.设ABC ∆中的内角,,A B C 所对的边分别为,,a b c ,且23,3
a b c C π+===
,则ABC ∆的面积为__________
15.已知()()2,1,3,a b m ==,若()
a a
b ⊥-,则m 等于____________.
16.在ABC ∆中, D 是BC 的中点, H 是AD 的中点,过点H 作一直线MN 分别与边
,AB AC 交于,M N ,若,AM x AB AN y AC =⋅=⋅,则4x y +的最小值是__________
三、解答题(本题6小题,共70分) 17、(10分)已知βα, 都是锐角,54sin =α,13
5)cos(=+βα ,求 βsin 的值
18、(12分)已知向量b a , 的夹角为600
, 且2=a ,1=a
(1) 求: b a • (2) 求:b a +
19、(12分)在ABC ∆ 中, c b a ,,分别是 A 、B 、C 的对边,54sin =
A ,),2
(ππ
∈A ,41=a ,4=∆ABC S , 求:
(Ⅰ))4

-A COS 的值; (Ⅱ)c b + 的值.
20、(12分)在ABC ∆中,角A 为锐角,记角A 、B 、C 所对的边分别为c b a ,,设向量
)sin ,(cos A A m =,)sin ,(cos A A n -= 且 m 与 n 的夹角为
3
π (1)求
的值及角A 的大小;
(2)若3,7==c a ,求 ABC ∆的面积 S .
21.(12分)在ABC △中,角,,A B C 所对的边长是,,a b c ,向量(,)m b c =,且满足2
2m a bc =+. (1)求角A 的大小;
(2)若3a =,求ABC △的周长的最大值.
22.(12分)如图,在平面四边形ABCD 中,2BC =,23CD =,且
AB BD DA ==.
(1)若π
6
CDB ∠=
,求tan ABC ∠的值; (2)求四边形ABCD 面积的最大值.
参考答案
1.B
2.D
3.B
4.B
5.C
6.D
7.D
8.C
9.B 10.A 11.A 12.A
13、 1 14.33
4
15.1
16.
9
4
17、
解析:,
∴ ∴ ,.........................(2分)
, ......................... (4分)
∴ .........................(6分)
..................... (10分)
18、
解析: (1) ......................... 6分(2)
所以....................... 12分 19、
解析: (1)由,则, ........................2分
所以
...... 6分
(2)由三角形面积公式,所以
...................8分
由余弦定理
带入, ,解得
. ........................12分
20、
解析:(1) (2)

.............................3分
, (5)

.............................6分
(2)(法一) , 及,
, 即(舍去)或
.............................10分
故 (12)

(法二) , 及,
. ,
,
.................... .........10分
故 .............................12分21.答案:(1)由复数模的定义结合题中条件可得:
222b c a bc +=+. .........................3分
所以2221
cos 22
b c a A bc +-==. 又(0,π)A ∈,故
π
3
A =. ........................ 6分
(2)由a =π
3
A =及正弦定理得:2sin sin sin b c a
B
C A
===. .........................8分 所以2π
2sin ,2sin 2sin(
)3
b B
c C B ===-. 所以
2ππ
()=2sin 2sin())36
f B a b c B B B ++=+-=+. ........................10分 由2π03B <<
得ππ5π666B <+<.所以当ππ62B +=,即π
3
B =时
max ()f B =....................12分
22.解:(1)在BCD ∆中,由正弦定理得sin sin CD BC
CBD BDC
=
∠∠, ∴
π
sin
6sin 2
CBD ∠=
= .........................2分 ∵0πCBD <∠<,∴π3CBD ∠=
或2π3
CBD ∠= 当2π
3
CBD ∠=
时,此时A B C 、、三点共线,矛盾 ∴π
3
CBD ∠=
.........................4分 ∴
()ππ2π
tan tan tan tan 333ABC ABD CBD ⎛⎫
∠=∠+∠=+== ⎪⎝⎭
....6分
(2)设BCD θ∠=,在BCD ∆中,由余弦定理得
2222cos BD BC CD BC CD θ=+-⋅(2
2
22216θθ=+-⨯⨯=- .........
.....8分 ∴
2111sin sin sin 222ABC BCD BAD D S S BC CD BA BD BC CD S θθθ∆∆=+=
⋅+⋅=⋅四边形 .........10分
π
6cos 3θθθ⎛
⎫=+=-+ ⎪⎝
⎭.


6
θ=
时,四边形ABCD 面积的最大值
分。

相关文档
最新文档