初学者-从信号与系统角度浅谈傅里叶变换,拉氏变换,Z变换三者之间的关系
傅里叶变换,拉普拉斯变换和Z变换的意义_百度文库.
![傅里叶变换,拉普拉斯变换和Z变换的意义_百度文库.](https://img.taocdn.com/s3/m/1d5fce8bcc7931b765ce15c5.png)
傅里叶变换,拉普拉斯变换和Z变换的意义傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。
傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。
在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。
傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度。
理解的关键是:一个连续的信号可以看作是一个个小信号的叠加,从时域叠加与从频域叠加都可以组成原来的信号,将信号这么分解后有助于处理。
我们原来对一个信号其实是从时间的角度去理解的,不知不觉中,其实是按照时间把信号进行分割,每一部分只是一个时间点对应一个信号值,一个信号是一组这样的分量的叠加。
傅里叶变换后,其实还是个叠加问题,只不过是从频率的角度去叠加,只不过每个小信号是一个时间域上覆盖整个区间的信号,但他确有固定的周期,或者说,给了一个周期,我们就能画出一个整个区间上的分信号,那么给定一组周期值(或频率值),我们就可以画出其对应的曲线,就像给出时域上每一点的信号值一样,不过如果信号是周期的话,频域的更简单,只需要几个甚至一个就可以了,时域则需要整个时间轴上每一点都映射出一个函数值。
傅里叶变换就是将一个信号的时域表示形式映射到一个频域表示形式;逆傅里叶变换恰好相反。
这都是一个信号的不同表示形式。
它的公式会用就可以,当然把证明看懂了更好。
对一个信号做傅里叶变换,可以得到其频域特性,包括幅度和相位两个方面。
幅度是表示这个频率分量的大小,那么相位呢,它有什么物理意义?频域的相位与时域的相位有关系吗?信号前一段的相位(频域)与后一段的相位的变化是否与信号的频率成正比关系。
傅里叶变换就是把一个信号,分解成无数的正弦波(或者余弦波)信号。
也就是说,用无数的正弦波,可以合成任何你所需要的信号。
§6.10 傅里叶变换、拉普拉斯变换、z变换之间的关系
![§6.10 傅里叶变换、拉普拉斯变换、z变换之间的关系](https://img.taocdn.com/s3/m/11da0474a45177232e60a20b.png)
邮
院
X
二.z变换与拉普拉斯变换的关系
Ai ˆ t L x s p i 1 i ˆ ( nT ) 也 ˆ ( t ) 进行理想抽样,得到的离散时间序列 x 对x 由N 项指数序列相加组合而成。 ˆ nT x ˆ 1 nT x ˆ 2 nT x ˆ N nT x
jω
n
电
子 工
X z
n x n z
北
程 学
院
逆变换 x n
2 j 1 2 j 1
1
z 1
X z z
n 1
dz
第 5 页
北
京
1 IDTFT X e x n 2
学
n
电
x n e jn
j K2 K 2
* 1
北
程 学
K1 K2 ω0 解: xt sinω0 t ut X s 2 2 s j ω0 s j ω0 s ω0 两个一阶极点分别为 p1 j ω0,p2 j ω0 。
电
大 学
电
子 工
序列sinω0 nT unT 的z变换。
第 7 页
大 学
北
i 1
i 1
其拉式变换为
N
北
京
邮 电
Ai ˆ t L x s p i 1 i
大
学
电
子 工
程 学
京
ˆ i t Ai e pi t u t x
电
N
电
子 工
程
学 院
N
匀抽样 x t 均 x n ,
§6.10傅里叶变换、拉普拉斯变换、z变换之间的关系
![§6.10傅里叶变换、拉普拉斯变换、z变换之间的关系](https://img.taocdn.com/s3/m/bd70b54290c69ec3d4bb7511.png)
§6.10 傅里叶变学电换子 、拉普拉斯变换、 北z京变邮电换大 之间的关系工程学院
子 电 学 大 电 邮 北京邮电大学北电京子工程学院
第
2 页
主要内容
院 学
序列的傅里叶变换工程
z变换与拉普拉电斯子变换的关系
傅氏变换、大拉学氏变换、z 变换之间的联系和区别
重点:序z变北列换京的邮与电傅拉里普叶拉变斯换变换的关系工程学院
xt
院x n
学
s
j
程 工
z
e sT
T
子
频率类型 及单位
模拟:弧度/秒 数字:弧度
电 模拟:弧大度学/秒
电
数字:弧度
邮
京
北
X
第
三.傅氏变换、拉氏变换、z变换的关系
14 页
3.3 s平面虚轴上的拉氏变学换院 即为傅氏变换
σ 0, s jΩ
程 工
H
jΩ
H
s
子 sjΩ学电
3(.D4 TzF平z T面)1,单z北位京e邮jω圆电大上的z变换即为序子列工程的学傅院 氏变换
inω0t
ut
的拉式院变
学 程
换
为 s2
ω0 ω0
2
,
求
抽
样
序列sinω0nT unT 的z变子换工。
解: xt sinω0tut学电X s
大
s2
ω0 ω02
K1 s jω0
s
K2 jω0
两个一阶极点邮分电别为
K1
北ω京0
s jω0
|s jω0
p1
j 2
,
j ω0,p2
K2 K1*
jω学0 。院 子工2j程
傅里叶变换拉普拉斯变换z变换关系
![傅里叶变换拉普拉斯变换z变换关系](https://img.taocdn.com/s3/m/5e5e71cf0342a8956bec0975f46527d3240ca6fb.png)
傅里叶变换拉普拉斯变换z变换关系
傅里叶变换、拉普拉斯变换和z变换是三种不同的信号分析方法。
它们之间的关系如下:
1. 傅里叶变换和拉普拉斯变换
傅里叶变换用于分析连续时间信号,而拉普拉斯变换用于分析连续时间线性时不变系统(LTI系统)。
当对LTI系统的输入信号进行傅里叶变换时,得到的结果是系统的频率响应,即系统在不同频率下的增益和相位差。
当使用拉普拉斯变换对LTI系统的输入信号进行变换时,得到的结果是系统的传递函数,即输入信号和输出信号之间的关系。
2. 傅里叶变换和z变换
傅里叶变换和z变换都用于分析离散时间信号。
傅里叶变换将信号从时域转换到频域,而z变换将信号从时域转换到z域。
z变换可以将连续时间信号离散化,这使得它在数字信号处理中非常有用。
当对离散时间信号进行傅里叶变换时,得到的结果是信号的离散频谱,即信号在不同频率下的幅度和相位信息。
当使用z 变换对离散时间信号进行变换时,得到的结果是离散时间系统的传递函数,即输入信号和输出信号之间的关系。
3. 拉普拉斯变换和z变换
拉普拉斯变换和z变换类似,都用于分析离散时间线性时不变系统。
当使用拉普拉斯变换对离散时间LTI系统的输入信号进行变换时,得到的结果是系统的离散时间传递函数。
当使用z变换对连续时间LTI系统的输入信号进行变换时,得到的结果是系统的z域传递函数。
这些函数可以用于分析系统的稳定性、带宽和抗差性等性质。
对傅里叶变换、拉氏变换、z变换详细剖析
![对傅里叶变换、拉氏变换、z变换详细剖析](https://img.taocdn.com/s3/m/e37f452727284b73f24250b5.png)
对傅里叶变换、拉氏变换、z变换详细剖析变换的实质是将一个信号分离为无穷多多正弦/复指数信号的加成,也就是说,把信号变成正弦信号相加的形式——既然是无穷多个信号相加,那对于非周期信号来说,每个信号的加权应该都是零——但有密度上的差别,你可以对比概率论中的概率密度来思考一下——落到每一个点的概率都是无限小,但这些无限小是有差别的。
所以,傅里叶变换之后,横坐标即为分离出的正弦信号的频率,纵坐标对应的是加权密度。
对于周期信号来说,因为确实可以提取出某些频率的正弦波成分,所以其加权不为零——在幅度谱上,表现为无限大——但这些无限大显然是有区别的,所以我们用冲激函数表示。
已经说过,傅里叶变换是把各种形式的信号用正弦信号表示,因此非正弦信号进行傅里叶变换,会得到与原信号频率不同的成分——都是原信号频率的整数倍。
这些高频信号是用来修饰频率与原信号相同的正弦信号,使之趋近于原信号的。
所以说,频谱上频率最低的一个峰(往往是幅度上最高的),就是原信号频率。
傅里叶变换把信号由时域转为频域,因此把不同频率的信号在时域上拼接起来进行傅里叶变换是没有意义的——实际情况下,我们隔一段时间采集一次信号进行变换,才能体现出信号在频域上随时间的变化。
我的语言可能比较晦涩,但我已尽我所能向你讲述我的一点理解——真心希望能对你有用。
我已经很久没在知道上回答过问题了,之所以回答这个问题,是因为我本人在学习傅里叶变换及拉普拉斯变换的过程中着实受益匪浅——它们几乎改变了我对世界的认识。
傅里叶变换值得你用心去理解——哪怕苦苦思索几个月也是值得的——我当初也想过:只要会算题就行。
但浙大校训“求是”时时刻刻鞭策着我追求对理论的理解——最终经过很痛苦的一番思索才恍然大悟。
建议你看一下我们信号与系统课程的教材:化学工业出版社的《信号与系统》,会有所帮助。
(另一种说法)对于周期函数f,傅立叶变换就是把这个函数分解成很多个正弦函数fn的和,每个fn的频率是f的n倍。
拉氏变换和傅里叶变换的关系
![拉氏变换和傅里叶变换的关系](https://img.taocdn.com/s3/m/16c014e029ea81c758f5f61fb7360b4c2e3f2a2b.png)
拉氏变换和傅里叶变换的关系
拉氏变换与傅里叶变换都是信号处理中重要的数学工具,用于分析
系统的性质和频率响应。
尽管它们有不同的定义和使用方式,但它们
之间存在一定的关系和联系。
下面将从不同的角度介绍它们之间的关系。
一、定义
拉氏变换的本质是傅里叶变换的一种推广。
傅里叶变换用于将一个时
域信号转换为频域信号,而拉氏变换则用于将一个复平面上的函数转
换为另一个复平面上的函数。
可以将傅里叶变换看做是拉氏变换在复
平面上取实轴的特例。
二、对复平面的操作
傅里叶变换将时间域信号映射到频率域,也就是将一个信号映射到一
个实数轴上的函数。
而拉氏变换不仅可以将一个信号映射到实数轴上,还可以将其映射到复平面上。
这使得它在处理复杂信号和非线性系统
时更加灵活。
三、收敛条件
傅里叶变换只在有限区间内解析,因此只能处理有限时间长度的信号。
而拉氏变换可以处理更广泛的信号,包括无限长的信号和非周期信号。
它的收敛条件更加宽松。
四、运算性质
傅里叶变换有许多运算性质,如线性性、时间平移性、频带宽度限制等。
这些性质在信号处理中非常有用。
拉氏变换也有类似的运算性质,但与傅里叶变换的性质略有不同。
例如,拉氏变换在复数域内具有复
共轭对称性,这是傅里叶变换所没有的。
综上所述,拉氏变换与傅里叶变换是相关的但不同的数学工具。
它们
在不同的应用场合具有不同的优点和局限性。
在实际应用中,需要根
据具体问题的需要选择合适的变换方法。
傅里叶变换 拉普拉斯变换 z变换
![傅里叶变换 拉普拉斯变换 z变换](https://img.taocdn.com/s3/m/1e1f5460ae45b307e87101f69e3143323968f5e9.png)
傅里叶变换拉普拉斯变换 z变换主题:傅里叶变换、拉普拉斯变换和z变换引言:在信号与系统领域,傅里叶变换、拉普拉斯变换和z变换是三种重要的数学工具。
它们被广泛应用于信号处理、图像处理、电路分析等领域。
本文将介绍这三种变换的基本概念和应用,并探讨它们之间的关系和特点。
一、傅里叶变换1.1 基本概念傅里叶变换是将一个函数表示为正弦和余弦函数的线性组合。
对于一个函数f(t),其傅里叶变换F(ω)定义如下:F(ω) = ∫[f(t)e^(-jωt)]dt其中,ω是频率,e^(-jωt)表示复指数函数。
1.2 特点和应用傅里叶变换具有如下特点:- 可以将一个信号分解成不同频率的分量,进而进行频谱分析。
- 可以将时域信号转换为频域信号,便于对信号的时频属性进行分析。
- 在信号处理中,傅里叶变换在滤波、频谱分析等方面有着重要的应用。
1.3 傅里叶变换的逆变换傅里叶变换的逆变换可以将频域信号恢复为时域信号。
逆变换的定义如下:f(t) = ∫[F(ω)e^(jωt)]dω二、拉普拉斯变换2.1 基本概念拉普拉斯变换是将一个函数表示为指数衰减函数的线性组合。
对于一个函数f(t),其拉普拉斯变换F(s)定义如下:F(s) = ∫[f(t)e^(-st)]dt其中,s是复数变量,表示频域变量。
2.2 特点和应用拉普拉斯变换具有如下特点:- 可以对连续时间信号进行频域分析,并描述系统的稳定性。
- 可以求解线性时不变系统的微分方程。
- 在控制系统、电路分析等方面有着广泛的应用。
2.3 拉普拉斯变换的逆变换拉普拉斯变换的逆变换可以将频域信号恢复为时域信号。
逆变换的定义如下:f(t) = (1/2πj)∫[F(s)e^(st)]d s,积分路径为垂直于Im(s)轴的线。
三、z变换3.1 基本概念z变换是傅里叶变换和拉普拉斯变换的离散形式,也是一种离散时间信号的频域分析方法。
对于一个离散时间信号f[n],其z变换F(z)定义如下:F(z) = ∑[f[n]z^(-n)]其中,z是复数变量。
傅立叶变换拉普拉斯变换z变换区别和应用场合
![傅立叶变换拉普拉斯变换z变换区别和应用场合](https://img.taocdn.com/s3/m/087383816037ee06eff9aef8941ea76e58fa4a95.png)
傅立叶变换、拉普拉斯变换和z变换是信号与系统分析中常用的数学工具,它们在不同的应用场合有着各自独特的作用。
下面,我们将分别介绍这三种变换的定义、特点和应用场合。
一、傅立叶变换傅立叶变换是最常用的信号处理工具之一,它将时域信号转换为频域信号,可以用来分析信号的频谱特性。
傅立叶变换的定义如下:设x(t)是一个绝对可积的信号,则其傅立叶变换定义为:X(ω)=∫−∞∞x(t)e−jωtdt其中,X(ω)为频率为ω的复指数信号的系数。
傅立叶变换的特点包括:1. 线性性:傅立叶变换是线性的,即对信号进行线性组合后,其傅立叶变换也可以线性组合。
2. 积分性质:傅立叶变换是通过积分计算得出的,可以将信号在时域上的加权积分变换为频域上的乘积。
傅立叶变换的应用场合包括:1. 信号频谱分析:通过傅立叶变换可以将信号转换为频域上的频谱图,并从中分析信号的频率成分和能量分布。
2. 滤波器设计:在滤波器设计中,傅立叶变换可以用来分析系统的频率响应,从而设计出滤波器的频率特性。
3. 通信系统:在调制解调、频谱分析等通信系统中,傅立叶变换也有着重要的应用。
二、拉普拉斯变换拉普拉斯变换是一种广泛应用于控制系统分析和设计中的数学工具,它可以将时域信号转换为复频域信号,用于分析系统的稳定性和动态特性。
拉普拉斯变换的定义如下:设x(t)是一个绝对可积的信号,则其拉普拉斯变换定义为:X(s)=∫0∞x(t)e−stdt其中,X(s)为复频域上的复指数信号的系数。
拉普拉斯变换的特点包括:1. 收敛性:拉普拉斯变换要求信号在0到∞范围内绝对可积,以确保变换的收敛性。
2. 稳定性:拉普拉斯变换可以判断系统的稳定性,通过判断拉普拉斯变换的极点位置来分析系统的阶跃响应。
拉普拉斯变换的应用场合包括:1. 控制系统分析:在控制系统分析中,拉普拉斯变换可以用来分析系统的稳定性、阶跃响应和频率特性。
2. 信号处理:在滤波器设计和信号处理中,拉普拉斯变换也可以用来分析系统的频率响应和动态特性。
傅里叶变换,拉普拉斯变换和z变换
![傅里叶变换,拉普拉斯变换和z变换](https://img.taocdn.com/s3/m/84db829529ea81c758f5f61fb7360b4c2e3f2ace.png)
傅里叶变换,拉普拉斯变换和z变换傅里叶变换、拉普拉斯变换和z变换是信号与系统领域中常用的数学工具,它们在信号分析和处理、控制系统设计等方面发挥着重要作用。
本文将分别介绍这三种变换的基本概念和应用。
傅里叶变换是一种将时域信号转换为频域信号的数学工具。
它通过对信号进行分解,将信号分解为一系列不同频率的正弦和余弦函数的叠加。
傅里叶变换可以将信号的时域特性转换为频域特性,使得我们可以更加清晰地了解信号的频域特点,如频率成分、振幅等。
这对于音频、图像、视频等信号的处理和分析非常重要。
傅里叶变换可以用于滤波、频谱分析、信号压缩等方面。
拉普拉斯变换是一种将时域信号转换为复频域信号的数学工具。
它是傅里叶变换在复平面上的推广,可以更加全面地描述信号在频域上的特性。
拉普拉斯变换可以将时域信号转换为复频域函数,从而可以更方便地进行信号的频域分析和系统的频域特性描述。
拉普拉斯变换在电路分析、控制系统设计、信号处理等方面有广泛的应用。
它可以用于系统的稳定性分析、频域响应计算、滤波器设计等。
z变换是一种将离散时间域信号转换为复频域信号的数学工具。
它是傅里叶变换和拉普拉斯变换在离散领域的推广,用于描述离散时间系统的频域特性。
z变换可以将离散时间信号转换为复平面上的函数,从而可以更方便地进行频域分析和系统特性描述。
z变换在数字滤波器设计、离散时间控制系统设计等方面有广泛的应用。
它可以用于系统的稳定性分析、频域响应计算、滤波器设计等。
傅里叶变换、拉普拉斯变换和z变换是信号与系统领域中不可或缺的数学工具。
它们通过将信号从时域转换为频域或复频域,使得我们可以更加清晰地了解信号的特性和系统的行为。
这三种变换在信号处理、控制系统设计、通信等领域都有广泛的应用。
熟练掌握这些变换的基本原理和应用方法,对于深入理解信号与系统的特性和进行相关工程设计具有重要意义。
总结起来,傅里叶变换、拉普拉斯变换和z变换是信号与系统领域中的重要数学工具。
它们分别用于时域信号到频域信号、时域信号到复频域信号、离散时间信号到复频域信号的转换。
傅里叶和拉普拉斯和z变换之间的关系公式
![傅里叶和拉普拉斯和z变换之间的关系公式](https://img.taocdn.com/s3/m/4159f8814128915f804d2b160b4e767f5acf80f6.png)
傅里叶变换、拉普拉斯变换和Z变换是信号与系统领域中重要的数学工具,它们在信号处理、通信系统、控制系统等方面有着广泛的应用。
这三种变换都是将时域信号转换到频域或复域中,以便对信号进行分析和处理。
在本文中,我们将探讨傅里叶变换、拉普拉斯变换和Z变换之间的关系公式,以及它们之间的联系和区别。
1. 傅里叶变换让我们来介绍傅里叶变换。
傅里叶变换是将一个连续时间域的信号转换到连续频率域的变换。
对于一个时域信号x(t),其傅里叶变换可以表示为:X(Ω) = ∫[from -∞ to +∞] x(t)e^(-jΩt) dt其中,X(Ω)表示信号x(t)在频率域的表示,Ω表示频率,e^(-jΩt)是复指数函数。
2. 拉普拉斯变换接下来,我们来介绍拉普拉斯变换。
拉普拉斯变换是将一个连续时间域的信号转换到复频域的变换。
对于一个时域信号x(t),其拉普拉斯变换可以表示为:X(s) = ∫[from 0 to +∞] x(t)e^(-st) dt其中,X(s)表示信号x(t)在复频域的表示,s = σ + jΩ 是复频率,σ和Ω分别表示实部和虚部。
3. Z变换我们再介绍Z变换。
Z变换是将一个离散时间域的信号转换到复频域的变换。
对于一个离散时间域信号x[n],其Z变换可以表示为:X(z) = ∑[from 0 to +∞] x[n]z^(-n)其中,X(z)表示信号x[n]在复频域的表示,z = re^(jΩ) 是复频率,r和Ω分别表示幅度和相位。
联系和区别通过以上介绍,我们可以发现,傅里叶变换、拉普拉斯变换和Z变换本质上都是将信号在不同域之间进行转换的数学工具。
它们之间的关系可以通过一些特殊的变换或极限情况来表示。
在离散时间信号中,当采样周期趋于无穷大时,Z变换可以近似为拉普拉斯变换。
而在连续时间信号中,当采样周期趋于零时,Z变换可以近似为傅里叶变换。
这些关系公式为我们在不同领域之间进行信号分析和处理提供了便利。
结论傅里叶变换、拉普拉斯变换和Z变换之间存在着密切的联系和区别。
z变换 傅里叶变换 联系和差别
![z变换 傅里叶变换 联系和差别](https://img.taocdn.com/s3/m/883ec029b94ae45c3b3567ec102de2bd9605de3e.png)
Z变换和傅里叶变换是在信号处理和频谱分析中常见的数学工具。
它们都是把一个离散时间信号转换成一个频域的表示,但是它们的原理和应用有很大的不同。
在本文中,我们将从浅入深地探讨z变换和傅里叶变换的联系和差别,帮助读者更深入地理解这两个概念。
1. z变换让我们先来了解一下z变换。
z变换是一种把离散时间信号转换成z域的方法。
它通常用于分析数字滤波器和离散时间系统的性质。
在z变换中,我们把离散时间信号看作是一个序列,然后通过z变换把这个序列转换成一个复平面上的函数。
这样做的好处是我们可以更方便地分析离散时间系统的频率响应和稳定性。
2. 傅里叶变换傅里叶变换是一种把连续时间信号转换成频域表示的方法。
它在信号处理和通信领域中有着广泛的应用,可以帮助我们分析信号的频谱特性和进行频率域滤波。
傅里叶变换把一个连续时间信号分解成不同频率的正弦和余弦函数的叠加,从而可以更清晰地观察信号的频谱特性。
3. z变换和傅里叶变换的联系虽然z变换和傅里叶变换是针对不同类型的信号进行频域分析的方法,但它们之间也存在一定的联系。
在一些特定的情况下,可以通过z变换来推导出傅里叶变换,从而实现离散时间信号到连续时间信号的转换。
这种联系让我们可以在不同的领域中灵活地应用z变换和傅里叶变换,从而更好地理解信号的频域特性和系统的性能。
4. z变换和傅里叶变换的差别尽管z变换和傅里叶变换有着一定的联系,但它们之间也存在着显著的差别。
主要的差别在于它们适用的信号类型和分析的范围。
z变换主要适用于离散时间信号和系统的分析,而傅里叶变换则适用于连续时间信号的频域分析。
另外,z变换中的复平面表示使得我们可以更方便地分析系统的稳定性,而傅里叶变换则更强调信号的频谱特性和谱密度。
个人观点和理解在我看来,z变换和傅里叶变换在信号处理和系统分析中都起着至关重要的作用。
它们通过不同的方式帮助我们理解信号的频域特性和系统的性能,为我们提供了丰富的数学工具来解决实际问题。
z变换和傅立叶之间的关系
![z变换和傅立叶之间的关系](https://img.taocdn.com/s3/m/a9e2bd6ebf1e650e52ea551810a6f524cdbfcb5e.png)
z变换和傅立叶之间的关系1. 什么是z变换和傅立叶变换在数字信号处理中,z变换和傅立叶变换是两个非常重要的概念。
Z变换是离散时间信号的傅立叶变换的推广,它把离散时间序列转换成函数。
傅立叶变换则是对连续时间信号进行变换,并把它们表示为一系列正弦和余弦曲线的加权和,这个过程就是将时域信号转换到频域。
2. 数学表达z变换和傅立叶变换都可以用数学公式表达。
对于离散时间信号$x[n]$,其z变换为:$$ X(z)=\sum_{n=-\infty}^{\infty}x[n]z^{-n} $$对于连续时间信号$x(t)$,其傅立叶变换为:$$X(\omega)=\int_{-\infty}^{\infty} x(t)e^{-i\omegat}dt$$其中,$z$和$\omega$都是复数,$t$和$n$表示时间或样本点。
3. 相似之处虽然在处理的信号不同,但z变换和傅立叶变换有着很多相似之处。
它们都能把一个信号从一个域(时域或离散域)转换到另一个域(频域或复平面域),并且可以通过反转变换把信号还原到原来的域中。
4. 不同之处尽管z变换和傅立叶变换有很多相似之处,但它们的应用场景是不同的。
Z变换主要用于分析和描述离散时间信号的特性,比如其稳定性、收敛区域、系统性质等,而傅立叶变换则常常用于分析连续时间信号的频谱、带宽、峰值等特性。
此外,Z变换适用于对离散系统进行频域分析,而傅立叶变换则适用于线性时不变系统的性质分析。
5. 综合应用在实际应用中,z变换和傅立叶变换常常需要互相配合使用。
比如,在数字滤波器设计中,我们需要使用z变换来分析和设计滤波器的性质,但是为了检验滤波器的性能和正确性,我们需要把信号变换到频域,这就需要使用傅立叶变换。
总的来说,z变换和傅立叶变换是数字信号处理中两个重要的数学工具,它们在理论分析、算法设计和实际应用中都扮演着不可替代的角色。
只有深刻理解它们之间的关系以及优缺点,才能更好地进行数字信号处理相关工作。
傅里叶变换和拉氏变换的联系和区别
![傅里叶变换和拉氏变换的联系和区别](https://img.taocdn.com/s3/m/beb9652c24c52cc58bd63186bceb19e8b9f6ec5b.png)
《傅里叶变换和拉氏变换的联系和区别》一、引言傅里叶变换和拉氏变换是信号处理和数学领域中两个重要的变换方法,它们在处理信号和函数时起着至关重要的作用。
本文将深入探讨傅里叶变换和拉氏变换的联系和区别,以便更好地理解它们的应用和特点。
二、傅里叶变换和拉氏变换的基本概念在正式介绍傅里叶变换和拉氏变换的联系和区别之前,首先需要了解它们各自的基本概念。
傅里叶变换是一种将一个函数分解成正弦和余弦函数的技术,常用于处理周期性信号和频域分析。
而拉氏变换是一种将一个函数从时域转换到复平面频域的技术,常用于求解微分方程和控制论中。
从定义和用途上来看,傅里叶变换更加偏向于处理周期性信号和频域分析,而拉氏变换更加偏向于处理连续信号和微分方程。
三、联系1. 共同性质傅里叶变换和拉氏变换在某些方面具有一定的共同性质。
它们都具有线性性质,即对信号进行线性组合后,其变换结果也是线性组合的形式。
它们在频域和时域之间具有对偶性,即在频域上的乘积对应于时域上的卷积,这一点在信号处理中有着重要的应用。
2. 对信号的处理方式傅里叶变换和拉氏变换在处理信号时有着不同的方式。
傅里叶变换更多地强调信号的频域特性,能够将信号分解为不同频率的成分,从而进行频域分析和滤波处理。
而拉氏变换更多地强调信号的幅相特性,能够将信号从时域转换到复平面频域,方便求解微分方程和控制系统的分析与设计。
四、区别1. 定义域和值域傅里叶变换的定义域是时域,值域是频域;而拉氏变换的定义域是复平面上的实轴,值域也是复平面上的一部分。
这表明了傅里叶变换更侧重于处理周期性信号和频域分析,而拉氏变换更侧重于处理连续信号和微分方程。
2. 对信号的处理对象傅里叶变换更多地用于处理周期性信号和离散信号,如音频信号、图像等;而拉氏变换更多地用于处理连续信号和微分方程,如控制系统、通信系统等。
3. 应用领域由于傅里叶变换更多地侧重于处理周期性信号和频域分析,因此在音频处理、图像处理、通信系统等领域有着广泛的应用;而拉氏变换更多地用于求解微分方程和控制系统的分析与设计,因此在控制理论、信号处理、通信系统等领域有着重要的地位。
简述傅里叶变换拉斯变换和z变换的关系
![简述傅里叶变换拉斯变换和z变换的关系](https://img.taocdn.com/s3/m/cc266b22a200a6c30c22590102020740be1ecddc.png)
简述傅里叶变换拉斯变换和z变换的关系傅里叶变换是一种将信号从时域(时间域)转换到频域(频率域)的数学变换方法。
通过傅里叶变换,我们可以将信号分解成一组复指数函数的线性组合,从而得到信号在不同频率上的分量。
傅里叶变换的基本思想是将信号表示成正弦和余弦函数的叠加形式,这样可以将信号的周期性表达为连续谱的形式。
拉普拉斯变换是一种将信号从时域转换到复平面上的变换方法。
它在频域中描述了信号的幅度和相位特性,可以用于分析信号在不同频率下的响应和稳定性。
拉普拉斯变换的基本思想是将信号表示为指数函数的线性组合,通过变换可以得到信号的频域特性。
z变换是一种将离散信号从时域转换到复平面上的变换方法。
它类似于拉普拉斯变换,但适用于离散信号的处理。
z变换的基本思想是将离散信号表示为指数函数的线性组合,通过变换可以得到信号的频域特性。
z变换在数字信号处理中具有广泛的应用,如滤波器设计、系统分析等。
傅里叶变换、拉普拉斯变换和z变换之间存在一定的联系和对应关系。
首先,傅里叶变换可以看作是拉普拉斯变换的一种特殊情况,即当拉普拉斯变换中的复平面变量s取纯虚部为0时,即s=jω,傅里叶变换即为拉普拉斯变换的特例。
因此,傅里叶变换可以用于分析连续信号的频谱特性,而拉普拉斯变换则可以用于分析连续信号的频域特性和系统的稳定性。
而z变换则是对离散信号进行频域分析的工具,也可以看作是拉普拉斯变换在离散信号上的类比。
在z变换中,复平面变量z=e^s,将拉普拉斯变换的复平面映射到z平面上。
因此,z变换可以用于分析离散信号的频谱特性和系统的稳定性。
傅里叶变换、拉普拉斯变换和z变换在信号处理中具有重要的地位和应用。
它们提供了从时域到频域的转换方法,使得信号的频谱特性和系统的频域特性可以得到更清晰的描述。
通过对信号的频域特性的分析,我们可以更好地理解和处理信号,从而实现各种信号处理的目的。
傅里叶变换、拉普拉斯变换和z变换是信号处理中常用的数学工具,它们之间存在一定的联系和对应关系。
傅里叶变换、拉普拉斯变换、z 变换的联系
![傅里叶变换、拉普拉斯变换、z 变换的联系](https://img.taocdn.com/s3/m/ea01c5bd0342a8956bec0975f46527d3240ca620.png)
一、引言傅里叶变换、拉普拉斯变换和z变换是信号与系统领域中重要的数学工具,它们在时域和频域之间建立了数学关系,广泛应用于信号处理、控制系统、通信系统等领域。
本文将对这三种变换进行介绍,并讨论它们之间的联系。
二、傅里叶变换傅里叶变换是一种将时域信号转换为频域信号的数学工具。
对于一个连续时间信号x(t),它的傅里叶变换X(ω)可以表示为:X(ω) = ∫x(t)e^(-jωt)dt其中,ω为频率,e^(-jωt)为复指数函数,表示频率为ω的正弦波。
傅里叶变换将信号在时域和频域之间进行了转换,使得我们可以通过频域分析来理解信号的频率特性。
三、拉普拉斯变换拉普拉斯变换是一种将时域信号转换为复域信号的数学工具。
对于一个连续时间信号x(t),它的拉普拉斯变换X(s)可以表示为:X(s) = ∫x(t)e^(-st)dt其中,s为复变量,e^(-st)为复指数函数,可以表示不同的衰减和增长特性。
拉普拉斯变换不仅可以用于分析信号的频率特性,还可以用于分析系统的稳定性和时域响应。
四、z变换z变换是一种将离散时间信号转换为复域信号的数学工具。
对于一个离散时间信号x[n],它的z变换X(z)可以表示为:X(z) = ∑x[n]z^(-n)其中,z为复变量,z^(-n)为z的负幂,可以表示离散时间信号的序列。
z变换可以用于分析离散时间系统的稳定性和频率响应。
五、联系与比较1. 傅里叶变换与拉普拉斯变换的联系傅里叶变换和拉普拉斯变换都是将时域信号转换为复域信号的数学工具,它们之间存在一定的联系。
在一定条件下,可以通过拉普拉斯变换来推导傅里叶变换,从而将连续时间系统的频域特性转换为复域特性。
这种联系使得我们可以统一地分析连续时间信号和系统的频率特性。
2. 拉普拉斯变换与z变换的联系拉普拉斯变换和z变换同样是将时域信号转换为复域信号的工具,它们之间也存在联系。
在一定条件下,可以通过z变换来推导离散时间系统的拉普拉斯变换,从而将离散时间系统的频率特性转换为复域特性。
傅立叶变换、拉普拉斯变换、Z变换的联系.
![傅立叶变换、拉普拉斯变换、Z变换的联系.](https://img.taocdn.com/s3/m/f39ead8616fc700aba68fc2c.png)
。
Z变换解决了不满足绝对可和条件的离散信号,变换到频率域的问题,同时也同样对“频率”的定义进行了扩充。
所以Z变换与离散时间傅里叶变换(DTFT的关系是:
Z变换将频率从实数推广为复数,因而DTFT变成了Z变换的一个特例。当z的模为1时, x[n]的Z变换即为x[n]的DTFT。
版权
所有
,
严禁
用于任何商业用途
从图像的角度来说, Z变换得到的频谱,是一个复平面上的函数,而DTFT得到的频谱,则是沿着单位圆切一刀,得到的函数的剖面,从负实轴切断展开的图像(Figure 5。
Figure 5 Z变换得到的频谱,是一个复平面上的函数,而DTFT得到的频谱,则是沿着单位圆切一刀
版权
所有
,
严禁
用于任何商业用途
Figure 1时域的信号可以分解为不同频率的正弦波的叠加
而在这个过程中,发送端发送出去的信号的最大频率和最小频率是否在接收端的带通滤波器的上下边界频率之内?如果超出了滤波器的频率范围,接收端接收到的信号就会丢失一部分信息,接收端接收到的消息就会有错误。
但这个问题从时域是很难看出来的,不过,从频率域就一目了然。因此傅里叶变换得到了广泛应用,它的地位也非常重要。
傅立叶变换、拉普拉斯变换、Z变换的联系
首先,为什么要进行变换?因为很多时候,频率域比时域直观得多。
傅里叶级数和傅里叶变换,表明时域的信号可以分解为不同频率的正弦波的叠加(Figure 1。而如果我们把两个没有公共频率成分的信号相加,一同发送。在接收端接收到之后,用滤波器把两个信号分开,就可以还原出发送的两个信号。这就是通信过程的实质。
从图像的角度来说,拉普拉斯变换得到的频谱是一个复平面上的函数(Figure 2,而傅里叶变换得到的频谱,则是从虚轴上切一刀,得到的函数的剖面(Figure 3、Figure 4。
傅里叶变换、拉式变换、z变化的意义
![傅里叶变换、拉式变换、z变化的意义](https://img.taocdn.com/s3/m/c156221df18583d04964596b.png)
傅里叶变换、拉式变换、z变化的意义傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。
傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。
在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。
傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度。
理解的关键是:一个连续的信号可以看作是一个个小信号的叠加,从时域叠加与从频域叠加都可以组成原来的信号,将信号这么分解后有助于处理。
我们原来对一个信号其实是从时间的角度去理解的,不知不觉中,其实是按照时间把信号进行分割,每一部分只是一个时间点对应一个信号值,一个信号是一组这样的分量的叠加。
傅里叶变换后,其实还是个叠加问题,只不过是从频率的角度去叠加,只不过每个小信号是一个时间域上覆盖整个区间的信号,但他确有固定的周期,或者说,给了一个周期,我们就能画出一个整个区间上的分信号,那么给定一组周期值(或频率值),我们就可以画出其对应的曲线,就像给出时域上每一点的信号值一样,不过如果信号是周期的话,频域的更简单,只需要几个甚至一个就可以了,时域则需要整个时间轴上每一点都映射出一个函数值。
傅里叶变换就是将一个信号的时域表示形式映射到一个频域表示形式;逆傅里叶变换恰好相反。
这都是一个信号的不同表示形式。
它的公式会用就可以,当然把证明看懂了更好。
对一个信号做傅里叶变换,可以得到其频域特性,包括幅度和相位两个方面。
幅度是表示这个频率分量的大小,那么相位呢,它有什么物理意义?频域的相位与时域的相位有关系吗?信号前一段的相位(频域)与后一段的相位的变化是否与信号的频率成正比关系。
傅里叶变换就是把一个信号,分解成无数的正弦波(或者余弦波)信号。
也就是说,用无数的正弦波,可以合成任何你所需要的信号。
初学者-从信号与系统角度浅谈傅里叶变换,拉氏变换,Z变换三者之间的关系
![初学者-从信号与系统角度浅谈傅里叶变换,拉氏变换,Z变换三者之间的关系](https://img.taocdn.com/s3/m/3c59c7e5172ded630b1cb6a8.png)
初学者-从信号与系统角度浅谈傅里叶变换,拉氏变换,Z 变换三者之间的关系一 傅里叶级数展开与傅里叶变换之所以要将一个信号f(t)进行傅里叶级数展开或傅里叶变换是因为一般自然界信号都非常复杂,且表面上并不能直观的表现出频率与幅值的关系,而一个信号的大部分有效信息恰藏于其频谱上,即其幅频关系和相频关系上。
通过傅里叶级数展开或傅里叶变换,可将自然界中复杂的信号分解成简单的,有规律的基本信号之和或积分的形式,并且可以明确表达出周期信号的离散频谱和非周期信号的连续频谱函数。
傅里叶级数展开是对于周期信号而言,如果该周期信号满足狄利克雷条件(在电子和通讯中大部分周期信号均满足),周期信号就能展开成一组正交函数的无穷级数之和,三角函数集在一个周期内是完备的正交函数集,使用三角函数集的周期函数展开就是傅里叶级数展开,而欧拉公式是将三角函数和复指数连接了起来,所以傅里叶级数可展开成三角函数或复指数两种形式,此时就可画出信号的频谱图,便可直观的看到频率与幅值和相位的关系。
既然是级数和展开,则上述频谱图中横轴表示n 倍的角频率,是一个离散频谱图,那么由离散频谱的间隔与周期的反比关系知当f(t)的周期T 趋近于无穷大时,周期信号变成了非周期信号,谱线间隔趋近于无穷小,谱线无限的密集而变成为连续频谱,该连续频谱即为频谱密度函数,简称频谱函数,该表达式即是我们熟悉的傅里叶变换,傅里叶变换将信号的时间函数变为频率函数,则其反变换是将频率函数变为时间函数,所以傅里叶变换建立了信号的时域与频域表示之间的关系,而傅里叶变换的性质则揭示了信号的时域变换相应地引起频域变换的关系。
二 傅里叶变换与拉氏变换上述的傅里叶变换必须是在一个信号满足绝对可积的条件下才成立,那么对于不可积的信号,我们要将它从时域移到频域上,就要将原始信号乘上一个衰减信号将其变为绝对可积信号再做傅里叶变换,即为∫(f (t )e −σt )e −jωt ∞−∞dt =∫f(t)e −(σ+jω)t dt ∞−∞=∫f(t)e −st ∞−∞dt s=σ+j ω 变为拉氏变换,如令σ=0则拉氏变换就变成了傅里叶变换,所以傅里叶变换是S 域仅在虚轴上取值的拉氏变换,拉氏变换是傅里叶的推广,拉氏变换的收敛域就是f (t )e −σt 满足绝对可积条件的σ值的范围,在收敛域内可积,拉氏变换存在,在收敛域外不可积,拉氏变换不存在。
傅里叶变换 拉普拉斯变换 z变换
![傅里叶变换 拉普拉斯变换 z变换](https://img.taocdn.com/s3/m/20c3a1ae6394dd88d0d233d4b14e852458fb3904.png)
傅里叶变换、拉普拉斯变换和z变换,是在信号处理和控制系统领域中非常重要的数学工具和转换方法。
它们各自具有独特的数学特性和应用领域,对于理解和分析信号、系统和控制器具有重要意义。
在本篇文章中,我将从基础概念到深入原理,探讨这三种变换的定义、特性和应用,并共享我个人的见解和理解。
一、傅里叶变换傅里叶变换是一种将时域信号转换为频域信号的数学方法。
通过傅里叶变换,我们可以将一个周期性信号分解为不同频率的正弦和余弦函数的叠加,从而分析信号的频谱特性。
傅里叶变换在通信、图像处理、音频处理等领域有着广泛的应用。
1. 定义和公式对于一个连续信号x(t),其傅里叶变换X(ω)定义如下:X(ω) = ∫[−∞, +∞]x(t)e^(−jωt)dt其中,X(ω)表示信号x(t)的频域表示,ω为角频率,e^(−jωt)为复指数函数。
2. 特性傅里叶变换具有线性性、时移性、频移性、频率缩放性等性质,这些性质使得我们可以通过傅里叶变换对信号进行分析和处理。
3. 应用傅里叶变换广泛应用于信号的频谱分析、滤波器设计、信息压缩等领域。
在音频处理中,通过傅里叶变换可以将时域的音频信号转换为频域表示,从而实现音频的频谱分析和变换。
二、拉普拉斯变换拉普拉斯变换是一种对信号进行复域转换的方法,它在控制系统分析和传递函数求解中有着重要的应用。
与傅里叶变换不同,拉普拉斯变换适用于非周期性信号和因果系统的分析。
1. 定义和公式对于一个连续信号x(t),其拉普拉斯变换X(s)定义如下:X(s) = ∫[0, +∞]x(t)e^(−st)dt其中,X(s)表示信号x(t)的拉普拉斯域表示,s为复数变量,e^(−st)为复指数函数。
2. 特性拉普拉斯变换具有线性性、平移性、尺度变换性等性质,这些性质使得我们可以方便地对线性时不变系统进行稳定性分析和传递函数求解。
3. 应用拉普拉斯变换在控制系统分析、电路分析、信号处理等领域有着广泛的应用。
在控制系统中,通过拉普拉斯变换可以将微分方程转换为代数方程,从而方便地进行系统的稳定性分析和控制器设计。
傅里叶变换拉普拉斯变换z变换
![傅里叶变换拉普拉斯变换z变换](https://img.taocdn.com/s3/m/10414a725b8102d276a20029bd64783e09127d39.png)
傅里叶变换拉普拉斯变换z变换第一部分:引言1. 介绍傅里叶变换、拉普拉斯变换和z变换的概念和背景在现代数学和工程学中,傅里叶变换、拉普拉斯变换和z变换是常见的数学工具,它们在信号处理、控制系统、通信等领域有着广泛的应用。
这三种变换都是对信号或系统进行频域分析的工具,能够将时域中的信号或系统转换到频域中,从而更好地理解和处理问题。
第二部分:深入探讨傅里叶变换2. 对傅里叶变换的介绍傅里叶变换是一种将时域信号转换为频域表示的工具。
它能够将一个信号分解成不同频率的正弦和余弦信号的叠加,从而得到信号的频谱信息。
3. 傅里叶变换的公式傅里叶变换的数学公式是一个关于频率(频域)和时间(时域)的积分变换,它能够将一个信号从时域转换到频域,显示出信号在各个频率上的成分。
4. 傅里叶变换的应用傅里叶变换在信号处理、通信、图像处理等领域有着广泛的应用,能够帮助工程师和科学家更好地理解和分析信号的频域特性,从而进行相应的处理和改进。
第三部分:进一步了解拉普拉斯变换5. 对拉普拉斯变换的介绍拉普拉斯变换是一种对信号或系统进行复频域分析的工具,它能够将时域中的信号或系统转换为s域(复频域)中进行分析。
6. 拉普拉斯变换的公式拉普拉斯变换的数学公式是一个对信号进行积分变换,它将时域中的信号转换到复频域中,从而更好地理解信号的稳定性、收敛性和频域特性。
7. 拉普拉斯变换的应用拉普拉斯变换在控制系统、电路分析、信号处理等领域有着重要的应用,能够帮助工程师和科学家更好地分析和设计系统,以及进行相应的频域处理。
第四部分:探讨z变换及其特点8. 对z变换的介绍z变换是一种对离散信号或系统进行频域分析的工具,它能够将离散时域中的序列转换为z域中的分析。
9. z变换的数学公式z变换是对离散信号进行求和,将时域中的序列转换到z域中进行分析,它能够更好地了解信号或系统的稳定性、性能和频域特性。
10. z变换的应用z变换在数字信号处理、控制系统、滤波器设计等领域有着重要的应用,能够帮助工程师和科学家更好地分析和设计离散系统,以及进行相应的频域处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初学者-从信号与系统角度浅谈傅里叶变换,拉氏变换,Z 变换三者之间的关系
一 傅里叶级数展开与傅里叶变换
之所以要将一个信号f(t)进行傅里叶级数展开或傅里叶变换是因为一般自然界信号都非常复杂,且表面上并不能直观的表现出频率与幅值的关系,而一个信号的大部分有效信息恰藏于其频谱上,即其幅频关系和相频关系上。
通过傅里叶级数展开或傅里叶变换,可将自然界中复杂的信号分解成简单的,有规律的基本信号之和或积分的形式,并且可以明确表达出周期信号的离散频谱和非周期信号的连续频谱函数。
傅里叶级数展开是对于周期信号而言,如果该周期信号满足狄利克雷条件(在电子和通讯中大部分周期信号均满足),周期信号就能展开成一组正交函数的无穷级数之和,三角函数集在一个周期内是完备的正交函数集,使用三角函数集的周期函数展开就是傅里叶级数展开,而欧拉公式是将三角函数和复指数连接了起来,所以傅里叶级数可展开成三角函数或复指数两种形式,此时就可画出信号的频谱图,便可直观的看到频率与幅值和相位的关系。
既然是级数和展开,则上述频谱图中横轴表示n 倍的角频率,是一个离散频谱图,那么由离散频谱的间隔与周期的反比关系知当f(t)的周期T 趋近于无穷大时,周期信号变成了非周期信号,谱线间隔趋近于无穷小,谱线无限的密集而变成为连续频谱,该连续频谱即为频谱密度函数,简称频谱函数,该表达式即是我们熟悉的傅里叶变换,傅里叶变换将信号的时间函数变为频率函数,则其反变换是将频率函数变为时间函数,所以傅里叶变换建立了信号的时域与频域表示之间的关系,而傅里叶变换的性质则揭示了信号的时域变换相应地引起频域变换的关系。
二 傅里叶变换与拉氏变换
上述的傅里叶变换必须是在一个信号满足绝对可积的条件下才成立,那么对于不可积的信号,我们要将它从时域移到频域上,就要将原始信号乘上一个衰减信号将其变为绝对可积信号再做傅里叶变换,即为
∫(f (t )e −σt )e −jωt ∞−∞dt =∫f(t)e −(σ+jω)t dt ∞−∞=∫f(t)e −st ∞
−∞
dt s=σ+j ω 变为拉氏变换,如令σ=0则拉氏变换就变成了傅里叶变换,所以傅里叶变换是S 域仅在虚轴上取值的拉氏变换,拉氏变换是傅里叶的推广,拉氏变换的收敛域就是f (t )e −σt 满足绝对可积条件的σ值的范围,在收敛域内可积,拉氏变换存在,在收敛域外不可积,拉氏变换不存在。
拉氏变换针对于连续时间信号,主要用于连续时间系统的分析中,对一个线性微分方程两边同时进行拉氏变换,可将微分方程转化成简单的代数运算,可方便求出系统的传递函数,简化了运算。
三 拉氏变换与Z 变换
对于离散的时间信号和系统而言,我们对理想取样信号表达式两边进行拉氏变换,
再以Z=e sT 代入可得Z 变换的表达式X(Z)=∑x(n)Z −n +∞−∞,所以从理想取样信号的拉氏变
换到Z 变换,就是由复变量S 平面到复变量Z 平面的映射变换,映射关系为Z=e sT ,可见Z 变换也可以看做是取样信号拉氏变换的一种特殊情况,此时S=σ+jω, t=n T,ω=ΩT ,则Z 变换可看作是针对离散的信号和系统的拉氏变换,由Z=e sT = e σT e jΩT 中可以看到σ=0时,Z 是一个半径为1只有相位的函数,故Z 域可用极坐标描述,S 域上的虚轴对应Z 域上的单位圆,当σ<0时,Z 的幅值小于1,即S 域上虚轴的左边对应Z 域的单位圆内,反之,S 域上虚轴的右边对应Z 域的单位圆外。
四 傅里叶级数展开与Z 变换
对与傅里叶级数展开而言,一般周期信号的频谱都具有离散型,谐波性和收敛性,但如果一个周期信号的频谱不收敛,我们要将它从时域移到频域上就要将原始信号频谱乘上一个衰减信号将其变为收敛的再做傅里叶级数展开,有
∑(x (n )e −σTn )e −jΩTn +∞−∞=∑x(n)e −STn +∞−∞=∑x(n)Z −n +∞−∞ S=σ+j Ω
即为Z 变换,如令σ=0即Z=1,则Z 变换就变成了傅里叶级数展开,所以傅里叶级数展开是Z 域仅在单位圆上取值的Z 变换,Z 变换是傅里叶级数展开的推广。
对于给定
的序列x(n),使级数∑x(n)Z −n +∞−∞收敛的Z 平面中的区域称为其收敛域。
采样定理是连接连续时间信号和系统与离散时间信号和系统的桥梁,以上三个变换均满足线性性质,即迭加性和齐次性。