保护电路设计方法 - 过电压保护
直流电源过电压过流保护电路
直流电源过电压、欠电压及过流保护电路该保护电路在直流电源输入电压大于30V或小于18V或负载电流超过35A时,晶闸管都将被触发导通,致使断路器QF跳闸。
图中,YR为断路器QF的脱扣线圈;KI为过电流继电器。
带过流保护的电动自行车无级调速电路图中,RC为补偿网络,以改善电动机的力矩特性。
具体数值由实验决定。
电路如图16-91所示。
它适用于电动自行车或电动三轮车。
调节电位器RP,可改变由555时基集成电路A组成的方波发生器的方波占空比,达到调速的目的。
Rs是过电流取样电阻,当电动机过载时,Rs上的压降增大,使三极管VTz导通,触发双向晶闸管V导通,分流了部分负载,从而保护了功率管VTi。
过流保护用电子保险的制作电路图本电路适用于直流供电过流保护,如各种电池供电的场合。
如果负载电流超过预设值,该电子保险将断开直流负载。
重置电路时,只需把电源关掉,然后再接通。
该电路有两个联接点(A、B标记),可以连接在负载的任意一边。
负载电流流过三极管T4、电阻R10和R11。
A、B端的电压与负载电流成正比,大多数的电压分配在电阻上。
当电源刚刚接通时,全部电源电压加在保险上。
三极管T2由R4的电流导通,其集电极的电流值由下式确定:VD4=VR7+0.6。
因为D4上的电压(VD4)和R7上的电压(VR7)是恒定的,所以T2的集电极电流也是恒定。
该三极管提供稳定的基极电流给T3,因而使其导通,接着又提供稳定的基极电流给T4。
保险导电,负载有电流流过。
当电源刚接通时,电容器C1提供一段延时,从而避免T1导电和保持T2断开。
保险上的电压(VAB)通常小于2V,具体值取决于负载电流。
当负载电流增大时,该电压升高,并且在二极管D4导通时,达到分流部分T2的基极电流,T2的集电极电流因而受到限制。
由此,保险上的电压进一步增大,直到大约4.5V,齐纳二极管D1击穿,使T1导通,T2便截止,这使得T3和T4也截止,此时保险上的电压增大,并且产生正反馈,使这些三极管保持截止状态。
如何进行电路的电压和电流保护
如何进行电路的电压和电流保护电路的电压和电流保护是电子工程中非常重要的一部分。
如果电路没有得到有效的保护,可能会导致设备损坏、电击事故甚至发生火灾。
因此,正确的电压和电流保护策略对于确保电路的安全运行至关重要。
本文将向读者介绍如何进行电路的电压和电流保护,以及常见的保护方法和设备。
在电路设计中,保护电路免受过电流和过电压的伤害是至关重要的。
过电流和过电压可能是由故障、电源不稳定、操作失误或外部干扰等原因引起的。
因此,我们需要采取适当的措施来保护电路,以防止这些问题的发生。
一、电流保护1. 熔断器熔断器是一种常用的电流保护设备。
它们一般安装在电路中的关键位置,当电流超过其额定值时,熔断器会自动断开电路,以保护设备免受过电流的伤害。
熔断器的额定电流应根据电路负载和设计要求来选择合适的数值。
2. 电流限制器电流限制器可以限制电路中通过的电流,确保其值不会超过安全范围。
它们可以采用不同的工作原理,例如可调电阻、电感或电感与电容的组合。
具体选择哪种类型的电流限制器取决于电路的要求和应用环境。
3. 电流传感器电流传感器可以监测电路中的电流变化,并在电流超过安全范围时提供相应的信号。
这些传感器可以用于实时监测电流,并与其他保护装置结合使用,以及进行电路的自动断开,确保电路安全运行。
二、电压保护1. 过压保护器过压保护器可以检测电路中的电压,一旦电压超过额定值,它们会快速切断电路,以保护设备。
过压保护器通常采用电压比较器等电子元器件来实现,可以根据具体的应用要求进行调整和设置。
2. 电压稳压器电压稳压器可以将电路中的电压稳定在一个安全的范围内。
电路中的电压变化常常会对设备的正常运行产生不利影响,因此使用电压稳压器可以确保设备在电压波动较大的情况下仍能正常工作。
3. 电压监测器电压监测器可以实时监测电路中的电压,并在电压异常时提供报警或自动断电保护。
这些监测器可以用于检测电压波动、电压失真或供电故障等情况,提醒用户采取相应的措施以确保电路安全。
保护电路常见设计
保护电路常见设计保护电路是电子设计中非常重要的一环,它能有效地保护电子设备免受电路故障或异常工作的损害。
下面将介绍一些常见的保护电路设计。
1. 过载保护电路过载保护电路用于监测电路中的电流,当电流超过设定值时,它会立即切断电路以防止设备过载。
这种保护电路通常由热敏电阻或电流传感器组成,一旦检测到过载电流,它会触发继电器或开关,切断电源供应。
2. 过压保护电路过压保护电路用于防止电路受到过高的电压损害。
它通常由电压比较器和继电器组成。
当电路输入电压超过设定值时,电压比较器会触发继电器,切断电源供应。
3. 短路保护电路短路保护电路用于防止电路发生短路故障,它能够及时切断电源供应,以避免设备损坏。
这种保护电路通常由电流传感器和继电器组成,一旦检测到短路电流,电流传感器会触发继电器,切断电源供应。
4. 过温保护电路过温保护电路用于监测电路中的温度,当温度超过设定值时,它会触发继电器或开关,切断电源供应。
这种保护电路通常由温度传感器和继电器组成,一旦检测到过温,温度传感器会触发继电器,切断电源供应。
5. 欠压保护电路欠压保护电路用于监测电路输入电压,当输入电压低于设定值时,它会触发继电器或开关,切断电源供应。
这种保护电路通常由电压比较器和继电器组成,一旦检测到欠压,电压比较器会触发继电器,切断电源供应。
以上介绍了一些常见的保护电路设计,它们在电子设备中起着至关重要的作用,能够有效地保护电路免受损坏。
在设计过程中,需要根据实际需求选择合适的保护电路,并注意电路的可靠性和稳定性。
保护电路的设计需要经过充分的测试和验证,以确保其正常工作和可靠性。
只有在保护电路设计得当的情况下,才能更好地保护电子设备,延长其使用寿命。
过电压保护ppt课件
3.阀式避雷器 (1).普通型阀式避雷器
a.结构与元件的作用:
火花间隙:
作用原理:
根据火花间隙的结构,使间隙的放电时间 缩短,由于其伏秒特性曲线平缓,放电分散性 也较小,由于火花间隙由若干个小间隙组合串 联,易于切断工频续流,且不易重燃。
具有分路电阻的火花间隙:
1.保护间隙
作用原理: 当雷电侵入波要危及它所
保护的电气设备的绝缘时, 间隙首先击穿,工作母线 接地,避免了被保护设备 上的电压升高,从而保 护了设备。
6KV和10KV保护间隙,主间隙分别不小于15mm和25mm 辅助间隙不小于10mm。
优缺点:
优点: 结构简单、制造方便 缺点: 伏秒特性曲线比较陡,绝缘配合不理
优缺点
熄弧能力比保护间隙要强,但伏秒特 性较陡且放电分散性大,且会形成截波, 并受大气条件影响较大,所只用在线路 保护和变电所进线段保护
5.金属氧化物(氧化锌)避雷器
(1)、工作原理
正常运行时,在工频电压下氧化物 电阻片具有极高阻值,呈绝缘状态;当 出现过电压时,阀片呈低阻状态,泄放 电流,避雷器两端维持较低的残压,保 护电气设备不受损坏。过电压过后,立 即恢复高电阻值,继续保持绝缘。金属 氧化物避雷器不需要设置火花间隙,也 不需要进行灭弧。
第二节 直接雷击过电压
一.避雷针和避雷线
1.保护作用的原理
能使雷云电场发生突变,使雷电先导的发展沿 着避雷针的方向发展,直击于其上,雷电流通 过避雷针(线)及接地装置泄入大地而防止避 雷针(线)周围的设备受到雷击
独立避雷针
构架避雷针
消雷器
2.保护范围
(1).单支避雷针
hx
h 2
直流电源过电压过流保护电路
直流电源过电压、欠电压及过流保护电路该保护电路在直流电源输入电压大于30V或小于18V或负载电流超过35A时,晶闸管都将被触发导通,致使断路器QF跳闸。
图中,YR为断路器QF的脱扣线圈;KI为过电流继电器。
带过流保护的电动自行车无级调速电路图中,RC为补偿网络,以改善电动机的力矩特性。
具体数值由实验决定。
电路如图16-91所示。
它适用于电动自行车或电动三轮车。
调节电位器RP,可改变由555时基集成电路A组成的方波发生器的方波占空比,达到调速的目的。
Rs是过电流取样电阻,当电动机过载时,Rs上的压降增大,使三极管VTz导通,触发双向晶闸管V导通,分流了部分负载,从而保护了功率管VTi。
过流保护用电子保险的制作电路图本电路适用于直流供电过流保护,如各种电池供电的场合。
如果负载电流超过预设值,该电子保险将断开直流负载。
重置电路时,只需把电源关掉,然后再接通。
该电路有两个联接点(A、B标记),可以连接在负载的任意一边。
负载电流流过三极管T4、电阻R10和R11。
A、B端的电压与负载电流成正比,大多数的电压分配在电阻上。
当电源刚刚接通时,全部电源电压加在保险上。
三极管T2由R4的电流导通,其集电极的电流值由下式确定:VD4=VR7+0.6。
因为D4上的电压(VD4)和R7上的电压(VR7)是恒定的,所以T2的集电极电流也是恒定。
该三极管提供稳定的基极电流给T3,因而使其导通,接着又提供稳定的基极电流给T4。
保险导电,负载有电流流过。
当电源刚接通时,电容器C1提供一段延时,从而避免T1导电和保持T2断开。
保险上的电压(VAB)通常小于2V,具体值取决于负载电流。
当负载电流增大时,该电压升高,并且在二极管D4导通时,达到分流部分T2的基极电流,T2的集电极电流因而受到限制。
由此,保险上的电压进一步增大,直到大约4.5V,齐纳二极管D1击穿,使T1导通,T2便截止,这使得T3和T4也截止,此时保险上的电压增大,并且产生正反馈,使这些三极管保持截止状态。
单片机5v过压保护电路
单片机5v过压保护电路在单片机应用领域中,过压保护电路是一项非常重要的设计需求。
过高的电压可能对系统中的电子元件造成损坏或短路,导致不可预料的后果。
为了保护单片机及其周边电路免受过电压的影响,设计一个稳定可靠的5V过压保护电路至关重要。
本文将探讨一种基于电阻和二极管的简单过压保护电路设计。
1.电路工作原理这个过压保护电路的工作原理非常简单。
当输入电压超过正常范围时,该电路将自动切断过高的电压并保护单片机及其周边电路。
具体来说,当电压超过一定的阈值时,二极管将被反向极化,阻止过高的电压通过。
而当电压处于正常范围内时,电流则通过电阻和二极管进入单片机。
2.电路设计为了实现单片机5V过压保护,我们需要选择合适的电阻和二极管。
首先,选择一个能够承受过电压的二极管,常见的选择是1N4148型号的二极管。
其次,选择适当的电阻阻值来限制电流。
根据欧姆定律,我们可以通过选择合适的电阻阻值来控制电流大小。
通常情况下,电阻的阻值在几千到几十千欧姆之间。
此外,还需要考虑电阻的功率耗散能力,确保选用的电阻能够承受过高的功率。
3.电路连接连接这个过压保护电路非常简单。
首先,将二极管正极连接到单片机的5V电源引脚,将二极管负极连接到输入电压。
然后,将电阻与二极管进行串联连接。
最后,将电阻与单片机的地引脚连接在一起以形成电流回路。
4.电路测试在完成电路连接之后,我们需要进行测试以确保过压保护电路的功能正常。
首先,使用一个恒定的输入电压,逐渐增加电压直到超过5V。
如果一切正常,电压将被保持在5V,同时过高的电压将被过滤掉。
此外,可以通过对单片机进行正常操作来验证过压保护电路对电路运行的影响。
5.电路改进这种简单的过压保护电路虽然易于设计和实现,但可能存在一些改进的空间。
首先,我们可以增加一个电压监测芯片,用于检测输入电压并在超过阈值时触发保护电路。
其次,我们可以考虑使用更先进的电阻和二极管来提高电路的稳定性和可靠性。
此外,还可以添加熔丝或热释电保险丝来进一步保护电路免受过高的电流或短路的影响。
电力设备过电压保护设计技术规程
电力设备过电压保护设计技术规程
一、引言
二、过电压的基本概念和特点
2.1 过电压的定义
2.2 过电压的产生原因
2.3 过电压的分类
三、过电压保护设计思路
3.1 设备保护与系统保护
3.2 过电压保护的基本原则
3.3 过电压保护器的种类和特点
四、具体过电压保护设计方法
4.1 入户过电压保护设计
1.安装过电压保护器设备
2.设置合适的过电压阈值
3.定期检测和维护设备
4.2 输电线路过电压保护设计
1.选择合适的过电压保护器类型
2.设计合理的接地系统
3.定期检测和维护设备
4.3 电力设备内部过电压保护设计
1.采用合适的过电压抑制器
2.设计可靠的保护电路
3.进行必要的故障测试和验证
4.4 电力系统整体过电压分析与保护设计
1.分析系统中可能出现的过电压情况
2.设计合理的过电压保护策略
3.考虑系统的可靠性和稳定性
五、过电压保护装置的选用与调试
5.1 过电压保护装置的选用原则
5.2 过电压保护装置的调试方法
5.3 过电压保护装置的运行与维护
六、过电压保护设计实例分析
6.1 电力设备过电压保护设计实例一6.2 电力设备过电压保护设计实例二
6.3 电力设备过电压保护设计实例三
七、结论
八、参考文献。
完整的电路保护-过流过压保护
通用应用 ---接口电路
1、高速接口电路(USB2.0、IEEE1394、RF 电路、Gigabit以太网、DVI)
C、TVS Diodes/Silicon Avalance Diodes(SADs)
• 4、气体放电管(GDTs)
• 5、工业&轴向压敏电阻
A、Radial Leaded MOVs(UltraMOVTM,C-III,LA,ZA,RA and TMOVTM Varistors)
B、轴向引脚的压敏电阻(MA Series MOVs)
应用电路
• AC / DC DC / DC 转换电路 • 全波 / 半波整流电路 / 逆变电路
推荐产品
• 可控硅(SCR) • 压敏电阻(MOV) • TVS / ULTraMOV
雷电的防护
---电力系统器件应用比较
• 气体放电管 能承受数百微秒内数千安培瞬态雷电电流的冲击。
缺点是对雷电过电压的波头无法进行有效的保护。
C、工业级的压敏电阻(CA,NA,PA,HA,HB34,DA and DB Series varistors )
Teccor产品应用领域
➢1、个人电子消费产品 ➢2、电源产品 ➢3、通信设备 ➢4、汽车电子 ➢5、其它工业设备
电源产品
A、交流电源
B、不间断电源(UPS)
C、电能表
D、交流电器控制板
用户端设备 1、传真机 2、 xDSL / Modem 3、公用电话 / 无绳电话 / 手机 / VoIP 4、T1 / E1 /J1 5、ISDN 设备 6、用户线路板(SLIC)
局端设备 1、公共分组交换机(PBX) 2、Internet 网关 3、交换机 / 路由器 / 中继器(HUB)
家用电路过压保护原理
家用电路过压保护原理家庭日常生活中,电器设备是必不可少的,如空调、电视、冰箱等。
然而,由于电网供电不稳定、气候变化等原因,可能导致电路出现过压情况,从而对电器设备造成损坏甚至引发火灾等严重后果。
为了保护家用电器设备的安全稳定运行,家用电路通常会采取过压保护措施。
本文将介绍家用电路过压保护原理以及常见的过压保护器。
一、过压保护原理过压保护原理是通过监测电压,当电压超过设定阈值时,通过断开电路或将电压降低至安全范围内,从而保护电器设备的安全运行。
常见的过压保护原理有两种:电压断开型和电压降低型。
1. 电压断开型电压断开型过压保护原理是当电压超过设定的阈值时,通过自动断开电路的方式切断电源供应,以保护电器设备不受过高电压的损害。
这种方式通过断开电路来阻断过压电流,从而避免电器设备的损坏。
在电压恢复正常后,过压保护器会自动恢复供电,使电器设备能够正常运行。
2. 电压降低型电压降低型过压保护原理是当电压超过设定的阈值时,通过降低电压使其回到安全范围内,从而保护电器设备的安全运行。
这种方式常见的方式是采用稳压器或电压调节器,通过调整电压大小,将过高的电压稳定在安全范围内,以避免对电器设备的损害。
二、常见的过压保护器1. 漏电保护器漏电保护器是一种常见的过压保护器,它能够监测电路中的电流流向,当电流超过预设值时,漏电保护器会迅速切断电源,以阻止过压对电器设备的损害。
漏电保护器能够同时检测人体漏电和设备漏电,具有很高的安全性能。
2. 过载保护器过载保护器是一种常用的过压保护器,它通过监控电路中的电流大小,当电流超过设定值时,过载保护器会自动切断电源,以防止电器设备因过载而损坏。
过载保护器可以根据不同电器设备的功率要求进行调节,保护电器设备的正常运行。
3. 防雷保护器防雷保护器是一种用于过压保护的装置,它能够有效地防止雷击引起的过电压对电器设备的损害。
防雷保护器通常安装在电路输入端,当雷电产生过电压时,防雷保护器会迅速引导过电压,以确保电器设备不受到雷击引起的过电压的侵害。
电源线路中的过压保护技术
电源线路中的过压保护技术
过压保护技术是电源线路中非常重要的一项技术,它可以有效地保护电器设备免受过电压的危害。
过压是指电压超过了设备正常工作范围的情况,如果设备长时间暴露在过压环境下,很容易造成设备损坏甚至起火等严重后果。
因此,电源线路中的过压保护技术显得尤为重要。
过压保护技术的原理是通过在电源线路中增加过压保护单元来监测电压的波动情况,一旦检测到电压超过设定的安全阈值,过压保护单元就会迅速切断电源,从而有效地保护设备不受过压的损害。
同时,过压保护技术还可以通过信号灯或声音提示等方式提醒用户电源出现问题,及时采取措施进行处理。
在实际应用中,过压保护技术可以应用在各种电子设备中,如电脑、冰箱、空调等家用电器,以及工业设备、医疗设备等专业设备中。
无论是家庭生活还是工业生产领域,都离不开过压保护技术的应用,这不仅提高了设备的安全性和可靠性,也保护了用户的生命财产安全。
除了过压保护技术,电源线路中还有一些其他保护技术,如过流保护技术、短路保护技术等。
这些保护技术结合起来,可以组成一套完善的电源保护系统,为电器设备提供全方位的保护。
因此,在设计电源线路时,一定要考虑到各种保护技术的应用,以确保设备的安全运行。
总的来说,电源线路中的过压保护技术是一项非常重要的技术,它可以有效地保护电器设备免受过压的危害,提高设备的可靠性和安全性。
在今后的电源线路设计中,我们需要重视过压保护技术的应用,从而确保设备的正常运行和人身财产的安全。
过压保护电路原理
过压保护电路原理过压保护电路是一种常见的电子保护装置,它能够有效地保护电路和设备免受过电压的损害。
在电力系统中,过压是指电压超过设定的安全范围,可能导致设备损坏甚至火灾。
因此,设计和应用过压保护电路是非常重要的。
本文将介绍过压保护电路的原理及其工作方式。
过压保护电路的原理是利用电压传感器检测电路中的电压,并将其与设定的阈值进行比较。
一旦电压超过设定的阈值,过压保护电路将立即采取措施,例如切断电源或引入阻抗来限制电流。
这样可以有效地保护电路和设备不受过电压的损害。
过压保护电路通常由电压传感器、比较器、触发器和保护装置等组成。
电压传感器用于检测电路中的电压变化,将其转化为电信号;比较器用于将检测到的电压信号与设定的阈值进行比较;触发器用于接收比较器的输出信号,并触发保护装置采取相应的保护措施。
在实际应用中,过压保护电路可以应用于各种电力设备和系统中,如变压器、发电机、电动机、输配电系统等。
它能够及时准确地检测到电路中的过压情况,并采取有效的保护措施,保障设备和系统的安全稳定运行。
过压保护电路的工作方式可以简单描述为,当电路中的电压超过设定的阈值时,电压传感器将检测到这一变化,并将其转化为电信号;比较器将检测到的电压信号与设定的阈值进行比较,如果超过阈值,则触发器将接收到比较器的输出信号,并触发保护装置采取相应的保护措施,如切断电源或引入阻抗来限制电流。
总之,过压保护电路是一种重要的电子保护装置,它能够有效地保护电路和设备免受过电压的损害。
通过合理设计和应用过压保护电路,可以提高电力系统的安全性和稳定性,保障设备和系统的正常运行。
希望本文能够对过压保护电路的原理和工作方式有所帮助。
过电压保护
切、合电容器,开断高压电动机等。
切空载变压器:若开关分断能力极强,在 i 未到 零点之前 ,就强行将电流截断,则可能产生过电压,因为i的突变引 起Φ变化,产生很高的感应E,产生截断过电压。 电弧接地过电压:在中性点不接地系统中发生单相不稳定 电弧接地时,接地点的电弧间歇性的熄灭和重燃,则在健 全相和故障相都可能产生过电压。 原因:间歇性电弧作用下电磁能量的转换产生强烈震荡, 引起过电压。 特点:持续t不超过几个工频半波,幅值与电网结构、开关 特性、故障类型等因素有关。
机绝缘的电压升高称为过电压。
2、过电压的危害:
过电压对电力系统的安全运行有极大危害,如雷击会
造成人员伤亡。同样,雷击会造成电力线路或电气设
备绝缘击穿损坏,不仅中断供电,甚至引起火灾。而
且由于电气设备运行操作不当引起的内部过电压,同
样也会引起电气设备绝缘击穿损坏,造成电力系统的 极大破坏。
3、过电压的分类: 直击雷过电压 外部过电压 感应雷过电压
(6)金属氧化物避雷器使用电压 ①避雷器额定电压—指正常运行时避雷器所承受的最大 工频电压有效值。 根据行业标准,无间隙氧化物避雷器额定电压的确定应 考虑系统可能出现的暂时过电压,以及电网中单相接 地时,健全相电压升高等不利因素。因此它的额定电 压要高于系统额定电压。 ②系统额定电压(系统标称电压)和持续运行电压。
7.引下线 引下线是连接防雷装置与接地装置的一段导线,其作用 是将雷电流引入接地装置。一般可用圆钢或扁钢制成。圆钢直径 不小于8 mm;扁钢截面积不小于48 mm2,厚度不小于4 mm。 引下线可以明装,也可以暗装。明装时,必须沿建筑物的 外墙敷设。引下线应在地面上1.7 m和地面下0.3 m的一段线上用 钢管或塑料管加以保护;在1.8 m处设断接卡。暗装时,可以利 用建筑物本身的金属结构,如钢筋混凝土柱子的主筋作为引下线, 但暗装的引下线应比明装时增大一个规格,每根柱子内要焊接两 根主筋,各构件之间必须连成电气通路。屋内接地干线与防感应 雷接地装置的连接不应少于2处。
(完整word版)过电压保护
电力电子器件的保护一 、过电压保护电力电子装置中可能产生的过电压外分为外因过电压和内因过电压两类。
外因过电压主要来自雷击和系统中的由分闸、合闸等开关操作引起的。
电力电子装置中,电源变压器等储能元器件,会在开关操作瞬间产生很高的感应电压。
内因过电压主要来自电力电子装置内部器件的开关过程,包括:(1)换相过电压:由于晶闸管或者与全控器件反并联的续流二极管在换相结束不能立刻恢复阻断能力,因而有较大的反向电流过,使残存的载流子恢复,而当其恢复了阻断能力时,该反向电流急剧减小,会由线路电感在器件两端感应出过电压。
(2)关断过电压:全控型器件在较高频率下工作,当器件关断时,因正向电流的迅速降低而由线路电感在器件两端感应出的过电压。
电力电子电路常见的过电压有交流测过电压和直流测过电压。
常用的过电压保护措施及配置位置如图1-1所示。
SFRVRCDTDCUMRC 1RC 2RC 3RC 4L BS DC图9-10 过电压保护措施及装置位置F ─避雷器 D ─变压器静电屏蔽层 C ─静电感应过程电压抑制电容1RC ─阀测浪涌过电压抑制用RC 电路 2RC ─阀测浪涌过电压抑制用反向阻断式RC 电路 RV─压敏电阻过电压抑制器 3RC ─阀器件换相过电压抑制用RC 电路 4RC ─直流测RC 抑制电路 RCD─阀器件关断过电压抑制用RCD 电路过电压保护所使用的元器件有阻容吸收电路、非线性电阻元件硒堆和压敏电阻等,其中RC 过电压抑制电路最为常见。
由于电容两端电压不能突变,所以能有效抑制尖峰过电压。
串联电阻能消耗部分产生过电压的能量,并抑制回路的振荡。
视变流装置和保护装置点不同,过电压保护电路可以有不同的连接方式。
图9-11所示为RC 过电压抑制电路用于交流测过电压抑制的连接方式。
+-+-a)b)网侧阀侧直流侧C a R aC a R aC dcR dc C dcR dc C a R aC a R a图9-11 RC 过电压抑制电路联结方式 a)单相 b)三相二、过电流保护过电流分为过载和短路两种情况。
过电压保护
KZ
Ud
;
R1 C2
R2
Z
C1
反相阻断式阻容保护及综合阻容网络, 当整流桥 Z 的交流侧发生过电压时,其直流侧的阻容保护可以 吸收交流电源发生的浪涌电压,,以避免可控 硅桥 KZ 承受过电压。而交流侧电压下降或短接时,由于整流桥 Z 的反向阻断作用,可以阻止电容器向交流侧 的可控硅元件放电。其参考下列算式,
多雷地区的 3~10 千伏 和 Y/Y 接线的配电变压器,除在高压侧装设避雷器外,宜在低压侧装设一组 220 伏避雷器,440 伏压敏电阻,或击穿保险,以防止反变换波和低压侧雷电侵入波击穿高压侧绝缘,接线如图,
。
3 10kv
380/220v
FB 或 GB
4~10
MY 或 FB
3~10KV,Y/YO 变压器反变换防护接线 MY—压敏电阻,
压敏电阻是由金属氧化物烧结制成的压敏电阻(对电压很敏感的非线性电阻),是一种多晶的半导体陶瓷器 件,它具有很高非线性系数,通流及耐受能量力很大。用这种元件做成的所谓压敏电阻浪涌吸收器,具有良 好的吸收浪涌抑制过电压的功能。
压敏电阻的主要成分是氧化锌,在氧化锌中加入微量的氧化铋, 氧化钴,氧化锰,氧化锑等杂质,烧 结制成多晶陶瓷结构。这些晶粒之间的境界层具有硅稳压管那样的非线性特性。在正常电压下,境界层呈高 电阻状态,只有极其余微弱的泄漏电流。当发生浪涌过电压时,境界层便迅速变为低电阻抗,使浪涌电流通 过。 至于氧化锌晶粒则是良导体,电阻很低,具有很大的热容量。整个压敏电阻承受的电压。由境界层的串联数 来控制,通流容量(浪涌承受量)则由它的面积来控制。因而原则上作出很高电压和很大通流容量的压敏电 阻元件。 这种压敏电阻浪涌吸收器,在工业的许多了领域中已广泛使用, 以硒堆等非线性元件比较,有如 下一些特点; (1 ,非线性系数大,残压低,抑制过电压的能力强,通过非线性元件的电流与电压呈高次方关系;
开关电源常用保护电路-过热、过流、过压以及软启动保护电路
1引言随着科学技术的发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,因此直流开关电源开始发挥着越来越重要的作用,并相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了直流开关电源。
同时随着许多高新技术,包括高频开关技术、软开关技术、功率因数校正技术、同步整流技术、智能化技术、表面安装技术等技术的发展,开关电源技术在不断地创新,这为直流开关电源提供了广泛的发展空间。
但是由于开关电源中控制电路比较复杂,晶体管和集成器件耐受电、热冲击的能力较差,在使用过程中给用户带来很大不便。
为了保护开关电源自身和负载的安全,根据了直流开关电源的原理和特点,设计了过热保护、过电流保护、过电压保护以及软启动保护电路。
2、开关电源的原理及特点2、1工作原理直流开关电源由输入部分、功率转换部分、输出部分、控制部分组成。
功率转换部分是开关电源的核心,它对非稳定直流进行高频斩波并完成输出所需要的变换功能。
它主要由开关三极管和高频变压器组成。
图1画出了直流开关电源的原理图及等效原理框图,它是由全波整流器,开关管V,激励信号,续流二极管Vp,储能电感和滤波电容C组成。
实际上,直流开关电源的核心部分是一个直流变压器。
2、2特点为了适应用户的需求,国内外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是通过改善二次整流器件的损耗,并在功率铁氧体(Mn-Zn)材料上加大科技创新,以提高在高频率和较大磁通密度下获得高的磁性能,同时SMT 技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄。
因此直流开关电源的发展趋势是高频、高可靠、低耗、低噪声、抗干扰和模块化。
直流开关电源的缺点是存在较为严重的开关干扰,适应恶劣环境和突发故障的能力较弱。
由于国内微电子技术、阻容器件生产技术以及磁性材料技术与一些技术先进国家还有一定的差距,因此直流开关电源的制作技术难度大、维修麻烦和造价成本较高,3、直流开关电源的保护基于直流开关电源的特点和实际的电气状况,为使直流开关电源在恶劣环境及突发故障情况下安全可靠地工作,本文根据不同的情况设计了多种保护电路。
如何解决电源电路中的过压保护问题
如何解决电源电路中的过压保护问题过压保护(Overvoltage Protection, OVP)是在电源电路中常见的一种保护机制,它的作用是确保电路中的电压不会超过设定的安全范围。
在各种电子设备中,过压可能导致元器件的损坏甚至引发火灾等严重后果。
因此,解决电源电路中的过压保护问题非常重要。
本文将介绍如何有效解决电源电路中的过压保护问题,并提供一种常用的解决方案。
I. 过压保护的原理过压保护是通过监测电源电路中的电压,当电压超过设定的阈值时,快速采取措施来保护电路免受过压的影响。
常用的过压保护措施包括快速切断电源电路以及将电压调整到安全范围内。
II. 过压保护的实现方法1. Zener二极管过压保护Zener二极管是一种特殊的二极管,它具有可控的反向击穿电压。
通过将Zener二极管连接在电源电路上,一旦电路中的电压超过Zener二极管的反向击穿电压,它将形成一个低阻抗通路,将过电压通过绕过其他元器件来保护电路。
2. TVS二极管过压保护Transient Voltage Suppressor(TVS)二极管也是一种常见的过压保护元件。
它在正常工作时具有很高的电阻,但当电压超过其工作范围时,它会迅速变为低电阻状态,将过压情况引导到地或其他低压区域,从而保护电路。
3. 过压保护芯片过压保护芯片是一种集成了过压保护功能的专用芯片。
它根据设定的过压阈值来监控电压,并在检测到过压时迅速触发保护机制。
过压保护芯片通常具有多种保护功能,如过电流保护、过温保护等,能够全面保护电路。
III. 如何选择适合的过压保护方法在选择适合的过压保护方法时,需要考虑以下几个因素:1. 设备的工作电压范围:根据设备的工作电压范围选择合适的过压保护元件或芯片。
2. 过压保护速度:不同的过压保护方法具有不同的响应速度,需要根据设备的要求选择可能造成损坏的时间范围。
3. 外部环境:考虑设备所处的外部环境,如温度、湿度等因素,选择符合要求的过压保护元件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
保护电路设计方法- 过电压保护
2.过电压
保护
⑴过电
压的产生
及抑制方
法
①过电压产生的原因
对于IGBT开关速度较高,IGBT关断时及FWD逆向恢复时,产生很高的di/dt,由于模块周围的接线的电感,就产生了L di/dt电压(关断浪涌电压)。
这里,以IGBT关断时的电压波形为例,介绍产生原因和抑制方法,以具体电路(均适用IGBT/FWD)为例加以说明。
为了能观测关断浪涌电压的简单电路的图6中,以斩波电路为例,在图7中示出了IGBT关断时的动作波形。
关断浪涌电压,因IGBT关断时,主电路电流急剧变化,在主电路分布电感上,就会产生较高的电压。
关断浪涌电压的峰值可用下式求出:
V CESP=E d+(-L dI c/dt)
式中dl c/dt为关断时的集电极电流变化率的最大值;V CESP为超过IGBT的C-E间耐压(V CES)以至损坏时的电压值。
②过电压抑制方法
作为过电压产生主要因素的关断浪涌电压的抑制方法有如下几种:
1.在IGBT中装有保护电路(=缓冲电路)可吸浪涌电压。
缓冲电路的电容,采用薄膜电容,并靠近IGBT
配置,可使高频浪涌电压旁路。
2.调整IGBT的驱动电路的V CE或R C,使di/dt最小。
3.尽量将电件电容靠近IGBT安装,以减小分布电感,采用低阻抗型的电容效果更佳。
4.为降低主电路及缓冲电路的分布电感,接线越短越粗越好,用铜片作接线效果更佳。
⑵缓冲电路的种类和特
缓冲电路中有全部器件紧凑安装的单独缓冲电路与直流母线间整块安装缓冲电路二类。
①个别缓冲电路
为个别缓冲电路的代表例子,可有如下的缓冲电路
1.RC缓冲电路
2.充放电形RCD缓冲电路
3.放电阻止形RCD缓冲电路
表3中列出了每个缓冲电路的接线图。
特点及主要用途。
表3 单块缓冲电路的接线圈特点及主电用途
②整体缓冲电路
作为这类缓冲电路的代表例子,有下面几种缓冲电路
1.C缓冲电路
2.RCD缓冲电路
最近,为简化缓冲电路的设计,大多采用整体缓冲电路。
表4列出了各种整体缓冲电路的接线图和特点,主要用途。
表5中列出了采用整体缓冲电路时的缓冲电路容量的数值,图8示出了这类缓冲器开断波形的例子。
表4 整体缓冲电路的接线图特点及主要用途
表5 整体(缓冲容量数值)
样品:2MBI100N-060
Ed(Vcc)=300V
V GE=+15,-15V
R G=24 Cs=0.47UF
⑶放电阻止形RCD缓冲电路设计方法
作为IGBT缓冲电路,认为最合理的放电阻止形RCD缓冲电路的基本设计方法说明如下:
①是否适用的研讨
图9 示出了使用放电阻止形RCD缓冲电路时关断时的动作轨迹图
放电阻止形RCD缓冲器,当IGBT的C-E间电压超过直流电源电压时开始工作,其理想的动作轨迹用点线来表示。
但是,在实际装置中’由於缓冲电路接线电感及缓冲二极管过渡正向电压下降的影响,关断时尖峰电压的存在,变成了向右扩张的,如实线所示。
放电阻止形RCD缓冲电路是否时适用取决於关断时动作轨述能否收拔在IGBT的RBSOA内而定
另外。
关断时的峰值电压可用下式求出:
式中Ed:
VFM:
Ls:
dl c/dt:直流电源电压
缓冲二极管过渡止向电压降
缓冲电路的接线电感
关断时的集电极电流变化率的最大值
缓冲二极管的一般过度正向电压降的参考值通常如下
600V级:20-30V
1200V级:40~60V
②缓冲电容(Cs)容量值的计示方法
缓冲电容所必须的容量值可用下式求出:
式中L:
Io:
V CEF:
Ed:主电路的分布电感
IGBT关断时的集电极电流缓冲电容电压的最终值
直流电源电压
V CEF必须控制在小於IGBT的C-E间耐压值。
此外,缓冲电容,要选用高频特性优良的电容(薄膜电容器等)。
③缓冲电阻(Rs)值的求法
对缓冲电阻性能要求是IGBT能进行关断动作,能将缓冲电容上积聚电荷通放电来进行。
IGBT关断时,以放电90%的积聚电荷为条件,由下式可求出缓冲电阻值。
如果将缓冲电阻值设定得过低,缓冲电路冲电流可能振荡,由於IGBT接通时集电极电流峰值增加、在上式荡是的范围内,请设定在最高值为佳。
缓冲电阻产生的损耗P(Rs)和阻值系可由下式求得。
④缓冲二极管的选定
缓冲二极管过渡正向电压降减小是关断时尖峰电压产生的主要原因之一。
另外,缓冲二极管逆向恢复时间变长,在高频开关工作时,使缓冲二极管产生的损耗变大“,缓冲二极管的逆向恢复动作变得困难,在缓冲二极管逆向恢复动作时,IGBT的C-E间电压急剧增大且产生振荡。
对于缓冲二极管,要选择过度正向电压低,逆向恢复时间短,逆向恢复特性较软(容易)的为佳。
⑤跟随电路接线上的注意事项
由于缓冲电路的接线是导致尖峰电压产生的主要原因,所以,电路器件的配置,尽量使分布电感降低为好。