2021年湖南省中考数学复习题及答案 (93)
2023年湖南省中考数学专练方程及其解法(含解析)
2023年湖南省中考数学专练:4方程及其解法一.选择题(共12小题)1.(2021•安徽)设a ,b ,c 为互不相等的实数,且b =45a +15c ,则下列结论正确的是( ) A .a >b >c B .c >b >aC .a ﹣b =4(b ﹣c )D .a ﹣c =5(a ﹣b )2.(2022•定远县校级模拟)新冠肺炎传染性很强,曾有1人同时患上新冠肺炎,在一天内一人平均能传染x 人,经过两天传染后64人患上新冠肺炎,则x 的值为( ) A .4B .5C .6D .73.(2022•肥东县校级模拟)春节期间,阜阳市商务局组织举办了“皖美消费,乐享阜阳”﹣2022年跨年迎新购物季”列促销活动,某超市对一款原价位a 元的商品降价x %销售一段时间后,为了加大促销力度,再次降价x %,此时售价共降低了b 元,则( ) A .b =a (1﹣2x %) B .b =a ﹣a (1﹣x %)2 C .b =a (1﹣x %)2D .b =a ﹣a (1﹣2x %)4.(2022•蜀山区校级三模)当b +c =1时,关于x 的一元二次方程x 2+bx ﹣c =0的根的情况为( ) A .有两个实数根 B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根5.(2022•长丰县校级模拟)若关于x 的一元二次方程x 2﹣(a ﹣2)x +4=0有两个相等的实数根,则实数a 的值为( ) A .2B .﹣2C .﹣2或6D .﹣6或26.(2022•和县二模)已知三个实数a 、b 、c 满足a +b +c =0,ac +b +1=0(c ≠1),则( ) A .a =1,b 2﹣4ac >0 B .a ≠1,b 2﹣4ac ≥0C .a =1,b 2﹣4ac <0D .a ≠1,b 2﹣4ac ≤07.(2022•定远县校级模拟)已知关于x ,y 的方程组{4x −y =−5ax +by =−1和{3x +y =−93ax +4by =18有相同的解,那么√a +b 的平方根是( ) A .0B .±1C .±√2D .±28.(2022•南谯区校级模拟)把1~9这九个数填入3×3方格中,使其任意一行,任意一列及任意一条对角线上的数之和都相等,这样便构成了一个“九宫格”,它源于我国古代的“洛書”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则x y 的值为( )A .1B .8C .9D .﹣89.(2022•定远县二模)下列变形正确的是( ) A .若ac =bc ,则a =b B .若a =b ,则a c=bcC .若ca=cb ,则a =bD .若3﹣4b =3﹣4a ,则a =b10.(2022•合肥模拟)一种商品,先提价20%,再降价10%,这时的价格是2160元.则该商品原来的价格是( ) A .2400元B .2200元C .2000元D .1800元11.(2022•裕安区校级一模)一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天,如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?设要用x 天可以铺好这条管线,则可列方程为( ) A .12x +24x =1 B .(112+124)x =1C .12x+24x=1 D .(12+24)x =112.(2022•定远县模拟)方程(7﹣a )x 2+ax ﹣8=0是关于x 的一元一次方程,那么a 的值是( ) A .0B .7C .8D .10二.填空题(共8小题)13.(2022•安徽)若一元二次方程2x 2﹣4x +m =0有两个相等的实数根,则m = . 14.(2022•定远县模拟)一元二次方程x 2﹣px +q =0的两根分别为x 1=1和x 2=2,那么将x 2+px +q 分解因式的结果为 .15.(2022•合肥模拟)定义新运算“*”,规则:a *b ={a(a ≥b)b(a <b),如1*2=2,(−√5)*√2=√2.若x 2+x ﹣2=0的两根为x 1,x 2,则x 1*x 2= .16.(2022•肥西县模拟)设a、b是方程x2﹣x﹣2021=0的两实数根,则a3+2022b﹣2021=.17.(2022•凤阳县一模)已知关于x的方程x2﹣3x+k=0有两个不相等的实数根,则k的取值范围是.18.(2022•芜湖一模)为推进“书香芜湖”建设,让市民在家门口即可享受阅读和休闲服务,某社区开办了社区书屋.2021年9月份书屋共接待了周边居民200人次,11月份共接待了648人次,假定9月至11月每月接待人次增长率相同设为x,则可列方程.19.(2022•镜湖区校级一模)关于x的方程kx2﹣2x﹣1=0有实数根,则k的取值范围是.20.(2022•安徽二模)一小船由A港到B港顺流需要6小时,由B港到A港逆流需要8小时,小船从上午7时由A港到B港时,发现一救生圈在中途落水,立即返航,1小时后找到救生圈,救生圈是时掉入水中的.三.解答题(共11小题)21.(2022•安徽)某地区2020年进出口总额为520亿元,2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额.(1)设2020年进口额为x亿元,出口额为y亿元,请用含x,y的代数式填表:年份进口额/亿元出口额/亿元进出口总额/亿元2020x y5202021 1.25x 1.3y(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额分别是多少亿元?22.(2022•定远县校级模拟)如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个实数根.(1)求k的取值范围;(2)若方程有一个根是1,求k的值及方程的另一个根.23.(2022•定远县校级模拟)如图,用同样规格的黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题.(1)在第n个图中,第一横行共块瓷砖,第一竖列共有块瓷砖;(均用含n的代数式表示)(2)设铺设地面所用瓷砖的总块数为y,请写出y与(1)中的n的函数;(3)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n的值;(4)是否存在黑瓷砖与白瓷砖块数相等的情形请通过计算说明理由.24.(2022•来安县二模)为进一步提高某届学生的阅读量,学校积极开展课外阅读活动,目标将该届学生人均阅读量从刚上七年级的80万字增加到八年级结束时的115.2万字.(1)求该届学生人均阅读量这两年中每年的平均增长率;(2)若按这两年中每年的平均增长率增长,学校能否实现九年级结束时该届学生人均阅读量达到140万字的目标,请计算说明.25.(2022•定远县模拟)如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根比另一个根大1,那么称这样的方程为“邻根方程”.例如,一元二次方程x2+x=0的两个根是x1=0,x2=﹣1,则方程x2+x=0是“邻根方程”.(1)通过计算,判断下列方程是否是“邻根方程”:①x2﹣x﹣6=0;②2x2−2√3x+1=0.(2)已知关于x的方程x2﹣(m﹣1)x﹣m=0(m是常数)是“邻根方程”,求m的值;(3)若关于x的方程mx2+nx+2=0(m,n是常数,m>0)是“邻根方程”,令t=n2﹣4m2,试求t的最大值.26.(2022•蜀山区校级模拟)我国南宋数学教杨辉曾经提出这样的一个问题,“直田积,八百六十四,只云阔不及长十二步,问阔及长各几步”.大意:矩形田地的面积为864平方步,宽比长少12步,问矩形田地的长与宽各几步?(请你利用所学知识解决以上问题)27.(2022•博望区校级一模)已知实数a1,a2,…,a n,(其中n是正整数)满足:{ a 1=13(1×2×3)=2a 1+a 2=13(2×3×4)=8a 1+a 2+a 3=13(3×4×5)=20⋯⋯a 1+a 2+⋯⋯+a n−1=13(n −1)n(n +1)a 1+a 2+⋯⋯+a n−1+a n =13n(n +1)(n +2) (1)求a 3,的值;(2)求a n 的值(用含n 的代数式表示); (3)求2022a1+2022a2+2022a3+⋯+2022a2021的值.28.(2022•肥东县二模)《九章算术》是我国古代数学经典著作,书中记载着这个问题:“今有黄金九枚,白银一十一枚,称之重,适等,交易其一,金轻十三两,问金、银一枚各重几何?“大意是:甲袋中装有9枚重量相等的黄金,乙袋中装有11枚重量相等的白银,两袋重量相等.两袋互相交换一枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?29.(2022•肥东县校级模拟)《增删算法统宗》是清代珠算书,明程大位原编纂,清梅敏增删,共十卷,成书于1760年.其中有这样一道题,原文如下:有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,问他第一天读了多少个字? 请解答上述问题.30.(2022•埇桥区校级模拟)寒假期间,小亮同学想跟着父母一起从合肥乘坐高铁去宣城,已知普通快车从合肥站到宣城站全程的平均速度为70km /h ,刚开通的高铁从合肥站到宣城站全程的平均速度为140km /h ,行完全程高铁比普通快车节省了90min .求合肥站到宣城站的距离为多少千米?31.(2022•马鞍山二模)某奶茶店的一款主打奶茶分为线上和线下两种销售模式,消费者从线上下单,每次可使用“满30减28”消费券一张(线下下单没有该消费券),同规格的一杯奶茶,线上价格比线下高20%,外卖配送费为4元/次,订单显示用券后线上一次性购买6杯实际支付金额和线下购买6杯支付金额一样多,求该款奶茶线下销售价格.2023年湖南省中考数学专练:4方程及其解法参考答案与试题解析一.选择题(共12小题)1.(2021•安徽)设a,b,c为互不相等的实数,且b=45a+15c,则下列结论正确的是()A.a>b>c B.c>b>a C.a﹣b=4(b﹣c)D.a﹣c=5(a﹣b)【解答】解:∵b=45a+15c,∴5b=4a+c,在等式的两边同时减去5a,得到5(b﹣a)=c﹣a,在等式的两边同时乘﹣1,则5(a﹣b)=a﹣c.故选:D.2.(2022•定远县校级模拟)新冠肺炎传染性很强,曾有1人同时患上新冠肺炎,在一天内一人平均能传染x人,经过两天传染后64人患上新冠肺炎,则x的值为()A.4B.5C.6D.7【解答】解:依题意得:(1+x)2=64,解得:x1=7,x2=﹣9(不合题意,舍去).故选:D.3.(2022•肥东县校级模拟)春节期间,阜阳市商务局组织举办了“皖美消费,乐享阜阳”﹣2022年跨年迎新购物季”列促销活动,某超市对一款原价位a元的商品降价x%销售一段时间后,为了加大促销力度,再次降价x%,此时售价共降低了b元,则()A.b=a(1﹣2x%)B.b=a﹣a(1﹣x%)2C.b=a(1﹣x%)2D.b=a﹣a(1﹣2x%)【解答】解:根据题意得,b=a﹣a(1﹣x%)2,故选:B.4.(2022•蜀山区校级三模)当b+c=1时,关于x的一元二次方程x2+bx﹣c=0的根的情况为()A.有两个实数根B.有两个不相等的实数根C.有两个相等的实数根D.没有实数根【解答】解:∵b+c=1,∴c =1﹣b ,∴Δ=b 2﹣4×(﹣c )=b 2+4(1﹣b )=(b ﹣2)2≥0, ∴方程有两个实数解. 故选:A .5.(2022•长丰县校级模拟)若关于x 的一元二次方程x 2﹣(a ﹣2)x +4=0有两个相等的实数根,则实数a 的值为( ) A .2B .﹣2C .﹣2或6D .﹣6或2【解答】解:∵关于x 的一元二次方程x 2﹣(a ﹣2)x +4=0有两个相等的实数根, ∴Δ=(a ﹣2)2﹣16=0, 即(a ﹣2)2=16,开方得:a ﹣2=4或a ﹣2=﹣4, 解得:a =6或﹣2. 故选:C .6.(2022•和县二模)已知三个实数a 、b 、c 满足a +b +c =0,ac +b +1=0(c ≠1),则( ) A .a =1,b 2﹣4ac >0 B .a ≠1,b 2﹣4ac ≥0C .a =1,b 2﹣4ac <0D .a ≠1,b 2﹣4ac ≤0【解答】解:{a +b +c =0①ac +b +1=0②.由②﹣①,得ac ﹣a ﹣c +1=0, 整理,得(a ﹣1)(c ﹣1)=0. ∵c ≠1,∴a ﹣1=0,即a =1.由ac +b +1=0得到:b =﹣(ac +1).则:b 2﹣4ac =[﹣(ac +1)]²﹣4ac =(ac ﹣1)². 当b 2﹣4ac =0,即(ac ﹣1)²=0时,ac =1. 由a =1得到c =1,与c ≠1相矛盾, 故a =1,b 2﹣4ac >0.方法二:{a +b +c =0①ac +b +1=0②.由②﹣①,得ac ﹣a ﹣c +1=0,整理,得(a ﹣1)(c ﹣1)=0. ∵c ≠1,∴a ﹣1=0,即a =1.b 2﹣4ac =[﹣(ac +1)]²﹣4ac =(ac ﹣1)². ∵a =1,c ≠1,∴b 2﹣4ac =(ac ﹣1)2>0. 故选:A .7.(2022•定远县校级模拟)已知关于x ,y 的方程组{4x −y =−5ax +by =−1和{3x +y =−93ax +4by =18有相同的解,那么√a +b 的平方根是( ) A .0B .±1C .±√2D .±2【解答】解:根据题意得{4x −y =−53x +y =−9,解得{x =−2y =−3,把{x =−2y =−3代入含有a ,b 的两个方程得{−2a −3b =−1−6a −12b =18, 解得{a =11b =−7,则√a +b =2,2的平方根是±√2. 故选:C .8.(2022•南谯区校级模拟)把1~9这九个数填入3×3方格中,使其任意一行,任意一列及任意一条对角线上的数之和都相等,这样便构成了一个“九宫格”,它源于我国古代的“洛書”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则x y 的值为( )A .1B .8C .9D .﹣8【解答】解:依题意得,x +8=2+7,∴x =1∵1+y +5=8+2+5, ∴y =9, 解得:{x =1y =9,∴x y =19=1, 故选:A .9.(2022•定远县二模)下列变形正确的是( ) A .若ac =bc ,则a =b B .若a =b ,则a c=bcC .若ca=cb ,则a =bD .若3﹣4b =3﹣4a ,则a =b【解答】解:若ac =bc ,c ≠0,则a =b ,故A 错误,不符合题意; 若a =b ,c ≠0,则ac=bc ,故B 错误,不符合题意;若c a=cb,c ≠0,则a =b ,故C 错误,不符合题意;若3﹣4b =3﹣4a ,则a =b ,故D 正确,符合题意; 故选:D .10.(2022•合肥模拟)一种商品,先提价20%,再降价10%,这时的价格是2160元.则该商品原来的价格是( ) A .2400元B .2200元C .2000元D .1800元【解答】解:设该商品原来的价格是x 元,依题意有: (1+20%)×(1﹣10%)x =2160, 解得x =2000.故该商品原来的价格是2000元. 故选:C .11.(2022•裕安区校级一模)一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天,如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?设要用x 天可以铺好这条管线,则可列方程为( ) A .12x +24x =1 B .(112+124)x =1C .12x+24x=1 D .(12+24)x =1【解答】解:设要用x天可以铺好这条管线,则可列方程:(112+124)x=1.故选:B.12.(2022•定远县模拟)方程(7﹣a)x2+ax﹣8=0是关于x的一元一次方程,那么a的值是()A.0B.7C.8D.10【解答】解:∵方程(7﹣a)x2+ax﹣8=0是关于x的一元一次方程,∴7﹣a=0且a≠0,解得:a=7,故选:B.二.填空题(共8小题)13.(2022•安徽)若一元二次方程2x2﹣4x+m=0有两个相等的实数根,则m=2.【解答】解:∵一元二次方程2x2﹣4x+m=0有两个相等的实数根,∴Δ=16﹣8m=0,解得:m=2.∴m=2.故答案为:2.14.(2022•定远县模拟)一元二次方程x2﹣px+q=0的两根分别为x1=1和x2=2,那么将x2+px+q分解因式的结果为(x+1)(x+2).【解答】解:由根与系数的关系可知:x1+x2=p,x1•x2=q,即1+2=p,1×2=q,∴p=3,q=2,∴x2+px+q=x2+3x+2=(x+1)(x+2).故答案为(x+1)(x+2).15.(2022•合肥模拟)定义新运算“*”,规则:a*b={a(a≥b)b(a<b),如1*2=2,(−√5)*√2=√2.若x2+x﹣2=0的两根为x1,x2,则x1*x2=1.【解答】解:解方程x2+x﹣2=0得:x1=1,x2=﹣2.∵a*b={a(a≥b) b(a<b),∴x1*x2=1.故答案为:1.16.(2022•肥西县模拟)设a、b是方程x2﹣x﹣2021=0的两实数根,则a3+2022b﹣2021=2022.【解答】解:∵a,b是方程x2﹣x﹣2021=0的两实数根,∴a2=a+2021,a+b=1,∴a3+2022b﹣2021=a(a+2021)+2022b﹣2021=a2+2021a+2022b﹣2021=a+2021+2021a+2022b﹣2021=2022(a+b)=2022×1=2022.故答案为:2022.17.(2022•凤阳县一模)已知关于x的方程x2﹣3x+k=0有两个不相等的实数根,则k的取值范围是k<94.【解答】解:根据题意得Δ=(﹣3)2﹣4k>0,解得k<9 4,即k的取值范围为k<9 4.故答案为:k<9 4,18.(2022•芜湖一模)为推进“书香芜湖”建设,让市民在家门口即可享受阅读和休闲服务,某社区开办了社区书屋.2021年9月份书屋共接待了周边居民200人次,11月份共接待了648人次,假定9月至11月每月接待人次增长率相同设为x,则可列方程200(1+x)2=648.【解答】解:依题意得:200(1+x)2=648.故答案为:200(1+x)2=648.19.(2022•镜湖区校级一模)关于x的方程kx2﹣2x﹣1=0有实数根,则k的取值范围是k≥﹣1 .【解答】解:①当k =0时,﹣2x ﹣1=0,解得x =−12;②当k ≠0时,此方程是一元二次方程,∵关于x 的方程kx 2+3x ﹣1=0有实数根,∴Δ=(﹣2)2﹣4×k ×(﹣1)≥0,解得k ≥﹣1;由①②得,k 的取值范围是k ≥﹣1.故答案为:k ≥﹣1.20.(2022•安徽二模)一小船由A 港到B 港顺流需要6小时,由B 港到A 港逆流需要8小时,小船从上午7时由A 港到B 港时,发现一救生圈在中途落水,立即返航,1小时后找到救生圈,救生圈是 12 时掉入水中的.【解答】解:设小船按水流速度由A 港漂流到B 港需要x 小时,由题意得:16−1x =18+1x , 解得:x =48.经检验,x =48是原方程的解,且符合题意.即小船按水流速度由A 港漂流到B 港需要48小时.设救生圈是在y 点钟落下水中的,救生圈每小时顺水漂流的距离等于全程的148, 由题意得:(7+6﹣y )(16−148)=1×(18+148),解得:y =12.即救生圈是在中午12点钟掉下水的,故答案为:12.三.解答题(共11小题)21.(2022•安徽)某地区2020年进出口总额为520亿元,2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额.(1)设2020年进口额为x 亿元,出口额为y 亿元,请用含x ,y 的代数式填表: 年份 进口额/亿元 出口额/亿元 进出口总额/亿元2020x y 520 2021 1.25x 1.3y 1.25x +1.3y(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额分别是多少亿元?【解答】解:(1)由表格可得,2021年进出口总额为:1.25x +1.3y ,故答案为:1.25x +1.3y ;(2)由题意可得,{x +y =5201.25x +1.3y =520+140, 解得{x =320y =200, ∴1.25x =400,1.3y =260,答:2021年进口额是400亿元,出口额是260亿元.22.(2022•定远县校级模拟)如果关于x 的一元二次方程k 2x 2﹣(2k +1)x +1=0有两个实数根.(1)求k 的取值范围;(2)若方程有一个根是1,求k 的值及方程的另一个根.【解答】解:(1)∵关于x 的一元二次方程k 2x 2﹣(2k +1)x +1=0有两个实数根, ∴Δ≥0,且k ≠0,∴(2k +1)2﹣4k 2≥0,∴k ≥−14,∴k 的取值范围k ≥−14且k ≠0;(2)把x =1代入k 2x 2﹣(2k +1)x +1=0中,可得k 2﹣(2k +1)+1=0解得:k =2,或k =0当k =0时方程为一元一次方程,不符合题意∴k =2∴原方程为4x 2﹣5x +1=0,解方程得:x 1=1,x 2=14综上所述k =2,x 2=14.23.(2022•定远县校级模拟)如图,用同样规格的黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题.(1)在第n个图中,第一横行共(n+3)块瓷砖,第一竖列共有(n+2)块瓷砖;(均用含n的代数式表示)(2)设铺设地面所用瓷砖的总块数为y,请写出y与(1)中的n的函数;(3)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n的值;(4)是否存在黑瓷砖与白瓷砖块数相等的情形请通过计算说明理由.【解答】解:(1)每﹣横行有(n+3)块,每﹣竖列有(n+2)块;故答案为:(n+3),(n+2)块;(2)y=(n+3)(n+2);(3)由题意,得(n+3)(n+2)=506,解之n1=20,n2=﹣25(舍去).答:此时n的值为20;(4)当黑白砖块数相等时,有方程n(n+1)=(n2+5n+6)﹣n(n+1).整理得n2﹣3n﹣6=0.解之得n1=3+√332,n2=3−√332.由于n1的值不是整数,n2的值是负数,故不存在黑砖白块数相等的情形.24.(2022•来安县二模)为进一步提高某届学生的阅读量,学校积极开展课外阅读活动,目标将该届学生人均阅读量从刚上七年级的80万字增加到八年级结束时的115.2万字.(1)求该届学生人均阅读量这两年中每年的平均增长率;(2)若按这两年中每年的平均增长率增长,学校能否实现九年级结束时该届学生人均阅读量达到140万字的目标,请计算说明.【解答】解:(1)设该届学生人均阅读量这两年中每年的平均增长率为x,依题意得:80(1+x )2=115.2,解得:x 1=﹣2.2(不符合题意,舍去),x 2=0.2=20%.∴该届学生人均阅读量这两年中每年的平均增长率为20%.(2)学校的目标不能实现,理由如下:按照(1)中的阅读量增长率,九年级结束时该届学生人均阅读量为115.2×(1+20%)=138.24(万字),∵140>138.24,∴学校的目标不能实现.答:(1)该届学生人均阅读量这两年中每年的平均增长率为20%;(2)学校的目标不能实现.25.(2022•定远县模拟)如果关于x 的一元二次方程ax 2+bx +c =0(a ≠0)有两个实数根,且其中一个根比另一个根大1,那么称这样的方程为“邻根方程”.例如,一元二次方程x 2+x =0的两个根是x 1=0,x 2=﹣1,则方程x 2+x =0是“邻根方程”.(1)通过计算,判断下列方程是否是“邻根方程”:①x 2﹣x ﹣6=0;②2x 2−2√3x +1=0.(2)已知关于x 的方程x 2﹣(m ﹣1)x ﹣m =0(m 是常数)是“邻根方程”,求m 的值;(3)若关于x 的方程mx 2+nx +2=0(m ,n 是常数,m >0)是“邻根方程”,令t =n 2﹣4m 2,试求t 的最大值.【解答】解:(1)①解方程x 2﹣x ﹣6=0得:x =3或x =﹣2,∵3﹣(﹣2)=5,∴x 2﹣x ﹣6=0不是“邻根方程”;②解方程2x 2−2√3x +1=0得:x =2√3±√12−84=√3±12, ∵√3+12−√3−12=1, ∴x 2﹣x ﹣6=0是“邻根方程”;(2)由方程x 2﹣(m ﹣1)x ﹣m =0解得:x =m 或x =﹣1,由于方程x 2﹣(m ﹣1)x ﹣m =0(m 是常数)是“邻根方程”,则m ﹣(﹣1)=1或﹣1﹣m =1,解得m =0或﹣2;(3)解方程mx 2+nx +2=0得:x =−n±√n 2−8m 2m , ∵关于x 的方程mx 2+nx +2=0(m ,n 是常数,m >0)是“邻根方程”,∴−n+√n 2−8m 2m −−n−√n 2−8m 2m =1,∴n 2=m 2+8m ,∵t =n 2﹣4m 2,∴t =﹣3m 2+8m =−3(m −43)2+163, ∴当m =43时,t 有最大值163. 26.(2022•蜀山区校级模拟)我国南宋数学教杨辉曾经提出这样的一个问题,“直田积,八百六十四,只云阔不及长十二步,问阔及长各几步”.大意:矩形田地的面积为864平方步,宽比长少12步,问矩形田地的长与宽各几步?(请你利用所学知识解决以上问题)【解答】解:设矩形田地的宽为x 步,则长为(x +12)步,依题意得:(x +12)x =864,整理得:x 2+12x ﹣864=0,解得:x 1=24,x 2=﹣36(不合题意,舍去),∴x +12=24+12=36.答:矩形田地的长为36步,宽为24步.27.(2022•博望区校级一模)已知实数a 1,a 2,…,a n ,(其中n 是正整数)满足: { a 1=13(1×2×3)=2a 1+a 2=13(2×3×4)=8a 1+a 2+a 3=13(3×4×5)=20⋯⋯a 1+a 2+⋯⋯+a n−1=13(n −1)n(n +1)a 1+a 2+⋯⋯+a n−1+a n =13n(n +1)(n +2)(1)求a 3,的值;(2)求a n 的值(用含n 的代数式表示);(3)求2022a1+2022a2+2022a3+⋯+2022a2021的值.【解答】解:①∵a 1+a 2=8,a 1+a 2+a 3=20,∴(a 1+a 2+a 3)﹣(a 1+a 2)=20﹣8=12,∴a 3=12;②a n =13(a 1+a 2+a 3+…+a n )−13(a 1+a 2+a 3+…+a n ﹣1)=13n n (n +1)(n +2)−13(n ﹣1)n (n +1)=13n (n +1)[n +2﹣(n ﹣1)]=n (n +1),即a n =n (n +1);③2022a 1+2022a 2+2022a 3+•+2022a 2021 =2022×(11×2+12×3+13×4+⋯+12020×2021) =1−12+12−13+13−14+⋯+12020−12021=20202021.28.(2022•肥东县二模)《九章算术》是我国古代数学经典著作,书中记载着这个问题:“今有黄金九枚,白银一十一枚,称之重,适等,交易其一,金轻十三两,问金、银一枚各重几何?“大意是:甲袋中装有9枚重量相等的黄金,乙袋中装有11枚重量相等的白银,两袋重量相等.两袋互相交换一枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?【解答】解:设黄金每枚重a 两,白银每枚重b 两,根据题意列方程组:{9a =11b 8a +b =10b +a −13解得:{a =1434b =1174 答:黄金每枚重1434两,白银每枚重1174两.29.(2022•肥东县校级模拟)《增删算法统宗》是清代珠算书,明程大位原编纂,清梅敏增删,共十卷,成书于1760年.其中有这样一道题,原文如下:有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,问他第一天读了多少个字? 请解答上述问题.【解答】解:设他第一天读了x 个字,根据题意得x +2x +4x =34685,解得x =4955,答:他第一天读了4955个字.30.(2022•埇桥区校级模拟)寒假期间,小亮同学想跟着父母一起从合肥乘坐高铁去宣城,已知普通快车从合肥站到宣城站全程的平均速度为70km/h,刚开通的高铁从合肥站到宣城站全程的平均速度为140km/h,行完全程高铁比普通快车节省了90min.求合肥站到宣城站的距离为多少千米?【解答】解:设合肥站到宣城站的距离为x千米,依题意得:x70−x140=9060,解得:x=210.答:合肥站到宣城站的距离为210千米.31.(2022•马鞍山二模)某奶茶店的一款主打奶茶分为线上和线下两种销售模式,消费者从线上下单,每次可使用“满30减28”消费券一张(线下下单没有该消费券),同规格的一杯奶茶,线上价格比线下高20%,外卖配送费为4元/次,订单显示用券后线上一次性购买6杯实际支付金额和线下购买6杯支付金额一样多,求该款奶茶线下销售价格.【解答】解:设该款奶茶线下销售价格为x元/杯,则线上销售价格为(1+20%)x元/杯,依题意得:6×(1+20%)x﹣28+4=6x,解得:x=20.答:该款奶茶线下销售价格为20元/杯.。
2021年湖南省衡阳市中考数学试卷(附答案)
2021年湖南省衡阳市中考数学试卷一、选择题(本题共12个小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)8的相反数是( )A .8-B .8C .18-D .8±2.(3分)2021年2月25日,习近平总书记庄严宣告,我国脱贫攻坚战取得全面胜利.现标准下,98990000农村贫困人口全部脱贫.数98990000用科学记数法表示为( )A .698.9910⨯B .79.89910⨯C .4989910⨯D .80.0989910⨯3.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .4.(3分)下列运算结果为6a 的是( )A .23a a ⋅B .122a a ÷C .32()aD .321()2a 5.(3分)下列计算正确的是( )A .164=±B .0(2)1-=C .257+=D .393=6.(3分)为了向建党一百周年献礼,我市中小学生开展了红色经典故事演讲比赛.某参赛小组6名同学的成绩(单位:分)分别为:85,82,86,82,83,92.关于这组数据,下列说法错误的是( )A .众数是82B .中位数是84C .方差是84D .平均数是857.(3分)如图是由6个相同的正方体堆成的物体,它的左视图是( )A.B.C.D.8.(3分)如图是某商场营业大厅自动扶梯的示意图.自动扶梯AB的倾斜角为37︒,大厅两层之间的距离BC为6米,则自动扶梯AB的长约为(sin370.6︒≈,cos370.8︒≈,tan370.75)(︒≈)A.7.5米B.8米C.9米D.10米9.(3分)下列命题是真命题的是()A.正六边形的外角和大于正五边形的外角和B.正六边形的每一个内角为120︒C.有一个角是60︒的三角形是等边三角形D.对角线相等的四边形是矩形10.(3分)不等式组1026xx+<⎧⎨-⎩的解集在数轴上可表示为()A.B.C.D.11.(3分)下列说法正确的是( )A .为了解我国中学生课外阅读情况,应采取全面调查方式B .某彩票的中奖机会是1%,买100张一定会中奖C .从装有3个红球和4个黑球的袋子里摸出1个球是红球的概率是34D .某校有3200名学生,为了解学生最喜欢的课外体育运动项目,随机抽取了200名学生,其中有85名学生表示最喜欢的项目是跳绳,估计该校最喜欢的课外体育运动项目为跳绳的有1360人12.(3分)如图,矩形纸片ABCD ,4AB =,8BC =,点M 、N 分别在矩形的边AD 、BC 上,将矩形纸片沿直线MN 折叠,使点C 落在矩形的边AD 上,记为点P ,点D 落在G 处,连接PC ,交MN 于点Q ,连接CM .下列结论:①四边形CMPN 是菱形;②点P 与点A 重合时,5MN =;③PQM ∆的面积S 的取值范围是45S .其中所有正确结论的序号是( )A .①②③B .①②C .①③D .②③二、填空题(本大题共6小题,每小题3分,满分18分.)13.(33x -x 的取值范围是 .14.(3分)计算:11a a a-+= . 15.(3分)因式分解:239a ab -= .16.(3分)底面半径为3,母线长为4的圆锥的侧面积为 .(结果保留)π17.(3分)“绿水青山就是金山银山”.某地为美化环境,计划种植树木6000棵.由于志愿者的加入,实际每天植树的棵树比原计划增加了25%,结果提前3天完成任务.则实际每天植树 棵.18.(3分)如图1,菱形ABCD 的对角线AC 与BD 相交于点O ,P 、Q 两点同时从O 点出发,以1厘米/秒的速度在菱形的对角线及边上运动.点P 的运动路线为O A D O ---,点Q 的运动路线为O C B O ---.设运动的时间为x 秒,P 、Q 间的距离为y 厘米,y 与x 的函数关系的图象大致如图2所示,当点P在A D-段上运动且P、Q两点间的距离最短时,P、Q两点的运动路程之和为厘米.三、解答题(本大题共8个小题,19~20题每题6分,21~24题每题8分,25题10分,26题12分,满分66分.解答应写出文字说明、证明过程或盐酸步骤.)19.(6分)计算:2(2)(2)(2)(4)++-++-.x y x y x y x x y20.(6分)如图,点A、B、D、E在同一条直线上,AB DE=,//BC EF.求AC DF,//证:ABC DEF∆≅∆.21.(8分)“垃圾分类工作就是新时尚”,为了改善生态环境,有效利用垃圾剩余价值,2020年起,我市将生活垃圾分为四类:厨余垃圾、有害垃圾、可回收垃圾、其他垃圾.某学习研究小组在对我市垃圾分类实施情况的调查中,绘制了生活垃圾分类扇形统计图,如图所示.(1)图中其他垃圾所在的扇形的圆心角度数是度;(2)据统计,生活垃圾中可回收物每吨可创造经济总价值约为0.2万元.若我市某天生活垃圾清运总量为500吨,请估计该天可回收物所创造的经济总价值是多少万元?(3)为了调查学生对垃圾分类知识的了解情况,某校开展了相关知识竞赛,要求每班派2名学生参赛.甲班经选拔后,决定从2名男生和2名女生中随机抽取2名学生参加比赛,求所抽取的学生中恰好一男一女的概率.22.(8分)如图,点E为正方形ABCD外一点,90∆绕A点逆时针方AEB∠=︒,将Rt ABE向旋转90︒得到ADF∆,DF的延长线交BE于H点.(1)试判定四边形AFHE的形状,并说明理由;(2)已知7BC=,求DH的长.BH=,1323.(8分)如图是一种单肩包,其背带由双层部分、单层部分和调节扣构成.小文购买时,售货员演示通过调节扣加长或缩短单层部分的长度,可以使背带的长度(单层部分与双层部分长度的和,其中调节扣所占长度忽略不计)加长或缩短,设双层部分的长度为x cm,单层部分的长度为y cm.经测量,得到表中数据.双层部分长度()x cm281420单层部分长度()y cm148136124112(1)根据表中数据规律,求出y与x的函数关系式;(2)按小文的身高和习惯,背带的长度调为130cm时为最佳背带长.请计算此时双层部分的长度;(3)设背带长度为L cm,求L的取值范围.24.(8分)如图,AB 是O 的直径,D 为O 上一点,E 为BD 的中点,点C 在BA 的延长线上,且CDA B ∠=∠.(1)求证:CD 是O 的切线;(2)若2DE =,30BDE ∠=︒,求CD 的长.25.(10分)如图,OAB ∆的顶点坐标分别为(0,0)O ,(3,4)A ,(6,0)B ,动点P 、Q 同时从点O 出发,分别沿x 轴正方向和y 轴正方向运动,速度分别为每秒3个单位和每秒2个单位,点P 到达点B 时点P 、Q 同时停止运动.过点Q 作//MN OB 分别交AO 、AB 于点M 、N ,连接PM 、PN .设运动时间为t (秒).(1)求点M 的坐标(用含t 的式子表示);(2)求四边形MNBP 面积的最大值或最小值;(3)是否存在这样的直线l ,总能平分四边形MNBP 的面积?如果存在,请求出直线l 的解析式;如果不存在,请说明理由;(4)连接AP ,当OAP BPN ∠=∠时,求点N 到OA 的距离.26.(12分)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如(1,1),(2021,2021)⋯都是“雁点”.(1)求函数4y x=图象上的“雁点”坐标; (2)若抛物线25y ax x c =++上有且只有一个“雁点” E ,该抛物线与x 轴交于M 、N 两点(点M 在点N 的左侧).当1a >时.①求c 的取值范围;②求EMN ∠的度数;(3)如图,抛物线223y x x =-++与x 轴交于A 、B 两点(点A 在点B 的左侧),P 是抛物线223y x x =-++上一点,连接BP ,以点P 为直角顶点,构造等腰Rt BPC ∆,是否存在点P ,使点C 恰好为“雁点”?若存在,求出点P 的坐标;若不存在,请说明理由.2021年湖南省衡阳市中考数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)8的相反数是( )A .8-B .8C .18-D .8±【解答】解:相反数指的是只有符号不同的两个数,因此8的相反数是8-. 故选:A .2.(3分)2021年2月25日,习近平总书记庄严宣告,我国脱贫攻坚战取得全面胜利.现标准下,98990000农村贫困人口全部脱贫.数98990000用科学记数法表示为( )A .698.9910⨯B .79.89910⨯C .4989910⨯D .80.0989910⨯【解答】解:7989900009.89910=⨯,故选:B .3.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .【解答】解:A .是轴对称图形,故本选项符合题意;B .不是轴对称图形,故本选项不合题意;C .不是轴对称图形,故本选项不合题意;D .不是轴对称图形,故本选项不合题意.故选:A .4.(3分)下列运算结果为6a 的是( )A .23a a ⋅B .122a a ÷C .32()aD .321()2a 【解答】解:A .235a a a ⋅=,故此选项不合题意;B .12210a a a ÷=,故此选项不合题意;C .326()a a =,故此选项符合题意;D .32611()24a a =,故此选项不合题意; 故选:C .5.(3分)下列计算正确的是( )A 4=±B .0(2)1-=CD 3=【解答】解:16的算术平方根为44,故A 不符合题意;根据公式01(0)a a =≠可得0(2)1-=,故B 符合题意;≠,故C 不符合题意;3,故D 不符合题意;故选:B .6.(3分)为了向建党一百周年献礼,我市中小学生开展了红色经典故事演讲比赛.某参赛小组6名同学的成绩(单位:分)分别为:85,82,86,82,83,92.关于这组数据,下列说法错误的是( )A .众数是82B .中位数是84C .方差是84D .平均数是85【解答】解:将数据重新排列为82,82,83,85,86,92,A 、数据的众数为82,此选项正确,不符合题意;B 、数据的中位数为8385842+=,此选项正确,不符合题意; C 、数据的平均数为828283858692856+++++=, 所以方差为222221[(8585)(8385)2(8285)(8685)(9285)]126⨯-+-+⨯-+-+-=,此选项错误,符合题意;D 、由C 选项知此选项正确;故选:C .7.(3分)如图是由6个相同的正方体堆成的物体,它的左视图是( )A .B .C .D .【解答】解:这个组合体的三视图如下:故选:A .8.(3分)如图是某商场营业大厅自动扶梯的示意图.自动扶梯AB 的倾斜角为37︒,大厅两层之间的距离BC 为6米,则自动扶梯AB 的长约为(sin370.6︒≈,cos370.8︒≈,tan370.75)(︒≈ )A .7.5米B .8米C .9米D .10米【解答】解:在Rt ABC ∆中,90ACB ∠=︒,6BC =米,3sin sin370.65BC BAC AB ∠==︒≈=, 5561033AB BC ∴≈=⨯=(米), 故选:D .9.(3分)下列命题是真命题的是( )A .正六边形的外角和大于正五边形的外角和B .正六边形的每一个内角为120︒C .有一个角是60︒的三角形是等边三角形D .对角线相等的四边形是矩形【解答】解:A .每个多边形的外角和都是360︒,故错误,假命题;B .正六边形的内角和是720︒,每个内角是120︒,故正确,真命题;C .有一个角是60︒的等腰三角形是等边三角形,故错误,假命题;D .对角线相等的平行四边形是矩形,故错误,假命题.故选:B .10.(3分)不等式组1026x x +<⎧⎨-⎩的解集在数轴上可表示为( ) A .B .C .D .【解答】解:解不等式10x +<得,1x <-,解不等式26x -得,3x -, ∴不等式组的解集为:31x -<-,在数轴上表示为:故选:A .11.(3分)下列说法正确的是( )A .为了解我国中学生课外阅读情况,应采取全面调查方式B .某彩票的中奖机会是1%,买100张一定会中奖C .从装有3个红球和4个黑球的袋子里摸出1个球是红球的概率是34D .某校有3200名学生,为了解学生最喜欢的课外体育运动项目,随机抽取了200名学生,其中有85名学生表示最喜欢的项目是跳绳,估计该校最喜欢的课外体育运动项目为跳绳的有1360人【解答】解:全国中学生人数很大,应采用抽样调查方式,A ∴选项错误,彩票的中奖机会是1%说的是可能性,和买的数量无关,B ∴选项错误,根据概率的计算公式,C 选项中摸出红球的概率为37, C ∴选项错误, 200名学生中有85名学生喜欢跳绳,∴跳绳的占比为85100%42.5%200⨯=, 320042.5%1360∴⨯=(人),D ∴选项正确,故选:D .12.(3分)如图,矩形纸片ABCD ,4AB =,8BC =,点M 、N 分别在矩形的边AD 、BC 上,将矩形纸片沿直线MN 折叠,使点C 落在矩形的边AD 上,记为点P ,点D 落在G 处,连接PC ,交MN 于点Q ,连接CM .下列结论:①四边形CMPN 是菱形;②点P 与点A 重合时,5MN =;③PQM ∆的面积S 的取值范围是45S .其中所有正确结论的序号是( )A .①②③B .①②C .①③D .②③【解答】解://PM CN ,PMN MNC ∴∠=∠,MNC PNM ∠=∠,PMN PNM ∴∠=∠,PM PN ∴=,NC NP =,PM CN ∴=,//MP CN ,∴四边形CNPM 是平行四边形,CN NP =,∴四边形CNPM 是菱形,故①正确;如图1,当点P 与A 重合时,设BN x =,则8AN NC x ==-,在Rt ABN ∆中,222AB BN AN +=,即422(8)2x x +=-,解得3x =,835CN ∴=-=,4AB =,8BC =, 2245AC AB BC ∴=+=,1252CQ AC ∴==, 225QN CN CQ ∴=-=,225MN QN ∴==,故②不正确;由题知,当MN 过点D 时,CN 最短,如图2,四边形CMPN 的面积最小,此时1144444CMPN S S ==⨯⨯=菱形, 当P 点与A 点重合时,CN 最长,如图1,四边形CMPN 的面积最大,此时15454S =⨯⨯=, 45S ∴正确,故选:C .二、填空题(本大题共6小题,每小题3分,满分18分.)13.(33x -x 的取值范围是 3x .【解答】解:根据题意,得30x -,解得,3x ;故答案为:3x .14.(3分)计算:11a a a-+= 1 . 【解答】解:原式111a a -+==. 故答案为:1.15.(3分)因式分解:239a ab -= 3(3)a a b - .【解答】解:239a ab -3(3)a a b =-,故答案为:3(3)a a b -.16.(3分)底面半径为3,母线长为4的圆锥的侧面积为 12π .(结果保留)π【解答】解:圆锥的侧面积234212ππ=⨯⨯÷=.故答案为:12π.17.(3分)“绿水青山就是金山银山”.某地为美化环境,计划种植树木6000棵.由于志愿者的加入,实际每天植树的棵树比原计划增加了25%,结果提前3天完成任务.则实际每天植树 500 棵.【解答】解:设原计划每天植树x 棵,则实际每天植树(125%)x +棵, 依题意得:600060003(125%)x x-=+,解得:400x =,经检验,400x =是原方程的解,且符合题意,(125%)500x ∴+=.故答案为:500.18.(3分)如图1,菱形ABCD 的对角线AC 与BD 相交于点O ,P 、Q 两点同时从O 点出发,以1厘米/秒的速度在菱形的对角线及边上运动.点P 的运动路线为O A D O ---,点Q 的运动路线为O C B O ---.设运动的时间为x 秒,P 、Q 间的距离为y 厘米,y 与x 的函数关系的图象大致如图2所示,当点P 在A D -段上运动且P 、Q 两点间的距离最短时,P 、Q 两点的运动路程之和为 (233)+ 厘米.【解答】解:由图分析易知:当点P 从O A →运动时,点Q 从O C →运动时,y 不断增大, 当点P 运动到A 点,点Q 运动到C 点时,由图象知此时3y PQ cm ==,23AC cm ∴=,四边形ABCD 为菱形,AC BD ∴⊥,132OA OC AC cm ===, 当点P 运动到D 点,Q 运动到B 点,结合图象,易知此时,2y BD cm ==,112OD OB BD cm ∴===, 在Rt ADO ∆中,2222(3)12()AD OA OD cm ++,2AD AB BC DC cm ∴====,如图,当点P 在A D -段上运动,点P 运动到点E 处,点Q 在C B -段上运动,点Q 运动到点F 处时,P 、Q 两点的最短,此时,31322OA OD OE OF AD ⋅⨯====, 2233342AE AF OA OE ==-=-=, ∴当点P 在A D -段上运动且P 、Q 两点间的距离最短时,P 、Q 两点的运动路程之和为:3(3)2233()2cm +⨯=+ 故答案为:(233)+.三、解答题(本大题共8个小题,19~20题每题6分,21~24题每题8分,25题10分,26题12分,满分66分.解答应写出文字说明、证明过程或盐酸步骤.)19.(6分)计算:2(2)(2)(2)(4)x y x y x y x x y ++-++-.【解答】解:原式22222(44)(4)(4)x xy y x y x xy =+++-+-222224444x xy y x y x xy =+++-+-23x =.20.(6分)如图,点A 、B 、D 、E 在同一条直线上,AB DE =,//AC DF ,//BC EF .求证:ABC DEF ∆≅∆.【解答】证明://AC DF ,CAB FDE ∴∠=∠ (两直线平行,同位角相等),又//BC EF ,CBA FED ∴∠=∠ (两直线平行,同位角相等),在ABC ∆和DEF ∆中,CAB FDE AB DECBA FED ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABC DEF ASA ∴∆≅∆.21.(8分)“垃圾分类工作就是新时尚”,为了改善生态环境,有效利用垃圾剩余价值,2020年起,我市将生活垃圾分为四类:厨余垃圾、有害垃圾、可回收垃圾、其他垃圾.某学习研究小组在对我市垃圾分类实施情况的调查中,绘制了生活垃圾分类扇形统计图,如图所示.(1)图中其他垃圾所在的扇形的圆心角度数是 64.8 度;(2)据统计,生活垃圾中可回收物每吨可创造经济总价值约为0.2万元.若我市某天生活垃圾清运总量为500吨,请估计该天可回收物所创造的经济总价值是多少万元?(3)为了调查学生对垃圾分类知识的了解情况,某校开展了相关知识竞赛,要求每班派2名学生参赛.甲班经选拔后,决定从2名男生和2名女生中随机抽取2名学生参加比赛,求所抽取的学生中恰好一男一女的概率.【解答】解:(1)由题意可知,其他垃圾所占的百分比为:120%7%55%18%---=, ∴其他垃圾所在的扇形的圆心角度数是:36018%64.8︒⨯=︒,故答案为:64.8;(2)50020%100⨯=(吨),1000.220⨯=(万元), 答:该天可回收物所创造的经济总价值是20万元;(3)由题意可列树状图:()82 123P∴==一男一女.22.(8分)如图,点E为正方形ABCD外一点,90AEB∠=︒,将Rt ABE∆绕A点逆时针方向旋转90︒得到ADF∆,DF的延长线交BE于H点.(1)试判定四边形AFHE的形状,并说明理由;(2)已知7BH=,13BC=,求DH的长.【解答】解:(1)四边形AFHE是正方形,理由如下:Rt ABE∆绕A点逆时针方向旋转90︒得到ADF∆,Rt ABE Rt ADF∴∆≅∆,90AEB AFD∴∠=∠=︒,90AFH∴∠=︒,Rt ABE Rt ADF∆≅∆,DAF BAE∴∠=∠,又90DAF FAB∠+∠=︒,90BAE FAB∴∠+∠=︒,90FAE∴∠=︒,在四边形AFHE中,90FAE∠=︒,90AEB∠=︒,90AFH∠=︒,∴四边形AFHE是矩形,又AE AF =,∴矩形AFHE 是正方形;(2)设AE x =.则由(1)以及题意可知:AE EH FH AF x ====,7BH =,13BC AB ==, 在Rt AEB ∆中,222AB AE BE =+,即22213(7)x x =++,解得:5x =,5712BE BH EH ∴=+=+=,12DF BE ∴==,又DH DF FH =+,12517DH ∴=+=.23.(8分)如图是一种单肩包,其背带由双层部分、单层部分和调节扣构成.小文购买时,售货员演示通过调节扣加长或缩短单层部分的长度,可以使背带的长度(单层部分与双层部分长度的和,其中调节扣所占长度忽略不计)加长或缩短,设双层部分的长度为x cm ,单层部分的长度为y cm .经测量,得到表中数据. 双层部分长度()x cm2 8 14 20 单层部分长度()y cm 148 136 124 112(1)根据表中数据规律,求出y 与x 的函数关系式;(2)按小文的身高和习惯,背带的长度调为130cm 时为最佳背带长.请计算此时双层部分的长度;(3)设背带长度为L cm ,求L 的取值范围.【解答】解:(1)设y 与x 的函数关系式为y kx b =+,由题知14821368k b k b=+⎧⎨=+⎩,解得2152k b =-⎧⎨=⎩, y ∴与x 的函数关系式为2152y x =-+;(2)根据题意知1302152x y y x +=⎧⎨=-+⎩, 解得22108x y =⎧⎨=⎩, ∴双层部分的长度为22cm ;(3)由题知,当0x =时,152y =, 当0y =时,76x =, 76152L ∴.24.(8分)如图,AB 是O 的直径,D 为O 上一点,E 为BD 的中点,点C 在BA 的延长线上,且CDA B ∠=∠.(1)求证:CD 是O 的切线;(2)若2DE =,30BDE ∠=︒,求CD 的长.【解答】(1)证明:连结OD ,如图所示:AB 是直径,90BDA ∴∠=︒,90BDO ADO ∴∠+∠=︒, 又OB OD =,CDA B ∠=∠, B BDO CDA ∴∠=∠=∠,90CDA ADO ∴∠+∠=︒,OD CD ∴⊥,且OD 为O 半径,CD ∴是O 的切线;(2)解:连结OE ,如图所示:30BDE ∠=︒,260BOE BDE ∴∠=∠=︒,又E 为BD 的中点,60EOD ∴∠=︒,EOD ∴∆为等边三角形,2ED EO OD ∴===,又120BOD BOE EOD ∠=∠+∠=︒,180********DOC BOD ∴∠=︒-∠=︒-︒=︒,在Rt DOC ∆中,60DOC ∠=︒,2OD =,tan tan6032CD CD DOC OD ∴∠=︒== 23CD ∴= 25.(10分)如图,OAB ∆的顶点坐标分别为(0,0)O ,(3,4)A ,(6,0)B ,动点P 、Q 同时从点O 出发,分别沿x 轴正方向和y 轴正方向运动,速度分别为每秒3个单位和每秒2个单位,点P 到达点B 时点P 、Q 同时停止运动.过点Q 作//MN OB 分别交AO 、AB 于点M 、N ,连接PM 、PN .设运动时间为t (秒).(1)求点M 的坐标(用含t 的式子表示);(2)求四边形MNBP 面积的最大值或最小值;(3)是否存在这样的直线l ,总能平分四边形MNBP 的面积?如果存在,请求出直线l 的解析式;如果不存在,请说明理由;(4)连接AP ,当OAP BPN ∠=∠时,求点N 到OA 的距离.【解答】解:(1)过点A 作x 轴的垂线,交MN 于点E ,交OB 于点F ,由题意得:2OQ t =,3OP t =,63PB t =-,(0,0)O ,(3,4)A ,(6,0)B ,3OF FB ∴==,4AF =,22345OA AB ==+,//MN OB ,OQM OFA ∴∠=∠,OMQ AOF ∠=∠,OQM AFO ∴∆∆∽, ∴OQ QM AF OF =, ∴243t QM =, 32QM t ∴=, ∴点M 的坐标是3(,2)2t t . (2)//MN OB ,∴四边形QEFO 是矩形,QE OF ∴=,332ME OF QM t ∴=-=-, OA AB =,ME NE ∴=,263MN ME t ∴==-,MNP BNP MNBP S S S ∆∆∴=+四边形1122MN OQ BP OQ =⋅+⋅⋅11(63)2(63)222t t t t =-⋅+⋅-⋅ 2612t t =-+26(1)6t =--+,点P 到达点B 时,P 、Q 同时停止,02t ∴,1t ∴=时,四边形MNBP 的最大面积为6.(3)63MN t =-,63BP t =-,MN BP ∴=,//MN BP ,∴四边形MNBP 是平行四边形,∴平分四边形MNBP 面积的直线经过四边形的中心,即MB 的中点,设中点为(,)H x y , 3(,2)2M t t ,(6,0)B , 133(6)3224x t t ∴=⋅+=+, 202t y t +==. 334x y ∴=+, 化简得:443y x =-, ∴直线l 的解析式为:443y x =-. (4)OA AB =,AOB PBN ∴∠=∠,又OAP BPN ∠=∠, AOP PBN ∴∆∆∽,∴OA OP BP BN=, ∴535632t t t =-, 解得:1118t =.63MN t =-,AE AF OQ =-,332ME t =-, 112563186MN ∴=-⨯=, 112542189AE =-⨯=, 31125321812ME =-⨯=, 22222525125()()12936AM ME AE ∴=+=+=. 设点N 到OA 得距离为h ,1122AMN S MN AE AM h ∆=⋅⋅=⋅⋅, ∴125251125269236h ⋅⋅=⋅⋅, 解得:103h =. ∴点N 到OA 得距离为103.26.(12分)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如(1,1),(2021,2021)⋯都是“雁点”.(1)求函数4y x=图象上的“雁点”坐标; (2)若抛物线25y ax x c =++上有且只有一个“雁点” E ,该抛物线与x 轴交于M 、N 两点(点M 在点N 的左侧).当1a >时.①求c 的取值范围;②求EMN ∠的度数;(3)如图,抛物线223y x x =-++与x 轴交于A 、B 两点(点A 在点B 的左侧),P 是抛物线223y x x =-++上一点,连接BP ,以点P 为直角顶点,构造等腰Rt BPC ∆,是否存在点P ,使点C 恰好为“雁点”?若存在,求出点P 的坐标;若不存在,请说明理由.【解答】解:(1)由题意得:4x x=,解得2x =±, 当2x =±时,42y x ==±, 故“雁点”坐标为(2,2)或(2,2)--;(2)① “雁点”的横坐标与纵坐标相等, 故“雁点”的函数表达式为y x =,物线25y ax x c =++上有且只有一个“雁点” E , 则25ax x c x ++=,则△2540ac =-=,即4ac =,1a >,故4c <;②4ac =,则250ax x c ++=为2450ax x a++=, 解得4x a =-或1a -,即点M 的坐标为4(a-,0),由25ax x c x ++=,4ac =, 解得2x a =-,即点E 的坐标为2(a -,2)a-, 故点E 作EH x ⊥轴于点H ,则2HE a =,242()E M MH x x HE a a a =-=---==, 故EMN ∠的度数为45︒;(3)存在,理由:由题意知,点C 在直线y x =上,故设点C 的坐标为(,)t t , 过点P 作x 轴的平行线交过点C 与y 轴的平行线于点M ,交过点B 与y 轴的平行线于点N ,设点P 的坐标为2(,23)m m m -++,则223BN m m =-++,3PN m =-,PM m t =-,223CM m m t =-++-, 90NPB MPC ∠+∠=︒,90MPC CPM ∠+∠=︒, NPB CPM ∴∠=∠,90CMP PNB ∠=∠=︒,PC PB =,()CMP PNB AAS ∴∆≅∆,PM BN ∴=,CM PN =,即2|23|m t m m -=-++,223|3|m m t m -++-=-,解得1m =1-或32,故点P 的坐标为,3)2或3(2,15)4或(1+,3)2.。
2021年中考数学复习-新定义型(解析版)
新定义型【典例1】对于任意实数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b=2a+b .例如3⊗4=2×3+4=10.(1)求2⊗(-5)的值;(2)若x ⊗(-y )=2,且2y ⊗x=-1,求x+y 的值.【解析】(1)依据关于“⊗”的一种运算:a ⊗b=2a+b ,即可得到2⊗(﹣5)的值; (2)依据x ⊗(﹣y )=2,且2y ⊗x=﹣1,可得方程组,即可得到x+y 的值. 【典例2】对于实数x ,规定[]x 表示不小于x 的最小整数,例如[]1.2=2,[]3=3,[]-2.5=-2,则(1)填空:①[]-=π ;②若[]x =-2,则x 的取值范围是 .(2)已知x 为正整数,且x 132+⎡⎤=⎢⎥⎣⎦,求x 的值.【解析】(1)①[﹣π]=﹣3;②x 的取值范围是﹣3<x ≤﹣2; (2)由x 132+⎡⎤=⎢⎥⎣⎦知2<x 12+ ≤3,解得:3<x ≤5,∵x 取正整数, ∴x 的值为4或5.【典例3】在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(-3,5)与(5,-3)是一对“互换点”. (1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么? 【解析】(1)设这一对“互换点”的坐标为M(m ,n) 和N(n ,m) . ① 当mn=0时,它们不可能在反比例函数的图像上; ② 当mn ≠0 时,M 、N 两点均在反比例函数的图像上. 于是得到结论“不一定”.(2)M ,N 是一对“互换点”,若点M 的坐标为(m ,n),求直线MN 的表达式(用含m ,n 的代数式表示);【解析】(2)设直线 MN 的表达式为 y = kx + b( k ≠0) . 把 M( m,n) ,N( n ,m) 代入 y = kx + b ,解得 k=-1,b=m + n ,∴ 直线 MN 的表达式为y=-x+m+n . (3)在抛物线y =x 2+bx +c 的图象上有一对“互换点”A ,B ,其中点A 在反比例函数2y x=-的图象上,直线AB 经过点P1122⎛⎫ ⎪⎝⎭,,求此抛物线的表达式.【解析】 ( 3)因为点A 在反比例函数2y x=-的图象上, 故设A(m ,2m -) ,则B(2m-,m) .由(2)的结论可得,直线AB 的表达式为y=-x+m2m-.将P 点坐标1122⎛⎫ ⎪⎝⎭,代入可得2m 10m--=, 解得m=2或-1. 【典例4】对任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n ).例如n =123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F (123)=6. (1)计算:F (243),F (617);(2)若s ,t 都是“相异数”,其中s =100x +32,t =150+y (1≤x ≤9,1≤y ≤9,x ,y 都是正整数),规定:k =F (s )F (t ),当F (s )+F (t )=18时,求k 的最大值. 【解析】解:(1)F (243)=(423+342+234)÷111=9;F (617)=(167+716+671)÷111=14.(2)∵s ,t 都是“相异数”,s =100x +32,t =150+y ,∴F (s )=(302+10x +230+x +100x +23)÷111=x +5,F (t )=(510+y +100y +51+105+10y )÷111=y +6. ∵F (t )+F (s )=18,∴x +5+y +6=x +y +11=18,∴x +y =7.∵1≤x ≤9,1≤y ≤9,且x ,y 都是正整数, ∴⎩⎨⎧x =1y =6或⎩⎨⎧x =2y =5或⎩⎨⎧x =3y =4或⎩⎨⎧x =4y =3或⎩⎨⎧x =5y =2或⎩⎨⎧x =6y =1. ∵s 是“相异数”, ∴x ≠2,x ≠3. ∵t 是“相异数”, ∴y ≠1,y ≠5. ∴⎩⎨⎧x =1y =6或⎩⎨⎧x =4y =3或⎩⎨⎧x =5y =2, ∴⎩⎨⎧F (s )=6F (t )=12或⎩⎨⎧F (s )=9F (t )=9或⎩⎨⎧F (s )=10F (t )=8,∴k =F (s )F (t )=12或k =F (s )F (t )=1或k =F (s )F (t )=54, ∴k 的最大值为54.【解析】 (1)322x y x -+=+,是 “奇特函数”;(2)①296x y x -=-;②(7,5)或53,3⎛⎫- ⎪⎝⎭或715,3⎛⎫ ⎪⎝⎭或(5,1)-.试题分析:(1)根据题意列式并化为322x y x -+=+,根据定义作出判断. (2)①求出点B ,D 的坐标,应用待定系数法求出直线OB 解析式和直线CD 解析式,二者联立即可得点E 的坐标,将B (9,3),E (3,1)代入函数6ax ky x +=-即可求得这个“奇特函数”的解析式.②根据题意可知,以B 、E 、P 、Q 为顶点组成的四边形是平行四边形BPEQ 或BQEP ,据此求出点P 的坐标.试题解析:(1)根据题意,得,∵,∴.∴.根据定义,是 “奇特函数”.(2)①由题意得,.易得直线OB 解析式为,直线CD 解析式为,由解得.∴点E (3,1).将B(9,3),E(3,1)代入函数,得,整理得,解得.∴这个“奇特函数”的解析式为.②∵可化为,∴根据平移的性质,把反比例函数的图象向右平移6个单位,再向上平移2个单位就可得到.∴关于点(6,2)对称.∵B(9,3),E(3,1),∴BE中点M(6,2),即点M是的对称中心.∴以B、E、P、Q为顶点组成的四边形是平行四边形BPEQ或BQEP.由勾股定理得,.设点P到EB的距离为m,∵以B、E、P、Q为顶点组成的四边形面积为,∴.∴点P在平行于EB的直线上.∵点P在上,∴或.解得.∴点P的坐标为或或或.考点:1.新定义和阅读理解型问题;2.平移问题;3.反比例函数的性质;4.曲线上点的坐标与方程的关系;5.勾股定理;6.中心对称的性质;7.平行四边形的判定和性质;8.分类思想的应用.【典例6】定义[a,b,c]为函数y=a x2+bx c+的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论:①当m=﹣3时,函数图象的顶点坐标是(18,33);②当m>0时,函数图象截x轴所得的线段长度大于32;③当m<0时,函数在x>14时,y随x的增大而减小;④当m≠0时,函数图象经过同一个点.其中正确的结论有___________【解析】解:根据定义可得函数y=2m x2+(1﹣m)x+(﹣1﹣m),①当m=﹣3时,函数解析式为y=﹣6x2+4x+2,∴224144(6)248,22(6)344(6)3b ac ba a-⨯-⨯--=-===⨯-⨯-,∴顶点坐标是(18,33),正确;②函数y=2m x2+(1﹣m)x+(﹣1﹣m)与x轴两交点坐标为(1,0),(﹣12mm+,0),当m>0时,1﹣(﹣12mm+)=313222m+>,正确;③当m<0时,函数y=2m x2+(1﹣m)x+(﹣1﹣m)开口向下,对称轴111444xm=->,错误;④当m≠0时,x=1代入解析式y=0,则函数一定经过点(1,0),正确.故选:①②④【典例7】通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化。
2021年中考数学复习——几何探究型问题(有答案)
2021年中考数学复习——几何探究型问题班级姓名1. (2020年湖南长沙中考)如图,点P在以MN为直径的半圆上运动(点P不与M、N重合),PQ⊥MN,NE平分∠MNP,交PM于点E,交PQ于点F。
(1)=+PMPEPQPF(2)若MNPMPN•=2,则=NQMQ2.(2020年湖南岳阳中考)如图,AB为半⊙O的直径,M,C是半圆上的三等分点,8AB=,BD与半⊙O相切于点B,点P为AM上一动点(不与点A,M重合),直线PC交BD于点D,BE OC⊥于点E,延长BE交PC于点F,则下列结论正确的是______________.(写出所有正确结论的序号)①PB PD=;②BC的长为43π;③45DBE∠=︒;④BCF PFB△∽△;⑤CF CP⋅为定值.3.(2020年湖南湘西中考)问题背景:如图1,在四边形ABCD中,90BAD∠=︒,90BCD∠=︒,BA BC=,120ABC∠=︒,60MBN∠=︒,MBN∠绕B点旋转,它的两边分别交AD、DC于E、F.探究图中线段AE,CF,EF之间的数量关系.小李同学探究此问题的方法是:延长FC到G,使CG AE=,连接BG,先证明BCG BAE△≌△,再证明BFC BFE△≌△,可得出结论,他的结论就是_______________;探究延伸1:如图2,在四边形ABCD中,90BAD∠=︒,90BCD∠=︒,BA BC=,2ABC MBN∠=∠,MBN∠绕B点旋转,它的两边分别交AD、DC于E、F.上述结论是否仍然成立?请直接写出结论(直接写出“成立”或者“不成立”),不要说明理由.探究延伸2:如图3,在四边形ABCD中,BA BC=,180BAD BCD∠+∠=︒,2ABC MBN∠=∠,MBN∠绕B点旋转,它的两边分别交AD、DC于E、F.上述结论是否仍然成立?并说明理由.实际应用:如图4,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30的A处舰艇乙在指挥中心南偏东70︒的B处,并且两舰艇到指挥中心的距离相等接到行动指令后,舰艇甲向正东方向以75海里/小时的速度前进,同时舰艇乙沿北偏东50︒的方向以100海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处,且指挥中心观测两舰艇视线之间的夹角为70 ,试求此时两舰艇之间的距离.4.(2020年湖南常德中考)已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE 交于M,PB与EF交于N.(1)如图1,当D,B,F共线时,求证:①EB=EP;②∠EFP=30°;(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.5.(2020年湖南湘潭中考)算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了很大的贡献.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字如图:表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空.示例如下:67286708,则表示的数是________.6. 2020年湖南怀化中考)定义:对角线互相垂直且相等的四边形叫做垂等四边形. (1)下面四边形是垂等四边形的是____________(填序号) ①平行四边形;②矩形;③菱形;④正方形(2)图形判定:如图1,在四边形ABCD 中,AD ∥BC ,AC BD ⊥,过点D 作BD 垂线交BC 的延长线于点E ,且45DBC ∠=︒,证明:四边形ABCD 是垂等四边形.(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形ABCD 内接于⊙O 中,60BCD ∠=︒.求⊙O 的半径.7. (2020年湖南省衡阳市中考)如图1,平面直角坐标系xOy 中,等腰ABC ∆的底边BC 在x 轴上,8BC =,顶点A 在y 的正半轴上,2OA =,一动点E 从(3,0)出发,以每秒1个单位的速度沿CB 向左运动,到达OB 的中点停止.另一动点F 从点C 出发,以相同的速度沿CB 向左运动,到达点O 停止.已知点E 、F 同时出发,以EF 为边作正方形EFGH ,使正方形EFGH 和ABC ∆在BC 的同侧.设运动的时间为t 秒(0t ≥).(1)当点H 落在AC 边上时,求t 的值;(2)设正方形EFGH 与ABC ∆重叠面积为S ,请问是存在t 值,使得9136S =?若存在,求出t 值;若不存在,请说明理由;(3)如图2,取AC 的中点D ,连结OD ,当点E 、F 开始运动时,点M 从点O 出发,以每秒位的速度沿OD DC CD DO ---运动,到达点O 停止运动.请问在点E 的整个运动过程中,点M 可能在正方形EFGH 内(含边界)吗?如果可能,求出点M 在正方形EFGH 内(含边界)的时长;若不可能,请说明理由.8. (2020年湖南岳阳中考)如图1,在矩形ABCD 中,6,8AB BC ==,动点P ,Q 分别从C 点,A 点同时以每秒1个单位长度的速度出发,且分别在边,CA AB 上沿C A →,A B →的方向运动,当点Q 运动到点B 时,,P Q 两点同时停止运动,设点P 运动的时间为()t s ,连接PQ ,过点P 作PE PQ ⊥,PE 与边BC 相交于点E ,连接QE .(1)如图2,当5t s =时,延长EP 交边AD 于点F .求证:AF CE =;(2)在(1)的条件下,试探究线段,,AQ QE CE 三者之间的等量关系,并加以证明; (3)如图3,当94t s >时,延长EP 交边AD 于点F ,连接FQ ,若FQ 平分AFP ∠,求AF CE的值.9. (2020年湖南株洲中考)如图所示,BEF 的顶点E 在正方形ABCD 对角线AC 的延长线上,AE 与BF 交于点G ,连接AF 、CF ,满足ABF CBE △≌△.(1)求证:90EBF ∠=︒.(2)若正方形ABCD 的边长为1,2CE =,求tan AFC ∠的值.教师用:2021年中考数学——几何探究型问题1. (2020年湖南长沙中考)如图,点P 在以MN 为直径的半圆上运动(点P 不与M 、N 重合),PQ ⊥MN ,NE 平分∠MNP ,交PM 于点E ,交PQ 于点F 。
2021年湖南省永州市中考数学试卷及答案(Word解析版)
2021年湖南省永州市中考数学试卷及答案(Word解析版)湖南省永州市2021年中考数学试卷一、多项选择题(每个子题3分,共24分)。
1.(3分)(2022?永州)A.B.的倒数是()2021c.d.2021考点:倒数.分析:根据乘积是1的两个数叫做互为倒数解答.解答:解:∵()×(2021)=1,∴的倒数为2021.故选d.点评:本题考查了倒数的定义,熟记概念是解题的关键.2.(3分)(2021?永州)运用湘教版初中数学教材上使用的某种电子计算器求键顺序正确的是()a.c..考点:计算器―数的开方分析:根据计算器上的键的功能,是先按最后按6,即可得出答案.解答:解:是先按,再按8,是先按2nd 键,再按则+的顺序先按,最后按6,,再按8,按+,按2nd键,按,最后按6,+的近似值b.,再按8,是先按2nd键,再按,故选a.点评:此题主要考查了计算器的使用方法,由于计算器的类型很多,可根据计算器的说明书使用.3.(3分)(2021?永州)下列几何体中,其主视图不是中心对称图形的是()a、 B.c.d.试验场地:中心对称图;简单几何的三视图分析:首先判断每个图形的主视图,然后结合中心对称性的定义进行判断;b、主视图是一个三角形,它不是一个中心对称的图形,所以这个选项是正确的;c、主视图是一个圆形,是一个中心对称的图形,所以这个选项是错误的;d、主视图是一个正方形,而正方形是一个中心对称的图形,所以这个选项是错误的;所以选择B.评论:这个问题考察了三个视图的知识和简单几何的中心对称性。
判断中心对称图形就是找到对称中心,旋转180度后与原始图形重合。
4.(3点)(2022?永州)如图所示,在以下条件下可以确定L1‖L2线为()∠1=∠2∠1+∠3=180°∠3=∠5a.c.d.考点:平行线的判定.分析:平行线的判定定理有①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行,根据以上内容判断即可.解答:解:a、根据∠1=∠2不能推出l1∥l2,故本选项错误;b、∵∠5=∠3,∠1=∠5,∴∠1=∠3,即根据∠1=∠5不能推出l1∥l2,故本选项错误;c、∵∠1+∠3=180°,∴l1∥l2,故本选项正确;d、根据∠3=∠5不能推出l1∥l2,故本选项错误;故选c.点评:本题考查了平行线的判定的应用,注意:平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.5.(3分)(2021?永州)实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()∠1=∠5b。
湖南省2021年中考数学真题分项汇编—专题05 一元二次方程(含答案解析)
专题05 一元二次方程一、单选题1.(2021·湖南怀化市·中考真题)对于一元二次方程22340x x -+=,则它根的情况为( ) A .没有实数根B .两根之和是3C .两根之积是2-D .有两个不相等的实数根 【答案】A【分析】先找出2,3,4a b c ==-=,再利用根的判别式判断根的情况即可.【详解】解:22340x x -+=∵2,3,4a b c ==-=∴2=4932230b ac ∆-=-=-<∴这个一元二次方程没有实数根,故A 正确、D 错误. ∵122c x x a==,故C 错误. 123+-2b x x a ==,故B 错误. 故选:A .【点睛】本题考查一元二次方程根的情况、根的判别式、根与系数的关系、熟练掌握∆<0,一元二次方程没有实数根是关键.2.(2021·湖南张家界市·中考真题)对于实数,a b 定义运算“☆”如下:2a b ab ab =-☆,例如23336222⨯-⨯==☆,则方程12x =☆的根的情况为( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根 【答案】D【分析】本题根据题目所给新定义将方程12x =☆变形为一元二次方程的一般形式,即20ax bx c ++=的形式,再根据根的判别式24b ac ∆=-的值来判断根的情况即可.【详解】解:根据题意由方程12x =☆得:22x x -=整理得:220x x --=根据根的判别式2141(2)90∆=-⨯⨯-=>可知该方程有两个不相等实数根.故选D .【点睛】本题主要考查了根的判别式,根据题目所给的定义对方程进行变形后依据∆的值来判断根的情况,注意0∆>时有两个不相等的实数根;0∆=时有一个实数根或两个相等的实数根;∆<0时没有实数根. 3.(2021·湖南邵阳市·中考真题)在平面直角坐标系中,若直线y x m =-+不经过第一象限,则关于x 的方程210mx x ++=的实数根的个数为( )A .0个B .1个C .2个D .1或2个【答案】D【分析】直线y x m =-+不经过第一象限,则m =0或m <0,分这两种情形判断方程的根.【详解】∵直线y x m =-+不经过第一象限,∴m =0或m <0,当m =0时,方程变形为x +1=0,是一元一次方程,故有一个实数根;当m <0时,方程210mx x ++=是一元二次方程,且△=2414b ac m -=-,∵m <0,∴-4m >0,∴1-4m >1>0,∴△>0,故方程有两个不相等的实数根,综上所述,方程有一个实数根或两个不相等的实数根,故选D .【点睛】本题考查了一次函数图像的分布,一元一次方程的根,一元二次方程的根的判别式,准确判断图像不过第一象限的条件,灵活运用根的判别式是解题的关键.二、填空题4.(2021·湖南中考真题)一元二次方程2x 3x 0-=的根是_______.【答案】12x 0,?x 3== 【详解】四种解一元二次方程的解法即:直接开平方法,配方法,公式法,因式分解法.注意识别使用简单的方法进行求解,此题应用因式分解法较为简捷,因此,212x 3x 0x(x 3)0x 0x 30x 0,?x 3-=⇒-=⇒=-=⇒==,.5.(2021·湖南长沙市·中考真题)若关于x 的方程2120x kx --=的一个根为3,则k 的值为______.【答案】1-【分析】将3x =代入方程可得一个关于k 的一元一次方程,解方程即可得.【详解】解:由题意,将3x =代入方程2120x kx --=得:233120k --=,解得1k =-,故答案为:1-.【点睛】本题考查了一元二次方程的根、解一元一次方程,熟练掌握一元二次方程根的定义是解题关键. 6.(2021·湖南娄底市·中考真题)已知2310t t -+=,则1t t+=________.【答案】3.【分析】先将要求解的式子进行改写整理再利用已知方程进行求解即可.【详解】 解:22111t t t t t t t++=+=,又∵2310t t -+=,∴213t t +=, 则2113=3t t t t t t++==, 故答案为:3.【点睛】本题是一元二次方程求对应解的题目,解题的关键是将求解式子进行变形再利用已知方程进行简便运算. 7.(2021·湖南中考真题)关于x 的一元二次方程250x x m -+=有两个相等的实数根,则m =________.【答案】254 【分析】根据一元二次方程根与判别式的关系,列出关于m 的方程,即可求解.【详解】解:∵关于x 的一元二次方程250x x m -+=有两个相等的实数根,∴()2540m ∆=--=,解得:254m =, 故答案是:254. 【点睛】本题主要考查一元二次方程根与判别式的关系,掌握一元二次方程有两个实数根,则0∆=,是解题的关键. 8.(2021·湖南岳阳市·中考真题)已知关于x 的一元二次方程260x x k ++=有两个相等的实数根,则实数k 的值为_______.【答案】9【分析】直接利用根的判别式进行判断即可.【详解】解:由题可知:“△=0”,即2640k -=;∴9k =;故答案为:9.【点睛】本题考查了用根的判别式判断一元二次方程根的情况,解决本题的关键是牢记:△>0时,该方程有两个不相等的实数根;△=0时,该方程有两个相等的实数根;△<0时,该方程无实数根.三、解答题9.(2021·湖南常德市·中考真题)解方程:220x x --=【答案】12x =,21x =-【详解】分析:利用十字相乘法对等式的左边进行因式分解,然后解方程.详解:由原方程,得:(x +1)(x ﹣2)=0,解得:x 1=2,x 2=﹣1.点睛:本题考查了解一元二次方程.因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想). 10.(2021·湖南永州市·中考真题)若12,x x 是关于x 的一元二次方程20ax bx c ++=的两个根,则1212,b c x x x x a a+=-⋅=.现已知一元二次方程220px x q ++=的两根分别为m ,n . (1)若2,4m n ==-,求,p q 的值;(2)若3,1p q ==-,求m mn n ++的值.【答案】(1)1,8p q ==-;(2)-1.【分析】 根据一元二次方程根与系数的关系得到2,q mn p m n p+=-=. (1)把2,4m n ==-,代入2,q mn p m n p+=-=,即可求出,p q 的值; (2)把3,1p q ==-,代入2,q mn p m n p +=-=,得到,2133m n mn +=-=-.利用整体代入即可求解. 【详解】 解:∵已知一元二次方程220px x q ++=的两根分别为m ,n ,∴2,q mn p m n p+=-=. (1)当2,4m n ==-时,2,28q p p-=-=-, 解得1,8p q ==-,经检验,1,8p q ==-是方程的根,∴1,8p q ==-;(2)当3,1p q ==-时,,2133m n mn +=-=-. ∴21133m mn n m n mn ++=++=--=-. 【点睛】 本题考查了一元二次方程根与系数的关系,根据题意得到2,q mn p m n p+=-=是解题关键. 11.(2021·湖南张家界市·中考真题)2021年是中国共产党建党100周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育学习活动,我市“红二方面军长征出发地纪念馆”成为重要的活动基地.据了解,今年3月份该基地接待参观人数10万人,5月份接待参观人数增加到12.1万人.(1)求这两个月参观人数的月平均增长率;(2)按照这个增长率,预计6月份的参观人数是多少?【答案】(1)10%;(2)13.31万【分析】(1)设这两个月参观人数的月平均增长率为x ,根据题意列出等式解出x 即可;(2)直接利用(1)中求出的月平均增长率计算即可.【详解】(1)解:设这两个月参观人数的月平均增长率为x ,由题意得:210(1)12.1x +=,解得:110%x=,221 10x=-(不合题意,舍去),答:这两个月参观人数的月平均增长率为10%.(2)12.1(110%)13.31⨯+=(万人),答:六月份的参观人数为13.31万人.【点睛】本题考查了二次函数和增长率问题,解题的关键是:根据题目条件列出等式,求出增长率,再利用增长率来预测.。
湖南省常德市2021年中考数学真题试卷(Word版,含答案与解析)
湖南省常德市2021年中考数学试卷一、单选题(共7题;共14分)1.若a>b,下列不等式不一定成立的是()A. a−5>b−5B. −5a<−5bC. ac >bcD. a+c>b+c【答案】C【考点】不等式及其性质【解析】【解答】解:A.在不等式a>b两边同时减去5,不等式仍然成立,即a−5>b−5,故答案为:A不符合题意;B. 在不等式a>b两边同时除以-5,不等号方向改变,即−5a<−5b,故答案为:B不符合题意;C.当c≤0时,不等得到ac >bc,故答案为:C符合题意;D. 在不等式a>b两边同时加上c,不等式仍然成立,即a+c>b+c,故答案为:D不符合题意;故答案为:C.【分析】利用不等式的性质1,可对A作出判断;利用不等式的性质3,可对B作出判断;利用不等式的性质2,可对C作出判断;利用不等式的性质1,可对D作出判断.2.一个多边形的内角和是1800°,则这个多边形是()边形.A. 9B. 10C. 11D. 12【答案】 D【考点】多边形内角与外角【解析】【解答】根据题意得:(n﹣2)×180 °=1800 °,解得:n=12.故答案为:D.【分析】利用n边形的内角和定理,可得到关于n的方程,解方程求出n的值.3.下列计算正确的是()A. a3⋅a2=a6B. a2+a2=a4C. (a3)2=a5D. a3a2=a(a≠0)【答案】 D【考点】同底数幂的乘法,同底数幂的除法,幂的乘方【解析】【解答】A、a3⋅a2=a5原计算错误,该选项不符合题意;B、a2+a2=2a2原计算错误,该选项不符合题意;C、(a3)2=a6原计算错误,该选项不符合题意;D、a3a2=a(a≠0)正确,该选项符合题意;故答案为:D.【分析】利用同底数幂相乘,底数不变,指数相加,可对A作出判断;利用合并同类项的法则,可对B 作出判断;利用幂的乘方法则,可对C作出判断;利用同底数幂相乘的法则,可对D作出判断.4.舒青是一名观鸟爱好者,他想要用折线统计图来反映中华秋沙鸭每年秋季到当地避寒越冬的数量变化情况,以下是排乱的统计步骤:①从折线统计图中分析出中华秋沙鸭每年来当地避寒越冬的变化趋势;②从当地自然保护区管理部门收集中华秋沙鸭每年来当地避寒越冬的数量记录;③按统计表的数据绘制折线统计图;④整理中华秋沙鸭每年来当地避寒越冬的数量并制作统计表.正确统计步骤的顺序是()A. ②→③→①→④ B. ③→④→①→②C. ①→②→④→③D. ②→④→③→①【答案】 D【考点】折线统计图,收集数据的过程与方法【解析】【解答】解:将用折线统计图来反映中华秋沙鸭每年秋季到当地避寒越冬的数量变化情况的步骤如下:②从当地自然保护区管理部门收集中华秋沙鸭每年来当地避寒越冬的数量记录;④整理中华秋沙鸭每年来当地避寒越冬的数量并制作统计表.③按统计表的数据绘制折线统计图;①从折线统计图中分析出中华秋沙鸭每年来当地避寒越冬的变化趋势;所以,正确统计步骤的顺序是②→④→③→①故答案为:D.【分析】利用折线统计图的制作步骤,可得答案.5.计算:(√5+12−1)⋅√5+12=()A. 0B. 1C. 2D. √5−12【答案】C【考点】二次根式的混合运算【解析】【解答】解:(√5+12−1)⋅√5+12= √5−12⋅√5+12= 5−12=2.故答案为:C.【分析】先算括号里的运算,再利用二次根式的乘法法则进行化简.6.如图,已知F、E分别是正方形ABCD的边AB与BC的中点,AE与DF交于P.则下列结论成立的是()A. BE=12AE B. PC=PD C. ∠EAF+∠AFD=90° D. PE=EC 【答案】C【考点】正方形的性质,三角形全等的判定(SAS)【解析】【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=CA,∠ABC=∠BCD=∠CDA=∠DAB=90°,∵已知F、E分别是正方形ABCD的边AB与BC的中点,∴BE= 12BC= 12AB< 12AE,故A选项错误,不符合题意;在△ABE和△DAF中,{AB=DA∠ABE=∠DAF=90°BE=FA,∴△ABE≌△DAF(SAS),∴∠BAE=∠ADF,∵∠ADF+∠AFD=90°,∴∠BAE+∠AFD =90°,∴∠APF=90°,∴∠EAF+∠AFD=90°,故C选项正确,符合题意;连接FC,同理可证得△CBF≌△DAF(SAS),∴∠BCF=∠ADF,∴∠BCD-∠BCF=∠ADC-∠ADF,即90°-∠BCF=90°-∠ADF,∴∠PDC=∠FCD>∠PCD,∴PC>PD,故B选项错误,不符合题意;∵AD>PD,∴CD>PD,∴∠DPC>∠DCP,∴90°-∠DPC<90°-∠DCP,∴∠CPE<∠PCE,∴PE> CE,故D选项错误,不符合题意;故答案为:C.【分析】利用正方形的性质可证得AB=BC=CD=CA,∠ABC=∠BCD=∠CDA=∠DAB=90°,;利用线段中点的定义可对A作出判断;再利用SAS证明△ABE≌△DAF,利用全等三角形的性质可证得∠BAE=∠ADF,由此可证得∠EAF+∠AFD=90°,可对C作出判断;连接FC,利用SAS证明△CBF≌△DAF,利用全等三角形的性质可得到∠BCF=∠ADF,由此可推出∠PDC=∠FCD>∠PCD,可得到PC>PD,可对B作出判断;然后证明∠CPE<∠PCE,利用大角对大边,可对D作出判断.7.阅读理解:如果一个正整数m能表示为两个正整数a,b的平方和,即m=a2+b2,那么称m为广义勾股数.则下面的四个结论:①7不是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数.依次正确的是()A. ②④B. ①②④C. ①②D. ①④【答案】C【考点】勾股数【解析】【解答】∵7=1+6或2+5或3+4∴7不是广义勾股数,即①正确;∵13=4+9=22+32∴13是广义勾股数,即②正确;∵5=12+22,10=12+32,15不是广义勾股数∴③错误;∵5=12+22,13=22+32,65=5×13,且65不是广义勾股数∴④错误;故答案为:C.【分析】如果一个正整数m能表示为两个正整数a,b的平方和,即m=a2+b2,那么称m为广义勾股数,再对各选项逐一判断即可.二、填空题(共8题;共8分)8.求不等式2x−3>x的解集________.【答案】x>3【考点】解一元一次不等式【解析】【解答】解:2x−3>x,移项解得:x>3,故答案是:x>3.【分析】先移项,再合并同类项,可求出不等式的解集.9.今年5月11日,国家统计局公布了第七次全国人口普查的结果,我国现有人口141178万人.用科学计数法表示此数为________人.【答案】1.41178×109【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:141178万=1411780000=1.41178×109.故答案为:1.41178×109.【分析】根据科学记数法的表示形式为:a×10n,其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1.10.在某次体育测试中,甲、乙两班成绩的平均数、中位数、方差如下表所示,规定学生个人成绩大于90分为优秀,则甲、乙两班中优秀人数更多的是________班.【答案】甲【考点】分析数据的波动程度,分析数据的集中趋势【解析】【解答】解:甲、乙两个班参赛人数都为45人,由甲、乙两班成绩的中位数可知,甲班的优生人数大于等于23 人,乙班的小于等于22人,则甲班的优生人数较多,故答案为:甲.【分析】利用中位数的意义及甲乙两班的中位数,可作出判断.11.分式方程1x +1x−1=x+2x(x−1)的解为________.【答案】x=3【考点】解分式方程【解析】【解答】解:1x+1x−1=x+2x(x−1)通分得:2x−1x(x−1)=x+2x(x−1),移项得:x−3x(x−1)=0,∴x−3=0,解得:x=3,经检验,x=3时,x(x−1)=6≠0,∴x=3是分式方程的解,故答案是:x=3.【分析】将分式方程转化为整式方程,求出整式方程的解,再进行检验,可得方程的解.12.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=80°,则∠BCD的度数是________.【答案】140°【考点】圆周角定理,圆内接四边形的性质【解析】【解答】解:∵∠BOD=80°,∴∠A=40°,∵四边形ABCD是⊙O的内接四边形,∴∠BCD=180°-40°=140°,故答案为140°.【分析】利用一条弧所对圆周角等于圆心角的一半,可求出∠A的度数;再利用圆内接四边形的对角互补,可求出∠BCD的度数.13.如图.在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若CD=3,BD=5,则BE的长为________.【答案】4【考点】勾股定理,三角形全等的判定(AAS)【解析】【解答】解:由题意:AD平分∠CAB,DE⊥AB于E,∴∠CAD=∠EAD,∠AED=90°,又∵AD为公共边,△ACD≌△AED(AAS),∴CD=DE=3,在Rt△DEB中,BD=5,由勾股定理得:BE=√BD2−DE2=√52−32=4,故答案是:4.【分析】利用角平分线的定义及垂直的定义可证得∠CAD=∠EAD,∠AED=∠C=90°,利用AAS证明△ACD≌△AED,利用全等三角形的性质可求出DE的长;再利用勾股定理求出BE的长.14.刘凯有蓝、红、绿、黑四种颜色的弹珠,总数不超过50个,其中16为红珠,14为绿珠,有8个黑珠.问刘凯的蓝珠最多有________个.【答案】21【考点】简单事件概率的计算【解析】【解答】解:设弹珠的总数为x个, 蓝珠有y个,根据题意得,{16x +14x +8+y =x ①x ≤50②, 由①得, x =96+12y 7 , 结合②得, 96+12y 7≤50 解得, y ≤2116所以,刘凯的蓝珠最多有21个.故答案为:21.【分析】设弹珠的总数为x 个, 蓝珠有y 个,根据题意列出关于x ,y 的方程,根据总数不超过50个,可知x≤50,由此可求出y 的最大整数解.15.如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有 1×1 个正方形,所有线段的和为4,第二个图形有 2×2 个小正方形,所有线段的和为12,第三个图形有 3×3 个小正方形,所有线段的和为24,按此规律,则第n 个网格所有线段的和为________.(用含n 的代数式表示)【答案】 2n 2+2n【考点】探索图形规律【解析】【解答】解:观察图形可知:第1个图案由1个小正方形组成,共用的木条根数 S 1=4×1=2×2×1,第2个图案由4个小正方形组成,共用的木条根数 S 2=6×2=2×3×2,第3个图案由9个小正方形组成,共用的木条根数 S 3=8×3=2×4×3,第4个图案由16个小正方形组成,共用的木条根数 S 4=10×4=2×5×4,…由此发现规律是:第n 个图案由n 2个小正方形组成,共用的木条根数 S n =2(n +1)·n =2n 2+2n,故答案为:2n 2+2n.【分析】观察图形,分别求出第1个图案共用的木条根数 ;第2个图案共用的木条根数 ;第3个图案共用的木条根数 ;第4个图案共用的木条根数 … , 由此可得到第n 个网格所有线段的和.三、解答题(共10题;共95分)16.计算: 20210+3−1⋅√9−√2sin45° .【答案】 解: 20210+3−1⋅√9−√2sin45°=1+33−√2×√22=1+1−1=1【考点】实数的运算,0指数幂的运算性质,负整数指数幂的运算性质,特殊角的三角函数值【解析】【分析】先算乘方和开方运算,同时代入特殊角的三角函数值;再算乘法运算,然后利用有理数的加减法法则进行计算.17.解方程:x2−x−2=0【答案】解:由原方程,得:(x+1)(x﹣2)=0,解得:x1=2,x2=﹣1【考点】因式分解法解一元二次方程【解析】【分析】观察方程的特点:右边为0,左边可以分解因式,因此利用因式分解法求出方程的解.18.化简:(aa−1+5a+9a2−1)÷a+3a−1【答案】解:(aa−1+5a+9a2−1)÷a+3a−1=(a2+aa2−1+5a+9a2−1)×a−1a+3=a2+6a+9(a+1)(a−1)×a−1a+3=(a+3)2(a+1)(a−1)×a−1a+3=a+3a+1【考点】分式的混合运算【解析】【分析】将括号里的分式通分计算,再将分式除法转化为乘法运算;然后约分化简.19.如图,在Rt△AOB中,AO⊥BO. AB⊥y轴,O为坐标原点,A的坐标为(n,√3),反比例函数y1=k1x 的图象的一支过A点,反比例函数y2=k2x的图象的一支过B点,过A作AH⊥x轴于H,若△AOH的面积为√32.(1)求n的值;(2)求反比例函数y2的解析式.【答案】(1)解:∵A (n,√3),且AH⊥x轴∴AH= √3,OH=n又△AOH的面积为√32.∴12AH·OH=√32,即12×√3×n=√32解得,n=1(2)解:由(1)得,AH= √3,OH=1∴AO=2如图,∵AO⊥BO,AB⊥y轴,∴∠AEO=∠AOB=90°,四边形AHOE是矩形,∴AE=OH=1又∠BAO=∠OAE∴ΔAOE∼ΔABO∴AOAB =AEAO,即:2BE+1=12解得,BE=3∴B(-3,1)∵B在反比例函数y2=k2x的图象上,∴k2=−3×1=−3∴y2=−3x【考点】待定系数法求反比例函数解析式,相似三角形的判定与性质,反比例函数图象上点的坐标特征【解析】【分析】(1)利用点A的坐标可得到AH,OH的长,利用三角形的面积公式建立关于n的方程,解方程可求出n的值.(2)利用已知条件可证得四边形AHOE是矩形,利用矩形的性质可证得AE=OH,再利用有两组对应角相等的两个三角形相似,可得到△AOE∽△ABO,利用相似三角形的对应边成比例可求出BE的长,即可得到点B的坐标;再利用待定系数法求出反比例函数y2的解析式.20.某汽车贸易公司销售A、B两种型号的新能源汽车,A型车进货价格为每台12万元,B型车进货价格为每台15万元,该公司销售2台A型车和5台B型车,可获利3.1万元,销售1台A型车和2台B型车,可获利1.3万元.(1)求销售一台A型、一台B型新能源汽车的利润各是多少万元?(2)该公司准备用不超过300万元资金,采购A、B两种新能源汽车共22台,问最少需要采购A型新能源汽车多少台?【答案】(1)解:设每台A型车的利润为x万元,每台B型车的利润为y万元,根据题意得,{2x +5y =3.1x +2y =1.3解得, {x =0.3y =0.5答:销售每台A 型车的利润为0.3万元,每台B 型车的利润为0.5万元(2)解:因为每台A 型车的采购价为:12万元,每台B 型车的采购价为:15万元,设最少需要采购A 型新能源汽车m 台,则需要采购B 型新能源汽车(22-m)台,根据题意得,12m +15×(22−m)≤300∴−3m ≤−30,解得, m ≥10∵m 是整数,∴m 的最小整数值为10,即,最少需要采购A 型新能源汽车10台.【考点】一元一次不等式的应用,二元一次方程组的实际应用-销售问题【解析】【分析】(1)2×每一辆A 型车的利润+5×每一辆A 型车的利润=3.1;1×每一辆A 型车的利润+2×每一辆A 型车的利润=1.3;再设未知数,列方程组,然后求出方程组的解.(2)此题的等量关系为:A 新能源汽车的数量+B 两种新能源汽车的数量=22;不等关系为:该公司准备的资金≤300;设未知数,列出不等式,然后求出不等式的最小整数解.21.今年是建党100周年,学校新装了国旗旗杆(如图所示),星期一该校全体学生在国旗前举行了升旗仪式.仪式结束后,站在国旗正前方的小明在A 处测得国旗D 处的仰角为 45° ,站在同一队列B 处的小刚测得国旗C 处的仰角为 23° ,已知小明目高 AE =1.4 米,距旗杆 CG 的距离为15.8米,小刚目高 BF =1.8 米,距小明24.2米,求国旗的宽度 CD 是多少米?(最后结果保留一位小数)(参考数据: sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245 )【答案】 解:由题意得,四边形GAEM 、GBFN 是矩形,∴ME=GA=15.8(米),FN=GB=GA+BA=15.8+24.2=40(米),MG=AE=1.4(米),NG=BF=1.8(米), 在Rt △DME 中, ∠DME =90°,∠DEF =45°∴ ∠EDM =45°∴ DM =ME =15.8 (米),∴DG=DM+MG=15.8+1.4=17.2(米);在Rt△CNF中,∠CNF=90°,∠CFN=23°∴tan23°=CN,即CN=FN·tan23°=40×0.4245≈17.0(米),FN∴CG=CN+NG=17.0+1.8=18.8(米),∴CD=CG−DG=18.8−17.2=1.6(米)答:国旗的宽度CD是1.6米。
2021年湖南省中考数学真题分类汇编专题5四边形(解析版)
2021湖南省11地市中考数学7大专题分类解析汇编专题5 四边形一、选择题1.(2019湖南张家界)如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,那么点A2019的坐标是()A.(,﹣)B.(1,0)C.(﹣,﹣)D.(0,﹣1)【答案】A.【解析】解:∵四边形OABC是正方形,且OA=1,∴A(0,1),∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,∴A1(,),A2(1,0),A3(,﹣),…,发现是8次一循环,所以2019÷8=252 (3)∴点A2019的坐标为(,﹣)故选:A.二、填空题2.(2019湖南娄底)如图,要使平行四边形ABCD是矩形,则应添加的条件是(添加一个条件即可).【答案】∠ABC =90°或 AC=BD .【解析】解:根据矩形的判定定理:对角线相等的平行四边形是矩形,有一个角是直角的平行四边形是矩形;故添加条件:∠ABC =90°或 AC=BD .故答案为:∠ABC =90°或 AC=BD .3.(2019湖南娄底)如图,平行四边形ABCD 的对角线 AC 、BD 交于点 O ,点 E 是 AD 的中点,△BCD 的周长为 18,则△DEO 的周长是 .【答案】9.【解析】解:∵E 为 AD 中点,四边形 ABCD 是平行四边形,∴DE = 12AD = 12BC ,DO =12BD ,AO=CO , ∴OE =12CD , ∵△BCD 的周长为 18,∴BD +DC +B=18,∴△DEO 的周长是 DE +OE +DO =12(BC +DC +BD )=12×18=9, 故答案为:9. 4.(2019湖南邵阳)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a =6,弦c =10,则小正方形ABCD 的面积是 .【答案】4.【解析】解:∵勾a =6,弦c =10,∴股==8,∴小正方形的边长=8﹣6=2,∴小正方形的面积=22=4.故答案是:4.5.(2019湖南张家界)如图:正方形ABCD的边长为1,点E,F分别为BC,CD边的中点,连接AE,BF交于点P,连接PD,则tan∠APD=.【答案】2.【解析】解:连接AF,∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BPE=∠APF=90°,∵∠ADF=90°,∴∠ADF+∠APF=180°,∴A、P、F、D四点共圆,∴∠AFD=∠APD,∴tan∠APD=tan∠AFD==2,故答案为:2.6.(2019湖南常德)规定:如果一个四边形有一组对边平行,一组邻边相等,那么称此四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M、N 的坐标分别为(0,1),(0,﹣1),P是二次函数y=x2的图象上在第一象限内的任意一点,PQ垂直直线y=﹣1于点Q,则四边形PMNQ是广义菱形.其中正确的是.(填序号)【答案】①②④.【解析】解:①根据广义菱形的定义,正方形和菱形都有一组对边平行,一组邻边相等,①正确;②平行四边形有一组对边平行,没有一组邻边相等,②错误;③由给出条件无法得到一组对边平行,③错误;④设点P(m,m2),则Q(m,﹣1),∴MP==,PQ=+1,∵点P在第一象限,∴m>0,∴MP=+1,∴MP=PQ,又∵MN∥PQ,∴四边形PMNQ是广义菱形.④正确;故答案为①②④.三、解答题7.(2019湖南郴州)如图,平行四边形ABCD中,点E是边AD的中点,连接CE并延长交BA的延长线于点F,连接AC,DF.求证:四边形ACDF是平行四边形.【答案】见解析.【解析】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠F AE=∠CDE,∵E是AD的中点,∴AE=DE,又∵∠FEA=∠CED,∴△F AE≌△CDE(ASA),∴CD=F A,又∵CD∥AF,∴四边形ACDF是平行四边形.8.(2019湖南岳阳)如图,在菱形ABCD中,点E、F分别为AD、CD边上的点,DE=DF,求证:∠1=∠2.【答案】见解析.【解析】证明:∵四边形ABCD是菱形,∴AD=CD,在△ADF和△CDE中,,∴△ADF≌△CDE(SAS),∴∠1=∠2.9.(2019湖南怀化)已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,E,F分别为垂足.(1)求证:△ABE≌△CDF;(2)求证:四边形AECF是矩形.【答案】(1)见解析;(2)见解析.【解析】(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,AD∥BC,∵AE⊥BC,CF⊥AD,∴∠AEB=∠AEC=∠CFD=∠AFC=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS);(2)证明:∵AD∥BC,∴∠EAF=∠AEB=90°,∴∠EAF=∠AEC=∠AFC=90°,∴四边形AECF是矩形.10.(2019湖南湘西州)如图,在正方形ABCD中,点E,F分别在边CD,AD上,且AF =CE.(1)求证:△ABF≌△CBE;(2)若AB=4,AF=1,求四边形BEDF的面积.【答案】(1)见解析;(2)12.【解答】解:(1)在△ABF和△CBE中,∴△ABF≌△CBE(SAS);(2)由已知可得正方形ABCD面积为16,△ABF面积=△CBE面积=12×4×1=2.所以四边形BEDF的面积为16﹣2×2=12.11.(2019湖南张家界)如图,在平行四边形ABCD中,连接对角线AC,延长AB至点E,使BE=AB,连接DE,分别交BC,AC交于点F,G.(1)求证:BF=CF;(2)若BC=6,DG=4,求FG的长.【答案】(1)见解析;(2)2.【解析】(1)证明:∵四边形ABCD是平行四边形,∴AD∥CD,AD=BC,∴△EBF∽△EAD,∴==12,∴BF=12AD=12BC,∴BF=CF;(2)解:∵四边形ABCD是平行四边形,∴AD∥CD,∴△FGC∽△DGA,∴=,即=12,解得,FG=2.12.(2019湖南株洲)如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=12,求正方形OEFG的边长.【答案】(1)见解析;(2)2.【解析】解:(1)∵正方形ABCD与正方形OEFG,对角线AC、BD ∴DO=OC∵DB⊥AC,∴∠DOA=∠DOC=90°∵∠GOE=90°∴∠GOD+∠DOE=∠DOE+∠COE=90°∴∠GOD=∠COE∵GO=OE∴在△DOG和△COE中∴△DOG≌△COE(SAS)(2)如图,过点M作MH⊥DO交DO于点H∵AM=12,DA=2∴DM=∵∠MDB=45°∴MH=DH=sin45°•DM=,DO=cos45°•DA=∴HO=DO﹣DH=﹣=∴在Rt△MHO中,由勾股定理得MO===∵DG⊥BD,MH⊥DO∴MH∥DG∴易证△OHM∽△ODG∴===,得GO=2则正方形OEFG的边长为2.13.(2019湖南郴州)如图1,矩形ABCD中,点E为AB边上的动点(不与A,B重合),把△ADE沿DE翻折,点A的对应点为A1,延长EA1交直线DC于点F,再把∠BEF折叠,使点B的对应点B1落在EF上,折痕EH交直线BC于点H.(1)求证:△A1DE∽△B1EH;(2)如图2,直线MN是矩形ABCD的对称轴,若点A1恰好落在直线MN上,试判断△DEF 的形状,并说明理由;(3)如图3,在(2)的条件下,点G为△DEF内一点,且∠DGF=150°,试探究DG,EG,FG的数量关系.【答案】(1)见解析;(2)△DEF是等边三角形,理由见解析;(3)DG2+GF2=GE2.【解析】解:(1)证明:由折叠的性质可知:∠DAE=∠DA1E=90°,∠EBH=∠EB1H=90°,∠AED=∠A1ED,∠BEH=∠B1EH,∴∠DEA1+∠HEB1=90°.又∵∠HEB1+∠EHB1=90°,∴∠DEA1=∠EHB1,∴△A1DE∽△B1EH;(2)结论:△DEF是等边三角形;理由如下:∵直线MN是矩形ABCD的对称轴,∴点A1是EF的中点,即A1E=A1F,∴△A1DE≌△A1DF(SAS),∴DE=DF,∠FDA1=∠EDA1,又∵△ADE≌△A1DE,∠ADF=90°.∴∠ADE=∠EDA1=∠FDA1=30°,∴∠EDF=60°,∴△DEF是等边三角形;(3)DG,EG,FG的数量关系是DG2+GF2=GE2,理由如下:由(2)可知△DEF是等边三角形;将△DGE逆时针旋转60°到△DG'F位置,如解图(1),∴G'F=GE,DG'=DG,∠GDG'=60°,∴△DGG'是等边三角形,∴GG'=DG,∠DGG'=60°,∵∠DGF=150°,∴∠G'GF=90°,∴G'G2+GF2=G'F2,∴DG2+GF2=GE2,14.(2019湖南益阳)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.【答案】(1)(2,3+2);(2)OA=3;(3)当O、M、C三点在同一直线时,OC有最大值8,cos∠OAD=.【解析】解:(1)如图1,过点C作CE⊥y轴于点E,∵矩形ABCD中,CD⊥AD,∴∠CDE+∠ADO=90°,又∵∠OAD+∠ADO=90°,∴∠CDE=∠OAD=30°,∴在Rt△CED中,CE=CD=2,DE==2,在Rt△OAD中,∠OAD=30°,∴OD=AD=3,∴点C的坐标为(2,3+2);(2)∵M为AD的中点,∴DM=3,S△DCM=6,又S四边形OMCD=,∴S△ODM=,∴S△OAD=9,设OA=x、OD=y,则x2+y2=36,12xy=9,∴x2+y2=2xy,即x=y,将x=y代入x2+y2=36得x2=18,解得x=3(负值舍去),∴OA=3;(3)OC的最大值为8,如图2,M为AD的中点,∴OM=3,CM==5,∴OC≤OM+CM=8,当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,过点O作ON⊥AD,垂足为N,∵∠CDM =∠ONM =90°,∠CMD =∠OMN ,∴△CMD ∽△OMN ,∴==,即==, 解得MN =,ON =,∴AN =AM ﹣MN =,在Rt △OAN 中,OA ==, ∴cos ∠OAD ==. 15.(2019湖南岳阳)操作体验:如图,在矩形ABCD 中,点E 、F 分别在边AD 、BC 上,将矩形ABCD 沿直线EF 折叠,使点D 恰好与点B 重合,点C 落在点C ′处.点P 为直线EF 上一动点(不与E 、F 重合),过点P 分别作直线BE 、BF 的垂线,垂足分别为点M 和N ,以PM 、PN 为邻边构造平行四边形PMQN .(1)如图1,求证:BE =BF ;(2)特例感知:如图2,若DE =5,CF =2,当点P 在线段EF 上运动时,求平行四边形PMQN 的周长;(3)类比探究:若DE =a ,CF =b .①如图3,当点P 在线段EF 的延长线上运动时,试用含a 、b 的式子表示QM 与QN 之间的数量关系,并证明;②如图4,当点P 在线段FE 的延长线上运动时,请直接用含a 、b 的式子表示QM 与QN 之间的数量关系.(不要求写证明过程)【答案】(1)见解析;(2)2;(3)①QN ﹣QM =22a b -,证明见解析;②QM ﹣QN =22a b -.【解析】(1)证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,∴∠DEF=∠EFB,由翻折可知:∠DEF=∠BEF,∴∠BEF=∠EFB,∴BE=BF.(2)解:如图2中,连接BP,作EH⊥BC于H,则四边形ABHE是矩形,EH=AB.∵DE=EB=BF=5,CF=2,∴AD=BC=7,AE=2,在Rt△ABE中,∵∠A=90°,BE=5,AE=2,∴AB==,∵S△BEF=S△PBE+S△PBF,PM⊥BE,PN⊥BF,∴12•BF•EH=12•BE•PM+12•BF•PN,∵BE=BF,∴PM+PN=EH=,∵四边形PMQN是平行四边形,∴四边形PMQN的周长=2(PM+PN)=2.(3)①证明:如图3中,连接BP,作EH⊥BC于H.∵ED=EB=BF=a,CF=b,∴AD=BC=a+b,∴AE=AD﹣DE=b,∴EH=AB∵S△EBP﹣S△BFP=S△EBF,∴12BE•PM﹣12•BF•PN=12•BF•EH,∵BE=BF,∴PM﹣PN=EH∵四边形PMQN是平行四边形,∴QN﹣QM=(PM﹣PN②如图4,当点P在线段FE的延长线上运动时,同法可证:QM﹣QN=PN﹣PM。
湖南省2019-2021年3年中考真题数学分项汇编--专题11 二次函数(解答题)(解析版)
专题11 二次函数(解答题)1.(2021·湖南怀化市·中考真题)某超市从厂家购进A 、B 两种型号的水杯,两次购进水杯的情况如下表:(1)求A 、B 两种型号的水杯进价各是多少元?(2)在销售过程中,A 型水杯因为物美价廉而更受消费者喜欢.为了增大B 型水杯的销售量,超市决定对B 型水杯进行降价销售,当销售价为44元时,每天可以售出20个,每降价1元,每天将多售出5个,请问超市应将B 型水杯降价多少元时,每天售出B 型水杯的利润达到最大?最大利润是多少?(3)第三次进货用10000元钱购进这两种水杯,如果每销售出一个A 型水杯可获利10元,售出一个B 型水杯可获利9元,超市决定每售出一个A 型水杯就为当地“新冠疫情防控”捐b 元用于购买防控物资.若A 、B 两种型号的水杯在全部售出的情况下,捐款后所得的利润始终不变,此时b 为多少?利润为多少? 【答案】(1)A 型号水杯进价为20元,B 型号水杯进价为30元;(2)超市应将B 型水杯降价5元后,每天售出B 型水杯的利润达到最大,最大利润为405元;(3)A ,B 两种杯子全部售出,捐款后利润不变,此时b 为4元,利润为3000元. 【分析】(1)主要运用二元一次方程组,设A 型号水杯为x 元,B 型号水杯为y 元,根据表格即可得出方程组,解出二元一次方程组即可得A 、B 型号水杯的单价;(2)主要运用二次函数,由题意可设:超市应将B 型水杯降价z 元后,每天售出B 型水杯的利润达到最大,最大利润为w ,每个水杯的利润为()4430z --元;每降价1元,多售出5个,可得售出的数量为()205z +个,根据:利润=(售价-进价)×数量,可确定函数关系式,依据二次函数的基本性质,开口向下,在对称轴处取得最大值,即可得出答案;(3)根据(1)A 型号水杯为20元,B 型号水杯为30元.设10000元购买A 型水杯m 个,B 型水杯n 个,所得利润为W 元,可列出方程组,利用代入消元法化简得到利润W 的函数关系式,由于利润不变,所以令未知项的系数为0,即可求出b ,W . 【详解】(1)解:设A 型号水杯进价为x 元,B 型号水杯进价为y 元,根据题意可得:100200800020030013000x y x y +=⎧⎨+=⎩,解得:2030x y =⎧⎨=⎩,∴A 型号水杯进价为20元,B 型号水杯进价为30元.(2)设:超市应将B 型水杯降价z 元后,每天售出B 型水杯的利润达到最大,最大利润为w , 根据题意可得:()()4430205w z z =--+, 化简得:2550280w z z =-++, 当()505225b z a =-=-=⨯-时, 255505280405max w =-⨯+⨯+=,∴超市应将B 型水杯降价5元后,每天售出B 型水杯的利润达到最大,最大利润为405元. (3)设购买A 型水杯m 个,B 型水杯n 个,所得利润为W 元,根据题意可得:()203010000109m n W b m n +=⎧⎨=-+⎩①② 将①代入②可得:()100002010930mW b m -=-+⨯,化简得:()()106300043000W b m b m =--+=-+, 使得A ,B 两种杯子全部售出后,捐款后所得利润不变, 则40b -=,得4b =, 当4b =时,3000W =,∴A ,B 两种杯子全部售出,捐款后利润不变,此时b 为4元,利润为3000元. 【点睛】题目主要考察二元一次方程、一元二次函数的以及一次函数的应用,难点是对题意的理解及对函数和方程的综合运用.2.(2021·湖南中考真题)某商店从厂家以每件2元的价格购进一批商品,在市场试销中发现,此商品的月销售量y (单位:万件)与销售单价x (单位:元)之间有如下表所示关系:(1)根据表中的数据,在图中描出实数对(,)x y 所对应的点,并画出y 关于x 的函数图象; (2)根据画出的函数图象,求出y 关于x 的函数表达式; (3)设经营此商品的月销售利润为P (单位:万元). ①写出P 关于x 的函数表达式;②该商店计划从这批商品获得的月销售利润为10万元(不计其它成本),若物价局限定商品的销售单价不.得超过...进价的200%,则此时的销售单价应定为多少元? 【答案】(1)图象见详解;(2)216y x =-+;(3)①222032P x x =-+-;②销售单价应定为3元. 【分析】(1)由题意可直接进行作图;(2)由图象可得y 与x 满足一次函数的关系,所以设其关系式为y kx b =+,然后任意代入表格中的两组数据进行求解即可;(3)①由题意易得()2P x y =-,然后由(2)可进行求解;②由①及题意可得22203210x x -+-=,然后求解,进而根据销售单价不得超过进价的200%可求解. 【详解】解:(1)y 关于x 的函数图象如图所示:(2)由(1)可设y 与x 的函数关系式为y kx b =+,则由表格可把()()4,8,5,6代入得:4856k b k b +=⎧⎨+=⎩,解得:216k b =-⎧⎨=⎩, ∴y 与x 的函数关系式为216y x =-+; (3)①由(2)及题意可得:()()()22221622032P x y x x x x =-=--+=-+-; ∴P 关于x 的函数表达式为222032P x x =-+-; ②由题意得:2200x ≤⨯%,即4x ≤, ∴22203210x x -+-=, 解得:123,7x x ==, ∴3x =;答:此时的销售单价应定为3元. 【点睛】本题主要考查二次函数与一次函数的应用,熟练掌握二次函数与一次函数的应用是解题的关键.3.(2021·湖南永州市·中考真题)已知关于x 的二次函数21y x bx c =++(实数b ,c 为常数).(1)若二次函数的图象经过点(0,4),对称轴为1x =,求此二次函数的表达式; (2)若20b c -=,当3b x b -≤≤时,二次函数的最小值为21,求b 的值;(3)记关于x 的二次函数222y x x m =++,若在(1)的条件下,当01x ≤≤时,总有21y y ≥,求实数m 的最小值.【答案】(1)2124y x x -=+;(2)4;(3)4. 【分析】(1)将点(0,4)代入二次函数的解析式可得c 的值,根据二次函数的对称轴可得b 的值,由此即可得; (2)先求出二次函数的对称轴为2bx =-,再分0b ≤,02b <<和2b ≥三种情况,分别利用二次函数的性质可得一个关于b 的一元二次方程,解方程即可得;(3)先根据21y y ≥可得2340x x m ++-≥,令2334y x x m =++-,再根据二次函数的性质列出不等式,求解即可得. 【详解】解:(1)将点(0,4)代入21y x bx c =++得:4c =, 二次函数的对称轴为1x =,12b∴-=,解得2b =-, 则此二次函数的表达式为2124y x x -=+; (2)20b c -=,即2c b =,222213()24b y x bx b x b =++=++∴,则此二次函数的对称轴为2bx =-,由题意,分以下三种情况: ①当2bb ≤-,即0b ≤时, 在3b x b -≤≤内,1y 随x 的增大而减小, 则当x b =时,1y 取得最小值, 因此有22221b b b ++=,解得b =0b =>(不符题设,舍去); ②当32bb b -<-<,即02b <<时,在32b b x -≤≤-内,1y 随x 的增大而减小;在2bx b -<≤内,1y 随x 的增大而增大, 则当2bx =-时,1y 取得最小值, 因此有23214b =,解得2b =>或0b =-(均不符题设,舍去); ③当32bb -≥-,即2b ≥时, 在3b x b -≤≤内,1y 随x 的增大而增大, 则当3x b =-时,1y 取得最小值,因此有223(3)2124b b b -++=, 解得4b =或12b =-<(不符题设,舍去),综上,b 的值为4;(3)由(1)可知,2124y x x -=+,由21y y ≥得:22224x x m x x ++≥-+,即2340x x m ++-≥, 令2334y x x m =++-,在01x ≤≤内,3y 随x 的增大而增大,要使得当01x ≤≤时,总有23340y x x m =++-≥,则只需当0x =时,30y ≥即可,因此有40m -≥, 解得4m ≥,则实数m 的最小值为4. 【点睛】本题考查了二次函数的图象与性质、解一元二次方程等知识点,较难的是题(2),正确分三种情况讨论是解题关键.4.(2021·湖南长沙市·中考真题)我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于y 轴对称,则把该函数称之为“T 函数”,其图象上关于y 轴对称的不同两点叫做一对“T 点”.根据该约定,完成下列各题.(1)若点()1,A r 与点(),4B s 是关于x 的“T 函数”()()240,0,0,.x x y tx x t t ⎧-<⎪=⎨⎪≥≠⎩是常数的图象上的一对“T 点”,则r =______,s =______,t =______(将正确答案填在相应的横线上);(2)关于x 的函数y kx p =+(k ,p 是常数)是“T 函数”吗?如果是,指出它有多少对“T 点”;如果不是,请说明理由;(3)若关于x 的“T 函数”2y ax bx c =++(0a >,且a ,b ,c 是常数)经过坐标原点O ,且与直线:l y mx n =+(0m ≠,0n >,且m ,n 是常数)交于()11,M x y ,()22,N x y 两点,当1x ,2x 满足()11211x x --+=时,直线l 是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.【答案】(1)4,1,4-;(2)当0k ≠时,关于x 的函数y kx p =+(,k p 是常数)不是“T 函数”,理由见解析;当0k =时,关于x 的函数y kx p =+(,k p 是常数)是“T 函数”,它有无数对“T 点”;(3)直线l 总经过一定点,该定点的坐标为(1,0). 【分析】(1)先根据关于y 轴对称的点坐标变换规律可得,r s 的值,从而可得点A 的坐标,再将点A 的坐标代入“T 函数”即可得;(2)分0k ≠和0k =两种情况,当0k ≠时,设点000(,)(0)x y x ≠与点00(,)x y -是一对“T 点”,将它们代入函数解析式可求出0k =,与0k ≠矛盾;当0k =时,y p =是一条平行于x 轴的直线,是“T 函数”,且有无数对“T 点”;(3)先将点(0,0)O 代入2y ax bx c =++可得0c,再根据“T 函数”的定义可得0b =,从而可得2y ax =,与直线y mx n =+联立可得12,x x 是方程20mx n ax --=的两实数根,然后利用根与系数的关系可得1212,m n x x x x a a+==-,最后根据()11211x x --+=化简可得n m =-,从而可得y mx m =-,由此即可得出答案. 【详解】解:(1)由题意得:点()1,A r 与点(),4B s 关于y 轴对称,4,1r s ∴==-,()1,4A ∴, 10>,∴将点()1,4A 代入2y tx =得:4t =,故答案为:4,1,4-;(2)由题意,分以下两种情况: ①当0k ≠时,假设关于x 的函数y kx p =+(k ,p 是常数)是“T 函数”,点000(,)(0)x y x ≠与点00(,)x y -是其图象上的一对“T 点”,则0000kx p y kx p y +=⎧⎨-+=⎩,解得0k =,与0k ≠相矛盾,假设不成立,所以当0k ≠时,关于x 的函数y kx p =+(,k p 是常数)不是“T 函数”; ②当0k =时,函数y kx p p =+=是一条平行于x 轴的直线,是“T 函数”,它有无数对“T 点”;综上,当0k ≠时,关于x 的函数y kx p =+(,k p 是常数)不是“T 函数”;当0k =时,关于x 的函数y kx p =+(,k p 是常数)是“T 函数”,它有无数对“T 点”;(3)由题意,将(0,0)O 代入2y ax bx c =++得:0c,2y ax bx ∴=+,设点333(,)(0)x y x ≠与点33(,)x y -是“T 函数”2y ax bx =+图象上的一对“T 点”,则23332333ax bx y ax bx y ⎧+=⎨-=⎩,解得0b =, 2(0)y ax a ∴=>,联立2y ax y mx n⎧=⎨=+⎩得:20mx n ax --=,“T 函数”2y ax =与直线y mx n =+交于点()11,M x y ,()22,N x y ,12,x x ∴是关于x 的一元二次方程20mx n ax --=的两个不相等的实数根,1212,m n x x x x a a ∴+==-, ()11211x x --+=,2211x x x x +=∴,即m na a=-, 解得n m =-,则直线l 的解析式为y mx m =-, 当1x =时,0y m m =-=,因此,直线l 总经过一定点,该定点的坐标为(1,0). 【点睛】本题考查了关于y 轴对称的点坐标变换规律、二次函数与一次函数的综合、一元二次方程根与系数的关系等知识点,掌握理解“T 函数”和“T 点”的定义是解题关键.5.(2021·湖南株洲市·中考真题)已知二次函数()20y ax bx c a =++>.(1)若12a =,2b c ==-,求方程20ax bx c ++=的根的判别式的值; (2)如图所示,该二次函数的图像与x 轴交于点()1,0A x 、()2,0B x ,且120x x <<,与y 轴的负半轴交于点C ,点D 在线段OC 上,连接AC 、BD ,满足 ACO ABD ∠=∠,1bc x a-+=. ①求证:AOC DOB ≅;②连接BC ,过点D 作DE BC ⊥于点E ,点()120,F x x -在y 轴的负半轴上,连接AF ,且ACO CAF CBD ∠=∠+∠,求1cx 的值. 【答案】(1)=8∆ (2)①证明见解析;②1c x =2【分析】(1)根据判别式公式代入求解即可.(2)①通过条件,得到OC=OB ,再根据ASA 即可得到两个三角形角形全等. ②通过分析条件,证明AOF DEB △△,得到AO OFDE EB=,再根据相关的线段转换长度,代入求解即可. 【详解】解:(1)当12a =,2b c ==-时,方程为:212202x x --=, ()()2214242=82b ac ∆=-=--⨯⨯-,(2)①证明:∵12b x x a +=-,且1bc x a-+=,∴2x c =-, ∴OC OB c ==, 在AOC △与DOB 中,90ACO ABDOC OBAOC DBO ⎧∠=∠⎪=⎨⎪∠=∠=⎩, ∴()AOC DOB ASA ≅△△.②解:ACO CAF CBD ∠=∠+∠,ACO CFA CAF ∠=∠+∠, ∴CFA CBD ∠=∠, ∵DE BC ⊥, ∴90DEB ∠=, 又∵90AOF ∠=, ∴AOF DEB △△, ∴AO OFDE EB=, ∵OC OB c ==,且90COB ∠=, ∴45OCB ∠=,BC =, 在DEC Rt △中,45OCB ∠=,∴DC ==,又∵AOC DOB ≅△△,∴1OD OA x ==-,又∵OC OD DC =+,∴1DC c x =-+,)122DE CE DC c x ===-+,∴))1122EB BC CE c x c x =-=--+=-+, ∵AO OF DE EB=,1122x x --= , 即:21120c c x x ⎛⎫--= ⎪⎝⎭,∴1c x =2或1c x =-1(舍), 【点睛】本题考查的是二次函数与一元二次方程的关系,韦达定理,以及一元二次方程的解法,三角形全等和相似等相关知识点,根据题意能够找见相关等量关系是解题关键 .6.(2021·湖南娄底市·中考真题)如图,在直角坐标系中,二次函数2y x bx c =++的图象与x 轴相交于点(1,0)A -和点(3,0)B ,与y 轴交于点C .(1)求b c 、的值;(2)点(,)P m n 为抛物线上的动点,过P 作x 轴的垂线交直线:l y x =于点Q .①当03m <<时,求当P 点到直线:l y x =的距离最大时m 的值;②是否存在m ,使得以点O C P Q 、、、为顶点的四边形是菱形,若不存在,请说明理由;若存在,请求出m 的值.【答案】(1)b =2-,c =3-;(2)①32m =;②不存在,理由见解析 【分析】(1)将A (-1,0),B (3,0)代入y =x 2+bx +c ,可求出答案;(2)①设点P (m ,m 2-2m -3),则点Q (m ,m ),再利用二次函数的性质即可求解;②分情况讨论,利用菱形的性质即可得出结论.【详解】解:(1)∵抛物线y =-x 2+bx +c 与x 轴交于点A (-1,0),B (3,0), ∴10930b c b c -+=⎧⎨++=⎩, 解得:23b c =-⎧⎨=-⎩, ∴b =2-,c =3-;(2)①由(1)得,抛物线的函数表达式为:y =x 223x --,设点P (m ,m 2-2m -3),则点Q (m ,m ),∵0<m <3,∴PQ =m -( m 2-2m -3)=-m 2+3m +3=-232m ⎛⎫- ⎪⎝⎭+214, ∵-1<0, ∴当32m =时,PQ 有最大值,最大值为214; ②∵抛物线的函数表达式为:y =x 2-2x -3,∴C (0,-3),∴OB =OC =3,由题意,点P (m ,m 2-2m -3),则点Q (m ,m ),∵PQ ∥OC ,当OC 为菱形的边,则PQ =OC =3,当点Q 在点P 上方时,∴PQ =2333m m -++=,即230m m -+=,∴()30m m -=,解得0m =或3m =,当0m =时,点P 与点O 重合,菱形不存在,当3m =时,点P 与点B 重合,此时BC OC =≠,菱形也不存在;当点Q 在点P 下方时,若点Q 在第三象限,如图,∵∠COQ=45°,根据菱形的性质∠COQ=∠POQ=45°,则点P与点A重合,此时OA=1≠OC=3,菱形不存在,若点Q在第一象限,如图,同理,菱形不存在,综上,不存在以点O、C、P、Q为顶点的四边形是菱形.【点睛】本题是二次函数综合题,考查的是二次函数的性质,菱形的判定和性质等知识,其中,熟练掌握方程的思想方法和分类讨论的思想方法是解题的关键.7.(2021·湖南衡阳市·中考真题)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁1,1,2021,2021……都是“雁点”.点”.例如()()(1)求函数4y x=图象上的“雁点”坐标; (2)若抛物线25y ax x c =++上有且只有一个“雁点”E ,该抛物线与x 轴交于M 、N 两点(点M 在点N 的左侧).当1a >时.①求c 的取值范围;②求EMN ∠的度数;(3)如图,抛物线2y x 2x 3=-++与x 轴交于A 、B 两点(点A 在点B 的左侧),P 是抛物线2y x 2x 3=-++上一点,连接BP ,以点P 为直角顶点,构造等腰Rt BPC △,是否存在点P ,使点C 恰好为“雁点”?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)(2,2)和(2,2)--;(2)①04c <<;②45°;(3)存在,P 点坐标为315,24⎛⎫ ⎪⎝⎭或3122⎛⎫+ ⎪ ⎪⎝⎭或312⎛⎫- ⎪⎝⎭ 【分析】(1)根据“雁点”的定义可得y =x ,再联立4y x=求出 “雁点”坐标即可; (2)根据25y ax x c =++和y =x 可得240ax x c ++=,再利用根的判别式得到4c a =,再求出a 的取值范围;将点c 代入解析式求出点E 的坐标,令y =0,求出M 的坐标,过E 点向x 轴作垂线,垂足为H 点,如图所示,根据EH =MH 得出EM H 为等腰直角三角形,∠EMN 的度数即可求解;(3)存在,根据图1,图2,图3进行分类讨论,设C (m ,m ),P (x ,y ),根据三角形全等得出边相等的关系,再逐步求解,代入解析式得出点P 的坐标.【详解】解:(1)联立4y x y x⎧=⎪⎨⎪=⎩,解得22x y =⎧⎨=⎩或22x y =-⎧⎨=-⎩ 即:函数4y x=上的雁点坐标为(2,2)和(2,2)--. (2)① 联立25y x y ax x c =⎧⎨=++⎩得240ax x c ++=∵ 这样的雁点E 只有一个,即该一元二次方程有两个相等的实根,∴ 2440ac ∆=-=∵ 4c a= ∵ 1a >∴ 04c <<② 将4c a =代入,得2440E E ax x a++= 解得2k x a =-,∴ 22,E a a ⎛⎫-- ⎪⎝⎭对于245y x x aα=++,令0y = 有2450ax x a++= 解得41,N M x x a a=-=-∴ 4,0M a ⎛⎫- ⎪⎝⎭过E 点向x 轴作垂线,垂足为H 点,EH =2a ,MH =242()a a a---= ∴2EH MH a ==∴ EM H 为等腰直角三角形,45EMN ∠=︒(3)存在,理由如下:如图所示:过P 作直线l 垂直于x 轴于点k ,过C 作CH ⊥PK 于点H设C (m ,m ),P (x ,y )∵ △CPB 为等腰三角形,∴PC =PB ,∠CPB =90°,∴∠KPB +∠HPC =90°,∵∠HPC +∠HCP =90°,∴∠KPB =∠HCP ,∵∠H =∠PKB =90°,∴△CHP ≌△PKB ,∴CH =PK ,HP =KB ,即3m x y m y x-=⎧⎨-=-⎩ ∴3232x y m ⎧=⎪⎪⎨⎪=-⎪⎩当32x =时,23315()23224y =-+⨯+= ∴ 315()24P ,如图2所示,同理可得:△KCP ≌△JPB∴ KP =JB ,KC =JP设P (x ,y ),C (m ,m )∴KP =x -m ,KC =y -m ,JB =y ,JP =3-x ,即3x m y y m x -=⎧⎨-=-⎩解得3232x m y ⎧=+⎪⎪⎨⎪=⎪⎩令23-232x x ++=解得12222x x ==∴3)2P或3)2P如图3所示,∵△RCP ≌△TPB∴RC =TP ,RP =TB设P (x ,y ),C (m ,m )即3y m x x m y -=-⎧⎨-=⎩解得3232x m y ⎧=+⎪⎪⎨⎪=⎪⎩令23-232x x ++=解得122=22x x = ∴ 此时P 与第②种情况重合综上所述,符合题意P 的坐标为315()24,或3)2,或3)2,【点睛】本题考查了利用待定系数法求函数解析式,图形与坐标,等腰三角形的判定与性质,二次函数的综合运用,理解题意和正确作图逐步求解是解题的关键.8.(2021·湖南张家界市·中考真题)如图,已知二次函数2y ax bx c =++的图象经过点(2,3)C -且与x 轴交于原点及点(8,0)B .(1)求二次函数的表达式;(2)求顶点A 的坐标及直线AB 的表达式;(3)判断ABO 的形状,试说明理由;(4)若点P 为O 上的动点,且O的半径为E 从点A 出发,以每秒2个单位长度的速度沿线段AP 匀速运动到点P ,再以每秒1个单位长度的速度沿线段PB 匀速运动到点B 后停止运动,求点E 的运动时间t 的最小值.【答案】(1)2124y x x -=;(2)()4,4A -,8y x =-;(3)等腰直角三角形,理由见解析;(4)【分析】(1)根据已知条件,运用待定系数法直接列方程组求解即可;(2)根据(1)中二次函数解析式,直接利用顶点坐标公式计算即可,再根据点A 、B 坐标求出AB 解析式即可;(3)根据二次函数对称性可知ABO 为等腰三角形,再根据O 、A 、B 三点坐标,求出三条线段的长,利用勾股定理验证即可;(4)根据题意可知动点E 的运动时间为12t AP PB =+,在OA 上取点D ,使OD =可证明APO △∽PDO △,根据相似三角形比例关系得12PD AP =,即12t AP PB PD PB =+=+,当B 、P 、D 三点共线时,PD PB +取得最小值,再根据等腰直角三角形的性质以及勾股定理进一步计算即可.【详解】解:(1)二次函数()20y ax bx c a =++≠的图象经过(2,3)C -,且与x 轴交于原点及点()8,0B ∴0c ,二次函数表达式可设为:()20y ax bx a =+≠将(2,3)C -,()8,0B 代入2y ax bx =+得:3420648a b a b -=+⎧⎨=+⎩解这个方程组得142a b ⎧=⎪⎨⎪=-⎩ ∵二次函数的函数表达式为2124y x x -= (2)∵点A 为二次函数图像的顶点, ∴421224b x a =-=-⨯=-,22140(2)4414444ac b y a ⨯⨯---===-⨯ ∴顶点坐标为:()4,4A -,设直线AB 的函数表达式为y kx m =+,则有:4408k m k m -=+⎧⎨=+⎩解之得:18k m =⎧⎨=-⎩∴直线AB 的函数表达式为8y x =-(3)ABC 是等腰直角三角形,过点A 作AF OB ⊥于点F ,易知其坐标为(4,0)F∵ABC 的三个顶点分别是()0,0O ,()4,4A -,()8,0B,∴808OB =-=,OA ===AB ===且满足222OB OA AB =+∴ABC 是等腰直角三角形(4)如图,以O 为圆心,P 在圆周上,依题意知:动点E 的运动时间为12t AP PB =+在OA 上取点D ,使OD =连接PD ,则在APO △和PDO △中,满足:2PO AO OD OP==,AOP POD ∠=∠, ∴APO △∽PDO △,∴2AP PO AO PD OD OP===,从而得:12PD AP = ∴12t AP PB PD PB =+=+ 显然当B 、P 、D 三点共线时,PD PB +取得最小值,过点D 作DG OB ⊥于点G ,由于OD =且ABO 为等腰直角三角形,则有1DG =,45DOG ∠=︒,∴动点E 的运动时间t 的最小值为:t DB ==== 【点睛】 本题主要考查待定系数法求函数解析式,抛物线顶点坐标,等腰直角三角形的性质与判定,相似三角形的判定与性质等知识点,将运动时间的最小值转换为线段长度的最小值是解题的关键.9.(2021·湖南常德市·中考真题)如图,在平面直角坐标系xOy 中,平行四边形ABCD 的AB 边与y 轴交于E 点,F 是AD 的中点,B 、C 、D 的坐标分别为()()()2,0,8,0,13,10-.(1)求过B 、E 、C 三点的抛物线的解析式;(2)试判断抛物线的顶点是否在直线EF 上;(3)设过F 与AB 平行的直线交y 轴于Q ,M 是线段EQ 之间的动点,射线BM 与抛物线交于另一点P ,当PBQ △的面积最大时,求P 的坐标.【答案】(1)213442y x x =-++;(2)顶点是在直线EF 上,理由见解析;(3)P 点坐标为(9,114-). 【分析】 (1)先求出A 点坐标,再求出直线AB 的解析式,进而求得E 的坐标,然后用待定系数法解答即可; (2)先求出点F 的坐标,再求出直线EF 的解析式,然后根据抛物线的解析式确定顶点坐标,然后进行判定即可;(3)设P 点坐标为(p ,()()1-p+284p -),求出直线BP 的解析式,进而求得M 的坐标;再求FQ 的解析式,确定Q 的坐标,可得|MQ |=()182p -+6,最后根据S △PBQ = S △MBQ + S △PMQ 列出关于p 的二次函数并根据二次函数的性质求最值即可.【详解】解:(1)∵平行四边形ABCD ,B 、C 、D 的坐标分别为()()()2,0,8,0,13,10-∴A (3,10),设直线AB 的解析式为y =kx +b ,则10302k b k b =+⎧⎨=-+⎩ ,解得24k b =⎧⎨=⎩, ∴直线AB 的解析式为y =2x +4,当x =0时,y =4,则E 的坐标为(0,4),设抛物线的解析式为:y =ax 2+bx +c ,()()220220884a b c a b c c ⎧=-+-+⎪=⋅++⎨⎪=⎩ ,解得14324a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩, ∴过B 、E 、C 三点的抛物线的解析式为213442y x x =-++; (2)顶点是在直线EF 上,理由如下:∵F 是AD 的中点,∴F (8,10),设直线EF 的解析式为y =mx +n ,则4108n m n =⎧⎨=+⎩,解得344m n ⎧=⎪⎨⎪=⎩, ∴直线EF 的解析式为y =34x +4, ∵213442y x x =-++, ∴抛物线的顶点坐标为(3,254), ∵254=34×3+4, ∴抛物线的顶点是否在直线EF 上;(3)∵()()21314=-x+28424y x x x =-++-,则设P 点坐标为(p ,()()1-p+284p -),直线BP 的解析式为y =dx +e , 则()()021-p+284d e p pd e =-+⎧⎪⎨-=+⎪⎩ ,解得()()184182d p e p ⎧=--⎪⎪⎨⎪=-⎪⎩, ∴直线EF 的解析式为y =()184p --x +()182p -, 当x =0时,y =()182p -,则M 点坐标为(0,()182p -), ∵AB //FQ , ∴设FQ 的解析式为y =2x +f ,则10=2×8+f ,解得f =-6,∴FQ 的解析式为y =2x -6 ,∴Q 的坐标为(0,-6),∴|MQ |=()182p -+6, ∴S △PBQ = S △MBQ + S △PMQ =1122QM OB QM PN +=()12QM OB PN + =()()1186222p p ⎡⎤-++⎢⎥⎣⎦ =219842p p -++ ∴当p =9时,PBQ △的面积最大时,∴P 点坐标为(9,114-).【点睛】本题主要考查了运用待定系数法求函数解析式、二次函数求最值等知识点,灵活求得所需的函数解析式成为解答本题的关键.10.(2021·湖南中考真题)已知函数2(0)(0)x x y x x -≤⎧=⎨>⎩的图象如图所示,点()11,A x y 在第一象限内的函数图象上.(1)若点()22,B x y 也在上述函数图象上,满足21x x <.①当214y y ==时,求12,x x 的值; ②若21x x =,设12=-w y y ,求w 的最小值;(2)过A 点作y 轴的垂线AP ,垂足为P ,点P 关于x 轴的对称点为P ',过A 点作x 轴的线AQ ,垂足为Q ,Q 关于直线'AP 的对称点为Q ',直线AQ '是否与y 轴交于某定点?若是,求出这个定点的坐标;若不是,请说明理由.【答案】(1)①122,4x x ==-;②14-;(2)直线AQ '与y 轴交于定点,定点的坐标为10,4⎛⎫ ⎪⎝⎭. 【分析】(1)①先确定20x ≤,再根据214y y ==代入求解即可得;②先确定2210,x x x <-=,从而可得21122,y x y x ==-,再代入w 可得一个关于1x 的二次函数,利用二次函数的性质即可得;(2)先分别求出点,,P P Q '的坐标,再利用待定系数法求出直线,AP QQ ''的解析式,从而可得点Q '的坐标,然后利用待定系数法求出直线AQ '的解析式,由此即可得出结论.【详解】解:(1)①对于二次函数2y x ,在0x >内,y 随x 的增大而增大,21211,40,x x x y y <>==,20x ∴≤,则当14y =时,214x =,解得12x =或120x =-<(舍去),当24y =时,24x -=,解得24x =-; ②21121,0,x x x x x <>=,2210,x x x ∴<-=,21122,y x y x ∴==-,则22121211()w y y x x x x =-=--=-, 化成顶点式为2111()24w x =--, 由二次函数的性质可知,在1>0x 内,当112x =时,w 取最小值,最小值为14-; (2)由题意,设'AP 与QQ '交于点B ,画图如下,11(x ,)A y 在已知函数的第一象限内的图象上,211y x ∴=,即211(,)A x x ,AP y ⊥轴,AQ x ⊥轴,点P 关于x 轴的对称点为P ',22111(0,),(0,),(,0)P P Q x x x '∴-,设直线'AP 的解析式为11y k x b =+,将点22111(,),(0,)P A x x x '-代入得:21111211k x b x b x ⎧+=⎨=-⎩,解得112112k x b x =⎧⎨=-⎩, 则直线'AP 的解析式为2112y x x x =-, Q 关于直线'AP 的对称点为Q ',QQ AP ''∴⊥,∴设直线QQ '的解析式为2112b x y x +=-, 将点1(,0)Q x 代入得:121201x b x -+=,解得212b =, 则直线QQ '的解析式为11212x y x +=-, 联立211121122y x x x y x x ⎧=-⎪⎨=-+⎪⎩,解得211212121(12)4141x x x x x y x ⎧+=⎪+⎪⎨⎪=⎪+⎩,即22111221141(12),41x x x B x x ⎛⎫+ ⎪++⎝⎭, 设点Q '的坐标为(,)Q m n ', 则2111212121(12)2410241m x x x x x n x ⎧++=⎪+⎪⎨+⎪=⎪+⎩,解得121212141241x m x x n x ⎧=⎪+⎪⎨⎪=⎪+⎩,即21122114142,1x x Q x x ⎛⎫' ⎪++⎝⎭, 设直线AQ '的解析式为33y k x b =+, 将点22111122112(,),1,414x x A x x Q x x ⎛⎫' ⎪++⎝⎭代入得:2313121133221124141k x b x x x k b x x ⎧+=⎪⎨+=⎪++⎩, 解得2131314414x k x b ⎧-=-⎪⎪⎨⎪=⎪⎩,则直线AQ '的解析式为21144114x y x x -=-+,当0x =时,14y =, 即直线AQ '与y 轴交于定点10,4⎛⎫ ⎪⎝⎭. 【点睛】 本题考查了二次函数与一次函数的综合、轴对称等知识点,熟练掌握待定系数法是解题关键.11.(2021·湖南邵阳市·中考真题)如图,在平面直角坐标系中,抛物线C :()20y ax bx c a =++≠经过点()1,1和()4,1.(1)求抛物线C 的对称轴.(2)当1a =-时,将抛物线C 向左平移2个单位,再向下平移1个单位,得到抛物线1C . ①求抛物线1C 的解析式.②设抛物线1C 与x 轴交于A ,B 两点(点A 在点B 的右侧),与y 轴交于点C ,连接BC .点D 为第一象限内抛物线1C 上一动点,过点D 作DE OA ⊥于点E .设点D 的横坐标为m .是否存在点D ,使得以点O ,D ,E 为顶点的三角形与BOC 相似,若存在,求出m 的值;若不存在,请说明理由.【答案】(1)x =2.5;(2)①()()=-+1-2y x x ;②1或4【分析】 (1)根据函数图像所过的点的特点结合函数性质,可知两点中点横坐标即为对称轴;(2)①根据平移可得已知点平移后点的坐标,平移过程中a 的值不发生改变,所以利用交点式可以求出函数解析式;②根据条件求出A 、B 、C 、D 四点的坐标,由条件可知三角形相似有两种情况,分别讨论两种情况,根据相似的性质可求出m 的值.【详解】解:(1)因为抛物线图像过(1,1)、(4,1)两点,这两点的纵坐标相同,根据抛物线的性质可知,对称轴是x =(1+4)÷2=2.5,;(2)①将点(1,1)、(4,1)向左平移2个单位,再向下平移1个单位,得到(-1,0),(2,0),将点(-1,0),(2,0),a=-1,根据交点式可求出C 1二次函数表达式为()()=-+1-2y x x ;②根据①中的函数关系式,可得A (2,0),B (-1,0),C (0,2),D (m ,2-++2m m ),且m >0 由图像可知∠BOC =∠DEO =90°,则以点O ,D ,E 为顶点的三角形与BOC 相似有两种情况,(i )当△ODE ∽△BCO 时, 则OE DE OB OC =,即2-++2=12m m m , 解得m =1或-2(舍),(ii )当△ODE ∽△CBO 时, 则OE DE OC OB =,即2-++2=21m m m ,解得m所以满足条件的m 的值为1 【点睛】本题主要考查了一元二次函数图形的平移、表达式求法、相似三角形等知识点,熟练运用数形结合是解决问题的关键.12.(2021·湖南湘西土家族苗族自治州·中考真题)如图,已知抛物线24y ax bx =++经过(1,0)A -,(4,0)B 两点,交y 轴于点C .(1)求抛物线的解析式;(2)连接BC ,求直线BC 的解析式;(3)请在抛物线的对称轴上找一点P ,使AP PC +的值最小,求点P 的坐标,并求出此时AP PC +的最小值;(4)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使得以A 、C 、M 、N 四点为顶点的四边形是平行四边形?若存在,求出点N 的坐标;若不存在,请说明理由.【答案】(1)234y x x =-++;(2)直线BC 的解析式为4y x =-+;(3)35,22P ⎛⎫ ⎪⎝⎭,此时AP PC +的最小值为(4)存在,()3,4N 或4⎫-⎪⎪⎝⎭.【分析】(1)把点A 、B 的坐标代入求解即可;(2)设直线BC 的解析式为y kx b =+,然后把点B 、C 的坐标代入求解即可;(3)由题意易得点A 、B 关于抛物线的对称轴对称,根据轴对称的性质可得AP PC BP PC +=+,要使AP PC +的值为最小,则需满足点B 、P 、C 三点共线时,即为BC 的长,然后问题可求解;(4)由题意可设点()()2,0,,34M m N n n n -++,然后可分①当AC 为对角线时,②当AM 为对角线时,③当AN 为对角线时,进而根据平行四边形的性质及中点坐标公式可进行求解.【详解】解:(1)∵抛物线24y ax bx =++经过()1,0A -,()4,0B 两点,∴4016440a b a b -+=⎧⎨++=⎩,解得:13a b =-⎧⎨=⎩, ∴抛物线的解析式为234y x x =-++;(2)由(1)可得抛物线的解析式为234y x x =-++,∵抛物线与y 轴的交点为C ,∴()0,4C ,设直线BC 的解析式为y kx b =+,把点B 、C 的坐标代入得:404k b b +=⎧⎨=⎩,解得:14k b =-⎧⎨=⎩, ∴直线BC 的解析式为4y x =-+;(3)由抛物线234y x x =-++可得对称轴为直线322b x a =-=,由题意可得如图所示:连接BP 、BC ,∵点A 、B 关于抛物线的对称轴对称,∴AP BP =,∴AP PC BP PC +=+,要使AP PC +的值为最小,则需满足点B 、P 、C 三点共线时,即为BC 的长,此时BC 与对称轴的交点即为所求的P 点,∵4OC OB ==,∴BC =∴AP PC +的最小值为∵点P 在直线BC 上, ∴把32x =代入得:35422y =-+=, ∴35,22P ⎛⎫ ⎪⎝⎭; (4)存在,理由如下:由题意可设点()()2,0,,34M m N n n n -++,()()1,0,0,4A C -,当以A 、C 、M 、N 四点为顶点的四边形是平行四边形,则可分:①当AC 为对角线时,如图所示:连接MN ,交AC 于点D ,∵四边形ANCM 是平行四边形,∴点D 为AC 、MN 的中点,∴根据中点坐标公式可得:A C M N A C M N x x x x y y y y +=+⎧⎨+=+⎩,即21004034m n n n -+=+⎧⎨+=-++⎩, 解得:43m n =-⎧⎨=⎩,∴()3,4N ;②当AM 为对角线时,同理可得:A M C N A M C N x x x x y y y y +=+⎧⎨+=+⎩,即21000434m n n n -+=+⎧⎨+=-++⎩,解得:n =,∴4N ⎫-⎪⎪⎝⎭;③当AN 为对角线时,同理可得:A N M C A N M C x x x x y y y y +=+⎧⎨+=+⎩,即21003440n m n n -+=+⎧⎨-++=+⎩, 解得:3n =,∴()3,4N ;∴综上所述:当以A 、C 、M 、N 四点为顶点的四边形是平行四边形,点N 的坐标为()3,4或4⎫-⎪⎪⎝⎭.【点睛】本题主要考查二次函数的综合,熟练掌握二次函数的性质与图象是解题的关键.13.(2021·湖南岳阳市·中考真题)如图,抛物线22y ax bx =++经过()1,0A -,()4,0B 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的函数表达式;(2)如图2,直线l :3y kx =+经过点A ,点P 为直线l 上的一个动点,且位于x 轴的上方,点Q 为抛物线上的一个动点,当//PQ y 轴时,作QM PQ ⊥,交抛物线于点M (点M 在点Q 的右侧),以PQ ,QM 为邻边构造矩形PQMN ,求该矩形周长的最小值;(3)如图3,设抛物线的顶点为D ,在(2)的条件下,当矩形PQMN 的周长取最小值时,抛物线上是否存在点F ,使得CBF =∠DQM ∠?若存在,请求出点F 的坐标;若不存在,请说明理由.【答案】(1)213222y x x =-++;(2)314;(3)存在,()1,0F -或52839F ⎛⎫ ⎪⎝⎭,. 【分析】(1)直接将()1,0A -,()4,0B 两点坐标代入抛物线解析式之中求出系数的值即可;(2)先利用待定系数法求出直线的解析式,再设出点P 的坐标,接着表示出Q 点和M 点的坐标后,求出线段PQ 和QM 的表达式,再求出它们和的两倍,利用配方法即可求出其最小值;(3)先利用锐角三角函数证明出CBA ∠=DQM ∠,进而得到F 点的其中一个位置,在BC 另一侧,通过构造直角三角形,利用勾股定理建立方程组,即可求出BF 与y 轴的交点,进而求出BF 的解析式,与抛物线的解析式联立,即可确定F 点的坐标.【详解】解:(1)∵抛物线22y ax bx =++经过()1,0A -,()4,0B 两点, ∴2016420a b a b -+=⎧⎨++=⎩, 解得:1232a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴该抛物线的函数表达式为:213222y x x =-++; (2)∵3y kx =+经过点A ,∴30k -+=,∴3k =,。
【中考真题】2021年湖南省长沙市中考数学试卷(附答案)
2021年湖南省长沙市中考数学试卷(附答案)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、单选题1.下列四个实数中,最大的数是( )A .3-B .1-C .πD .42.2021年5月11日,第七次全国人口普查结果发布,长沙市人口总数首次突破千万,约为10040000人,将数据10040000用科学记数法表示为( )A .61.00410⨯B .71.00410⨯C .80.100410⨯D .610.0410⨯ 3.下列几何图形中,是中心对称图形的是( )A .B .C .D .4.下列计算正确的是( )A .325a a a ⋅=B .236a a a +=C .824a a a ÷=D .()325a a = 5.如图,//AB CD ,EF 分别与AB ,CD 交于点G ,H ,100AGE ∠=°,则DHF ∠的度数为( )A .100︒B .80︒C .50︒D .40︒ 6.如图,点A ,B ,C 在⊙O 上,54BAC ∠=︒,则BOC ∠的度数为( )A .27︒B .108︒C .116︒D .128︒7.下列函数图象中,表示直线21y x =+的是( )A .B .C .D .8.“杂交水稻之父”袁隆平培育的超级杂交稻在全世界推广种植.某种植户为了考察所种植的杂交水稻苗的长势,从稻田中随机抽取9株水稻苗,测得苗高(单位:cm )分别是:22,23,24,23,24,25,26,23,25.则这组数据的众数和中位数分别是( ) A .24,25 B .23,23 C .23,24 D .24,249.有一枚质地均匀的正方体骰子,六个面上分别刻有1到6的点数.将它投掷两次,则两次掷得骰子朝上一面的点数之和为5的概率是( )A .19B .16C .14D .1310.在一次数学活动课上,某数学老师将1~10共十个整数依次写在十张不透明的卡片上(每张卡片上只写一个数字,每一个数字只写在一张卡片上,而且把写有数字的那一面朝下).他先像洗扑克牌一样打乱这些卡片的顺序,然后把甲,乙,丙,丁,戊五位同学叫到讲台上,随机地发给每位同学两张卡片,并要求他们把自己手里拿的两张卡片上的数字之和写在黑板上,写出的结果依次是:甲:11;乙:4;丙:16;丁:7;戊:17.根据以上信息,下列判断正确的是( )A .戊同学手里拿的两张卡片上的数字是8和9B .丙同学手里拿的两张卡片上的数字是9和7D .甲同学手里拿的两张卡片上的数字是2和9.二、填空题11.分解因式:22021x x -=______.12.如图,在⊙O 中,弦AB 的长为4,圆心O 到弦AB 的距离为2,则AOC ∠的度数为______.13.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,点E 是边AB 的中点,若6OE =,则BC 的长为______.14.若关于x 的方程2120x kx --=的一个根为3,则k 的值为______.15.如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,DE AB ⊥,垂足为E ,若4BC =, 1.6DE =,则BD 的长为______.16.某学校组织了主题为“保护湘江,爱护家园”的手抄报作品征集活动.先从中随机抽取了部分作品,按A ,B ,C ,D 四个等级进行评价,然后根据统计结果绘制了如下两幅不完整的统计图.那么,此次抽取的作品中,等级为B 等的作品份数为______.三、解答题17.计算:(02sin 451-++°18.先化简,再求值:()()()()233322x x x x x -++-+-,其中12x =-. 19.人教版初中数学教科书八年级上册第35-36页告诉我们作一个三角形与已知三角形全等的方法: 已知:ABC .求作:A B C ''',使得A B C '''≌ABC .作法:如图.(1)画B C BC ''=;(2)分别以点B ',C '为圆心,线段AB ,AC 长为半径画弧,两弧相交于点A '; (3)连接线段A B '',A C '',则A B C '''即为所求作的三角形.请你根据以上材料完成下列问题:(1)完成下面证明过程(将正确答案填在相应的横线上):证明:由作图可知,在A B C '''和ABC 中,,_____,_____,B C BC A B A C =⎧⎪=⎨⎪='''''⎩'∴A B C '''≌______.(2)这种作一个三角形与已知三角形全等的方法的依据是______.(填序号)①AAS ;②ASA ;③SAS ;④SSS20.“网红”长沙入选2021年“五一”假期热门旅游城市.本市某景点为吸引游客,设置了一种游戏,其规则如下:凡参与游戏的游客从一个装有12个红球和若干个白球(每个球除颜色外,其他都相同)的不透明纸箱中,随机摸出一个球,摸到红球就可免费得到一个景点吉祥物.据统计参与这种游戏的游客共有60000人,景点一共为参与该游戏的游客免费发放了景点吉祥物15000个.(1)求参与该游戏可免费得到景点吉祥物的频率;(2)请你估计纸箱中白球的数量接近多少?21.如图,的对角线,相交于点,是等边三角形,.(1)求证:ABCD 是矩形;(2)求AD 的长.22.为庆祝伟大的中国共产党成立100周年,发扬红色传统,传承红色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.(1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题?(2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?23.如图,在ABC 中,AD BC ⊥,垂足为D ,BD CD =,延长BC 至E ,使得CE CA =,连接AE .(1)求证:B ACB ∠=∠;(2)若5AB =,4=AD ,求ABE △的周长和面积.24.我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于y 轴对称,则把该函数称之为“T 函数”,其图象上关于y 轴对称的不同两点叫做一对“T 点”.根据该约定,完成下列各题.(1)若点()1,A r 与点(),4B s 是关于x 的“T 函数”()()240,0,0,.x x y tx x t t ⎧-<⎪=⎨⎪≥≠⎩是常数的图象上的一对“T 点”,则r =______,s =______,t =______(将正确答案填在相应的横线上);(2)关于x 的函数y kx p =+(k ,p 是常数)是“T 函数”吗?如果是,指出它有多少对“T 点”;如果不是,请说明理由;(3)若关于x 的“T 函数”2y ax bx c =++(0a >,且a ,b ,c 是常数)经过坐标原()22,N x y 两点,当1x ,2x 满足()11211x x --+=时,直线l 是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.25.如图,点O 为以AB 为直径的半圆的圆心,点M ,N 在直径AB 上,点P ,Q 在AB 上,四边形MNPQ 为正方形,点C 在QP 上运动(点C 与点P ,Q 不重合),连接BC 并延长交MQ 的延长线于点D ,连接AC 交MQ 于点E ,连接OQ .(1)求sin AOQ ∠的值;(2)求AM MN的值; (3)令ME x =,QD y =,直径2AB R =(0R >,R 是常数),求y 关于x 的函数解析式,并指明自变量x 的取值范围.参考答案1.D【分析】根据实数的大小比较法则即可得.【详解】解: 3.14π≈,314π∴-<-<<,即这四个实数中,最大的数是4,故选:D .【点睛】本题考查了实数的大小比较法则,熟练掌握实数的大小比较法则是解题关键.2.B【分析】根据科学记数法的定义即可得.【详解】解:科学记数法:将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法,则710040000 1.00410=⨯,故选:B .【点睛】本题考查了科学记数法,熟记定义是解题关键.3.C【分析】根据中心对称图形的定义即可得.【详解】A 、不是中心对称图形,此项不符题意;B 、不是中心对称图形,此项不符题意;C 、是中心对称图形,此项符合题意;D 、不是中心对称图形,此项不符题意;故选:C .【点睛】本题考查了中心对称图形,熟记定义是解题关键.4.A【分析】根据同底数幂的乘除法、合并同类项、幂的乘方法则逐项判断即可得.【详解】A 、325a a a ⋅=,此项正确;B 、235a a a +=,此项错误;C 、826a a a ÷=,此项错误;D 、()326a a =,此项错误;故选:A .【点睛】本题考查了同底数幂的乘除法、合并同类项、幂的乘方,熟练掌握各运算法则是解题关键.5.A【分析】先根据平行线的性质可得100CHE AGE ∠=∠=︒,再根据对顶角相等即可得.【详解】解://,100AB CD AGE ∠=︒,100CHE AGE ∴∠=∠=︒,100CHE DHF ∴∠=∠=︒(对顶角相等), 故选:A .【点睛】本题考查了平行线的性质、对顶角相等,熟练掌握平行线的性质是解题关键.6.B【分析】直接利用圆周角定理即可得.【详解】解:54BAC ∠=︒,∴由圆周角定理得:2108BOC BAC ∠=∠=︒,故选:B .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键.7.B【分析】根据一次函数的图象与性质即可得.【详解】 解:一次函数21y x =+的一次项系数为20>,y ∴随x 的增大而增大,则可排除选项,A C ,当0x =时,1y =,则可排除选项D ,故选:B .【点睛】本题考查了一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题关键. 8.C【分析】根据众数和中位数的定义即可得.【详解】解:因为23出现的次数最多,所以这组数据的众数是23,将这组数据按从小到大进行排序为22,23,23,23,24,24,25,25,26,则这组数据的中位数是24,故选:C .【点睛】本题考查了众数和中位数,熟记定义是解题关键.9.A【分析】先画出树状图,从而可得投掷两次的所有可能的结果,再找出两次掷得骰子朝上一面的点数之和为5的结果,然后利用概率公式即可得.【详解】解:由题意,画树状图如下:由此可知,投掷两次的所有可能的结果共有36种,它们每一种出现的可能性都相等;其中,两次掷得骰子朝上一面的点数之和为5的结果有4种,则所求的概率为41369P==,故选:A.【点睛】本题考查了利用列举法求概率,正确画出树状图是解题关键.10.A【分析】先根据判断出乙同学手里拿的两张卡片上的数字是1和3,从而可得判断出丁同学手里拿的两张卡片上的数字是2和5,再判断出甲同学手里拿的两张卡片上的数字是4和7,然后判断出丙同学手里拿的两张卡片上的数字是6和10,由此即可得出答案.【详解】解:由题意得:11,4,16,7,17是由110中的两个不相同的数字相加所得的数,4∴只能是1与3的和,即乙同学手里拿的两张卡片上的数字是1和3,7162534=+=+=+,∴丁同学手里拿的两张卡片上的数字是2和5,1111029384756=+=+=+=+=+,∴甲同学手里拿的两张卡片上的数字是4和7,1661079=+=+,∴丙同学手里拿的两张卡片上的数字是6和10,∴戊同学手里拿的两张卡片上的数字是8和9,故选:A .【点睛】本题考查了随机事件、等可能事件,正确列出每位同学的所有可能结果,进行逐一判断是解题关键.11.(2021)x x -【分析】利用提公因式法进行因式分解即可得.【详解】解:22021(2021)x x x x -=-,故答案为:(2021)x x -.【点睛】本题考查了利用提公因式法进行因式分解,熟练掌握提公因式法是解题关键.12.45︒【分析】 先根据垂径定理可得122AC AB ==,再根据等腰直角三角形的判定与性质即可得. 【详解】解:由题意得:OC AB ⊥,4AB =, 122AC AB ∴==, 2OC =,AC OC ∴=,Rt AOC ∴是等腰直角三角形,45AOC =∴∠︒,故答案为:45︒.【点睛】本题考查了垂径定理、等腰直角三角形的判定与性质,熟练掌握垂径定理是解题关键. 13.12【分析】先根据菱形的性质可得OA OC =,再根据三角形中位线定理即可得.【详解】 解:四边形ABCD 是菱形,OA OC ∴=,点E 是边AB 的中点,OE ∴是ABC 的中位线,22612BC OE ∴==⨯=,故答案为:12.【点睛】本题考查了菱形的性质、三角形中位线定理,熟练掌握三角形中位线定理是解题关键. 14.1-【分析】将3x =代入方程可得一个关于k 的一元一次方程,解方程即可得.【详解】解:由题意,将3x =代入方程2120x kx --=得:233120k --=,解得1k =-,故答案为:1-.【点睛】本题考查了一元二次方程的根、解一元一次方程,熟练掌握一元二次方程根的定义是解题关键.15.2.4【分析】先根据角平分线的性质可得 1.6CD DE ==,再根据线段的和差即可得.【详解】解:AD 平分BAC ∠,90C ∠=︒,DE AB ⊥, 1.6DE =,1.6CD DE ∴==,4BC=,∴=-=-=,4 1.6 2.4BD BC CD故答案为:2.4.【点睛】本题考查了角平分线的性质,熟练掌握角平分线的性质是解题关键.16.50份【分析】A C D三个先根据A等级的条形统计图和扇形统计图信息求出抽取的作品总份数,再减去,,等级的份数即可得.【详解】÷=(份),解:抽取的作品总份数为3025%120---=(份),则B等级的作品份数为12030281250故答案为:50份.【点睛】本题考查了条形统计图和扇形统计图的信息关联,熟练掌握统计调查的相关知识点是解题关键.17.5.【分析】先化简绝对值、特殊角的正弦值、零指数幂、二次根式的乘法,再计算实数的混合运算即可得.【详解】=⨯+解:原式212=+,14=.5【点睛】本题考查了化简绝对值、特殊角的正弦值、零指数幂、二次根式的乘法等知识点,熟练掌握各运算法则是解题关键.-,1.18.2x【分析】先计算完全平方公式、平方差公式、单项式乘以多项式,再计算整式的加减,然后将x 的值代入即可得.【详解】解:原式22246299x x x x x =-+-++-,2x =-, 将12x =-代入得:原式12212x ⎛⎫=⨯-= ⎪⎝⎭=--. 【点睛】本题考查了整式的化简求值,熟练掌握整式的运算法则是解题关键.19.(1),,AB AC ABC ;(2)④.【分析】(1)先根据作图可知,A B AB A C AC ''''==,再根据三角形全等的判定定理即可得; (2)根据三边对应相等的两个三角形是全等三角形即可得.【详解】(1)证明:由作图可知,在A B C '''和ABC 中,B C BC A B AB A C AC =⎧⎪=⎨⎪='''''⎩',∴A B C ABC '''≅.故答案为:,,AB AC ABC .(2)这种作一个三角形与已知三角形全等的方法的依据是SSS ,故答案为:④.【点睛】本题考查了利用SSS 定理判定三角形全等,熟练掌握三角形全等的判定方法是解题关键. 20.(1)0.25;(2)纸箱中白球的数量接近36个.【分析】(1)利用免费发放的景点吉祥物数量除以参与这种游戏的游客人数即可得;(2)设纸箱中白球的数量为x 个,先利用频率估计概率可得随机摸出一个球是红球的概率,再利用概率公式列出方程,解方程即可得.【详解】解:(1)由题意得:150********.25÷=,答:参与该游戏可免费得到景点吉祥物的频率为0.25;(2)设纸箱中白球的数量为x 个,由(1)可知,随机摸出一个球是红球的概率约为0.25, 则120.2512x=+, 解得36x =,经检验,36x =是所列分式方程的解,且符合题意,答:纸箱中白球的数量接近36个.【点睛】本题考查了利用频率估计概率、已知概率求数量,熟练掌握概率公式是解题关键.21.(1)证明见解析;(2)【分析】(1)先根据平行四边形的性质可得11,22====OA OC AC OB OD BD ,再根据等边三角形的性质可得OA OB =,从而可得AC BD =,然后根据矩形的判定即可得证;(2)先根据等边三角形的性质可得4OB AB ==,从而可得8BD =,再根据矩形的性质可得90BAD ∠=︒,然后在Rt ABD △中,利用勾股定理即可得.【详解】(1)证明:四边形ABCD 是平行四边形,11,22OA OC AC OB OD BD ∴====, OAB 是等边三角形,OA OB ∴=,AC BD ∴=,ABCD ∴是矩形;(2)OAB 是等边三角形,4AB =,4OB AB ∴==,28BD OB ∴==,由(1)已证:ABCD 是矩形,90BAD ∴∠=︒,则在Rt ABD △中,AD ===.【点睛】 本题考查了矩形的判定与性质、平行四边形的性质、等边三角形的性质等知识点,熟练掌握矩形的判定与性质是解题关键.22.(1)一共答对了22道题;(2)至少需答对23道题.【分析】(1)设该参赛同学一共答对了x 道题,从而可得该参赛同学一共答错了(251)x --道题,再根据“每一题答对得4分,答错扣1分,不答得0分”、“他的总得分为86分”建立方程,解方程即可得;(2)设参赛者需答对y 道题才能被评为“学党史小达人”,从而可得参赛者答错了(25)y -道题,再根据“总得分大于或等于90分”建立不等式,解不等式即可得.【详解】解:(1)设该参赛同学一共答对了x 道题,则该参赛同学一共答错了(251)x --道题, 由题意得:4(251)86x x ---=,解得22x =,答:该参赛同学一共答对了22道题;(2)设参赛者需答对y 道题才能被评为“学党史小达人”,则参赛者答错了(25)y -道题, 由题意得:4(25)90y y --≥,解得23y ≥,答:参赛者至少需答对23道题才能被评为“学党史小达人”.【点睛】本题考查了一元一次方程和一元一次不等式的实际应用,正确列出方程和不等式是解题关键.23.(1)证明见解析;(2)周长为16+22.【分析】(1)先根据垂直的定义可得90ADB ADC ∠=∠=︒,再根据三角形全等的判定定理与性质即可得证;(2)先根据全等三角形的性质可得5AB AC ==,从而可得5CE =,再利用勾股定理可得3CD BD ==,从而可得11,8BE DE ==,然后利用勾股定理可得AE =最后利用三角形的周长公式和面积公式即可得.【详解】(1)证明:AD BC ⊥,90ADB ADC ∴∠=∠=︒,在ABD △和ACD △中,AD AD ADB ADC BD CD =⎧⎪∠=∠⎨⎪=⎩,()ABD ACD SAS ∴≅,B ACB ∴∠=∠;(2)ABD ACD ≅,5AB =,5AB AC ∴==,CE CA =,5CE ∴=,5,4,AB AD AD BC ==⊥,3BD ∴==,BD CD =,3CD ∴=,11,8BE BD CD CE DE CD CE ∴=++==+=,AE ∴==则ABE △的周长为51116AB BE AE ++=++=+ABE △的面积为111142222BE AD ⋅=⨯⨯=. 【点睛】本题考查了三角形全等的判定定理与性质、勾股定理等知识点,熟练掌握三角形全等的判定定理与性质是解题关键.24.(1)4,1,4-;(2)当0k ≠时,关于x 的函数y kx p =+(,k p 是常数)不是“T 函数”,理由见解析;当0k =时,关于x 的函数y kx p =+(,k p 是常数)是“T 函数”,它有无数对“T 点”;(3)直线l 总经过一定点,该定点的坐标为(1,0).【分析】(1)先根据关于y 轴对称的点坐标变换规律可得,r s 的值,从而可得点A 的坐标,再将点A 的坐标代入“T 函数”即可得;(2)分0k ≠和0k =两种情况,当0k ≠时,设点000(,)(0)x y x ≠与点00(,)x y -是一对“T 点”,将它们代入函数解析式可求出0k =,与0k ≠矛盾;当0k =时,y p =是一条平行于x 轴的直线,是“T 函数”,且有无数对“T 点”;(3)先将点(0,0)O 代入2y ax bx c =++可得0c ,再根据“T 函数”的定义可得0b =,从而可得2y ax =,与直线y mx n =+联立可得12,x x 是方程20mx n ax --=的两实数根,然后利用根与系数的关系可得1212,m n x x x x a a+==-,最后根据()11211x x --+=化简可得n m =-,从而可得y mx m =-,由此即可得出答案.【详解】解:(1)由题意得:点()1,A r 与点(),4B s 关于y 轴对称,4,1r s ∴==-,()1,4A ∴,10>,∴将点()1,4A 代入2y tx =得:4t =,故答案为:4,1,4-;(2)由题意,分以下两种情况:①当0k ≠时,假设关于x 的函数y kx p =+(k ,p 是常数)是“T 函数”,点000(,)(0)x y x ≠与点00(,)x y -是其图象上的一对“T 点”,则0000kx p y kx p y +=⎧⎨-+=⎩, 解得0k =,与0k ≠相矛盾,假设不成立,所以当0k ≠时,关于x 的函数y kx p =+(,k p 是常数)不是“T 函数”;②当0k =时,函数y kx p p =+=是一条平行于x 轴的直线,是“T 函数”,它有无数对“T 点”;综上,当0k ≠时,关于x 的函数y kx p =+(,k p 是常数)不是“T 函数”;当0k =时,关于x 的函数y kx p =+(,k p 是常数)是“T 函数”,它有无数对“T 点”;(3)由题意,将(0,0)O 代入2y ax bx c =++得:0c ,2y ax bx ∴=+,设点333(,)(0)x y x ≠与点33(,)x y -是“T 函数”2y ax bx =+图象上的一对“T 点”,则23332333ax bx y ax bx y ⎧+=⎨-=⎩,解得0b =, 2(0)y ax a ∴=>,联立2y ax y mx n⎧=⎨=+⎩得:20mx n ax --=, “T 函数”2y ax =与直线y mx n =+交于点()11,M x y ,()22,N x y ,12,x x ∴是关于x 的一元二次方程20mx n ax --=的两个不相等的实数根,1212,m n x x x x a a∴+==-, ()11211x x --+=,2211x x x x +=∴,即m n a a =-, 解得n m =-,则直线l 的解析式为y mx m =-,当1x =时,0y m m =-=,因此,直线l 总经过一定点,该定点的坐标为(1,0).【点睛】本题考查了关于y 轴对称的点坐标变换规律、二次函数与一次函数的综合、一元二次方程根与系数的关系等知识点,掌握理解“T 函数”和“T 点”的定义是解题关键.25.(1;(2)12;(3)245()5555R y R R x R x =-<<. 【分析】(1)连接OP ,先利用HL 定理证出Rt OPN Rt OQM ≅,从而可得ON OM =,再在Rt OQM △中,解直角三角形即可得;(2)在(1)的基础上,利用AM OA OM =-求出AM 的长,由此即可得;(3)如图(见解析),先解直角三角形可得,55OM QM R R ==,再根据圆周角定理、相似三角形的判定可得DBM AEM ~,从而可得DM BM AM ME=,由此即可得出y 关于x 的函数解析式,然后连接AP ,交QM 于点F ,根据相似三角形的判定与性质可得FM AM PN AN =,由此可求出55FM R =,最后根据FM ME QM <<可得自变量x 的取值范围.【详解】解:(1)如图,连接OP ,则OP OQ =,四边形MNPQ 为正方形,,90PN QM MN QMO PNO ∴==∠=∠=︒,在Rt OPN 和Rt OQM △中,PN QM OP OQ =⎧⎨=⎩, ()Rt OPN Rt OQM HL ∴≅,ON OM ∴=,设2QM MN a ==,则ON OM a ==,在Rt OQM △中,OQ ==,则sinQM AOQ OQ ∠===;(2)设2QM MN a ==,则ON OM a ==,OQ =,OA OQ ∴==,1)AM OA OM a ∴=-=,1)122AM a MN a ∴==; (3)2AB R =,OA OQ OB R ∴===,sin 5QM AOQ OQ ∠==,QM R ∴=QM R =,R OM ∴==,BM OB OM R ∴=+=,AM AB BM R =-=, QD y =,DM QD QM y ∴=+=+, 由圆周角定理得:90ACB ∠=︒,90DBM BAC ∴∠+∠=︒,90QMO ∠=︒,90DBM D ∴∠+∠=︒,D BAC ∴∠=∠,在DBM △和AEM △中,90D EAM DMB AME ∠=∠⎧⎨∠=∠=︒⎩, DBM AEM ∴~,DM BM AM ME ∴=55y R x =,解得2455R y R x =-, 如图,连接AP ,交QM 于点F ,PN MN QM R ===,AM R =,AN AM MN R ∴=+=, 四边形MNPQ 为正方形,//QM PN ∴,AFM APN ∴~,FM AM PN AN ∴==解得FM R =, 点C 在QP 上运动(点C 与点,P Q 不重合),∴点E 在线段QF 上运动(点E 与点,F Q 不重合),FM ME QM ∴<<R x <<,综上,24)5R y R x R x =-<<. 【点睛】本题考查了正方形的性质、圆周角定理、相似三角形的判定与性质、解直角三角形等知识点,较难的是题(3),正确找出相似三角形是解题关键.。
2021年中考数学复习-数式规律(解析版)
类型一数式规律1.探究数字“黑洞”:“黑洞”原指非常奇怪的天体,它的体积小,密度大,吸引力强,任何物体到它那里都别想再“爬出来”,无独有偶,数字中也有类似的“黑洞”,满足某种条件的所有数,通过一种运算,都能被它“吸”进去,无一能逃脱它的魔掌.譬如:任意找一个3的倍数的数,先把这个数的每个数位上的数字都立方,再相加,得到一个新的数,然后把这个新数每个数位上的数字再立方,求和…,重复运算下去,就能得到一个固定的数T=_________,我们称它为数字“黑洞”,T 为何具有如此魔力通过认真的观察、分析,你一定能发现它的奥秘!此短文中的T 是( )A .363B .153C .159D .456 【答案】B ;【解析】把6代入计算,第一次立方后得到216;第二次得到225;第三次得到141;第四次得到66;第五次得到432;第六次得到99;第七次得到1458;第八次得到702;第九次得到351;第十次得到153;开始重复,则T=153.故选B .【点评】此题只需根据题意,任意找一个符合条件的数进行计算,直至计算得到重复的数值,即是所求的黑洞数.可以任意找一个3的倍数,如6.第一次立方后得到216;第二次得到225;…;第十次得到153;开始重复,则可知T=153.2.(1)有一列数174,103,52,21--,…,那么依此规律,第7个数是______; (2)已知123112113114,,,1232323438345415a a a =+==+==+=⨯⨯⨯⨯⨯⨯=4a 6541⨯⨯,,24551 =+依据上述规律,则99a = . 【答案】(1) 750-; (2)1009999.【解析】(1) 符号:单数为负,双数为正,所以第7个为负.分子规律:第几个数就是几,即第7个数分子就是7,分母规律:分子的平方加1,第7个数分母就是50.所以第7个数是750-. (2)99a =.99991001001101100991=+⨯⨯【点评】(1) 规律:21)1nnn •+(-(n 为正整数); (2)规律:111(1)(2)1(2)n n n n n n n ++=++++(n 为正整数). 3.(1)先找规律,再填数:111111*********1,,,,122342125633078456............111+_______.2011201220112012+-=+-=+-=+-=-=⨯则(2)对实数a 、b ,定义运算★如下:a ★b=(,0)(,0)bb a a b a a a b a -⎧>≠⎪⎨≤≠⎪⎩,例如2★3=2-3=18.计算[2★(﹣4)]×[(﹣4)★(﹣2)]= . 【答案】(1)11006;(2)1; 【解析】(1)规律为:111111(1)2n n n n n +-=+++(n 为正整数). (2) [2★(﹣4)]×[(﹣4)★(﹣2)]=2-4×(-4)2=1. 4.a 是不为1的有理数,我们把11a-称为a 的差倒数....如:2的差倒数是1112=--,1-的差倒数是111(1)2=--.已知113a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则2009a = .【答案】因为113a =-,,43.)31(112=--=a ,4.43113=-=a ,31.4114-=-=a ,43.)31(115=--=a ,4.43116=-=a ……..三个一循环,因此2009a =.43)31(112=--=a5.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算8×9和6×7的两个示例.(1)用法国“小九九”计算7×8,左、右手依次伸出手指的个数是多少?(2)设a、b都是大于5且小于10的整数,请你说明用题中给出的规则计算a×b的正确性?【答案】2,3【解析】(1)按照题中示例可知:要计算7×8,左手应伸出7-5=2个手指,右手应伸出8-5=3个手指;(2)按照题中示例可知:要计算a×b,左手应伸出(a-5)个手指,未伸出的手指数为5-(a-5)=10-a;右手应伸出(b-5)个手指,未伸出的手指数为5-(b-5)=10-b两手伸出的手指数的和为(a-5)+(b-5)=a+b-10,未伸出的手指数的积为(10-a)×(10-b)=100-10a-10b+a×b根据题中的规则,a×b的结果为10×(a+b-10)+(100-10a-10b+a×b)而10×(a+b-10)+(100-10a-10b+a×b)=10a+10b-100+100-10a-10b+a×b=a×b所以用题中给出的规则计算a×b是正确的.6.将正偶数按下表排列:第1列第2列第3列第4列第1行 2第2行 4 6第3行 8 10 12第4行 14 16 18 20……根据上面的规律,则2006所在行、列分别是________.【答案】第45行第13列【解析】观察数列2,4,6,8,10,...每个比前一个增大2,2006是这列数字第1003个.每行数字的个数按照1,2,3,4,5,...,n 递增,根据等差数列求和公式,第n 行(包括n 行)以前的所有数字的个数(1)2n n +. 如果2006在第n 行,那么10032)1(≥+nn设10032)1(=+n n ,解得n 约为44.5,n 取整数,因此n=45。
2021年湖南省永州市中考数学真题试卷 (word版,含解析)
2021年湖南省永州市中考数学试卷一、选择题(本大题共10个小题,每小题4分,共40分,每个小题只有一个正确选项请将正确的选项填涂到答题卡上)1.﹣|﹣2021|的相反数为()A.﹣2021B.2021C.﹣D.2.如图,在平面内将五角星绕其中心旋转180°后所得到的图案是()A.B.C.D.3.据永州市2020年国民经济和社会发展统计公报,永州市全年全体居民人均可支配收入约为24000元,比上年增长6.5%,将“人均可支配收入”用科学记数法表示为()A.24×103B.2.4×104C.2.4×105D.0.24×1054.已知一列数据:27,12,12,5,7,12,5.该列数据的众数是()A.27B.12C.7D.55.下列计算正确的是()A.(π﹣3)0=1B.tan30°=C.=±2D.a2•a3=a66.在一元一次不等式组的解集中,整数解的个数是()A.4B.5C.6D.77.如图,在△ABC中,AB=AC,分别以点A,B为圆心,大于AB的长为半径画弧,两弧相交于点M和点N,作直线MN分别交BC、AB于点D和点E,若∠B=50°,则∠CAD的度数是()A.30°B.40°C.50°D.60°8.中国传统数学重要著作《九章算术》中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?据此设计一类似问题:今有人组团购一物,如果每人出9元,则多了4元;如果每人出6元,则少了5元,问组团人数和物价各是多少?若设x 人参与组团,物价为y元,则以下列出的方程组正确的是()A.B.C.D.9.小明计划到永州市体验民俗文化,想从“零陵渔鼓、瑶族长鼓舞、东安武术、舜帝祭典”四种民俗文化中任意选择两项,则小明选择体验“瑶族长鼓舞、舜帝祭典”的概率为()A.B.C.D.10.定义:若10x=N,则x=log10N,x称为以10为底的N的对数,简记为lgN,其满足运算法则:lgM+lgN=lg(M•N)(M>0,N>0).例如:因为102=100,所以2=lg100,亦即lg100=2;lg4+lg3=lg12.根据上述定义和运算法则,计算(lg2)2+lg2•lg5+lg5的结果为()A.5B.2C.1D.0二、填空题(本大题共8个小题,每小题4分,共32分,请将答案填在答题卡的答案栏内)11.在0,,﹣0.101001,π,中无理数的个数是个.12.已知二次根式有意义,则x的取值范围是.13.请写出一个图象在第二、四象限的反比例函数的表达式:.14.某初级中学坚持开展阳光体育活动,七年级至九年级每学期均进行体育技能测试.其中A班甲、乙两位同学6个学期的投篮技能测试成绩(投篮命中个数)折线图如图所示.为参加学校举行的毕业篮球友谊赛,A班需从甲、乙两位同学中选1人进入班球队,从两人成绩的稳定性考虑,请你决策A班应该选择的同学是.15.某同学在数学实践活动中,制作了一个侧面积为60π,底面半径为6的圆锥模型(如图所示),则此圆锥的母线长为.16.如图,A,B两点的坐标分别为A(4,3),B(0,﹣3),在x轴上找一点P,使线段P A+PB 的值最小,则点P的坐标是.17.已知函数y=,若y=2,则x=.18.若x,y均为实数,43x=2021,47y=2021,则:(1)43xy•47xy=()x+y;(2)+=.三、解答题(共8小题,满分78分)19.(8分)先化简,再求值:(x+1)2+(2+x)(2﹣x),其中x=1.20.(8分)若x1,x2是关于x的一元二次方程ax2+bx+c=0的两个根,则x1+x2=﹣,x1•x2=.现已知一元二次方程px2+2x+q=0的两根分别为m,n.(1)若m=2,n=﹣4,求p,q的值;(2)若p=3,q=﹣1,求m+mn+n的值.21.(8分)为庆祝中国共产党成立100周年,某校组织全校学生进行了一场党史知识竞赛活动根据竞赛结果,抽取了200名学生的成绩(得分均为正整数,满分为100分,大于80分的为优秀)进行统计,绘制了如图所示尚不完整的统计图表.200名学生党史知识竞赛成绩的频数表组别频数频率A组(60.5~70.5)a0.3B组(70.5~80.5)300.15C组(80.5~90.5)50bD组(90.5~100.5)600.3请结合图表解决下列问题:(1)频数表中,a=,b=;(2)请将频数分布直方图补充完整;(3)抽取的200名学生中竞赛成绩的中位数落在的组别是组;(4)若该校共有1000名学生,请估计本次党史知识竞赛成绩为“优秀”的学生人数.22.(10分)如图,已知点A,D,C,B在同一条直线上,AD=BC,AE=BF,AE∥BF.(1)求证:△AEC≌△BFD.(2)判断四边形DECF的形状,并证明.23.(10分)永州市某村经济合作社在乡村振兴工作队的指导下,根据市场需求,计划在2022年将30亩土地全部用于种植A、B两种经济作物.预计B种经济作物亩产值比A种经济作物亩产值多2万元,为实现2022年A种经济作物年总产值20万元,B种经济作物年总产值30万元的目标,问:2022年A、B两种经济作物应各种植多少亩?24.(10分)已知锐角△ABC中,角A、B、C的对边分别为a、b、c,边角总满足关系式:==.(1)如图1,若a=6,∠B=45°,∠C=75°,求b的值;(2)某公园准备在园内一个锐角三角形水池ABC中建一座小型景观桥CD(如图2所示),若CD⊥AB,AC=14米,AB=10米,sin∠ACB=,求景观桥CD的长度.25.(12分)如图1,AB是⊙O的直径,点E是⊙O上一动点,且不与A,B两点重合,∠EAB的平分线交⊙O于点C,过点C作CD⊥AE,交AE的延长线于点D.(1)求证:CD是⊙O的切线;(2)求证:AC2=2AD•AO;(3)如图2,原有条件不变,连接BE,BC,延长AB至点M,∠EBM的平分线交AC 的延长线于点P,∠CAB的平分线交∠CBM的平分线于点Q.求证:无论点E如何运动,总有∠P=∠Q.26.(12分)已知关于x的二次函数y1=x2+bx+c(实数b,c为常数).(1)若二次函数的图象经过点(0,4),对称轴为x=1,求此二次函数的表达式;(2)若b2﹣c=0,当b﹣3≤x≤b时,二次函数的最小值为21,求b的值;(3)记关于x的二次函数y2=2x2+x+m,若在(1)的条件下,当0≤x≤1时,总有y2≥y1,求实数m的最小值.2021年湖南省永州市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分,每个小题只有一个正确选项请将正确的选项填涂到答题卡上)1.﹣|﹣2021|的相反数为()A.﹣2021B.2021C.﹣D.【分析】根据绝对值的定义、相反数的定义解题即可.【解答】解:∵﹣|﹣2021|=﹣2021,∴﹣2021的相反数为2021.故选:B.2.如图,在平面内将五角星绕其中心旋转180°后所得到的图案是()A.B.C.D.【分析】根据旋转的性质,旋转前后,各点的相对位置不变,得到的图形全等,找到关键点,分析选项可得答案.【解答】解:根据旋转的性质,旋转前后,各点的相对位置不变,得到的图形全等,五角星图案绕中心旋转180°后,阴影部分的等腰三角形的顶点向下,得到的图案是C.故选:C.3.据永州市2020年国民经济和社会发展统计公报,永州市全年全体居民人均可支配收入约为24000元,比上年增长6.5%,将“人均可支配收入”用科学记数法表示为()A.24×103B.2.4×104C.2.4×105D.0.24×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:24000=2.4×104.故选:B.4.已知一列数据:27,12,12,5,7,12,5.该列数据的众数是()A.27B.12C.7D.5【分析】根据众数的意义求解即可.【解答】解:这组数据中出现次数最多的是12,共出现3次,因此众数是12,故选:B.5.下列计算正确的是()A.(π﹣3)0=1B.tan30°=C.=±2D.a2•a3=a6【分析】根据零次幂,特殊锐角三角函数值,平方根以及同底数幂乘法逐项进行计算即可.【解答】解:A.因为π﹣3≠0,所以(π﹣3)0=1,因此选项A符合题意;B.tan30°=,因此选项B不符合题意;C.=2,因此选项C不符合题意;D.a2•a3=a2+3=a5,因此选项D不符合题意;故选:A.6.在一元一次不等式组的解集中,整数解的个数是()A.4B.5C.6D.7【分析】先求出每个不等式的解集,再求出不等式组的解集,求出不等式组的整数解,即可得出答案.【解答】解:∵解不等式①得:x>﹣0.5,解不等式②得:x≤5,∴不等式组的解集为﹣0.5<x≤5,∴不等式组的整数解为0,1,2,3,4,5,共6个,故选:C.7.如图,在△ABC中,AB=AC,分别以点A,B为圆心,大于AB的长为半径画弧,两弧相交于点M和点N,作直线MN分别交BC、AB于点D和点E,若∠B=50°,则∠CAD的度数是()A.30°B.40°C.50°D.60°【分析】利用基本作图可判断MN垂直平分AB,则DA=DB,所以∠DAB=∠B=50°,再利用等腰三角形的性质和三角形内角和计算出∠BAC,然后计算∠BAC﹣∠DAB即可.【解答】解:由作法得MN垂直平分AB,∴DA=DB,∴∠DAB=∠B=50°,∵AB=AC,∴∠C=∠B=50°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣50°=80°,∴∠CAD=∠BAC﹣∠DAB=80°﹣50°=30°.故选:A.8.中国传统数学重要著作《九章算术》中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?据此设计一类似问题:今有人组团购一物,如果每人出9元,则多了4元;如果每人出6元,则少了5元,问组团人数和物价各是多少?若设x 人参与组团,物价为y元,则以下列出的方程组正确的是()A.B.C.D.【分析】根据如果每人出9元,则多了4元;如果每人出6元,则少了5元,可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故选:A.9.小明计划到永州市体验民俗文化,想从“零陵渔鼓、瑶族长鼓舞、东安武术、舜帝祭典”四种民俗文化中任意选择两项,则小明选择体验“瑶族长鼓舞、舜帝祭典”的概率为()A.B.C.D.【分析】画树状图,共有12种等可能的结果,小明选择体验“瑶族长鼓舞、舜帝祭典”的结果有2种,再由概率公式求解即可.【解答】解:把“零陵渔鼓、瑶族长鼓舞、东安武术、舜帝祭典”四种民俗文化分别记为:A、B、C、D,画树状图如图:共有12种等可能的结果,小明选择体验“瑶族长鼓舞、舜帝祭典”的结果有2种,∴小明选择体验“瑶族长鼓舞、舜帝祭典”的概率为=,故选:D.10.定义:若10x=N,则x=log10N,x称为以10为底的N的对数,简记为lgN,其满足运算法则:lgM+lgN=lg(M•N)(M>0,N>0).例如:因为102=100,所以2=lg100,亦即lg100=2;lg4+lg3=lg12.根据上述定义和运算法则,计算(lg2)2+lg2•lg5+lg5的结果为()A.5B.2C.1D.0【分析】根据题意,按照题目的运算法则计算即可.【解答】解:(lg2)2+lg2•lg5+lg5=lg2(lg2+lg5)+lg5=lg2+lg5=1g10=1.故选:C.二、填空题(本大题共8个小题,每小题4分,共32分,请将答案填在答题卡的答案栏内)11.在0,,﹣0.101001,π,中无理数的个数是1个.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【解答】解:0,,是整数,属于有理数;是分数,属于有理数;﹣0.101001是有限小数,属于有理数;无理数有π,共1个.故答案为:1.12.已知二次根式有意义,则x的取值范围是x≥﹣3.【分析】二次根式有意义,被开方数为非负数,列不等式求解.【解答】解:根据二次根式的意义,得x+3≥0,解得x≥﹣3.故答案为:x≥﹣3.13.请写出一个图象在第二、四象限的反比例函数的表达式:y=﹣.【分析】根据反比例函数的性质可得k<0,写一个k<0的反比例函数即可.【解答】解:∵图象在第二、四象限,∴y=﹣,故答案为:y=﹣.14.某初级中学坚持开展阳光体育活动,七年级至九年级每学期均进行体育技能测试.其中A班甲、乙两位同学6个学期的投篮技能测试成绩(投篮命中个数)折线图如图所示.为参加学校举行的毕业篮球友谊赛,A班需从甲、乙两位同学中选1人进入班球队,从两人成绩的稳定性考虑,请你决策A班应该选择的同学是甲.【分析】根据折线统计图中甲、乙成绩的起伏情况判断即可得解.【解答】解:根据折线统计图可得,甲的投篮技能测试成绩起伏小,比较平稳,乙的投篮技能测试成绩起伏大,不稳定,因此A班应该选择的同学是甲.故答案为:甲.15.某同学在数学实践活动中,制作了一个侧面积为60π,底面半径为6的圆锥模型(如图所示),则此圆锥的母线长为10.【分析】设此圆锥的母线长为l,利用扇形的面积公式得到×2π×6×l=60π,然后解方程即可.【解答】解:设此圆锥的母线长为l,根据题意得×2π×6×l=60π,解得l=10,所以此圆锥的母线长为10.故答案为10.16.如图,A,B两点的坐标分别为A(4,3),B(0,﹣3),在x轴上找一点P,使线段P A+PB 的值最小,则点P的坐标是(2,0).【分析】连接AB交x轴于点P',求出直线AB的解析式与x轴交点坐标即可.【解答】解:如图,连接AB交x轴于点P',根据两点之间,线段最短可知:P'即为所求,设直线AB的关系式为:y=kx+b,,解得,∴y=,当y=0时,x=2,∴P'(2,0),故答案为:(2,0).17.已知函数y=,若y=2,则x=2.【分析】根据题意,进行分类解答,即可求值.【解答】解:∵y=2.∴当x2=2时,x=.∵0≤x<1.∴x=(舍去).当2x﹣2=2时,x=2.故答案为:2.18.若x,y均为实数,43x=2021,47y=2021,则:(1)43xy•47xy=(2021)x+y;(2)+=1.【分析】(1)将43xy•47xy化成(43x)y•(47y)x代入数值即可计算;(2)由(1)知43xy•47xy=2021(x+y),43xy•47xy=(43×47)xy=2021xy,得出xy=x+y 即可求.【解答】解:(1)43xy•47xy=(43x)y•(47y)x=2021y×2021x=2021x+y,故答案为:2021;(2)由(1)知,43xy•47xy=2021(x+y),∵43xy•47xy=(43×47)xy=2021xy,∴xy=x+y,∴+==1,故答案为:1.三、解答题(共8小题,满分78分)19.(8分)先化简,再求值:(x+1)2+(2+x)(2﹣x),其中x=1.【分析】先根据完全平方公式和平方差公式进行计算,再合并同类项,最后代入求出答案即可.【解答】解:(x+1)2+(2+x)(2﹣x)=x2+2x+1+4﹣x2=2x+5,当x=1时,原式=2+5=7.20.(8分)若x1,x2是关于x的一元二次方程ax2+bx+c=0的两个根,则x1+x2=﹣,x1•x2=.现已知一元二次方程px2+2x+q=0的两根分别为m,n.(1)若m=2,n=﹣4,求p,q的值;(2)若p=3,q=﹣1,求m+mn+n的值.【分析】(1)利用根与系数的关系得到2﹣4=﹣,2×(﹣4)=,然后分别解方程求出p与q的值;(2)利用根与系数的关系得到m+n=﹣,mn=﹣,然后利用整体代入的方法计算.【解答】解:(1)根据题意得2﹣4=﹣,2×(﹣4)=,所以p=1,q=﹣8;(2)根据m+n=﹣=﹣,mn=﹣,所以m+mn+n=m+n+mn=﹣﹣=﹣1.21.(8分)为庆祝中国共产党成立100周年,某校组织全校学生进行了一场党史知识竞赛活动根据竞赛结果,抽取了200名学生的成绩(得分均为正整数,满分为100分,大于80分的为优秀)进行统计,绘制了如图所示尚不完整的统计图表.200名学生党史知识竞赛成绩的频数表组别频数频率A组(60.5~70.5)a0.3B组(70.5~80.5)300.15C组(80.5~90.5)50bD组(90.5~100.5)600.3请结合图表解决下列问题:(1)频数表中,a=60,b=0.25;(2)请将频数分布直方图补充完整;(3)抽取的200名学生中竞赛成绩的中位数落在的组别是C组;(4)若该校共有1000名学生,请估计本次党史知识竞赛成绩为“优秀”的学生人数.【分析】(1)根据频数分布表中的数据,可以计算出a、b、c的值;(2)根据(1)中a、b的值,可以将频数分布直方图补充完整;(3)根据频数分布表中的数据,可以计算出本次党史知识竞赛成绩超过80分的学生人数.【解答】解:(1)∵30÷0.15=200,∴a=200×0.3=60,b=50÷200=0.25,故答案为:60,0.25;(2)由(1)知,a=60,如图,即为补全的频数分布直方图;(3)抽取的200名学生中竞赛成绩的中位数落在的组别是C组;故答案为:C;(4)1000×(0.25+0.3)=1000×0.55=550(人),即本次党史知识竞赛成绩为“优秀”的学生人数有550人.22.(10分)如图,已知点A,D,C,B在同一条直线上,AD=BC,AE=BF,AE∥BF.(1)求证:△AEC≌△BFD.(2)判断四边形DECF的形状,并证明.【分析】(1)根据已知条件得到AC=BD,根据平行线的判定定理得到∠A=∠B,由全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到∠ACE=∠BDF,CE=DF,.由平行线的判定定理得到CE∥DF,根据平行四边形的判定定理即可得到结论.【解答】(1)证明:∵AD=BC,∴AD+DC=BC+DC,∴AC=BD,∵AE∥BF,∴∠A=∠B,在△AEC和△BFD中,,∴△AEC≌△BFD(SAS).(2)四边形DECF是平行四边形,证明:∵△AEC≌△BFD,∴∠ACE=∠BDF,CE=DF,∴CE∥DF,∴四边形DECF是平行四边形.23.(10分)永州市某村经济合作社在乡村振兴工作队的指导下,根据市场需求,计划在2022年将30亩土地全部用于种植A、B两种经济作物.预计B种经济作物亩产值比A种经济作物亩产值多2万元,为实现2022年A种经济作物年总产值20万元,B种经济作物年总产值30万元的目标,问:2022年A、B两种经济作物应各种植多少亩?【分析】设2022年A种经济作物应种植x亩,则B种经济作物应种植(30﹣x)亩,根据“预计B种经济作物亩产值比A种经济作物亩产值多2万元”列出方程并解答.【解答】解:设2022年A种经济作物应种植x亩,则B种经济作物应种植(30﹣x)亩,根据题意,得+2=.解得x=20或x=﹣15(舍去).经检验x=20是原方程的解,且符合题意.所以30﹣x=10.答:2022年A种经济作物应种植20亩,则B种经济作物应种植10亩.24.(10分)已知锐角△ABC中,角A、B、C的对边分别为a、b、c,边角总满足关系式:==.(1)如图1,若a=6,∠B=45°,∠C=75°,求b的值;(2)某公园准备在园内一个锐角三角形水池ABC中建一座小型景观桥CD(如图2所示),若CD⊥AB,AC=14米,AB=10米,sin∠ACB=,求景观桥CD的长度.【分析】(1)由边角关系式可求解;(2)由边角关系式可求∠B=60°,在Rt△ACD中,利用勾股定理可求CD的长.【解答】解:∵∠B=45°,∠C=75°,∴∠A=60°,∵==,∴=,∴b=2;(2)∵=,∴=,∴sin B=,∴∠B=60°,∴tan B==,∴BD=CD,∵AC2=CD2+AD2,∴196=CD2+(10﹣CD)2,∴CD=8,CD=﹣3(舍去),∴CD的长度为8米.25.(12分)如图1,AB是⊙O的直径,点E是⊙O上一动点,且不与A,B两点重合,∠EAB的平分线交⊙O于点C,过点C作CD⊥AE,交AE的延长线于点D.(1)求证:CD是⊙O的切线;(2)求证:AC2=2AD•AO;(3)如图2,原有条件不变,连接BE,BC,延长AB至点M,∠EBM的平分线交AC 的延长线于点P,∠CAB的平分线交∠CBM的平分线于点Q.求证:无论点E如何运动,总有∠P=∠Q.【分析】(1)连接OC,由角平分线的定义、等腰三角形性质、三角形外角性质和切线的定义证明;(2)由△CDA∽△BCA,得证AC2=2AD•AO;(3)由外角性质、直径所对的圆周角是直角和角平分线定义证明.【解答】证明:(1)连接OC,∵OA=OC,∴∠OAC=∠OCA,∴∠BOC=2∠OAC,∵AC平分∠BAE,∴∠BAE=2∠OAC,∴∠BAE=∠BOC,∴CO∥AD,∵∠D=90°,∴∠DCO=90°,∴OC⊥CD,∴CD是⊙O的切线.(2)∵AC平分∠BAE,∴∠BAC=∠CAD,∵AB是⊙O的直径,∴∠BCA=90°,∵∠D=90°,∴∠D=∠BCA,∴△BAC∽△CAD,∴,∴AC2=AB•AD,∵AB=2AO,∴AC2=2AD•AO.(3)∵∠CAB、∠CBM的角平分线交于点Q,∴∠QAM=∠CAB,∠QBM=∠CBM,∵∠Q是△QAB的一个外角,∠CBM是△ABC的一个外角,∴∠Q=∠QBM﹣∠QAM=(∠CBM﹣∠CAM),∠ACB=∠CBM﹣∠CAM,∴∠Q=∠ACB,∵∠ACB=90°,∴∠Q=45°,同理可证:∠P=45°,∴∠P=∠Q.26.(12分)已知关于x的二次函数y1=x2+bx+c(实数b,c为常数).(1)若二次函数的图象经过点(0,4),对称轴为x=1,求此二次函数的表达式;(2)若b2﹣c=0,当b﹣3≤x≤b时,二次函数的最小值为21,求b的值;(3)记关于x的二次函数y2=2x2+x+m,若在(1)的条件下,当0≤x≤1时,总有y2≥y1,求实数m的最小值.【分析】(1)由待定系数法,及对称轴为直线x=﹣,可求出二次函数的表达式;(2)需要分三种情况:①b<﹣;②b﹣3>﹣;③b﹣3≤﹣≤b分别进行讨论;(3)根据二次函数图象的增减性可得结论.【解答】解:(1)∵二次函数的图象经过点(0,4),∴c=4;∵对称轴为直线:x=﹣=1,∴b=﹣2,∴此二次函数的表达式为:y1=x2﹣2x+4.(2)当b2﹣c=0时,b2=c,此时函数的表达式为:y1=x2+bx+b2,根据题意可知,需要分三种情况:①当b<﹣,即b<0时,二次函数的最小值在x=b处取到;∴b2+b2+b2=21,解得b=,b=﹣舍去;②b﹣3>﹣,即b>2时,二次函数的最小值在x=b﹣3处取到;∴(b﹣3)2+b(b﹣3)+b2=21,解得b=4,b=﹣1(舍去);③b﹣3≤﹣≤b,即0≤b≤2时,二次函数的最小值在x=﹣处取到;∴(﹣)2+b•(﹣)+b2=21,解得b=±2(舍去).综上,b的取值为或4.(3)由(1)知,二次函数的表达式为:y1=x2﹣2x+4,对称轴为直线:x=1,∵1>0,∴当0≤x≤1时,y随x的增大而减小,且最大值为4;∵二次函数y2=2x2+x+m的对称轴为直线:x=﹣,且2>0,∴当0≤x≤1时,y随x的增大而增大,且最小值为m,∵当0≤x≤1时,总有y2≥y1,∴m≥4,即m的最小值为4.。
2021年中考数学复习-图形面积问题(解析版)
图形面积问题【典例1】小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?【答案】:宽6米,长10米【解析】:设花圃的宽为x 米,面积为S 平方米则长为:x x 4342432-=+-(米)则:)434(x x S -=x x 3442+-= 4289)417(42+--=x ∵104340≤-<x ∴2176<≤x ∵6417<,∴S 与x 的二次函数的顶点不在自变量x 的范围内, 而当2176<≤x 内,S 随x 的增大而减小, ∴当6=x 时,604289)4176(42max =+--=S (平方米) 答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大.【典例2】某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省?【答案】:(1)四边形EFGH 是正方形x(2)当CE =CF =0.1米时,总费用最省.【解析】:(1) 四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C 点按顺(逆)时针方向旋转90°后得到的,故CE =CF =CG .∴△CEF 是等腰直角三角形因此四边形EFGH 是正方形.(2)设CE =x , 则BE =0.4-x ,每块地砖的费用为y 元那么:y =x ×30+×0.4×(0.4-x )×20+ )24.02.0(102+-=x x3.2)1.0(102+-=x )4.00(<<x当x =0.1时,y 有最小值,即费用为最省,此时CE =CF =0.1.答:当CE =CF =0.1米时,总费用最省.【典例3】某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m ²).(1)求y 与x 之间的函数关系,并写出自变量的取值范围;(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少?【答案】:(1)y=200)10(22+--=x (2)187.5【解析】:)240(x x y -=)20(22x x --= 200)10(22+--=x∵152400≤-<x∴205.12<≤x∵二次函数的顶点不在自变量x 的范围内,而当205.12<≤x 内,y 随x 的增大而减小,∴当5.12=x 时,5.187200)105.12(22max =+--=y (平方米)答:当5.12=x 米时花园的面积最大,最大面积是187.5平方米.【典例4】如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ?(2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论? 【答案】:(1)25(2)25 【解析】:(1)∵长为x 米,则宽为350x -米,设面积为S 平方米. )50(313502x x x x S --=-⋅= 3625)25(312+--=x ∴当25=x 时,3625max =S (平方米) 即:鸡场的长度为25米时,面积最大.(2) 中间有n 道篱笆,则宽为250+-n x 米,设面积为S 平方米. 则:)50(212502x x n n x x S -+-=+-⋅= 2625)25(212++-+-=n x n ∴当25=x 时,2625max +=n S (平方米) 由(1)(2)可知,无论中间有几道篱笆墙,要使面积最大,长都是25米.即:使面积最大的x 值与中间有多少道隔墙无关.【典例5】小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当x 是多少时,矩形场地面积S 最大?最大面积是多少?【答案】:(1) (2)15,225【解析】:(1)根据题意,得x x x x S 3022602+-=⋅-=自变量的取值范围是(2)∵01<-=a ,∴S 有最大值当时, 答:当为15米时,才能使矩形场地面积最大,最大面积是225平方米.【典例6】如图,把一张长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm 2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.【答案】:(1)1(2)40.5(3)最大面积为cm 2 【解析】:(1)设正方形的边长为cm , 则. 即. 解得(不合题意,舍去),. 剪去的正方形的边长为1cm .(2)有侧面积最大的情况. 设正方形的边长为cm ,盒子的侧面积为cm 2, 则与的函数关系式为:.即. 改写为. 当时,.即当剪去的正方形的边长为2.25cm 时,长方体盒子的侧面积最大为40.5cm 2.(3)有侧面积最大的情况. 设正方形的边长为cm ,盒子的侧面积为cm 2. 若按图1所示的方法剪折, 则与的函数关系式为: x x x x y ⋅-⋅+-=22102)28(2 即.当时,.若按图2所示的方法剪折,则与的函数关系式为:x x x x y ⋅-⋅+-=2282)210(2. 即.当时,.比较以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为cm 时,折成的有盖长方体盒子的侧面积最大,最大面积为cm 2. 【典例7】某中学为初一新生设计的学生单人桌的抽屉部分是长方体,抽屉底面周长为180cm ,高为20cm.请通过计算说明,当底面的宽x 为何值时,抽屉的体积y 最大?最大为多少?(材质及其厚度等暂忽略不计)【答案】解:根据题意,得y =20x(1802-x),整理得 y =-20x 2+1800x =-20(x 2-90x +2025)+40500=-20(x -45)2=40500.∵-20<0,∴当x =45时,函数有最大值,y 最大值=40500,即当底面的宽为45cm 时,抽屉的体积最大,最大为40500cm 3.【典例8】 小磊要制作一个三角形的钢架模型,在这个三角形中,长度为x(单位:cm)的边与这条边上的高之和为40cm ,这个三角形的面积S(单位:cm 2)随x(单位:cm)的变化而变化.(1)请直接写出S 与x 之间的函数关系式(不要求写出自变量x 的取值范围);(2)当x 是多少时,这个三角形的面积S 最大?最大面积是多少?(参考公式:当x =-b 2a 时,二次函数y =ax 2+bx +c(a ≠0)有最小(大)值4ac -b 24a) 【答案】解: (1)S =12x ·(40-x)=-12x 2+20x ; (2)S =-12x 2+20x =-12(x 2-40x)=-12[x 2-40x +(-20)2-(-20)2]=-12[(x -20)2-400]=-12(x -20)2+200.∵a =-12<0,∴抛物线的开口向下, ∴当x =20时,S 最大值=200,即当x =20时,这个三角形的面积S 最大,最大面积为200cm 2.【典例9】某农场拟建一间矩形种牛饲养室,饲养室的一面靠墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50m.设饲养室长为x(m),占地面积为y(m 2).(1)如图1,问饲养室长x 为多少时,占地面积y 最大?(2)如图2,现要求在图中所示位置留2m 宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2m 就行了.”请你通过计算,判断小敏的说法是否正确.【答案】解:(1)∵y =x ·50-x 2=-12(x -25)2+6252,∴当x =25时,占地面积最大,即饲养室长x 为25m 时,占地面积y 最大;(2)∵y =x ·50-x -22=-12(x -26)2+338,∴当x =26时,占地面积最大,即饲养室长x 为26m 时,占地面积y 最大;∵26-25=1≠2,∴小敏的说法不正确.。
2021年湖南省长沙市数学中考试题(含答案)
2021年长沙市中考数学试卷(本卷共26个小题,满分120分,考试时间120分钟)一、选择题:(本大题10个小题,每小题3分,共30分)在每个小题的下面,都给出了A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在答题卡对应的题号内.1.的倒数是( )A .2B .-2 C .D .-2.下列几何体中主视图、左视图、俯视图完全相同的是( )A .圆锥B .六棱柱C .球D .四棱锥3.一组数据3,3,4,2,8的中位数和平均数分别是 ( )A . 3和3B . 3和4C . 4和3D . 4和44.平行四边形的对角线一定具有的性质是( )A .相等B .互相平分C . 互相垂直D .互相垂直且相等5.下列计算正确的是( )A .B .C .D .6 .如图,C 、D 是线段AB 上两点,D 是线段AC 的中点,若AB=10cm,BC=4cm,则AD 的长等于( )A . 2 cm B . 3 cm C . 4 cm D. 6 cm 7.一个关于的一元一次不等式组在数轴上的解集如图所示,则此不等式组的解集是( )A . >1B .≥1C .>3D .≥38.如图,已知菱形ABCD 的边长等于2,∠DAB=60°,则对角线BD 的长为 ( )A . 1BC . 2D .9.下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后能与原图形完全重合的是( )10.函数与函数()在同一坐标系中的图像可能是( )212121752=+422)(ab ab =a a a 632=+43a a a =⋅x x x x x a y x=2y ax =0a ≠A B DC ADB二、填空题:(本大题8个小题,每小题3分,共24分)在每小题中,请将答案直接填在答题卡中对应的横线上.11.如图,直线∥b,直线c 与a,b 相交,∠1=70°,则∠2= 度。
2021年长沙市中考数学总复习:一元二次方程(含答案解析)
2021年长沙市中考数学总复习:一元二次方程一.选择题(共11小题)1.用配方法解方程4x2﹣2x﹣1=0时,配方结果正确的是()A.(x−12)2=12B.(x−14)2=12C.(x−14)2=316D.(x−14)2=5162.小亮根据x的取值:1.1,1.2,1.3,1.4,1.5分别代入x2+12x﹣15求值,估算一元二次方程的近似解x 1.1 1.2 1.3 1.4 1.5 x2+12x﹣15﹣0.590.84 2.29 3.76 5.25由此可确定一元二次方程x2+12x﹣15=0的近似解x的范围正确的是()A.1.1<x<1.2B.1.2<x<1.3C.1.3<x<1.4D.1.4<x<1.5 3.一元二次方程x2+6x+9=0的常数项是()A.0B.1C.6D.94.若关于x的一元二次方程x2﹣x+k=0有实数根,则k的取值范围是()A.k<14B.k≤14C.k>14D.k≥145.设a、b是方程x2+x﹣2020=0的两个实数根,则(a﹣1)(b﹣1)的值为()A.﹣2018B.2018C.2020D.20226.关于x的一元二次方程2x2+kx﹣4=0的一个根x1=﹣2,则方程的另一个根x2和k的值为()A.x2=1,k=2B.x2=2,k=2C.x2=1,k=﹣1D.x2=2,k=﹣1 7.下列关于x的方程ax2﹣bx=0(a,b是不为0的常数)的根的情况判断正确的是()A.无实数根B.有两个不相等的实数根C.有两个相等的实数根D.有且只有一个实数根8.2020年,新型冠状病毒感染的肺炎疫情牵动着全国人民的心.雅礼中学某学生写了一份预防新型冠状病毒倡议书在微信朋友圈传播,规则为:将倡议书发表在自己的朋友圈,再邀请n个好友转发倡议书,每个好友转发倡议书,又邀请n个互不相同的好友转发倡议书,以此类推,已知经过两轮传播后,共有931人参与了传播活动,则方程列为()A.(1+n)2=931B.n(n﹣1)=931C.1+n+n2=931D.n+n2=9319.某超市2020年3月份的猪肉价格为60元/千克,经过两个月连续两次降价后,5月份的猪肉价格为40元/千克,设平均每次降价的百分率为x ,则根据题意可列方程为( ) A .60(1﹣2x )=40 B .60(1﹣x )2=40 C .40(1+2x )=60D .40(1+x )2=6010.一次围棋比赛,要求参赛的每两位棋手之间都要比赛一场,根据赛程计划共安排45场比赛,设本次比赛共有x 个参赛棋手,则可列方程为( ) A .12x (x ﹣1)=45B .12x (x +1)=45C .x (x ﹣1)=45D .x (x +1)=4511.若12﹣3k <0,则关于x 的一元二次方程x 2+4x +k =0的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根C .没有实数根D .无法判断二.填空题(共19小题)12.若关于x 的方程kx 2﹣kx +1=0有两个相等的实数根,则实数k 的值为 . 13.如果关于x 的一元二次方程(m +1)x 2﹣2x ﹣1=0有两个实数根,那么m 的取值范围是 .14.已知关于x 的一元二次方程(14m ﹣1)x 2﹣x +1=0有实数根,则m 的取值范围是 .15.若一元二次方程x 2﹣c =0的一个根为x =1,则另一个根为 . 16.一元二次方程(x ﹣3)(x ﹣2)=x ﹣2的根是 .17.若关于x 的一元二次方程x 2+3x +a =0有一个实数根为x =﹣2,则另一个实数根为 . 18.若关于x 的方程2x 2+x ﹣m =0有两个相等的实数根,则实数m 的值等于 . 19.已知关于x 的一元二次方程mx 2﹣2x +n ﹣3=0有两个相等实数根,则1m−n 的值是 .20.如果(m +2)x |m |+x ﹣2=0是关于x 的一元二次方程,那么m 的值为 . 21.已知a ,b 是方程x 2+3x ﹣1=0的两根,则a 2b +ab 2的值是 .22.若a ,b 是方程x 2﹣x ﹣5=0的两个不同的实数根,则a 3﹣a 2+5b ﹣2= . 23.若关于x 的一元二次方程kx 2﹣3x +2=0无实数根,则k 的取值范围是 . 24.若方程x 2﹣3x ﹣4=0的两个根分别为x 1和x 2,则1x 1+1x 2= .25.关于x 的方程ax 2﹣bx ﹣c =0的系数满足ac >0,则此方程的根x = .26.已知m,n是方程x2+2x﹣1=0的两个实数根,则式子3m2+6m﹣mn的值为.27.我国南宋数学家杨辉所著《田亩比类乘除算法》中记载了这样一道题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步.”其大意为:一个矩形的面积为864平方步,宽比长少12步,问宽和长各多少步?设矩形的宽为x步,根据题意,可列方程为.28.如果关于x的一元二次方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.29.已知关于x的方程x2﹣mx+1=0的一个根为1,那么m的值是.30.已知关于x的方程a(x+c)2+b=0(a,b,c为常数,a≠0)的两根分别为﹣2,1,那么关于x的方程a(x+c﹣2)2+b=0的两根分别为.三.解答题(共20小题)31.解方程:(1)5x2﹣3x=x+1;(2)x(x﹣2)=3x﹣6.32.若一元二次方程x2﹣x=1的两个实数根分别为x1,x2,求(x1﹣1)(x2﹣1)的值.33.已知关于x的方程2x2﹣5x+k=0的一个根是1,求k的值和另一个根.34.已知:关于x的一元二次方程x2﹣(m﹣1)x﹣m=0.(1)求证:方程总有两个实数根;(2)若该方程有一个根是1,求另一个根.35.“疫情”期间,李晨在家制作一种工艺品,并通过网络平台进行线上销售.经过一段时间后发现:当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,设该商品的售价为x元/件(20≤x≤40).(1)请用含售价x(元/件)的代数式表示每天能售出该工艺品的件数;(2)已知每件工艺品需要20元成本,每天销售该工艺品的纯利润为900元.①求该商品的售价;②为了支持“抗疫”行动,李晨决定每销售一件该工艺品便通过网络平台自动向某救助基金会捐款0.5元,求李晨每天通过销售该工艺品捐款的数额.36.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0∴(m﹣n)2=0,(n﹣4)2=0∴n=4,m=4.根据上述材料,解答下面的问题:(1)已知x2﹣2xy+2y2﹣2y+1=0,求x+2y的值;(2)已知a﹣b=6,ab+c2﹣4c+13=0,求a+b+c的值.37.已知关于x的方程x2+2(m﹣1)x+m2+5=0有两个不相等的实数根,化简:|1−m|+√m2+4m+4.38.解方程:(2x+3)2=(x﹣1)2.39.解下列一元二次方程(1)x2+4x﹣8=0(2)(x﹣3)2=5(x﹣3)40.关于x的一元二次方程x2+2mx+m2+m=0有两个不相等的实数根.(1)求m的取值范围.(2)设出x1、x2是方程的两根,且x12+x22=12,求m的值.41.因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一,深圳著名旅游“网红打卡地”东部华侨城景区在2019年春节长假期间,共接待游客达20万人次,预计在2021年春节长假期间,将接待游客达28.8万人次.(1)求东部华侨城景区2019至2021年春节长假期间接待游客人次的平均增长率.(2)东部华侨城景区一奶茶店销售一款奶茶,每杯成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯,2021年春节期间,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?42.解下列方程(x﹣2)2﹣9=0.43.解方程:x2+5=6x.44.如图1,有一张长40cm,宽20cm的长方形硬纸片,裁去角上2个小正方形和2个小长方形(图中阴影部分)之后,恰好折成如图2的有盖纸盒.(1)若纸盒的高是3cm,求纸盒底面长方形的长和宽;(2)若纸盒的底面积是150cm2,求纸盒的高.45.已知关于x的一元二次方程kx2﹣3x+1=0有实数根,若该方程有两个实数根,分别为x1和x2,当x1+x2+x1x2=4时,求k的值.46.已知Rt△ABC的两条直角边长为一元二次方程x2+kx+12=0的两根.(1)当k=﹣7时,求Rt△ABC的周长;(2)当Rt△ABC为等腰直角三角形时,求k的值及△ABC的周长.47.在实数范围内,对于任意实数m、n(m≠0)规定一种新运算:m⊗n=m n+mn﹣3,例如:3⊗2=32+3×2﹣3=12.(1)计算:(﹣2)⊗(﹣1);(2)若x⊗1=﹣27,求x的值;(3)若(﹣y)⊗2的最小值为a,求a的值.48.小张2019年末开了一家商店,受疫情影响,2020年4月份才开始盈利,4月份盈利6000元,6月份盈利达到7260元,且从4月份到6月份,每月盈利的平均增长率都相同.(1)求每月盈利的平均增长率.(2)按照这个平均增长率,预计2020年7月份这家商店的盈利将达到多少元?49.解方程:(1)x2﹣16=0;(2)4x2+1=﹣4x.50.解方程:(1)3x(x﹣4)﹣2(x﹣4)=0.(2)3x2﹣5x﹣1=0.2021年长沙市中考数学总复习:一元二次方程参考答案与试题解析一.选择题(共11小题)1.用配方法解方程4x2﹣2x﹣1=0时,配方结果正确的是()A.(x−12)2=12B.(x−14)2=12C.(x−14)2=316D.(x−14)2=516【解答】解:4x2﹣2x﹣1=0,x2−12x=14,x2−12x+(14)2=14+(14)2,(x−14)2=516.故选:D.2.小亮根据x的取值:1.1,1.2,1.3,1.4,1.5分别代入x2+12x﹣15求值,估算一元二次方程的近似解x 1.1 1.2 1.3 1.4 1.5 x2+12x﹣15﹣0.590.84 2.29 3.76 5.25由此可确定一元二次方程x2+12x﹣15=0的近似解x的范围正确的是()A.1.1<x<1.2B.1.2<x<1.3C.1.3<x<1.4D.1.4<x<1.5【解答】解:由表可以看出,当x取1.1与1.2之间的某个数时,y=0,即这个数是x2+12x ﹣15=0的一个根.x2+12x﹣15=0的一个解x的取值范围为1.1<x<1.2.故选:A.3.一元二次方程x2+6x+9=0的常数项是()A.0B.1C.6D.9【解答】解:方程x2+6x+9=0是一元二次方程的一般形式,其中常数项是9.故选:D.4.若关于x的一元二次方程x2﹣x+k=0有实数根,则k的取值范围是()A.k<14B.k≤14C.k>14D.k≥14【解答】解:根据题意得△=(﹣1)2﹣4k≥0,解得k≤1 4.故选:B.5.设a、b是方程x2+x﹣2020=0的两个实数根,则(a﹣1)(b﹣1)的值为()A.﹣2018B.2018C.2020D.2022【解答】解:∵a、b是方程x2+x﹣2020=0的两个实数根,∴a+b=﹣1,ab=﹣2020,则原式=ab﹣a﹣b+1=ab﹣(a+b)+1=﹣2020+1+1=﹣2018.故选:A.6.关于x的一元二次方程2x2+kx﹣4=0的一个根x1=﹣2,则方程的另一个根x2和k的值为()A.x2=1,k=2B.x2=2,k=2C.x2=1,k=﹣1D.x2=2,k=﹣1【解答】解:∵关于x的一元二次方程2x2+kx﹣4=0的一个根x1=﹣2,∴x1x2=﹣2x2=﹣2,x1+x2=﹣2+1=−k 2,解得:x2=1,k=2,则方程的另一个根x2和k的值为x2=1,k=2.故选:A.7.下列关于x的方程ax2﹣bx=0(a,b是不为0的常数)的根的情况判断正确的是()A.无实数根B.有两个不相等的实数根C.有两个相等的实数根D.有且只有一个实数根【解答】解:∵△=(﹣b)2﹣4a×0=b2,而a,b是不为0的常数,∴△>0,∴方程有两个不相等的实数根.故选:B.8.2020年,新型冠状病毒感染的肺炎疫情牵动着全国人民的心.雅礼中学某学生写了一份预防新型冠状病毒倡议书在微信朋友圈传播,规则为:将倡议书发表在自己的朋友圈,再邀请n个好友转发倡议书,每个好友转发倡议书,又邀请n个互不相同的好友转发倡议书,以此类推,已知经过两轮传播后,共有931人参与了传播活动,则方程列为()A .(1+n )2=931B .n (n ﹣1)=931C .1+n +n 2=931D .n +n 2=931【解答】解:由题意,得 n 2+n +1=931, 故选:C .9.某超市2020年3月份的猪肉价格为60元/千克,经过两个月连续两次降价后,5月份的猪肉价格为40元/千克,设平均每次降价的百分率为x ,则根据题意可列方程为( ) A .60(1﹣2x )=40 B .60(1﹣x )2=40 C .40(1+2x )=60D .40(1+x )2=60【解答】解:设平均每次降价的百分率为x ,根据题意可列方程: 60(1﹣x )2=40. 故选:B .10.一次围棋比赛,要求参赛的每两位棋手之间都要比赛一场,根据赛程计划共安排45场比赛,设本次比赛共有x 个参赛棋手,则可列方程为( ) A .12x (x ﹣1)=45B .12x (x +1)=45C .x (x ﹣1)=45D .x (x +1)=45【解答】解:本次比赛共有x 个参赛棋手, 所以可列方程为:12x (x ﹣1)=45.故选:A .11.若12﹣3k <0,则关于x 的一元二次方程x 2+4x +k =0的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根C .没有实数根D .无法判断【解答】解:△=42﹣4k =16﹣4k , ∵12﹣3k <0, ∴k >4,∴16﹣4k <0,即△<0, ∴方程无实数根. 故选:C .二.填空题(共19小题)12.若关于x 的方程kx 2﹣kx +1=0有两个相等的实数根,则实数k 的值为 4 . 【解答】解:根据题意得k ≠0且△=k 2﹣4k =0, 解得k =4. 故答案为4.13.如果关于x 的一元二次方程(m +1)x 2﹣2x ﹣1=0有两个实数根,那么m 的取值范围是 m ≥﹣2且m ≠﹣1 .【解答】解:根据题意得m +1≠0且△=(﹣2)2﹣4(m +1)×(﹣1)≥0, 解得m ≥﹣2且m ≠﹣1. 故答案为m ≥﹣2且m ≠﹣1.14.已知关于x 的一元二次方程(14m ﹣1)x 2﹣x +1=0有实数根,则m 的取值范围是 m ≤5且m ≠4 .【解答】解:∵一元二次方程有实数根, ∴△=1−4×(14m −1)≥0且14m −1≠0,解得:m ≤5且m ≠4, 故答案为:m ≤5且m ≠4.15.若一元二次方程x 2﹣c =0的一个根为x =1,则另一个根为 x =﹣1 . 【解答】解:把x =1代入方程得:c =1, 方程为x 2﹣1=0,即x 2=1, 开方得:x =1或x =﹣1, 则另一根为x =﹣1. 故答案为:x =﹣1.16.一元二次方程(x ﹣3)(x ﹣2)=x ﹣2的根是 x 1=2,x 2=4 . 【解答】解:(x ﹣3)(x ﹣2)=x ﹣2, (x ﹣3)(x ﹣2)﹣(x ﹣2)=0, (x ﹣2)(x ﹣3﹣1)=0, x ﹣2=0或x ﹣3﹣1=0, 所以x 1=2,x 2=4. 故答案为:x 1=2,x 2=4.17.若关于x 的一元二次方程x 2+3x +a =0有一个实数根为x =﹣2,则另一个实数根为 ﹣1 .【解答】解:设另一个实数根为t,根据题意得﹣2+t=﹣3,解得t=﹣1.故答案为﹣1.18.若关于x的方程2x2+x﹣m=0有两个相等的实数根,则实数m的值等于−18.【解答】解:∵关于x的方程2x2+x﹣m=0有两个相等的实数根,∴△=b2﹣4ac=12﹣4×2×(﹣m)=0,解得:m=−1 8,故答案为:−1 8.19.已知关于x的一元二次方程mx2﹣2x+n﹣3=0有两个相等实数根,则1m−n的值是﹣3.【解答】解:∵关于x的一元二次方程mx2﹣2x+n﹣3=0有两个相等实数根,∴m≠0,△=(﹣2)2﹣4m(n﹣3)=0,解得:mn﹣3m=1,除以m得:n﹣3=1 m,∴1m−n=﹣3,故答案为:﹣3.20.如果(m+2)x|m|+x﹣2=0是关于x的一元二次方程,那么m的值为2.【解答】解:由题意得:|m|=2且m+2≠0,解得m=±2,m≠﹣2,∴m=2,故答案为:2.21.已知a,b是方程x2+3x﹣1=0的两根,则a2b+ab2的值是3.【解答】解:∵a,b是方程x2+3x﹣1=0的两根,∴根据根与系数的关系得:a+b=﹣3,ab=﹣1,∴a2b+ab2=ab(a+b)=(﹣1)×(﹣3)=3,故答案为:3.22.若a,b是方程x2﹣x﹣5=0的两个不同的实数根,则a3﹣a2+5b﹣2=3.【解答】解:∵a ,b 是方程x 2﹣x ﹣5=0的两个不同的实数根,∴a 2﹣a =5,a +b =1,∴a 3﹣a 2=5a ,∴a 3﹣a 2+5b ﹣2=5a +5b ﹣2=5(a +b )﹣2=5×1﹣2=3.故答案为:3.23.若关于x 的一元二次方程kx 2﹣3x +2=0无实数根,则k 的取值范围是 k >98 .【解答】解:∵关于x 的一元二次方程kx 2﹣3x +2=0无实数根,∴△=(﹣3)2﹣4×k ×2<0且k ≠0,解得k >98,故答案为:k >98.24.若方程x 2﹣3x ﹣4=0的两个根分别为x 1和x 2,则1x 1+1x 2= −34 . 【解答】解:根据题意得x 1+x 2=3,x 1x 2=﹣4,所以1x 1+1x 2=x 1+x 2x 1x 2=3−4=−34. 故答案为−34.25.关于x 的方程ax 2﹣bx ﹣c =0的系数满足ac >0,则此方程的根x =b±√b 2+4ac 2a .【解答】解:∵ax 2﹣bx ﹣c =0,∴△=b 2+4ac ,∵对于任意实数b ,b 2≥0,ac >0,∴b 2+4ac >0,∴一元二次方程ax 2+bx +c =0有两个不相等的实数根.∴x =b±√b 2+4ac 2a . 故答案为:b±√b 2+4ac 2a .26.已知m ,n 是方程x 2+2x ﹣1=0的两个实数根,则式子3m 2+6m ﹣mn 的值为 4 .【解答】解:∵m 是方程x 2+2x ﹣1=0的根,∴m 2+2m ﹣1=0,∴m 2+2m =1,∴3m 2+6m ﹣mn =2(m 2+2m )﹣mn =2×1﹣mn =2﹣mn ,∵m ,n 是方程x 2+2x ﹣1=0的两个实数根,∴mn =﹣1,∴3m 2+6m ﹣mn =2﹣2×(﹣1)=4.故答案为4.27.我国南宋数学家杨辉所著《田亩比类乘除算法》中记载了这样一道题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步.”其大意为:一个矩形的面积为864平方步,宽比长少12步,问宽和长各多少步?设矩形的宽为x 步,根据题意,可列方程为 x (x +12)=864 .【解答】解:∵矩形的宽为x 步,且宽比长少12步,∴矩形的长为(x +12)步.依题意,得:x (x +12)=864.故答案为:x (x +12)=864.28.如果关于x 的一元二次方程x 2﹣3x +k =0有两个相等的实数根,那么实数k 的值是94 .【解答】解:根据题意得△=(﹣3)2﹣4k =0,解得k =94.故答案为94. 29.已知关于x 的方程x 2﹣mx +1=0的一个根为1,那么m 的值是 2 .【解答】解:当x =1时,方程x 2﹣mx +1=0为12﹣m +1=0,即2﹣m =0,解得m =2,故答案为:2.30.已知关于x 的方程a (x +c )2+b =0(a ,b ,c 为常数,a ≠0)的两根分别为﹣2,1,那么关于x 的方程a (x +c ﹣2)2+b =0的两根分别为 3,0 .【解答】解:方法一:∵方程a (x +c )2+b =0(a ,b ,c 为常数,a ≠0)的两根分别为﹣2,1,∴a (﹣2+c )2+b =0或a (1+c )2+b =0,∴(﹣2+c )2=−b a 或(1+c )2=−b a ,∴﹣2+c +1+c =0,解得,c=0.5,∴(﹣2+0.5)2=−b a,∴−ba=94,∵a(x+c﹣2)2+b=0,∴(x+0.5﹣2)2=9 4,解得,x1=3,x2=0,故答案为:3,0.方法二:∵方程a(x+c)2+b=0(a,b,c为常数,a≠0)的两根分别为﹣2,1,∴方程a(x+c﹣2)2+b=0的两根分别为:﹣2+2=0或1+2=3,故答案为:3,0.三.解答题(共20小题)31.解方程:(1)5x2﹣3x=x+1;(2)x(x﹣2)=3x﹣6.【解答】解:(1)将方程整理为一般式为5x2﹣4x﹣1=0,则(x﹣1)(5x+1)=0,∴x﹣1=0或5x+1=0,解得x1=1,x2=﹣0.2;(2)∵x(x﹣2)=3x﹣6,∴x(x﹣2)﹣3(x﹣2)=0,则(x﹣2)(x﹣3)=0,∴x﹣2=0或x﹣3=0,解得x1=2,x2=3.32.若一元二次方程x2﹣x=1的两个实数根分别为x1,x2,求(x1﹣1)(x2﹣1)的值.【解答】解:∵x2﹣x=1,∴x2﹣x﹣1=0,∴x1+x2=1、x1x2=﹣1,∴(x1﹣1)(x2﹣1)=x1x2﹣(x1+x2)+1=﹣1﹣1+1=﹣1.33.已知关于x 的方程2x 2﹣5x +k =0的一个根是1,求k 的值和另一个根.【解答】解:将x =1代入原方程,得:2×12﹣5×1+k =0,解得:k =3,∴原方程为2x 2﹣5x +3=0,∴方程的另一个根为52−1=32. 34.已知:关于x 的一元二次方程x 2﹣(m ﹣1)x ﹣m =0.(1)求证:方程总有两个实数根;(2)若该方程有一个根是1,求另一个根.【解答】(1)证明:∵a =1,b =﹣(m ﹣1),c =﹣m ,∴△=b 2﹣4ac =[﹣(m ﹣1)]2﹣4×1×(﹣m )=m 2+2m +1=(m +1)2≥0,∴方程总有两个实数根;(2)解:将x =1代入原方程,得:12﹣(m ﹣1)×1﹣m =0,解得:m =1,∴原方程为x 2﹣1=0,∴方程的另一个根为0﹣1=﹣1.35.“疫情”期间,李晨在家制作一种工艺品,并通过网络平台进行线上销售.经过一段时间后发现:当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,设该商品的售价为x 元/件(20≤x ≤40).(1)请用含售价x (元/件)的代数式表示每天能售出该工艺品的件数;(2)已知每件工艺品需要20元成本,每天销售该工艺品的纯利润为900元.①求该商品的售价;②为了支持“抗疫”行动,李晨决定每销售一件该工艺品便通过网络平台自动向某救助基金会捐款0.5元,求李晨每天通过销售该工艺品捐款的数额.【解答】解:(1)∵该商品的售价为x 元/件(20≤x ≤40),且当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,∴每天能售出该工艺品的件数为60+3(40﹣x )=(180﹣3x )件.(2)①依题意,得:(x ﹣20)(180﹣3x )=900,整理,得:x 2﹣80x +1500=0,解得:x 1=30,x 2=50(不合题意,舍去).答:该商品的售价为30元/件.②0.5×(180﹣3×30)=45(元).答:李晨每天通过销售该工艺品捐款的数额为45元.36.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0∴(m﹣n)2=0,(n﹣4)2=0∴n=4,m=4.根据上述材料,解答下面的问题:(1)已知x2﹣2xy+2y2﹣2y+1=0,求x+2y的值;(2)已知a﹣b=6,ab+c2﹣4c+13=0,求a+b+c的值.【解答】解:(1)∵x2﹣2xy+2y2﹣2y+1=x2﹣2xy+y2+y2﹣2y+1=(x﹣y)2+(y﹣1)2=0,∴x﹣y=0,y﹣1=0,∴y=1,x=1,∴x+2y=1+2=3;(2)∵a﹣b=6,即a=b+6,代入得:b(b+6)+c2﹣4c+13=0,整理得:(b2+6b+9)+(c2﹣4c+4)=(b+3)2+(c﹣2)2=0,∴b+3=0,c﹣2=0,解得b=﹣3,c=2,则a=3,则a+b+c=3﹣3+2=2.37.已知关于x的方程x2+2(m﹣1)x+m2+5=0有两个不相等的实数根,化简:|1−m|+√m2+4m+4.【解答】解:∵x2+2(m﹣1)x+m2+5=0有两个不相等的实数根,∴△=4(m﹣1)2﹣4(m2+5)>0,即﹣8m﹣16>0,解得:m<﹣2,则|1−m|+√m2+4m+4=|1﹣m|+|m+2|=1﹣m﹣m﹣2=﹣2m﹣1.38.解方程:(2x+3)2=(x﹣1)2.【解答】解:方法一:∵(2x+3)2=(x﹣1)2,∴2x+3=x﹣1或2x+3=1﹣x,解得x1=﹣4,x2=−2 3.方法二:∵(2x+3)2=(x﹣1)2,∴(2x+3)2﹣(x﹣1)2=0,则(2x+3+x﹣1)(2x+3﹣x+1)=0,∴3x+2=0或x+4=0,解得:x1=﹣4,x2=−2 3.39.解下列一元二次方程(1)x2+4x﹣8=0(2)(x﹣3)2=5(x﹣3)【解答】解:(1)∵x2+4x﹣8=0,∴x2+4x=8,则x2+4x+4=8+4,即(x+2)2=12,∴x+2=±2√3,∴x1=﹣2+2√3,x2=﹣2﹣2√3;(2)∵(x﹣3)2=5(x﹣3),∴(x﹣3)2﹣5(x﹣3)=0,则(x﹣3)(x﹣3﹣5)=0,∴x﹣3=0或x﹣8=0,解得x1=3,x2=8.40.关于x的一元二次方程x2+2mx+m2+m=0有两个不相等的实数根.(1)求m的取值范围.(2)设出x1、x2是方程的两根,且x12+x22=12,求m的值.【解答】解:(1)根据题意得:△=(2m)2﹣4(m2+m)>0,解得:m<0.∴m的取值范围是m<0.(2)根据题意得:x1+x2=﹣2m,x1x2=m2+m,∵x12+x22=12,∴(x1+x2)2−2x1x2=12,∴(﹣2m)2﹣2(m2+m)=12,∴解得:m1=﹣2,m2=3(不合题意,舍去),∴m的值是﹣2.41.因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一,深圳著名旅游“网红打卡地”东部华侨城景区在2019年春节长假期间,共接待游客达20万人次,预计在2021年春节长假期间,将接待游客达28.8万人次.(1)求东部华侨城景区2019至2021年春节长假期间接待游客人次的平均增长率.(2)东部华侨城景区一奶茶店销售一款奶茶,每杯成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯,2021年春节期间,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?【解答】解:(1)设年平均增长率为x,由题意得:20(1+x)2=28.8,解得:x1=20%,x2=﹣2.2(舍去).答:东部华侨城景区2019至2021年春节长假期间接待游客人次的平均增长率为20%.(2)设每杯售价定为a元,由题意得:(a﹣6)[300+30(25﹣a)]=6300,解得:a1=21,a2=20.∴为了能让顾客获得最大优惠,故a取20.答:每杯售价定为20元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额.42.解下列方程(x ﹣2)2﹣9=0.【解答】解:∵(x ﹣2)2﹣9=0,∴(x ﹣2)2=9,∴x ﹣2=±3,∴x ﹣2=3或x ﹣2=﹣3,解得,x 1=5,x 2=﹣1.43.解方程:x 2+5=6x .【解答】解:x 2+5=6x ,x 2﹣6x +5=0,(x ﹣1)(x ﹣5)=0,x ﹣1=0,x ﹣5=0,x 1=1,x 2=5.44.如图1,有一张长40cm ,宽20cm 的长方形硬纸片,裁去角上2个小正方形和2个小长方形(图中阴影部分)之后,恰好折成如图2的有盖纸盒.(1)若纸盒的高是3cm ,求纸盒底面长方形的长和宽;(2)若纸盒的底面积是150cm 2,求纸盒的高.【解答】解:(1)纸盒底面长方形的长为(40﹣2×3)÷2=17(cm ),纸盒底面长方形的宽为20﹣2×3=14(cm ).答:纸盒底面长方形的长为17cm ,宽为14cm .(2)设当纸盒的高为xcm 时,纸盒的底面积是150cm 2,依题意,得:(40−2x)2×(20﹣2x )=150,化简,得:x 2﹣30x +125=0,解得:x 1=5,x 2=25.当x =5时,20﹣2x =10>0,符合题意;当x =25时,20﹣2x =﹣30<0,不符合题意,舍去.答:若纸盒的底面积是150cm2,纸盒的高为5cm.45.已知关于x的一元二次方程kx2﹣3x+1=0有实数根,若该方程有两个实数根,分别为x1和x2,当x1+x2+x1x2=4时,求k的值.【解答】解:根据题意得k≠0且△=(﹣3)2﹣4k≥0,解得k≤94且k≠0,∵x1+x2=−3k,x1x2=1k,而x1+x2+x1x2=4,∴−3k+1k=4,解得k=1,经检验,k=1为分式方程的解,∴k的值为1.46.已知Rt△ABC的两条直角边长为一元二次方程x2+kx+12=0的两根.(1)当k=﹣7时,求Rt△ABC的周长;(2)当Rt△ABC为等腰直角三角形时,求k的值及△ABC的周长.【解答】解:(1)当k=﹣7时,方程为x2﹣17x+12=0,解得x1=3,x2=4,此时直角三角形的两直角边分别为3,4,所以斜边为√32+42=5,所以Rt△ABC的周长为3+4=5=12;(2)当Rt△ABC为等腰直角三角形时,即一元二次方程x2+kx+12=0的两根相等,则△=k2﹣4×12=0,解得k=±4√3,因为两直角边的和为﹣k>0,所以k=﹣4√3,所以两直角边为2√3,2√3,所以斜边为2√3×√2=2√6,所以△ABC的周长为2√3+2√3+2√6=4√3+2√6.47.在实数范围内,对于任意实数m、n(m≠0)规定一种新运算:m⊗n=m n+mn﹣3,例如:3⊗2=32+3×2﹣3=12.(1)计算:(﹣2)⊗(﹣1);(2)若x⊗1=﹣27,求x的值;(3)若(﹣y)⊗2的最小值为a,求a的值.【解答】解:(1)(﹣2)⊗(﹣1)=(﹣2)﹣1+(﹣2)×(﹣1)﹣3=−32;(2)由题意得x⊗1=x+x﹣3=﹣27,解得x=﹣12;(3)(﹣y)⊗2=y2﹣2y﹣3=(y﹣1)2﹣4,∵(y﹣1)2﹣4的最小值为﹣4,∴a的值为﹣4.48.小张2019年末开了一家商店,受疫情影响,2020年4月份才开始盈利,4月份盈利6000元,6月份盈利达到7260元,且从4月份到6月份,每月盈利的平均增长率都相同.(1)求每月盈利的平均增长率.(2)按照这个平均增长率,预计2020年7月份这家商店的盈利将达到多少元?【解答】解:(1)设每月盈利的平均增长率为x,依题意,得:6000(1+x)2=7260,解得:x1=0.1=10%,x2=﹣2.1(不合题意,舍去).答:每月盈利的平均增长率为10%.(2)7260×(1+10%)=7986(元).答:按照这个平均增长率,预计2020年7月份这家商店的盈利将达到7986元.49.解方程:(1)x2﹣16=0;(2)4x2+1=﹣4x.【解答】解:(1)x2﹣16=0,x2=16,x=±4,即x1=4,x2=﹣4;(2)4x2+1=﹣4x,4x2+4x+1=0,(2x+1)2=0,2x+1=0,即x1=x2=−1 2.50.解方程:(1)3x(x﹣4)﹣2(x﹣4)=0.(2)3x2﹣5x﹣1=0.【解答】解:(1)3x(x﹣4)﹣2(x﹣4)=0,(x﹣4)(3x﹣2)=0,x﹣4=0,3x﹣2=0,x1=4,x2=2 3;(2)3x2﹣5x﹣1=0,b2﹣4ac=(﹣5)2﹣4×3×(﹣1)=37,x=5±√37 2×3,x1=5+√376,x2=5−√376.第21 页共21 页。
2021年全国中考数学试题分类汇编专题03整式及运算
专题03 整式及运算一、单选题1.(2021年福建中考)下列运算正确的是( )A .22a a -=B .()2211a a -=-C .632a a a ÷=D .326(2)4a a = 【答案】D【分析】根据不同的运算法则或公式逐项加以计算,即可选出正确答案.【详解】解:A :()221a a a a -=-=,故 A 错误;B :()22121a a a -=-+,故 B 错误;C :63633a a a a -÷==,故C 错误;D :()()2232332622?44a a a a ⨯===.故选:D【点睛】本题考查了整式的加减法法则、乘法公式、同底数幂的除法法则、积的乘方、幂的乘方等知识点,熟知上述各种不同的运算法则或公式,是解题的关键.2.(2021年广东中考)已知93,274m n ==,则233m n +=( )A .1B .6C .7D .12【答案】D【分析】利用同底数幂乘法逆用转换求解即可.【详解】解:∵93,274m n ==,∵232323333(3)(3)927=34=12m n m n m n m n +=⨯=⨯=⨯⨯,∵故选:D .【点睛】本题主要考查同底数幂乘法的逆用,熟练掌握其运算法则即表现形式是解题关键.3.(2021年浙江丽水中考)计算:()24a a -⋅的结果是( ) A .8aB .6aC .8aD .6a -【答案】B【分析】 根据乘方的意义消去负号,然后利用同底数幂的乘法计算即可.【详解】解:原式24246a a a a +=⋅==.故选B .【点睛】此题考查的是幂的运算性质,掌握同底数幂的乘法法则是解题关键.4.(2021年四川资阳中考)下列计算正确的是( )A .2242a a a +=B .23a a a ⋅=C .22(3)6a a =D .623+=a a a 【答案】B【分析】根据合并同类项,同底数幂的乘法,积的乘方法则进行计算作出判断.【详解】解:A . 2222a a a +=,故此选项不符合题意;B . 23a a a ⋅=,正确,故此选项符合题意;C . 22(3)9a a =,故此选项不符合题意;D . 62,a a 不是同类项,不能合并计算,故此选项不符合题意;故选:B .【点睛】本题考查合并同类项,同底数幂的乘法,积的乘方计算,掌握计算法则准确计算是解题关键.5.(2021年四川自贡中考)已知23120x x --=,则代数式2395x x -++的值是( )A .31B .31-C .41D .41-【答案】B根据题意,可先求出x 2-3x 的值,再化简()22395=3+53x x x x -++--,然后整体代入所求代数式求值即可.【详解】解:∵23120x x --=,∵23=12x x -,∵()223395=3+5=312+5=31x x x x -++---⨯-. 故选:B .【点睛】此题考查了代数式求值,此题的关键是代数式中的字母表示的数没有明确告知,而是隐含在题设中,得出23=12x x -,是解题的关键.6.(2021年四川乐山中考)某种商品m 千克的售价为n 元,那么这种商品8千克的售价为( ) A .8n m (元) B .8n m (元) C .8m n (元) D .8m n(元) 【答案】A【分析】先求出1千克售价,再计算8千克售价即可;【详解】∵m 千克的售价为n 元,∵1千克商品售价为n m, ∵8千克商品的售价为8n m (元); 故答案选A .【点睛】本题主要考查了列代数式,准确分析列式是解题的关键.7.(2021年四川泸州中考)关于x 的一元二次方程2220x mx m m ++-=的两实数根12,x x ,满足122x x =,则2212(2)(2)x x ++的值是( )A .8B .16C . 32D .16或40【分析】根据一元二次方程根与系数的关系,即韦达定理,先解得2m =或1m =-,再分别代入一元二次方程中,利用完全平方公式变形解题即可.【详解】解:一元二次方程2220x mx m m ++-=21,2,a b m c m m ===-2122c m x am x ==-= 220m m --=(2)(1)0m m ∴-+=2m ∴=或1m =-当2m =时,原一元二次方程为2420x x ++=12=24b m ax x +-=-=-, 22221212122)+2((2)(2)()+4=x x x x x x +∴++,221212122=()2x x x x x x ++-221212212212)+(2)(2)=)(2(4+4x x x x x x x x -∴+++22=2+2(4)424⨯--⨯+32=当1m =-时,原一元二次方程为2220x x +=-2(2)41240∆=--⨯⨯=-<原方程无解,不符合题意,舍去,故选:C .【点睛】本题考查一元二次方程根与系数的关系,韦达定理等知识,涉及解一元二次方程,是重要考点,难度较易,掌握相关知识是解题关键.8.(2021年四川泸州中考)已知1020a =,10050b =,则1322a b ++的值是( ) A .2B .52C .3D .92【答案】C【分析】 根据同底数幂的乘法31010010a b ⋅=,可求23a b +=再整体代入即可.【详解】解: ∵1020a =,10050b =,∵2310100102050100010a b a b +⋅==⨯==,∵23a b +=, ∵()()1311233332222a b a b ++=++=+=. 故选:C .【点睛】本题考查幂的乘方,同底数幂的乘法逆运算,代数式求值,掌握幂的乘方,同底数幂的乘法法则,与代数式值求法是解题关键.9.(2021年云南中考)按一定规律排列的单项式:23456,4,9,16,25a a a a a ,……,第n 个单项式是( ) A .21n n a +B .21n n a -C .1n n n a +D .()21n n a + 【答案】A【分析】根据题目中的单项式可以发现数字因数是从1开始的正整数的平方,字母的指数从1开始依次加1,然后即可写出第n 个单项式,本题得以解决.【详解】解:∵一列单项式:23456,4,9,16,25a a a a a ,...,∵第n 个单项式为21n n a +,故选:A .【点睛】本题考查数字的变化类、单项式,解答本题的关键是明确题意,发现单项式的变化特点,求出相应的单项式.10.(2021年浙江金华中考)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是( )A .先打九五折,再打九五折B .先提价50%,再打六折C .先提价30%,再降价30%D .先提价25%,再降价25% 【答案】B【分析】设原件为x 元,根据调价方案逐一计算后,比较大小判断即可.【详解】设原件为x 元,∵先打九五折,再打九五折,∵调价后的价格为0.95x ×0.95=0.9025x 元,∵先提价50%,再打六折,∵调价后的价格为1.5x ×0.6=0.90x 元,∵先提价30%,再降价30%,∵调价后的价格为1.3x ×0.7=0.91x 元,∵先提价25%,再降价25%,∵调价后的价格为1.25x ×0.75=0.9375x 元,∵0.90x <0.9025x <0.91x <0.9375x故选B【点睛】本题考查了代数式,打折,有理数大小比较,准确列出符合题意的代数式,并能进行有理数大小的比较是解题的关键.11.(2021年浙江温州中考)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米()1.2a +元.该地区某用户上月用水量为20立方米,则应缴水费为( )A .20a 元B .()2024a +元C .()17 3.6a +元D .()20 3.6a +元【答案】D【分析】分两部分求水费,一部分是前面17立方米的水费,另一部分是剩下的3立方米的水费,最后相加即可.【详解】解:∵20立方米中,前17立方米单价为a 元,后面3立方米单价为(a +1.2)元,∵应缴水费为17a +3(a +1.2)=20a +3.6(元),故选:D .【点睛】本题考查的是阶梯水费的问题,解决本题的关键是理解其收费方式,能求出不同段的水费,本题较基础,重点考查了学生对该种计费方式的理解与计算方法等.11.(2021年甘肃武威中考)对于任意的有理数,a b ,如果满足2323a b a b ++=+,那么我们称这一对数,a b 为“相随数对”,记为(),a b .若(),m n 是“相随数对”,则()323[]21m m n ++-=( )A .2-B .1-C .2D .3 【答案】A【分析】先根据新定义,可得9m +4n =0,将整式()21]2[33m m n ++-去括号合并同类项化简得942m n +-,然后整体代入计算即可.【详解】解:∵(),m n 是“相随数对”, ∵2323m n m n ++=+, 整理得9m +4n =0,()323213642942[]2m m n m m n m n ++-=++-=+-=-.故选择A .【点睛】本题考查新定义相随数对,找出数对之间关系,整式加减计算求值,掌握新定义相随数对,找出数对之间关系,整式加减计算求值是解题关键.12.(2021年山东临沂中考)实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.下图为表示镭的放射规律的函数图象,据此可计算32mg 镭缩减为1mg 所用的时间大约是( )A .4860年B .6480年C .8100年D .9720年【答案】C【分析】 根据物质所剩的质量与时间的规律,可得答案.【详解】解:由图可知:1620年时,镭质量缩减为原来的12, 再经过1620年,即当3240年时,镭质量缩减为原来的21142=, 再经过1620×2=3240年,即当4860年时,镭质量缩减为原来的31182=, ...,∵再经过1620×4=6480年,即当8100年时,镭质量缩减为原来的511232=, 此时132132⨯=mg , 故选C .【点睛】本题考查了函数图象,规律型问题,利用函数图象的意义是解题关键.13.(2021年山东泰安中考)下列运算正确的是( )A .235235x x x +=B .()3326x x -=- C .()222x y x y +=+D .()()2322349x x x +-=- 【答案】D【分析】分别根据合并同类项法则、积的乘方运算法则、完全平方公式、平方差公式进行判断即可.解:A 、x 2和x 3不是同类项,不能合并,此选项错误;B 、()3328x x -=-,此选项错误;C 、()2222x y x xy y +=++,此选项错误;D 、()()23223(23)(23)49x x x x x +-=+-=-,此选项正确, 故选:D .【点睛】本题考查了同类项、积的乘方、完全平方公式、平方差公式,熟记公式,掌握运算法则是解答的关键. 14.(2021年安徽)计算23()x x ⋅-的结果是( )A .6xB .6x -C .5xD .5x - 【答案】D【分析】利用同底数幂的乘法法则计算即可【详解】解:52233=-()x x x x +⋅-=-故选:D【点睛】本题考查同底数幂的乘法法则,正确使用同底数幂相乘,底数不变,指数相加是关键15.(2021年陕西中考)计算:()23a b -=( )A .621a bB .62a bC .521a bD .32a b -【答案】A【分析】根据积的乘方,幂的乘方以及负整数指数幂运算法则计算即可.【详解】解:()23621a b a b -=, 故选:A .本题考查积的乘方,幂的乘方以及负整数指数幂等知识点,熟记相关定义与运算法则是解答本题的关键. 16.(2021年湖南衡阳中考)下列运算结果为6a 的是( )A .23a a ⋅B .122a a ÷C .()23aD .2312a ⎛⎫ ⎪⎝⎭ 【答案】C【分析】根据同底数幂相乘、同底数幂相除、幂的乘方法则逐项计算即可.【详解】A 选项,23235a a a a +⋅==,不符合题意;B 选项,12210122=a a a a -=÷,不符合题意;C 选项,()23326=a a a ⨯=,符合题意;D 选项,22233611=1224a a a ⨯⎛⎫⋅= ⎪⎝⎭⎛⎫ ⎪⎝⎭,不符合题意. 故选:C .【点睛】本题考查同底数幂相乘、同底数幂相除、幂的乘方和积的乘方法则.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘;积的乘方,等于把积的每一个因式的积的乘方,再把所得的幂相乘.17.(2021年浙江台州中考)已知(a +b )2=49,a 2+b 2=25,则ab =( )A .24B .48C .12D .【答案】C【分析】利用完全平方公式计算即可.【详解】解:∵()222249a b a b ab +=++=,2225a b +=, ∵4925122ab -==,【点睛】本题考查整体法求代数式的值,掌握完全平方公式是解题的关键.18.(2021年浙江台州中考)将x 克含糖10%的糖水与y 克含糖30%的糖水混合,混合后的糖水含糖( ) A .20% B .+100%2x y ⨯ C .+3100%20x y⨯ D .+3 100%10+10x yx y ⨯【答案】D【分析】先求出两份糖水中糖的重量,再除以混合之后的糖水总重,即可求解.【详解】 解:混合之后糖的含量:10%30%3100%1010x y x yx y x y ++=⨯++,故选:D .【点睛】本题考查列代数式,理解题意是解题的关键.19.(2021年江苏苏州中考)已知两个不等于0的实数a 、b 满足0a b +=,则baa b +等于() A .2- B .1- C .1 D .2【答案】A【分析】先化简式子,再利用配方法变形即可得出结果.【详解】解:∵22=b a b a a b ab ++, ∵()2222==a b ab b a b a a b ab ab+-++,∵两个不等于0的实数a 、b 满足0a b +=, ∵()22-2===-2a b ab b a ab a b ab ab+-+,故选:A .本题考查分式的化简、配完全平方、灵活应用配方法是解题的关键.20.(2021年上海中考)下列单项式中,23a b 的同类项是( )A .32a bB .232a bC .2a bD .3ab 【答案】B【分析】比较对应字母的指数,分别相等就是同类项【详解】∵a 的指数是3,b 的指数是2,与23a b 中a 的指数是2,b 的指数是3不一致,∵32a b 不是23a b 的同类项,不符合题意;∵a 的指数是2,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3一致,∵232a b 是23a b 的同类项,符合题意;∵a 的指数是2,b 的指数是1,与23a b 中a 的指数是2,b 的指数是3不一致,∵2a b 不是23a b 的同类项,不符合题意;∵a 的指数是1,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3不一致,∵3ab 不是23a b 的同类项,不符合题意;故选B【点睛】本题考查了同类项,正确理解同类项的定义是解题的关键.21.(2021年四川广安中考)下列运算中,正确的是( )A .2510a a a ⋅=B .222()a b a b -=-C .()23636a a -=D .22232a b a b a b -+=- 【答案】D【分析】根据同底数幂的乘法,合并同类项,幂的乘方和积的乘方,完全平方公式分别判断即可.解:A 、257a a a ⋅=,故选项错误;B 、222()2a b a b ab -=+-,故选项错误;C 、()23639a a -=,故选项错误;D 、22232a b a b a b -+=-,故选项正确;故选D .【点睛】本题考查了同底数幂的乘法,合并同类项,幂的乘方和积的乘方,完全平方公式,解题的关键是掌握各自的运算法则.22.(2021年四川眉山中考)下列计算中,正确的是( )A .5315a a a ⨯=B .53a a a ÷=C .()423812a b a b -=D .()222a b a b +=+ 【答案】C【分析】逐一分析各选项中的计算结果,利用计算公式进行计算即可得到正确选项.【详解】解:A 选项中,538a a a ⨯=;B 选项中,532a a a ÷=;C 选项正确;D 选项中,()2222a b a ab b +=++;故选:C .【点睛】本题综合考查了同底数幂的乘法计算、同底数幂的除法计算、幂的乘方运算、积的乘方运算、完全平方公式等内容,解决本题的关键是牢记对应法则和公式即可.23.(2021年湖南岳阳中考)下列运算结果正确的是( )A .32a a -=B .248a a a ⋅=C .()()2224a a a +-=-D .()22a a -=- 【答案】C【分析】逐一分析各选项,利用对应法则进行计算即可判断出正确选项.【详解】解:A 选项中:32a a a -=,因此错误;B 选项中:246·a a a =,因此错误;C 选项中:()()2224a a a +-=-,因此正确; D 选项中:()22a a -=,因此错误;故选:C .【点睛】本题考查了合并同类项、同底数幂的乘法、平方差公式、乘方的运算性质等内容,解决本题的关键是牢记相关运算法则和公式即可.24.(2021年浙江台州中考)下列运算中,正确的是( )A .a 2+a =a 3B .(-ab )2=-ab 2C .a 5÷a 2=a 3D .a 5・a 2=a 10【答案】C【分析】根据合并同类项、积的乘方、同底数幂相除、同底数幂相乘的法则分别计算即可.【详解】解:A .2a 与a 不是同类项,不能合并,故该项错误;B .()222b a ab =-,故该项错误;C .523a a a ÷=,该项正确;D .527a a a ⋅=,该项错误;故选:C .【点睛】本题考查整式的运算,掌握合并同类项、积的乘方、同底数幂相除、同底数幂相乘的法则是解题的关键. 25.(2021年四川成都中考)下列计算正确的是( )A .321mn mn -=B .()22346m n m n =C .()34m m m -⋅=D .()222m n m n +=+ 【答案】B【分析】 利用合并同类项法则可判定A ,利用积的乘方法则与幂的乘方法则可判定B ,利用同底数幂乘法法则可判定C ,利用完全平方公式可判定D .【详解】解:A . 321mn mn mn -=≠,故选项A 计算不正确;B. ()()()222232346m n m n m n =⋅=,故选项B 计算正确; C . ()3344m m m m m m -⋅=-⋅=-≠,故选项C 计算不正确;D . ()222222m n m mn n m n +=++≠+,故选项D 计算不正确.故选择B .【点睛】本题考查同类项合并,积的乘方与幂的乘方,同底数幂乘法,完全平方公式,掌握同类项合并,积的乘方与幂的乘方,同底数幂乘法,完全平方公式是解题关键.26.(2021年山东临沂中考)计算3325a a 的结果是( )A .610aB .910aC .37aD .67a【答案】A【分析】直接利用单项式乘以单项式运算法则计算得出答案.【详解】解:6332510a a a =⋅,故选:A .【点睛】此题主要考查了单项式乘以单项式,正确掌握相关运算法则是解题关键.27.(2021年浙江宁波中考)计算()3a a ⋅-的结果是( )A .2aB .2a -C .4aD .4a -【答案】D【分析】 根据单项式乘以单项式和同底数幂的运算法则解答即可.【详解】解:原式4a =-.故选:D【点睛】本题考查了整式的乘法,属于基础题目,熟练掌握运算法则是关键.28.(2021年重庆中考)计算63a a ÷的结果是( )A .63aB .52aC .62aD .53a 【答案】D【分析】根据单项式除以单项式法则、同底数幂除法法则解题.【详解】解:63a a ÷=53a ,故选:D .【点睛】本题考查同底数幂相除、单项式除以单项式等知识,是重要考点,难度较易,掌握相关知识是解题关键. 29.(2021年江苏连云港中考)下列运算正确的是( )A .325a b ab +=B .22523a b -=C .277a a a +=D .()22112x x x -+-= 【答案】D【分析】根据同类项与合并同类项、全完平方差公式的展开即可得出答案.【详解】解:A ,3a 与2b 不是同类项,不能合并,故选项错误,不符合题意;B ,25a 与22b 不是同类项,不能合并得到常数值,故选项错误,不符合题意;C ,合并同类项后2787a a a a +=≠,故选项错误,不符合题意;D ,完全平方公式:()22211221x x x x x =-++-=-,故选项正确,符合题意;故选:D .【点睛】本题考查了代数式的运算,同类项合并及完全平方差公式,解题的关键是:掌握相关的运算法则. 30.(2021年广西玉林中考)观察下列树枝分杈的规律图,若第n 个图树枝数用n Y 表示,则94Y Y -=( )A .4152⨯B .4312⨯C .4332⨯D .4632⨯【答案】B【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21n n Y =-,代入规律求解即可.【详解】解:由图可得到: 11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∵944942121312Y Y -=--+=⨯,故答案选:B .【点睛】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答.31.(2021年黑龙江绥化中考)下列运算正确的是( )A .()257a a =B .448x x x ⋅=C 3=±D =【答案】B【分析】根据幂的乘方,同底数幂的乘法,算术平方根,以及实数的运算法则逐一判断.【详解】A 、(a 5)2=a 10,故A 错,B 、x 4∵x 4=x 8,故B 正确,C 3=,故C 错,D -3-D 错, 故选:B【点睛】本题考查了算术平方根,实数的运算,同底数幂的乘法,以及幂的乘方,熟悉并灵活运用以上性质是解题的关键.32.(2021年河南中考)下列运算正确的是( )A .22()a a -=-B .2222a a -=C .23a a a ⋅=D .22(1)1a a -=-【答案】C【分析】直接利用幂的运算性质和完全平方公式分别判断得出答案.【详解】解:A 、22()a a -=,原计算错误,不符合题意;B 、2222a a a -=,原计算错误,不符合题意;C 、23a a a ⋅=,正确,符合题意;D 、22(1)21a a a -=-+,原计算错误,不符合题意;【点睛】本题主要考查了幂的运算性质和完全平方公式,正确掌握相关运算法则是解题关键.33.(2021年湖北鄂州中考)下列运算正确的是( )A .23a a a ⋅=B .541a a -=C .632a a a ÷=D .()3326a a = 【答案】A【分析】直接利用同底数幂的乘法、合并同类项、同底数幂的除法、幂的乘方直接求解即可.【详解】A 、23a a a ⋅=,选项正确,符合题意;B 、54a a a -=,选项错误,不符合题意;C 、633a a a ÷=,选项错误,不符合题意;D 、()3328a a =,选项错误,不符合题意;故选:A .【点睛】本题考查了同底数幂的乘法、合并同类项、同底数幂的除法、幂的乘方,解题的关键是:掌握相关的运算法则.34.(2021年江苏无锡中考)下列运算正确的是( )A .23a a a +=B .352()a a =C .824a a a ÷=D .235a a a ⋅=【答案】D【分析】根据合并同类项法则,幂的乘方法则,同底数幂的乘除法法则,逐一判断选项,即可.【详解】解:A. 2a a +,不是同类项,不能合并,故该选选错误,B. 236()a a =,故该选项错误,C. 826a a a ÷=,故该选项错误,D. 235a a a ⋅=,故该选项正确,【点睛】本题主要考查整式的运算,熟练掌握合并同类项法则,幂的乘方法则,同底数幂的乘除法法则,是解题的关键.35.(2021年内蒙古通辽中考)下列计算正确的是( )A .335x x x +=B .3321x x -=C .347x x x ⋅=D .()323626xy x y -=- 【答案】C【分析】根据合并同类项法则、同底数幂乘法法则、积的乘方及幂的乘方法则逐一计算即可得答案.【详解】A.3332x x x +=,故该选项计算错误,不符合题意,B.3332x x x -=,故该选项计算错误,不符合题意,C.33744x x x x +⋅==,故该选项计算正确,符合题意,D.()323323362(2)8xy x y x y ⨯-=-=-,故该选项计算错误,不符合题意,故选:C .【点睛】本题考查合并同类项、同底数幂乘法、积的乘方及幂的乘方,熟练掌握运算法则是解题关键.36.(2021年湖南中考)已知0a ≠,下列运算正确的是( )A .321a a -=B .326a a a ⋅=C .32a a a ÷=D .()3326a a = 【答案】C【分析】根据合并同类项、整式的乘法、同底数幂的除法、积的乘方逐项判断即可得.【详解】A 、32a a a -=,此项错误,不符题意;B 、2326a a a ⋅=,此项错误,不符题意;C 、32a a a ÷=,此项正确,符合题意;D 、()3328a a =,此项错误,不符题意;故选:C .【点睛】本题考查了合并同类项、整式的乘法、同底数幂的除法、积的乘方,熟练掌握各运算法则是解题关键. 37.(2021年内蒙古呼和浩特中考)下列计算正确的是( )A .224347a a a +=B 11a= C .31812()42-+÷-= D .21111a a a a --=-- 【答案】D【分析】 根据有理数、整式、分式、二次根式的运算公式运算验证即可.【详解】222347a a a +=,故A 错;当a >011a =,当a <011a=-,故B 错; 31812()262-+÷-=-,故C 错; 21111a a a a --=--,D 正确; 故选:D .【点睛】本题主要考查了有理数、整式、分式、二次根式的运算,熟记运算定理和公式是解决问题的额关键. 38.(2021年四川宜宾中考)下列运算正确的是( )A .23a a a +=B .()32622a a =C .623a a a ÷=D .325a a a ⋅=【答案】D【分析】根据同底数幂相乘底数不变指数相加、同底数幂相除底数不变指数相减、乘积的幂等于各部分幂的乘积运算法则求解即可.【详解】解:选项A :a 与2a 不是同类项,不能相加,故选项A 错误;选项B :()32628a a =,故选项B 错误;选项C :62624a a a a -÷==,故选项C 错误;选项D :33522a a a a +⋅==,故选项D 正确;故选:D .【点睛】本题考查幂的运算法则,属于基础题,熟练掌握运算法则是解决本类题的关键.39.(2021年黑龙江齐齐哈尔中考)下列计算正确的是( )A.4=±B .()2234636m n m n =C .24833a a a ⋅=D .33xy x y -= 【答案】A【分析】根据平方根,幂的乘方与积的乘方,单项式乘以单项式及合并同类项的运算法则分别对每一个选项进行分析,即可得出答案.【详解】A 、4=±,正确,故该选项符合题意;B 、()2234639m n m n =,错误,故该选项不合题意;C 、24633a a a ⋅=,错误,故该选项不合题意;D 、3xy 与3x 不是同类项,不能合并,故该选项不合题意;故选:A .【点睛】本题考查了平方根、幂的乘方与积的乘方,单项式乘以单项式以及合并同类项,熟练掌握平方根的定义、幂的乘方与积的乘方、单项式乘以单项式以及合并同类项的运算法则是解题关键.40.(2021年湖北中考)下列运算正确的是( )A .23a a a ⋅=B .()325a a =C .33(2)6a a =D .1234a a a ÷=【答案】A【分析】根据同底数幂的乘除法、幂的乘方、积的乘方法则逐项判断即可得.【详解】A 、23a a a ⋅=,此项正确,符合题意;B 、()326a a =,此项错误,不符题意;C 、33(2)8a a =,此项错误,不符题意;D 、1239a a a ÷=,此项错误,不符题意;故选:A .【点睛】本题考查了同底数幂的乘除法、幂的乘方、积的乘方,熟练掌握各运算法则是解题关键.41.(2021年山东威海中考)下列运算正确的是( )A .236(3)9a a -=-B .235()a a a -⋅=C .222(2)4x y x y -=-D .22445a a a += 【答案】B【分析】分别根据积的乘方和幂的乘方运算法则、同底数幂的乘法、完全平方公式以及合并同类项的运算法则对各项进行计算后再判断即可.【详解】解:A . 236(3)27a a -=-,原选项计算错误,不符合题意;B . 235()a a a -⋅=原选项计算正确 ,符合题意;C. 222(2)44x y x xy y -=-+,原选项计算错误,不符合题意;D . 22245a a a +=,原选项计算错误,不符合题意;故选:B .【点睛】此题主要考查了积的乘方和幂的乘方、同底数幂的乘法、完全平方公式以及合并同类项,熟练掌握相关运算法则是解答此题的关键.42.(2021年山东济宁中考)下列各式中,正确的是( )A .223x x x +=B .()x y x y --=--C .()325x x =D .532x x x ÷=【答案】D【分析】根据合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【详解】解:A 、23x x x +=,此选项错误,不符合题意;B 、()+x y x y --=-,此选项错误,不符合题意;C 、()326x x =,此选项错误,不符合题意; D 、532x x x ÷=,此选项正确,符合题意;故选:D .【点睛】本题主要考查合并同类项法则,同底数幂除法,幂的乘方,熟练掌握运算性质是解题的关键.43.(2021年黑龙江鹤岗中考)下列运算中,计算正确的是( )A .2352m m m +=B .()32626a a -=- C .()222a b a b -=- D =【答案】D【分析】根据积的乘方、完全平方公式及二次根式的除法可直接进行排除选项.【详解】解:A 、2m 与3m 不是同类项,所以不能合并,错误,故不符合题意;B 、()32628a a -=-,错误,故不符合题意;C 、()2222a b a ab b -=-+,错误,故不符合题意;D =故选D .【点睛】本题主要考查积的乘方、完全平方公式及二次根式的除法,熟练掌握积的乘方、完全平方公式及二次根式的除法是解题的关键.44.(2021年内蒙古中考)若1x =,则代数式222x x -+的值为( )A .7B .4C .3D .3-【答案】C【分析】 先将代数式222x x -+变形为()211x -+,再代入即可求解.【详解】解:())22222=111113x x x -+-+=-+=. 故选:C【点睛】本题考查了求代数式的值,熟练掌握完全平方公式是解题关键,也可将x 的值直接代入计算.45.(2021年山东济宁中考)按规律排列的一组数据:12,35,□,717,926,1137,…,其中□内应填的数是( )A .23B .511C .59D .12 【答案】D【分析】分子为连续奇数,分母为序号的平方1+,根据规律即可得到答案.【详解】观察这排数据发现,分子为连续奇数,分母为序号的平方1+,∴第n 个数据为:2211n n -+ 当3n =时的分子为5,分母为23110+=∴这个数为51102= 故选:D .【点睛】本题考查了数字的探索规律,分子和分母分别寻找规律是解题关键.46.(2021年湖北十堰市)将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是( )A .2025B .2023C .2021D .2019【答案】B【分析】 根据数字的变化关系发现规律第n 行,第n 列的数据为:2n (n -1)+1,即可得第32行,第32列的数据为:2×32×(32-1)+1=1985,再依次加2,到第32行,第13列的数据,即可.【详解】解:观察数字的变化,发现规律:第n 行,第n 列的数据为:2n (n -1)+1,∵第32行,第32列的数据为:2×32×(32-1)+1=1985,根据数据的排列规律,第偶数行从右往左的数据一次增加2,∵第32行,第13列的数据为:1985+2×(32-13)=2023,故选:B .【点睛】本题考查了数字的变化类,解决本题的关键是观察数字的变化寻找探究规律,利用规律解决问题. 47.(2021年广西来宾中考)下列运算正确的是( )A .235a a a ⋅=B .623a a a ÷=C .()325a a =D .2232a a a -= 【答案】A【分析】分别根据同底数幂的乘法、同底数幂的除法、幂的乘方、整式的加减法则进行计算,即可求解.【详解】解:A. 235a a a ⋅=,原选项计算正确,符合题意;B. 624a a a ÷=,原选项计算错误,不合题意;C. ()326a a =,原选项计算错误,不合题意;D. 232a a -,不是同类项,无法相减,原选项计算错误,不合题意.故选:A【点睛】本题考查了同底数幂的乘法、同底数幂的除法、幂的乘方、整式的加减等知识,熟知相关运算公式和法则是解题关键.二、填空题48.(2021年天津中考)计算42a a a +-的结果等于_____.【答案】5a【分析】根据合并同类项的性质计算,即可得到答案.【详解】()424215a a a a a +-=+-=故答案为:5a .【点睛】本题考查了整式加减的知识;解题的关键是熟练掌握合并同类项的性质,从而完成求解.49.(2021年广东中考)若1136x x +=且01x <<,则221x x -=_____. 【答案】6536-【分析】 根据1136x x +=,利用完全平方公式可得2125()36x x -=,根据x 的取值范围可得1x x-的值,利用平方差公式即可得答案.【详解】 ∵1136x x +=, ∵2211125()()436x x x x x x -=+-⋅=, ∵01x <<, ∵1x x<, ∵1x x-=56-, ∵221x x -=11()()x x x x +-=135()66⨯-=6536-,故答案为:6536-【点睛】 本题考查了完全平方公式及平方差公式,准确运用公式是解题的关键.50.(2021年江苏扬州中考)计算:2220212020-=__________.【答案】4041【分析】利用平方差公式进行简便运算即可.【详解】解:2220212020-=()()2021202020212020+⨯-=40411⨯=4041故答案为:4041.【点睛】本题考查了平方差公式的应用,解题时注意运算顺序.51.(2021年浙江嘉兴中考)观察下列等式:22110=-,22321=-,22532=-,…按此规律,则第n 个等式为21n -=__________________.【答案】()221n n --. 【分析】第一个底数是从1开始连续的自然数的平方,减去从0开始连续的自然数的平方,与从1开始连续的奇数相同,由此规律得出答案即可.【详解】解:∵22110=-,22321=-,22532=-,…∵第n 个等式为:()22211n n n -=-- 故答案是:()221n n --. 【点睛】本题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题的关键. 52.(2021年四川遂宁中考)如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第___个图形共有210个小球.【答案】20【分析】根据已知图形得出第n 个图形中黑色三角形的个数为1+2+3++n =()12n n +,列一元二次方程求解可得. 【详解】解:∵第1个图形中黑色三角形的个数1,第2个图形中黑色三角形的个数3=1+2,第3个图形中黑色三角形的个数6=1+2+3,第4个图形中黑色三角形的个数10=1+2+3+4,……∵第n 个图形中黑色三角形的个数为1+2+3+4+5++n =()12n n +,当共有210个小球时, ()12102n n +=,解得:20n =或21-(不合题意,舍去),∵第20个图形共有210个小球.故答案为:20.【点睛】本题考查了图形的变化规律,解一元二次方程,解题的关键是得出第n 个图形中黑色三角形的个数为1+2+3+……+n .53.(2021年湖南岳阳中考)已知1x x +=,则代数式1x x +=______. 【答案】0【分析】把1x x+=直接代入所求的代数式中,即可求得结果的值. 【详解】10x x+== 故答案为:0.【点睛】本题考查了求代数式的值,涉及二次根式的减法运算,整体代入法是解决本题的关键.54.(2021年江苏苏州中考)若21m n +=,则2366m mn n ++的值为______.【答案】3【分析】根据21m n +=,将式子2366m mn n ++进行变形,然后代入求出值即可.【详解】∵ 21m n +=,∵2366m mn n ++=3m (m +2n )+6n =3m +6n =3(m +2n )=3.故答案为:3.【点睛】本题考查了代数式的求值,解题的关键是利用已知代数式求值.55.(2021年江苏扬州中考)将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为___________.。
湖南省2021年中考数学真题分项汇编—专题02 整式和因式分解(含答案解析)
专题02 整式和因式分解一、单选题1. (2021·湖南衡阳市·中考真题)下列运算结果为的是()A. B. C. D.【答案】C【分析】根据同底数幂相乘、同底数幂相除、幂的乘方法则逐项计算即可.【详解】A选项, , 不符合题意;B选项, , 不符合题意;C选项, , 符合题意;D选项, , 不符合题意.故选: C.【点睛】本题考查同底数幂相乘、同底数幂相除、幂的乘方和积的乘方法则.同底数幂相乘, 底数不变, 指数相加;同底数幂相除, 底数不变, 指数相减;幂的乘方, 底数不变, 指数相乘;积的乘方, 等于把积的每一个因式的积的乘方, 再把所得的幂相乘.2. (2021·湖南中考真题)下列计算正确的是()A. B. C. D.【答案】A【分析】根据零指数幂, 特殊角三角函数值, 算术平方根的定义, 同底数幂乘法的计算法则分别计算即可. 【详解】解: A., 此选项正确;B., 此选项错误;C., 此选项错误;D., 此选项错误;故选: A.【点睛】本题考查零指数幂, 特殊角三角函数值, 算术平方根的定义, 同底数幂乘法, 熟知相关计算法则即定义是解决本题的关键.3.(2021·湖南中考真题)已知, 下列运算正确的是()A. B. C. D.【答案】C【分析】根据合并同类项、整式的乘法、同底数幂的除法、积的乘方逐项判断即可得.【详解】A., 此项错误, 不符题意;B., 此项错误, 不符题意;C., 此项正确, 符合题意;D., 此项错误, 不符题意;故选: C.【点睛】本题考查了合并同类项、整式的乘法、同底数幂的除法、积的乘方, 熟练掌握各运算法则是解题关键.4. (2021·湖南娄底市·中考真题)下列式子正确的是()A. B. C. D.【答案】B【分析】根据幂的乘方, 底数不变, 指数相乘;同底数幂相乘, 底数不变指数相加;合并同类项法则. 对各选项分析判断后利用排除法求解选择正确选项即可.【详解】A、, 因为不属于同类项, 不能进行加减合并, 故A错误;B.,故B正确;C., 故C错误;D., 故D错误.故选: B.【点睛】本题考查幂的乘方、同底数幂的乘法、合并同类项, 熟练掌握运算性质和法则是解题的关键.5. (2021·湖南张家界市·中考真题)下列运算正确的是()A. B.C. D.【答案】C【分析】直接利用合并同类项, 完全平方差公式、幂的乘方、同底数幂的除法来计算即可.【详解】解: A, 不能合并同类项, 故选项错误, 不符合题意;B, , 故选项错误, 不符合题意;C, , 故选项正确, 符合题意;D, , 故选项错误, 不符合题意;故选: C.【点睛】本题考查了合并同类项, 完全平方差公式、幂的乘方、同底数幂的除法, 解题的关键是: 熟练掌握合并同类项, 完全平方差公式、幂的乘方、同底数幂的除法的基本运算法则.6. (2021·湖南常德市·中考真题)下列计算正确的是()A. B. C. D.【答案】D【分析】根据同底数幂的乘除法、幂的乘方及合并同类项可直接进行排除选项.【详解】A.原计算错误, 该选项不符合题意;B.原计算错误, 该选项不符合题意;C.原计算错误, 该选项不符合题意;D.正确, 该选项符合题意;故选: D.【点睛】本题主要考查了同底数幂的乘除法、幂的乘方及合并同类项, 熟练掌握同底数幂的乘除法、幂的乘方及合并同类项是解题的关键.7. (2021·湖南中考真题)下列运算正确的是()A. B.C. D.【答案】C【分析】分别根据同底数幂的乘法运算法则、幂的乘方运算法则、二次根式的性质以及完全平方公式分别计算各项后, 再进行判断即可得到答案.【详解】解: A., 故选项A计算错误, 不符合题意;B., 故选项B计算错误, 不符合题意;C., 此选项计算正确, 故符合题意;D.故选项D计算错误, 不符合题意;故选: C.【点睛】此题主要考查了同底数幂的乘法、幂的乘方运算、二次根式的性质以及完全平方公式, 熟练掌握运算法则是解答此题的关键.8. (2021·湖南长沙市·中考真题)下列计算正确的是()A. B. C. D.【答案】A【分析】根据同底数幂的乘除法、合并同类项、幂的乘方法则逐项判断即可得.【详解】A., 此项正确;B., 此项错误;C., 此项错误;D., 此项错误;故选: A.【点睛】本题考查了同底数幂的乘除法、合并同类项、幂的乘方, 熟练掌握各运算法则是解题关键.9. (2021·湖南岳阳市·中考真题)下列运算结果正确的是()A. B.C. D.【答案】C【分析】逐一分析各选项, 利用对应法则进行计算即可判断出正确选项.【详解】解: A选项中: , 因此错误;B选项中: , 因此错误;C选项中: , 因此正确;D选项中: , 因此错误;故选: C.【点睛】本题考查了合并同类项、同底数幂的乘法、平方差公式、乘方的运算性质等内容, 解决本题的关键是牢记相关运算法则和公式即可.二、填空题10. (2021·湖南株洲市·中考真题)计算: __________.【答案】.【分析】根据单项式乘以单项式法则以及同底数的幂的乘法, 底数不变, 指数相加, 计算即可.【详解】解: .故答案: .【点睛】本题考查单项式乘以单项式, 熟练掌握单项式乘以单项式法则, 同底数的幂的乘法的运算法则是解题的关键.11. (2021·湖南长沙市·中考真题)分解因式:______.x x【答案】(2021)【分析】利用提公因式法进行因式分解即可得.【详解】解: ,故答案为: .【点睛】本题考查了利用提公因式法进行因式分解, 熟练掌握提公因式法是解题关键.12. (2021·湖南株洲市·中考真题)因式分解:__________.【答案】()232x x y -【分析】直接提出公因式即可完成因式分解.【详解】解: ;故答案为: .【点睛】本题考查了提公因式法进行因式分解, 解决本题的关键是找到它们的公因式, 提出公因式后再检查分解是否彻底即可, 本题为基础题, 考查了学生对基础知识的掌握与运用.13. (2021·湖南岳阳市·中考真题)因式分解: ______.【答案】.【详解】解: .故答案为: .【点睛】此题考查了运用公式法因式分解, 熟练掌握完全平方公式是解答此题的关键.14. (2021·湖南邵阳市·中考真题)因式分解:______.【答案】()()x y x y x -+【分析】提公因式与平方差公式相结合解题.【详解】解: ,故答案为: .【点睛】本题考查因式分解, 涉及提公因式与平方差公式, 是重要考点, 难度较易, 掌握相关是解题关键. 15. (2021·湖南衡阳市·中考真题)因式分解:__________.【答案】()33a a b -【分析】利用提取公因式法因式分解即可【详解】解:故答案为:()33a a b -【点睛】本题考查提取公因式法因式分解, 熟练掌握因式分解的方法是关键16.(2021·湖南中考真题)若x, y 均为实数, , , 则______;_______.【答案】20211【分析】根据同底数幂乘法、积的乘方、幂的乘方等计算法则进行等量代换即可.【详解】解: ∵,∴, ,4347(43)(47)202120212021xy xy x y y x y x x y +⋅=⨯=⨯=,故答案为: 2021;∵=4)3(4347202147xy xy xy xy =⋅⨯,即20212021xy x y +=,∴xy x y =+, ∴111x y x y xy++==, 故答案为: 1.【点睛】本题主要考查同底数幂乘法、积的乘方、幂的乘方等知识点, 熟练掌握以上知识点的运算法则是解决本题的关键.17.(2021·湖南怀化市·中考真题)观察等式:, , , ……, 已知按一定规律排列的一组数:, , , ……, , 若, 用含的代数式表示这组数的和是___________.【答案】100(21)m -【分析】根据规律将, , , ……, 用含的代数式表示, 再计算的和, 即可计算的和.【详解】由题意规律可得:.∵1002=m∴23991000222222=2m m +++++==, ∵22991001012222222+++++=-,∴10123991002222222=++++++12=2m m m m =+=.102239910010122222222+=++++++224=2m m m m m =++=.1032399100101102222222222=++++++++3248=2m m m m m m =+++=. ……∴1999922m =.故10010110110199992222222m m m ++++=+++. 令012992222S ++++=①12310022222S ++++=②②-①, 得 ∴10010110110199992222222m m m ++++=+++=100(21)m -故答案为: . 【点睛】本题考查规律问题, 用含有字母的式子表示数、灵活计算数列的和是解题的关键.18.(2021·湖南常德市·中考真题)如图中的三个图形都是边长为1的小正方形组成的网格, 其中第一个图形有个正方形, 所有线段的和为4, 第二个图形有个小正方形, 所有线段的和为12, 第三个图形有个小正方形, 所有线段的和为24, 按此规律, 则第n 个网格所有线段的和为____________.(用含n 的代数式表示)【答案】2n 2+2n【分析】本题要通过第1.2.3和4个图案找出普遍规律, 进而得出第n 个图案的规律为Sn=4n+2n ×(n -1), 得出结论即可.【详解】解: 观察图形可知:第1个图案由1个小正方形组成, 共用的木条根数第2个图案由4个小正方形组成, 共用的木条根数第3个图案由9个小正方形组成, 共用的木条根数第4个图案由16个小正方形组成, 共用的木条根数…由此发现规律是:第n 个图案由n2个小正方形组成, 共用的木条根数故答案为: 2n2+2n.【点睛】本题考查了规律型-图形的变化类, 熟练找出前四个图形的规律是解题的关键.三、解答题19. (2021·湖南衡阳市·中考真题)计算: .【答案】23x【分析】利用完全平方公式,平方差公式,单项式乘以多项式的法则, 计算合并同类项即可【详解】解:22222=+++-+-x y y x y x xy4x4442=.3x【点睛】本题考查了完全平方公式, 平方差公式, 单项式乘以多项式, 合并同类项, 熟练掌握公式, 准确合并计算是解题的关键.20. (2021·湖南中考真题)先化简, 再求值: , 其中.【答案】, 7.【分析】先计算完全平方公式、平方差公式, 再计算整式的加减法, 然后将代入求值即可得.【详解】解:原式,25=+,x将代入得: 原式.【点睛】本题考查了整式的化简求值, 熟记完全平方公式和平方差公式是解题关键.21. (2021·湖南长沙市·中考真题)先化简, 再求值: , 其中.【答案】, 1.【分析】先计算完全平方公式、平方差公式、单项式乘以多项式, 再计算整式的加减, 然后将的值代入即可得.【详解】解:原式,=-,2x将代入得: 原式.【点睛】本题考查了整式的化简求值, 熟练掌握整式的运算法则是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年中考数学复习题
21.(8分)一个角的余角比它的补角的13大10°,求这个角的度数. 【解答】解:设这个角的度数是x °,根据题意,
得(90°﹣x )=13(180°﹣x )+10°,
解这个方程得x =30,
答:这个角的度数是30°.
22.(8分)已知:A =2x 2+3xy ﹣5x +1,B =﹣x 2+xy +2.
(1)求A +2B .
(2)若A +2B 的值与x 的值无关,求y 的值.
【解答】解:(1)∵A =2x 2+3xy ﹣5x +1,B =﹣x 2+xy +2,
∴A +2B =(2x 2+3xy ﹣5x +1)+2(﹣x 2+xy +2)
=2x 2+3xy ﹣5x +1﹣2x 2+2xy +4
=5xy ﹣5x +5;
(2)∵A +2B 的值与x 的值无关,且A +2B =(5y ﹣5)x +5,
∴5y ﹣5=0,
解得:y =1,
则y 的值是1.
23.(8分)已知,如图,点C 在线段AB 上,且AC =6cm ,BC =14cm ,点M 、N 分别是AC 、BC 的中点.
(1)求线段MN 的长度;
(2)在(1)中,如果AC =acm ,BC =bcm ,其它条件不变,你能猜测出MN 的长度吗?请说出你发现的结论,并说明理由.
【解答】解:(1)∵AC =6cm ,BC =14cm ,
点M 、N 分别是AC 、BC 的中点,
∴MC =3cm ,NC =7cm ,
∴MN =MC +NC =10cm ;
(2)MN=1
2(a+b)cm.理由是:
∵AC=acm,BC=bcm,
点M、N分别是AC、BC的中点,
∴MC=1
2
a cm,NC=12
b cm,
∴MN=MC+NC=1
2(a+b)cm.。