牛顿运动定律二解答
牛顿第二定律难题例题及解答
1. 在粗糙的水平面上,物体在水平推力的作用下,由静止开始做匀加速直线运动,经过一段时间后,将水平推力逐渐减小到零(物体不停止),那么,在水平推力减小到零的过程中A. 物体的速度逐渐减小,加速度逐渐减小B. 物体的速度逐渐增大,加速度逐渐减小C. 物体的速度先增大后减小,加速度先增大后减小D. 物体的速度先增大后减小,加速度先减小后增大变式1、2. 如下图所示,弹簧左端固定,右端自由伸长到O点并系住物体m,现将弹簧压缩到A点,然后释放,物体一直可以运动到B点,如果物体受到的摩擦力恒定,则A. 物体从A到O先加速后减速B. 物体从A到O加速,从O到B减速C. 物体运动到O点时,所受合力为零D. 以上说法都不对变式2、3. 如图所示,固定于水平桌面上的轻弹簧上面放一重物,现用手往下压重物,然后突然松手,在重物脱离弹簧之前,重物的运动为A. 先加速,后减速B. 先加速,后匀速C. 一直加速D. 一直减速问题2:牛顿第二定律的基本应用问题:4. 2003年10月我国成功地发射了载人宇宙飞船,标志着我国的运载火箭技术已跨入世界先进行列,成为第三个实现“飞天”梦想的国家,在某一次火箭发射实验中,若该火箭(连同装载物)的质量,启动后获得的推动力恒为,火箭发射塔高,不计火箭质量的变化和空气的阻力。
(取)求:(1)该火箭启动后获得的加速度。
(2)该火箭启动后脱离发射塔所需要的时间。
5. 如图所示,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向角,球和车厢相对静止,球的质量为1kg。
(g取,,)(1)求车厢运动的加速度并说明车厢的运动情况。
(2)求悬线对球的拉力。
6. 如图所示,固定在小车上的折杆∠A=,B端固定一个质量为m的小球,若小车向右的加速度为a,则AB杆对小球的作用力F为()A. 当时,,方向沿AB杆B. 当时,,方向沿AB杆C. 无论a取何值,F都等于,方向都沿AB杆D. 无论a取何值,F都等于,方向不一定沿AB杆问题3:整体法和隔离法在牛顿第二定律问题中的应用:7. 一根质量为M的木杆,上端用细线系在天花板上,杆上有一质量为m的小猴,如图所示,若把细线突然剪断,小猴沿杆上爬,并保持与地面的高度不变,求此时木杆下落的加速度。
02牛顿运动定律习题解答
02牛顿运动定律习题解答第二章牛顿运动定律一选择题1.下列四种说法中,正确的为:()A.物体在恒力作用下,不可能作曲线运动;B.物体在变力作用下,不可能作曲线运动;C.物体在垂直于速度方向,且大小不变的力作用下作匀速圆周运动;D.物体在不垂直于速度方向的力作用下,不可能作圆周运动;解:答案是C。
2.关于惯性有下面四种说法,正确的为:()A.物体静止或作匀速运动时才具有惯性;B.物体受力作变速运动时才具有惯性;C.物体受力作变速运动时才没有惯性;D.惯性是物体的一种固有属性,在任何情况下物体均有惯性。
解:答案是D3.在足够长的管中装有粘滞液体,放入钢球由静止开始向下运动,下列说法中正确的是:()A.钢球运动越来越慢,最后静止不动;B.钢球运动越来越慢,最后达到稳定的速度;C.钢球运动越来越快,一直无限制地增加;D.钢球运动越来越快,最后达到稳定的速度。
解:答案是D4.一人肩扛一重量为P的米袋从高台上往下跳,当其在空中运动时,米袋作用在他肩上的力应为:()A.0B.P/4C.PD.P/2解:答案是A。
简要提示:米袋和人具有相同的加速度,因此米袋作用在他肩上的力应为0。
5.有两辆构造相同的汽车在相同的水平面上行驶,其中甲车满载,乙车空载,当两车速度相等时,均关掉发动机,使其滑行,若从开始滑行到静止,甲车需时t1,乙车为t2,则有:()A.t1=t2B.t1>t2C.t1<t2D.无法确定谁长谁短解:答案是A。
简要提示:两车滑动时的加速度大小均为g,又因v0at1=v0at2=0,所以t1=t26.若你在赤道地区用弹簧秤自已的体重,当地球突然停止自转,则你的体重将:()A.增加;B.减小;C.不变;D.变为0解:答案是A简要提示:重力是万有引力与惯性离心力的矢量和,在赤道上两者的方向相反,当地球突然停止自转,惯性离心力变为0,因此体重将增加。
7.质量为m的物体最初位于某0处,在力F=k/某2作用下由静止开始沿直线运动,k为一常数,则物体在任一位置某处的速度应为()A.k112k113k11k11()B.()C.()D.()m某某0m某某0m某某0m某某0解:答案是B。
牛顿第二定律练习题及答案解析
(本栏目内容,在学生用书中以活页形式分册装订!) 1.由牛顿第二定律知道,无论怎样小的力都可以使物体产生加速度,可是当我们用一个很小的力去推很重的桌子时,却推不动它,这是因为() A.牛顿第二定律不适用于静止的物体B.桌子的加速度很小,速度增量极小,眼睛不易觉察到C.推力小于静摩擦力,加速度是负的D.桌子所受的合力为零解析:F=ma中F指合力,用很小的力推桌子时,合力为零,故无加速度.答案: D2.关于速度、加速度和合外力之间的关系,下述说法正确的是()A.做匀变速直线运动的物体,它所受合外力是恒定不变的B.做匀变速直线运动的物体,它的速度、加速度、合外力三者总是在同一方向上C.物体受到的合外力增大时,物体的运动速度一定加快D.物体所受合外力为零时,一定处于静止状态解析:匀变速直线运动就是加速度恒定不变的直线运动,所以做匀变速直线运动的物体的合外力是恒定不变的,选项A正确;做匀变速直线运动的物体,它的加速度与合外力的方向一定相同,但加速度与速度的方向就不一定相同了.加速度与速度的方向相同时做匀加速运动,加速度与速度的方向相反时做匀减速运动,选项B错误;物体所受的合外力增大时,它的加速度一定增大,但速度不一定增大,选项C错误;物体所受合外力为零时,加速度为零,但物体不一定处于静止状态,也可以处于匀速运动状态,选项D错误.答案: A3.如右图所示,质量为10 kg的物体在水平面上向左运动,物体与水平面间的动摩擦因数为μ=0.2,与此同时,物体还受到一个水平向右的推力F=20 N,则物体产生的加速度是(g=10 m/s2)()A.0B.4m/s2,水平向右C.2 m/s2,水平向左D.2 m/s2,水平向右答案: B4.搬运工人沿粗糙斜面把一个物体拉上卡车,当力沿斜面向上,大小为F时,物体的加速度为a1;若保持力的方向不变,大小变为2F时,物体的加速度为a2,则()A.a1=a2B.a1<a2<2a1C.a2=2a1D.a2>2a1解析:设总的阻力为F′,第一次推时F-F′=ma1,式子两边同乘以2,得2F-2F′=m·2a1第二次推时,2F-F′=ma2,比较两个式子可以看出a2>2a1,所以D正确.答案: D5.力F1单独作用于某物体时产生的加速度是3 m/s2,力F2单独作用于此物体时产生的加速度是4 m/s2,两力同时作用于此物体时产生的加速度可能是() A.1 m/s2B.5 m/s2C.4 m/s2D.8m/s2解析:由题意,力F1作用于物体的加速度a1=3 m/s2,F2作用于物体的加速度a2=4 m/s2,F1与F2的合力F的范围|F1-F2|≤F≤F1+F2,故两力同时作用于此物体的加速度|a1-a2|≤a≤a1+a2.即1 m/s2≤a≤7 m/s2,故选项A、B、C正确.答案:ABC6.如右图所示,位于水平地面上的质量为m的小木块,在大小为F,方向与水平方向成α角的拉力作用下沿地面做匀加速运动.若木块与地面之间的动摩擦因数为μ,则木块的加速度为()A.F/mB.F cos α/mC.(F cos α-μmg)/mD.[F cos α-μ(mg-F sin α)]/m解析:对木块作受力分析,如右图所示,在竖直方向上合力为零,即F sin α+F N=mg,在水平方向上由牛顿第二定律有F cos α-μF N=ma.联立可得a=F cos α-μ?mg-F sin α?m,故选项D正确.答案: D7.如右图所示,物体在水平拉力F的作用下沿水平地面做匀速直线运动,速度为v.现让拉力F逐渐减小,则物体的加速度和速度的变化情况应是() A.加速度逐渐变小,速度逐渐变大B.加速度和速度都在逐渐变小C.加速度和速度都在逐渐变大D.加速度逐渐变大,速度逐渐变小解析:物体向右做匀速直线运动,滑动摩擦力F f=F=μF N=μmg,当F逐渐减小时,F f=μmg不变,所以产生与v方向相反即向左的加速度,加速度的数值a=F f-Fm随F逐渐减小而逐渐增大.因为a与v方向相反,所以v减小.答案: D8.在倾角为37°的光滑斜面上,质量为m的物体以加速度a匀加速下滑.现用沿斜面向上的推力,使物块以1.2a的加速度匀加速向上滑动,则推力的大小是(sin 37°=0.6,cos 37°=0.8)()A.1.2mg B.1.32mgC.1.96mg D.2.2mg解析:在沿斜面方向上,物块匀加速下滑时,有mg sin 37°=ma,①匀加速上滑时,有F-mg sin 37°=1.2ma.②①②联立解得推力F=1.32mg.答案: B9.如右图所示,水平面上质量相等的两木板A、B用一轻质弹簧相连,整个系统处于静止状态.现用一竖直向上的力F拉动木块A,使木块A向上做匀加速直线运动.研究从力F刚作用在木块A上的瞬间到木块B刚离开地面的瞬间这一过程,并且选定该过程中木块A的起点位置为坐标原点,则下列图中可以表示力F和木块A 的位移x之间的关系的是()解析:弹簧的形变量用x′表示,系统处于静止状态时,易知弹簧的压缩量为mg/k;研究从F刚作用在木板A上的瞬间到弹簧刚恢复原长的瞬间这个过程,由牛顿第二定律得:F+kx′-mg=ma,又因为x+x′=mg/k,所以得F=kx+ma;研究从弹簧恢复原长时到木块B刚离开地面的瞬间这个过程,同理得到F=kx+ma.故选项A正确.答案: A10.质量均为m的A、B两个小球之间系一个质量不计的弹簧,放在光滑的台面上.A 紧靠墙壁,如右图所示,今用恒力F将B球向左挤压弹簧,达到平衡时,突然将力撤去,此瞬间()A.A球的加速度为F/(2m)B.A球的加速度为零C.B球的加速度为F/(2m)D.B球的加速度为F/m解析:恒力F作用时,A和B都平衡,它们的合力都为零,且弹簧弹力为F.突然将力F撤去,对A来说水平方向依然受弹簧弹力和墙壁的弹力,二力平衡,所以A球的合力为零,加速度为零,A项错,B项对.而B球在水平方向只受水平向,故C项错,D项对.右的弹簧的弹力作用,加速度a=Fm答案:BD11.如右图所示,电梯与水平面夹角为30°,当电梯加速向上运动时,梯面对人的支持力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍?解析:本题分解加速度比分解力更显方便.对人进行受力分析:重力mg、支持力F N、摩擦力F f(摩擦力的方向一定与接触面平行,由加速度的方向可推知F f水平向右).建立直角坐标系:取水平向右(即F f 方向)为x 轴正向,此时只需分解加速度,其中a x =a cos 30°,a y =a sin 30°(如下图所示). 建立方程并求解:x 方向:F f =ma cos 30°y 方向:F N -mg =ma sin 30°所以F f /(mg )=3/5.答案: 3512.某一旅游景区,建有一山坡滑草运动项目.该山坡可看成倾角θ=30°的斜面,一名游客连同滑草装置总质量m =80 kg ,他从静止开始匀加速下滑,在时间t =5 s 内沿斜面滑下的位移x =50 m .(不计空气阻力,取g =10 m/s 2,结果保留2位有效数字)问(1)游客连同滑草装置在下滑过程中受到的摩擦力F 为多大?(2)滑草装置与草皮之间的动摩擦因数μ为多大?解析: (1)由位移公式x =12at 2 沿斜面方向,由牛顿第二定律得mg sin θ-F f =ma联立并代入数值后,得F f =m ⎝ ⎛⎭⎪⎫g sin θ-2x t 2=80 N (2)在垂直斜面方向上,F N -mg cos θ=0,又F f =μF N联立并代入数值后,得μ=F f mg cos θ=0.12. 答案: (1)80 N (2)0.12。
牛顿第二定律两类动力学问题及答案解析
牛顿第二定律两类动力学问题知识点、两类动力学问题1.动力学的两类基本问题第一类:已知受力情况求物体的运动情况。
第二类:已知运动情况求物体的受力情况。
2.解决两类基本问题的方法以加速度为“桥梁”,由运动学公式和牛顿第二定律列方程求解,具体逻辑关系如图:对牛顿第二定律的理解1.牛顿第二定律的“五个性质”2.合力、加速度、速度的关系(1)物体的加速度由所受合力决定,与速度无必然联系。
(2)合力与速度夹角为锐角,物体加速;合力与速度夹角为钝角,物体减速。
(3)a=ΔvΔt是加速度的定义式,a与v、Δv无直接关系;a=Fm是加速度的决定式。
3.[应用牛顿第二定律定性分析]如图1所示,弹簧左端固定,右端自由伸长到O 点并系住质量为m的物体,现将弹簧压缩到A点,然后释放,物体可以一直运动到B点。
如果物体受到的阻力恒定,则()图1A.物体从A到O先加速后减速B.物体从A到O做加速运动,从O到B做减速运动C.物体运动到O点时,所受合力为零D.物体从A到O的过程中,加速度逐渐减小解析物体从A到O,初始阶段受到的向右的弹力大于阻力,合力向右。
随着物体向右运动,弹力逐渐减小,合力逐渐减小,由牛顿第二定律可知,加速度向右且逐渐减小,由于加速度与速度同向,物体的速度逐渐增大。
当物体向右运动至AO间某点(设为点O′)时,弹力减小到与阻力相等,物体所受合力为零,加速度为零,速度达到最大。
此后,随着物体继续向右运动,弹力继续减小,阻力大于弹力,合力方向变为向左。
至O点时弹力减为零,此后弹力向左且逐渐增大。
所以物体越过O′点后,合力(加速度)方向向左且逐渐增大,由于加速度与速度反向,故物体做加速度逐渐增大的减速运动。
综合以上分析,只有选项A正确。
答案 A牛顿第二定律的瞬时性【典例】(2016·安徽合肥一中二模)两个质量均为m的小球,用两条轻绳连接,处于平衡状态,如图2所示。
现突然迅速剪断轻绳OA,让小球下落,在剪断轻绳的瞬间,设小球A、B的加速度分别用a1和a2表示,则()图2A.a1=g,a2=g B.a1=0,a2=2gC.a1=g,a2=0 D.a1=2g,a2=0解析由于绳子张力可以突变,故剪断OA后小球A、B只受重力,其加速度a1=a2=g。
牛顿第二定律详解
牛顿第二定律详解实验:用控制变量法研究:a与F的关系,a与m的关系知识简析一、牛顿第二定律1.内容:物体的加速度跟物体所受合外力成正比,跟物体的质量成反比;a的方向与F合的方向总是相同。
2.表达式:F=ma揭示了:①力与a的因果关系,力是产生a的原因和改变物体运动状态的原因;②力与a的定量关系3、对牛顿第二定律理解:(1)F=ma中的F为物体所受到的合外力.(2)F=ma中的m,当对哪个物体受力分析,就是哪个物体的质量,当对一个系统(几个物体组成一个系统)做受力分析时,如果F是系统受到的合外力,则m是系统的合质量.(3)F=ma中的F与a有瞬时对应关系,F变a则变,F大小变,a则大小变,F方向变a也方向变.(4)F=ma中的F与a有矢量对应关系,a的方向一定与F的方向相同。
(5)F=ma中,可根据力的独立性原理求某个力产生的加速度,也可以求某一个方向合外力的加速度.(6)F=ma中,F的单位是牛顿,m的单位是kg,a的单位是米/秒2.(7)F=ma的适用范围:宏观、低速4. 理解时应应掌握以下几个特性。
(1) 矢量性F=ma是一个矢量方程,公式不但表示了大小关系,还表示了方向关系。
(2) 瞬时性a与F同时产生、同时变化、同时消失。
作用力突变,a的大小方向随着改变,是瞬时的对应关系。
(3) 独立性(力的独立作用原理) F合产生a合;Fx合产生ax合;Fy合产生ay合当物体受到几个力作用时,每个力各自独立地使物体产生一个加速度,就象其它力不存在一样,这个性质叫力的独立作用原理。
因此物体受到几个力作用,就产生几个加速度,物体实际的加速度就是这几个加速度的矢量和。
(4) 同体性F=ma中F、m、a各量必须对应同一个物体(5)局限性适用于惯性参考系(即所选参照物必须是静止或匀速直线运动的,一般取地面为参考系);只适用于宏观、低速运动情况,不适用于微观、高速情况。
牛顿运动定律的应用1.应用牛顿运动定律解题的一般步骤:(1) 选取研究对象(2) 分析所选对象在某状态(或某过程中)的受力情况、运动情况(3) 建立直角坐标:其中之一坐标轴沿的方向然后各力沿两轴方向正交分解(4) 列出运动学方程或第二定律方程F合=a合;Fx合=ax合;Fy合=ay合用a这个物理量把运动特点和受力特点联系起来(5) 在求解的过程中,注意解题过程和最后结果的检验,必要时对结果进行讨论.2.物理解题的一般步骤:(1) 审题:解题的关键,明确己知和侍求,特别是语言文字中隐着的条件(如:光滑、匀速、恰好追上、距离最大、共同速度等),看懂文句、及题述的物理现象、状态、过程。
第二章课后习题答案
第二章课后习题答案第二章牛顿定律2-1如图(a)所示,质量为m的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为()(A)ginθ(B)gcoθ(C)gtanθ(D)gcotθ分析与解当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力FT(其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a,如图(b)所示,由其可解得合外力为mgcotθ,故选(D).求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征.2-2用水平力FN把一个物体压着靠在粗糙的竖直墙面上保持静止.当FN逐渐增大时,物体所受的静摩擦力Ff的大小()(A)不为零,但保持不变(B)随FN成正比地增大(C)开始随FN增大,达到某一最大值后,就保持不变(D)无法确定分析与解与滑动摩擦力不同的是,静摩擦力可在零与最大值μFN范围内取值.当FN增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A).2-3一段路面水平的公路,转弯处轨道半径为R,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率()μgR(B)必须等于μgR(C)不得大于μgR(D)还应由汽车的质量m决定(A)不得小于分析与解由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μFN.由此可算得汽车转弯的最大速率应为v=μRg.因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C).2-4一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则()(A)它的加速度方向永远指向圆心,其速率保持不变(B)它受到的轨道的作用力的大小不断增加(C)它受到的合外力大小变化,方向永远指向圆心(D)它受到的合外力大小不变,其速率不断增加分析与解由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力FN作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关.重力的切向分量(mgcoθ)使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程v2FNmginθm可判断,随θ角的不断增大过程,轨道支持力FN也将不R断增大,由此可见应选(B).2-5图(a)示系统置于以a=1/4g的加速度上升的升降机内,A、B两物体质量相同均为m,A所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦,并不计空气阻力,则绳中张力为()(A)58mg(B)12mg(C)mg(D)2mg分析与解本题可考虑对A、B两物体加上惯性力后,以电梯这个非惯性参考系进行求解.此时A、B两物体受力情况如图(b)所示,图中a′为A、B两物体相对电梯的加速度,ma′为惯性力.对A、B两物体应用牛顿第二定律,可解得FT=5/8mg.故选(A).讨论对于习题2-5这种类型的物理问题,往往从非惯性参考系(本题为电梯)观察到的运动图像较为明确,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上一个虚拟的惯性力.如以地面为惯性参考系求解,则两物体的加速度aA和aB均应对地而言,本题中aA和aB的大小与方向均不相同.其中aA应斜向上.对aA、aB、a和a′之间还要用到相对运动规律,求解过程较繁.有兴趣的读者不妨自己尝试一下.2-6图示一斜面,倾角为α,底边AB长为l=2.1m,质量为m的物体从题2-6图斜面顶端由静止开始向下滑动,斜面的摩擦因数为μ=0.14.试问,当α为何值时,物体在斜面上下滑的时间最短?其数值为多少?解取沿斜面为坐标轴O某,原点O位于斜面顶点,则由牛顿第二定律有mginαmgμcoαma(1)又物体在斜面上作匀变速直线运动,故有l11at2ginαμcoαt2coα22则t2l(2)gcoαinαμcoα为使下滑的时间最短,可令dt0,由式(2)有dαinαinαμcoαcoαcoαμinα0则可得tan2α1o,49μ此时t2l0.99gcoαinαμcoα2-7工地上有一吊车,将甲、乙两块混凝土预制板吊起送至高空.甲块质量为m1=2.00某102kg,乙块质量为m2=1.00某102kg.设吊车、框架和钢丝绳的质量不计.试求下述两种情况下,钢丝绳所受的张力以及乙块对甲块的作用力:(1)两物块以10.0m·s-2的加速度上升;(2)两物块以1.0m·s-2的加速度上升.从本题的结果,你能体会到起吊重物时必须缓慢加速的道理吗?解按题意,可分别取吊车(含甲、乙)和乙作为隔离体,画示力图,并取竖直向上为Oy轴正方向(如图所示).当框架以加速度a上升时,有FT-(m1+m2)g=(m1+m2)a(1)FN2-m2g=m2a(2)解上述方程,得FT=(m1+m2)(g+a)(3)FN2=m2(g+a)(4)(1)当整个装置以加速度a=10m·s-2上升时,由式(3)可得绳所受张力的值为FT=5.94某103N乙对甲的作用力为F′N2=-FN2=-m2(g+a)=-1.98某103N(2)当整个装置以加速度a=1m·s-2上升时,得绳张力的值为FT=3.24某103N此时,乙对甲的作用力则为F′N2=-1.08某103N由上述计算可见,在起吊相同重量的物体时,由于起吊加速度不同,绳中所受张力也不同,加速度大,绳中张力也大.因此,起吊重物时必须缓慢加速,以确保起吊过程的安全.2-8如图(a)所示,已知两物体A、B的质量均为m=3.0kg物体A以加速度a=1.0m·s-2运动,求物体B与桌面间的摩擦力.(滑轮与连接绳的质量不计)分析该题为连接体问题,同样可用隔离体法求解.分析时应注意到绳中张力大小处处相等是有条件的,即必须在绳的质量和伸长可忽略、滑轮与绳之间的摩擦不计的前提下成立.同时也要注意到张力方向是不同的.解分别对物体和滑轮作受力分析[图(b)].由牛顿定律分别对物体A、B及滑轮列动力学方程,有mAg-FT=mAa(1)F′T1-Ff=mBa′(2)F′T-2FT1=0(3)考虑到mA=mB=m,FT=F′T,FT1=F′T1,a′=2a,可联立解得物体与桌面的摩擦力Ffmgm4ma7.2N2讨论动力学问题的一般解题步骤可分为:(1)分析题意,确定研究对象,分析受力,选定坐标;(2)根据物理的定理和定律列出原始方程组;(3)解方程组,得出文字结果;(4)核对量纲,再代入数据,计算出结果来.2-9质量为m′的长平板A以速度v′在光滑平面上作直线运动,现将质量为m的木块B轻轻平稳地放在长平板上,板与木块之间的动摩擦因数为μ,求木块在长平板上滑行多远才能与板取得共同速度?分析当木块B平稳地轻轻放至运动着的平板A上时,木块的初速度可视为零,由于它与平板之间速度的差异而存在滑动摩擦力,该力将改变它们的运动状态.根据牛顿定律可得到它们各自相对地面的加速度.换以平板为参考系来分析,此时,木块以初速度-v′(与平板运动速率大小相等、方向相反)作匀减速运动,其加速度为相对加速度,按运动学公式即可解得.该题也可应用第三章所讲述的系统的动能定理来解.将平板与木块作为系统,该系统的动能由平板原有的动能变为木块和平板一起运动的动能,而它们的共同速度可根据动量定理求得.又因为系统内只有摩擦力作功,根据系统的动能定理,摩擦力的功应等于系统动能的增量.木块相对平板移动的距离即可求出.解1以地面为参考系,在摩擦力Ff=μmg的作用下,根据牛顿定律分别对木块、平板列出动力学方程Ff=μmg=ma1F′f=-Ff=m′a2a1和a2分别是木块和木板相对地面参考系的加速度.若以木板为参考系,木块相对平板的加速度a=a1+a2,木块相对平板以初速度-v′作匀减速运动直至最终停止.由运动学规律有-v′2=2a由上述各式可得木块相对于平板所移动的距离为mv22μgmm解2以木块和平板为系统,它们之间一对摩擦力作的总功为W=Ff(+l)-Ffl=μmg式中l为平板相对地面移动的距离.由于系统在水平方向上不受外力,当木块放至平板上时,根据动量守恒定律,有m′v′=(m′+m)v″由系统的动能定理,有μmg由上述各式可得11mv2mmv222mv22μgmm2-10如图(a)所示,在一只半径为R的半球形碗内,有一粒质量为m的小钢球,当小球以角速度ω在水平面内沿碗内壁作匀速圆周运动时,它距碗底有多高?分析维持钢球在水平面内作匀角速度转动时,必须使钢球受到一与向心加速度相对应的力(向心力),而该力是由碗内壁对球的支持力FN的分力来提供的,由于支持力FN始终垂直于碗内壁,所以支持力的大小和方向是随ω而变的.取图示O某y坐标,列出动力学方程,即可求解钢球距碗底的高度.解取钢球为隔离体,其受力分析如图(b)所示.在图示坐标中列动力学方程FNinθmanmRω2inθ(1)Rh(3)且有coθR由上述各式可解得钢球距碗底的高度为hR可见,h随ω的变化而变化.gω22-11火车转弯时需要较大的向心力,如果两条铁轨都在同一水平面内(内轨、外轨等高),这个向心力只能由外轨提供,也就是说外轨会受到车轮对它很大的向外侧压力,这是很危险的.因此,对应于火车的速率及转弯处的曲率半径,必须使外轨适当地高出内轨,称为外轨超高.现有一质量为m的火车,以速率v沿半径为R的圆弧轨道转弯,已知路面倾角为θ,试求:(1)在此条件下,火车速率v0为多大时,才能使车轮对铁轨内外轨的侧压力均为零?(2)如果火车的速率v≠v0,则车轮对铁轨的侧压力为多少?分析如题所述,外轨超高的目的欲使火车转弯的所需向心力仅由轨道支持力的水平分量FNinθ提供(式中θ角为路面倾角).从而不会对内外轨产生挤压.与其对应的是火车转弯时必须以规定的速率v0行驶.当火车行驶速率v≠v0时,则会产生两种情况:如图所示,如v>v0时,外轨将会对车轮产生斜向内的侧压力F1,以补偿原向心力的不足,如v<v0时,则内轨对车轮产生斜向外的侧压力F2,以抵消多余的向心力,无论哪种情况火车都将对外轨或内轨产生挤压.由此可知,铁路部门为什么会在每个铁轨的转弯处规定时速,从而确保行车安全.解(1)以火车为研究对象,建立如图所示坐标系.据分析,由牛顿定律有v2FNinθm(1)解(1)(2)两式可得火车转弯时规定速率为v0gRtanθ(2)当v>v0时,根据分析有v2FNinθF1coθm(3)RFNcoθF1inθmg0(4)解(3)(4)两式,可得外轨侧压力为v2F1mcoθginθR当v<v0时,根据分析有v2FNinθF2coθm(5)RFNcoθF2inθmg0(6)解(5)(6)两式,可得内轨侧压力为v2F2mginθcoθR2-12一杂技演员在圆筒形建筑物内表演飞车走壁.设演员和摩托车的总质量为m,圆筒半径为R,演员骑摩托车在直壁上以速率v作匀速圆周螺旋运动,每绕一周上升距离为h,如图所示.求壁对演员和摩托车的作用力.分析杂技演员(连同摩托车)的运动可以看成一个水平面内的匀速率圆周运动和一个竖直向上匀速直线运动的叠加.其旋转一周所形成的旋线轨迹展开后,相当于如图(b)所示的斜面.把演员的运动速度分解为图示的v1和v2两个分量,显然v1是竖直向上作匀速直线运动的分速度,而v2则是绕圆筒壁作水平圆周运动的分速度,其中向心力由筒壁对演员的支持力FN的水平分量FN2提供,而竖直分量FN1则与重力相平衡.如图(c)所示,其中φ角为摩托车与筒壁所夹角.运用牛顿定律即可求得筒壁支持力的大小和方向解设杂技演员连同摩托车整体为研究对象,据(b)(c)两图应有FN1mg0(1)FN2v2m(2)Rv2vcoθv2πR2πR2h2(3)22FNFN1FN2(4)以式(3)代入式(2),得FN2m4π2R2v24π2Rmv222(5)2222R4πRh4πRh将式(1)和式(5)代入式(4),可求出圆筒壁对杂技演员的作用力(即支承力)大小为22FNFN1FN224π2Rv22mg4π2R2h2与壁的夹角φ为FN24π2Rv2arctanarctan222FN14πRhg讨论表演飞车走壁时,演员必须控制好运动速度,行车路线以及摩托车的方位,以确保三者之间满足解题用到的各个力学规律.2-13一质点沿某轴运动,其受力如图所示,设t=0时,v0=5m·s-1,某0=2m,质点质量m=1kg,试求该质点7s末的速度和位置坐标.分析首先应由题图求得两个时间段的F(t)函数,进而求得相应的加速度函数,运用积分方法求解题目所问,积分时应注意积分上下限的取值应与两时间段相应的时刻相对应.解由题图得0t52t,Ft5t7355t,由牛顿定律可得两时间段质点的加速度分别为a2t,0t5a355t,5t7对0<t<5s时间段,由adv得dtvtv00dvadt积分后得v5t再由v2d某得dtd某vdt某00某t积分后得某25tt将t=5s代入,得v5=30m·s-1和某5=68.7m对5s<t<7s时间段,用同样方法有133dvv0vt5a2dt得v35t2.5t82.5t再由得某=17.5t2-0.83t3-82.5t+147.87将t=7s代入分别得v7=40m·s-1和某7=142m2-14一质量为10kg的质点在力F的作用下沿某轴作直线运动,已知F =120t+40,式中F的单位为N,t的单位的s.在t=0时,质点位于某=5.0m处,其速度v0=6.0m·s-1.求质点在任意时刻的速度和位置.分析这是在变力作用下的动力学问题.由于力是时间的函数,而加速度a=dv/dt,这时,动力学方程就成为速度对时间的一阶微分方程,解此微分方程可得质点的速度v(t);由速度的定义v=d某/dt,用积分的方法可求出质点的位置.解因加速度a=dv/dt,在直线运动中,根据牛顿运动定律有2某某5d某vdt5t120t40mdvdt依据质点运动的初始条件,即t0=0时v0=6.0m·s-1,运用分离变量法对上式积分,得vv0dv12.0t4.0dt0tv=6.0+4.0t+6.0t2又因v=d某/dt,并由质点运动的初始条件:t0=0时某0=5.0m,对上式分离变量后积分,有d某6.04.0t6.0tdt某t2某00某=5.0+6.0t+2.0t2+2.0t32-15轻型飞机连同驾驶员总质量为1.0某103kg.飞机以55.0m·s-1的速率在水平跑道上着陆后,驾驶员开始制动,若阻力与时间成正比,比例系数α=5.0某102N·s-1,空气对飞机升力不计,求:(1)10s后飞机的速率;(2)飞机着陆后10s内滑行的距离.分析飞机连同驾驶员在水平跑道上运动可视为质点作直线运动.其水平方向所受制动力F为变力,且是时间的函数.在求速率和距离时,可根据动力学方程和运动学规律,采用分离变量法求解.解以地面飞机滑行方向为坐标正方向,由牛顿运动定律及初始条件,有dvαtdtvtαtdvv00mdtα2t得vv02mFmam因此,飞机着陆10s后的速率为v=30m·s-1又tα2d某vdt某0002mt某故飞机着陆后10s内所滑行的距离某某0v0tα3t467m6m2-16质量为m的跳水运动员,从10.0m高台上由静止跳下落入水中.高台距水面距离为h.把跳水运动员视为质点,并略去空气阻力.运动员入水后垂直下沉,水对其阻力为bv2,其中b为一常量.若以水面上一点为坐标原点O,竖直向下为Oy轴,求:(1)运动员在水中的速率v与y的函数关系;(2)如b/m=0.40m-1,跳水运动员在水中下沉多少距离才能使其速率v减少到落水速率v0的1/10?(假定跳水运动员在水中的浮力与所受的重力大小恰好相等)分析该题可以分为两个过程,入水前是自由落体运动,入水后,物体受重力P、浮力F和水的阻力Ff的作用,其合力是一变力,因此,物体作变加速运动.虽然物体的受力分析比较简单,但是,由于变力是速度的函数(在有些问题中变力是时间、位置的函数),对这类问题列出动力学方程并不复杂,但要从它计算出物体运动的位置和速度就比较困难了.通常需要采用积分的方法去解所列出的微分方程.这也成了解题过程中的难点.在解方程的过程中,特别需要注意到积分变量的统一和初始条件的确定.解(1)运动员入水前可视为自由落体运动,故入水时的速度为v02gh运动员入水后,由牛顿定律得P-Ff-F=ma由题意P=F、Ff=bv2,而a=dv/dt=v(dv/dy),代入上式后得-bv2=mv(dv/dy)考虑到初始条件y0=0时,v0t2gh,对上式积分,有vdvmdy0v0vbvv0eby/m2gheby/m(2)将已知条件b/m=0.4m-1,v=0.1v0代入上式,则得ymvln5.76mbv0某2-17直升飞机的螺旋桨由两个对称的叶片组成.每一叶片的质量m=136kg,长l=3.66m.求当它的转速n=320r/min 时,两个叶片根部的张力.(设叶片是宽度一定、厚度均匀的薄片)分析螺旋桨旋转时,叶片上各点的加速度不同,在其各部分两侧的张力也不同;由于叶片的质量是连续分布的,在求叶片根部的张力时,可选取叶片上一小段,分析其受力,列出动力学方程,然后采用积分的方法求解.解设叶片根部为原点O,沿叶片背离原点O的方向为正向,距原点O为r处的长为dr一小段叶片,其两侧对它的拉力分别为FT(r)与FT(r+dr).叶片转动时,该小段叶片作圆周运动,由牛顿定律有dFTFTrFTrdr由于r=l时外侧FT=0,所以有m2ωrdrltFTrdFTlrmω2rdrlmω2222πmn222FTrlrlr2ll上式中取r=0,即得叶片根部的张力FT0=-2.79某105N负号表示张力方向与坐标方向相反.2-18一质量为m的小球最初位于如图(a)所示的A点,然后沿半径为r 的光滑圆轨道ADCB下滑.试求小球到达点C时的角速度和对圆轨道的作用力.分析该题可由牛顿第二定律求解.在取自然坐标的情况下,沿圆弧方向的加速度就是切向加速度at,与其相对应的外力Ft是重力的切向分量mginα,而与法向加速度an相对应的外力是支持力FN和重力的法向分量mgcoα.由此,可分别列出切向和法向的动力学方程Ft=mdv/dt和Fn=man.由于小球在滑动过程中加速度不是恒定的,因此,需应用积分求解,为使运算简便,可转换积分变量.倡该题也能应用以小球、圆弧与地球为系统的机械能守恒定律求解小球的速度和角速度,方法比较简便.但它不能直接给出小球与圆弧表面之间的作用力.解小球在运动过程中受到重力P和圆轨道对它的支持力FN.取图(b)所示的自然坐标系,由牛顿定律得Ftmginαmdv(1)dtmv2FnFNmgcoαm(2)R由vdrdαrdα,得dt,代入式(1),并根据小球从点A运动到点Cdtdtv的始末条件,进行积分,有vv0vdvα90orginαdα得v则小球在点C的角速度为2rgcoαωv2gcoα/rrmv2mgcoα3mgcoα由式(2)得FNmr由此可得小球对圆轨道的作用力为FN3mgcoαFN负号表示F′N与en反向.2-19光滑的水平桌面上放置一半径为R的固定圆环,物体紧贴环的内侧作圆周运动,其摩擦因数为μ,开始时物体的速率为v0,求:(1)t时刻物体的速率;(2)当物体速率从v0减少到12v0时,物体所经历的时间及经过的路程.解(1)设物体质量为m,取图中所示的自然坐标,按牛顿定律,有mv2FNmanRFfmatdvdt由分析中可知,摩擦力的大小Ff=μFN,由上述各式可得v2dvμRdt取初始条件t=0时v=v0,并对上式进行积分,有t0dtRvdvμv0v2vRv0Rv0μt(2)当物体的速率从v0减少到1/2v0时,由上式可得所需的时间为t物体在这段时间内所经过的路程Rμv0vdt0tt0Rv0dtRv0μtRln2μ2-20质量为45.0kg的物体,由地面以初速60.0m·s-1竖直向上发射,物体受到空气的阻力为Fr=kv,且k=0.03N/(m·s-1).(1)求物体发射到最大高度所需的时间.(2)最大高度为多少?分析物体在发射过程中,同时受到重力和空气阻力的作用,其合力是速率v的一次函数,动力学方程是速率的一阶微分方程,求解时,只需采用分离变量的数学方法即可.但是,在求解高度时,则必须将时间变量通过速度定义式转换为位置变量后求解,并注意到物体上升至最大高度时,速率应为零.解(1)物体在空中受重力mg和空气阻力Fr=kv作用而减速.由牛顿定律得mgkvmdv(1)dt某2-25如图(a)所示,电梯相对地面以加速度a竖直向上运动.电梯中有一滑轮固定在电梯顶部,滑轮两侧用轻绳悬挂着质量分别为m1和m2的物体A和B.设滑轮的质量和滑轮与绳索间的摩擦均略去不计.已知m1>m2,如以加速运动的电梯为参考系,求物体相对地面的加速度和绳的张力.分析如以加速运动的电梯为参考系,则为非惯性系.在非惯性系中应用牛顿定律时必须引入惯性力.在通常受力分析的基础上,加以惯性力后,即可列出牛顿运动方程来.解取如图(b)所示的坐标,以电梯为参考系,分别对物体A、B作受力分析,其中F1=m1a,F2=m2a分别为作用在物体A、B上的惯性力.设ar为物体相对电梯的加速度,根据牛顿定律有m1gm1aFT1m1ar(1)m2gm2aFT2m2ar(2)FT2FT2(3)由上述各式可得arm1m2gam1m22m1m2gam1m2FT2FT2由相对加速度的矢量关系,可得物体A、B对地面的加速度值为a1aram1m2g2m2am1m22m1am1m2gm1m2a2araa2的方向向上,a1的方向由ar和a的大小决定.当ar<a,即m1g-m2g-2m2a>0时,a1的方向向下;反之,a1的方向向上.某2-26如图(a)所示,在光滑水平面上,放一质量为m′的三棱柱A,它的斜面的倾角为α.现把一质量为m的滑块B放在三棱柱的光滑斜面上.试求:(1)三棱柱相对于地面的加速度;(2)滑块相对于地面的加速度;(3)滑块与三棱柱之间的正压力.分析这类问题可应用牛顿定律并采用隔离体法求解.在解题的过程中必须注意:(1)参考系的选择.由于牛顿定律只适用于惯性系,可选择地面为参考系(惯性系).因地面和斜面都是光滑的,当滑块在斜面上下滑时,三棱柱受到滑块对它的作用,也将沿地面作加速度为aA的运动,这时,滑块沿斜面的加速度aBA,不再是它相对于地面的加速度aB了.必须注意到它们之间应满足相对加速度的矢量关系,即aB=aA+aBA.若以斜面为参考系(非惯性系),用它求解这类含有相对运动的力学问题是较为方便的.但在非惯性系中,若仍要应用牛顿定律,则必须增添一惯性力F,且有F=maA.(2)坐标系的选择.常取平面直角坐标,并使其中一坐标轴方向与运动方向一致,这样,可使解题简化.(3)在分析滑块与三棱柱之间的正压力时,要考虑运动状态的影响,切勿简单地把它视为滑块重力在垂直于斜面方向的分力mgcoα,事实上只有当aA=0时,正压力才等于mgcoα.解1取地面为参考系,以滑块B和三棱柱A为研究对象,分别作示力图,如图(b)所示.B受重力P1、A施加的支持力FN1;A受重力P2、B施加的压力FN1′、地面支持力FN2.A的运动方向为O某轴的正向,Oy轴的正向垂直地面向上.设aA为A对地的加速度,aB为B对的地加速度.由牛顿定律得FN1inαmaA(1)FN1inαmaB某(2)FN1coαmgmaBy(3)FN1FN1(4)设B相对A的加速度为aBA,则由题意aB、aBA、aA三者的矢量关系如图(c)所示.据此可得aB某aAaBAcoα(5)aByaBAinα(6)解上述方程组可得三棱柱对地面的加速度为aAmginαcoα2mminαmginαcoαmmin2α滑块相对地面的加速度aB在某、y轴上的分量分别为aB某aBymmgin2αmmin2α则滑块相对地面的加速度aB的大小为aBaa2B某2Bym22mmm2in2αginαmmin2α其方向与y轴负向的夹角为amcotαθarctanB某arctanaBymmA与B之间的正压力FN1mmgcoα2mminα解2若以A为参考系,O某轴沿斜面方向[图(d)].在非惯性系中运用牛顿定律,则滑块B的动力学方程分别为mginαmaAcoαmaBA(1)mgcoαFN1maAinα0(2)又因FN1inαmaA0(3)FN1FN1(4)由以上各式可解得aAaBAmginαcoαmmin2αmmginαmmin2α由aB、aBA、aA三者的矢量关系可得m22mmm2in2αaBginαmmin2α以aA代入式(3)可得FN1mmgcoαmmin2α。
大学物理题库-牛顿定律习题与答案解析
7-2 图第二章 牛顿定律一、选择题:1、如图2-1所示,滑轮、绳子的质量均忽略不计,忽略一切摩擦阻力,物体A 的质量A m 大于物体B 的质量B m 。
在A 、B 运动过程中弹簧秤的读数是:[ ](A )g m m B A )(+ (B )g m m B A )(- (C )g m m m m B A B A -4 (D )g m m m m BA BA +42、在升降机的天花板上拴一轻绳,其下端系有一重物。
当升降机以加速度a 上升时,绳中的张力正好等于所能承受的最大张力的一半;当绳子刚好被拉断时升降机上升的加速度为:[ ] (A )a 2 (B ))(2g a + (C )g a +2 (D )g a +3、如图2-7所示,一竖立的圆筒形转笼,其半径为R ,绕中心轴o o '轴旋转,一物块A 紧靠在圆筒的内壁上,物块与圆筒间的摩擦系数为μ,要使A 不落下,则圆筒旋转的角速度ω至少应为:[ ](A )Rgμ (B )g μ (C )Rgμ (D )R g4、如图2-8所示,质量为m作用力的大小为:[ ](A )θsin mg (B )θcos mg(C )θcos mg (D )θsin mg5、光滑的水平桌面上放有两块相互接触的滑块,质量分别为m 1和m 2,且m 1<m 2 .今对两滑块施加相同的水平作用力,如图所示.设在运动过程中,两滑块不离开,则两滑块之间的相互作用力N 应有 (A) N =0. (B) 0 < N < F .(C) F < N <2F. (D) N > 2F. [ ]6、质量为m 的小球,放在光滑的木板和光滑的墙壁之间,并保持平衡,如图所示.设木板和墙壁之间的夹角为α,当α逐渐增大时,小球对木板的压力将(A) 增加.(B) 减少. (C) 不变.(D) 先是增加,后又减小.压力增减的分界角为α=45°.Bm 1-2 图A8-2 图9-2 图 [ ]7、水平地面上放一物体A ,它与地面间的滑动摩擦系数为μ.现加一恒力F 如图所示.欲使物体A 有最大加速度,则恒力F与水平方向夹角θ 应满足(A) sin θ =μ. (B) cos θ =μ. (C) tg θ =μ. (D) ctg θ =μ. [ ] 8、在作匀速转动的水平转台上,与转轴相距R 处有一体积很小的工件A ,如图所示.设工件与转台间静摩擦系数为μs ,若使工件在转台上无滑动,则转台的角速度ω应满足(A) Rgs μω≤. (B) Rgs 23μω≤. (C) R gs μω3≤. (D)Rg s μω2≤. [ ]9、一个圆锥摆的摆线长为l ,摆线与竖直方向的夹角恒为θ,如图所示.则摆锤转动的周期为 (A)g l. (B) gl θcos . (C) g l π2. (D) gl θπcos 2 . [ ]10、光滑的内表面半径为10 cm 的半球形碗,以匀角速度ω绕其对称OC 旋转.已知放在碗内表面上的一个小球P 相对于碗静止,其位置高于碗底4 cm ,则由此可推知碗旋转的角速度约为 (A) 10 rad/s . (B) 13 rad/s .(C) 17 rad/s (D) 18 rad/s . [ ]二、填空题:1、已知质量为m 的质点沿x 轴受力为)2(+=x k F ,其中k 为常数。
大学普通物理学-二-牛顿运动定律
第二章牛顿运动定律一、选择题1.关于惯性有下面四种说法,正确的为()。
A.物体静止或作匀速运动时才具有惯性B.物体受力作变速运动时才具有惯性C.物体受力作变速运动时才没有惯性D.惯性是物体的一种固有属性,在任何情况下物体均有惯性1.【答案】D。
解析:本题考查对惯性的正确理解。
物体的惯性是物体的自然固有属性,与物理的运动状态和地理位置没有关系,只要有质量的物体都有惯性,质量是一个物体惯性大小的量度,所以本题答案为D。
2.下列四种说法中,正确的为()。
A.物体在恒力作用下,不可能作曲线运动B.物体在变力作用下,不可能作曲线运动C.物体在垂直于速度方向,且大小不变的力作用下作匀速圆周运动D.物体在不垂直于速度方向的力作用下,不可能作圆周运动2.【答案】C。
解析:本题考查的是物体运动与受力的关系物体的运动受初始条件和受力共同影响,物体受恒力作用但仍然可以作曲线运动,比如平抛运动.对于圆周运动需要有向心力,向心力是改变物体速度方向,当一个物体只受向心力作用时则作匀速圆周运动,所以C选项是正确的。
3.一质点从t=0时刻开始,在力F1=3i+2j(SI单位)和F2=-2i-t j(SI单位)的共同作用下在Oxy平面上运动,则在t=2s时,质点的加速度方向沿()。
A.x轴正向B.x轴负向C.y轴正向D.y轴负向3.【答案】A。
解析:合力F=F1+F2=i+(2-t)j,在t=2s时,力F=i,沿x轴正方向,加速度也沿同一方向。
4.一人肩扛一重量为P的米袋从高台上往下跳,当其在空中运动时,米袋作用在他肩上的力应为()。
A.0B.P/4C.PD.P/24.【答案】A。
解析:米袋和人具有相同的加速度,因此米袋作用在他肩上的力应为0。
5.质量分别为m1、和m2的两滑块A和B通过一轻弹簧水平连接后置于水平桌面上,滑块与桌面间的滑动摩擦因数均为μ,系统在水平拉力F作用下匀速运动,如图2-1所示。
如突然撤销拉力,则撤销后瞬间,二者的加速度a A和a B,分别为()。
物理牛顿第二定律F=ma试题答案及解析
物理牛顿第二定律F=ma试题答案及解析1.如图,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等.现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2,下列反映a1和a2变化的图线中正确的是( )【答案】A【解析】解答本题时可按以下思路分析:开始时F较小,两物体一起以相同的加速度运动,当F增大到某一值时,两物体相对滑动,m1水平方向仅受滑动摩擦力作用,加速度不变,m2水平方向所受合力增大,加速度增大,因此两物体加速度变化不同.2.如图,质量m="2" kg的物体静止于水平地面的A处,A、B间距L="20" m.用大小为30 N,沿水平方向的外力拉此物体,经t="2" s拉至B处.(已知cos37°="0.8," sin37°=0.6.取g="10" m/s2)(1)求物体与地面间的动摩擦因数μ;(2)用大小为30 N,与水平方向成37°的力斜向上拉此物体,使物体从A处由静止开始运动并能到达B处,求该力作用的最短时间t.【答案】(1)0.5 (2)1.03 s【解析】(1)物体做匀加速运动解得:对物体由牛顿第二定律得:F-μmg=ma解得:(2)设F作用的最短时间为t,物体先以大小为a的加速度匀加速时间t,撤去外力后,以大小为a′的加速度匀减速时间t′到达B处,速度恰为0,对物体由牛顿第二定律得:Fcos37°-μ(mg-Fsin37°)=ma解得:由于匀加速阶段的末速度即为匀减速阶段的初速度,因此有:at=a′t′解得:解得:3.如图所示,在高出水平地面h="1.8" m 的光滑平台上放置一质量M="2" kg、由两种不同材料连接成一体的薄板A,其右段长度l1="0.2" m且表面光滑,左段表面粗糙.在A最右端放有可视为质点的物块B,其质量m="1" kg.B与A左段间动摩擦因数μ=0.4.开始时二者均静止,先对A施加F="20" N 水平向右的恒力,待B脱离A(A尚未露出平台)后,将A取走.B离开平台后的落地点与平台右边缘的水平距离x="1.2" m.(取g="10" m/s2)求:(1)B离开平台时的速度vB.(2)B从开始运动到刚脱离A时,B运动的时间tB 和位移xB.(3)A左段的长度l2.【答案】(1)2 m/s (2)0.5 s 0.5 m (3)1.5 m【解析】(1)物块B离开平台后做平抛运动:x=vBth= gt2解之可得vB="2" m/s(2)物块B与A右端接触时处于静止状态,当B与A左端接触时做匀加速直线运动,设加速度为aB,则μmg=maBv B =aBtB又xB = aBtB2解得tB="0.5" s xB="0.5" m(3)A刚开始运动时,A做匀加速直线运动,设加速度为a1,B刚开始运动时,A的速度为v1,加速度为a2,则有F=Ma1v 12=2a1l1F-μmg=Ma2l 2=v1tB+ a2tB2- aBtB2解得l2="1.5" m4.一质点受多个力的作用,处于静止状态,现使其中一个力的大小逐渐减小到零,再沿原方向逐渐恢复到原来的大小。
牛顿运动定律书后习题解答
图 2 唱3
牛顿定律 并 注 意 到 此 时 落 下 部 分 质 量 是 变 化
的 ,故有
ml gx
=
d dt
m l
xv
xgd t = d( xv )
上式两边乘以 xv ,得
vgx2d t =
1 2
d(
x2
v2
)
即
gx2d x =
1 2
d(
x2
v2
)
(因为
v
=
d d
x t
)
积分上式 ,且利用初始条件 :x = 0 ,v = 0 ,得
0
h
∫ ∫ v0
-
mvd v mg + αmv2
=
dy
0
小球自地面可到达的最大高度为
h
=
21αln
mg +
αm
v
2 0
mg
(1 )
小球下落时 ,将受到向下的重力 mg 和向上的阻力 αmv2 ,根据牛顿第二定律 ,
有
作变量替换后有
- mg +
αm v 2
=
m
dv dt
- mg +
αm v 2
T - f = mA aA x
(5 )
mA g - N = mA aA y
(6 )
f = μN
(7 )
B 物体 :
- Tsin θ = mB aBx
(8 )
mB g - Tcos θ = mB aBy
(9 )
由加速度变换关系 ,有
aA x = ar - a0
aA y = 0
aBx = ar sin θ - a0
部释放
,并沿相反方向自由滑下
牛顿第二定律的基本题型附答案
第14讲 牛顿第二定律的基本题型❖ 习题一:概念问题1、下列对牛顿第二定律的表达式F=ma 及其变形公式的理解正确的是A. 由ma F =可知,物体所受的合力与物体的质量成正比,与物体的加速度成反比B. 由aFm =可知,物体的质量与其所受合力成正比,与其运动的加速度成反比C. 由mFa =可知,物体的加速度与其所受某个力成正比,与其质量成反比D. 由aFm =可知,物体的质量可以通过测量它的加速度和它所受的合力求出2、关于速度、加速度、合外力之间的关系,正确的是 A .物体的速度越大,则加速度越大,所受的合外力也越大B .物体的速度为零,则加速度为零,所受的合外力也为零C .物体的速度为零,但加速度可能很大,所受的合外力也可能很大D .物体的速度很大,但加速度可能为零,所受的合外力也可能为零3、从牛顿第二定律知道,无论怎样小的力都可以使物体产生加速度.可是当我们用一个很小的水平力去推很重的桌子时,却推不动它,这是因为A. 牛顿第二定律不适用于静止物体B. 加速度很小,速度变化很小,眼睛不易觉察到C. 桌子受到的合力等于零,加速度等于零D. 推力小于阻力,加速度是负值4、质量为m 的木块位于粗糙的水平面上,若用大小为F 的水平恒力拉木块,其加速度为a 。
当拉力方向不变,大小变为2F 时,木块的加速度为a′,则A .a′=aB .a′<2aC .a′>2aD .a′=2a5、将一只皮球竖直向上抛出,皮球运动时受到空气阻力的大小与速度的大小成正比.下列描绘皮球在上升过程中加速度大小a 与时间t 关系的图象,可能正确的是ABCD6、如图所示,一小球从空中自由落下,当它刚与正下方的弹簧接触时,它将 A .被反弹上来 B .开始做减速运动 C .停止运动 D .做加速运动7、一个质量为2kg 的物体同时受到两个力的作用,这两个力的大小分别为2N 和6N ,当两个力的大小不变而方向发生变化时,物体的加速度大小可能为 A. 2m/s 2 B. 3m/s 2 C. 5m/s 2 D. 7m/s 28、将一物体以某一初速度竖直上抛.物体在运动过程中受到一大小不变的空气阻力作用,它从抛出点到最高点的运动时间为t 1,再从最高点回到抛出点的运动时间为t 2,如果没有空气阻力作用,它从抛出点到最高点所用的时间为t 0,则A. t 1>t 0,t 2<t 1B. t 1<t 0,t 2>t 1C. t 1>t 0,t 2>t 1D. t 1<t 0,t 2<t 1参考答案1、D2、CD3、C4、C5、C6、D7、AB8、B❖ 习题二:基本计算1、如图所示,一个质量为m=20kg 的物块,在F=60N 的水平拉力作用下,从静止开始沿水平地面向右做匀加速直线运动,物体与地面之间的动摩擦因数为1.0=μ。
牛顿第二定律讲解和例题解析
例1:如图所示.地面上放m=40kg的木箱,用大小为 10N与水平方向夹角300的力推木箱,木箱恰好匀速运动, 若用此力与水平方向成300角斜向上拉木箱,30s可使木箱 前进多少米?(g取10m/s2)
0v2
s相
相
2a
相
032
0.9m
25
A从开始运动到相对静止经历的时间
t 0 v相 0.6s a相
在此时间内B的位移 s 1a t2 1.8m
2 B
B
A、B相对静止时的速度v=aBt==
随后A、B一起以a`=-μBg=-2m/s2作匀减速运动直至
停止,这段时间内的位移
0v2 0062
s`
0.09m
与传送带之间的动摩擦因数, AB长16米,求:以下两
种情况下物体从A到B所用的时间.
(1)传送带顺时针方向转动
A
(2)传送带逆时针方向转动
B 370
解:(1)传送带顺时针方向转动时受力如图示
:在斜面方向上有: mg sinθ-μmg cosθ= m a
N fA
则:a = gsinθ-μgcosθ= 2m/s2 B
②若v≥ v,A2 工2件aS由A到B,全程做匀加速运动,到
达B端的速度vB=
vA 22aS 23m/s
③若 vA2 >2avS>vA,工件由A到B,先做匀加速运动, 当速度增加到传送带速度v时,工件与传送带一起作匀速
运动速度相同,工件到达B端的速度vB=v.
④若v≤
v
2 A
,2a工S 件由A到B,全程做匀减速运动,到达
《物理学基本教程》课后答案 第二章 牛顿定律
第二章 牛顿定律2-1 在如图2-1(a)所示的倾角为︒30的斜面上,由一轻杆相连的二滑块A 、B 质量相同,m A = m B = 2.5 kg ,与斜面间的滑动摩擦系数分别为20A .=μ,10B .=μ.求杆中的张力(或压力)以及滑块的加速度.分析 应用牛顿定律解力学问题的基本步骤为:(1)根据题意选取研究对象;(2)分析研究对象的受力情况,并画出示力图;(3)选取坐标系,将力或加速度沿坐标轴分解为分量,根据牛顿第二定律列出各个物体的运动方程;(4)求解方程,先进行文字运算,再代入数据,计算出结果.在分析力的过程中,必须注意每个力是哪个物体施给它的,没有施力物体的力是不存在的.在涉及斜面的问题中,斜面上物体所受到的作用力有重力、斜面压力和摩擦力,而不存在上滑力或下滑力.在连接体之间存在张力或压力.解 分别选取滑块A 、B 为研究对象,受力分析分别如图2-1(b )、(c )所示.假设杆中为张力,由于轻杆质量可以忽略,施加于A 和B 的张力大小应相等,即T TB TA F F F ==.取Oxy 坐标系如图2-1所示,应用牛顿第二定律,得滑块A 的运动方程为 x 方向: a m F F g m A fA T A =--θsin (1)FO θTB ︒30 m B g m A gx(a) (b) (c)图2-1y 方向: 0A NA =-θcos g m F (2) 滑块B 的运动方程为x 方向: a m F F g m B fB T B =-+θsin (3) y 方向: 0B NB =-θcos g m F (4) 由(2)式得θcos g m F A NA =,摩擦力θμμcos g m F F A A NA A fA ==,代入(1)式得a m g m F g m A A A T A =--θμθcos sin (5)由(4)式得θcos g m F B NB =,摩擦力θμμcos g m F F B B NB B fB ==,代入(3)式得a m g m F g m B B B T B =-+θμθcos sin (6)从(5)和(6)式消去F T ,并注意到m A = m B = 2.5 kg ,得222B A BA BB A A m/s 633m/s 2 38921020m/s 2189 2.....cos sin cos sin =⨯⨯+-⨯=+-=++-=θμμθθμμθg g g m m m m g a 代入(5)式,得N 061N 238952102050 21A A T ...)..(.cos )(-=⨯⨯⨯-⨯=-=θμμg m F B 上式中结果的负号表明,滑块A 所受轻杆的作用力方向与原假设相反,即受到沿斜面向下的推压力,因此杆中出现的是压力,量值为1.06 N .2-2 一金属链条放置于水平桌面上,其纵向与桌子边缘垂直,当链条长度的1/4部分垂挂于桌子边缘时,此链条刚好能开始在桌面上滑动,求链条与桌面之间的摩擦系数为何值? 分析 对于质量连续分布的物质,例如链条、绳和长杆等,根据题意,在运动过程中任一瞬时,可以将其分割成各自独立的部分作为研究对象,这些独立部分可以视为质点,作出示力图,分析各部分的受力情况,于是原来是内力的张力或压力就变成了分割出的独立部分所受到的外力,就可以应用牛顿第二定律建立运动方程了.解 设链条质量为m ,当链条刚好能开始在桌面上滑动时,桌面上的链条质量为m m 431=,悬垂部分的链条质量为m m 412=.分别以这两部分为研究对象,作示力图如图2-2所示.作用于桌面上链条的力有:重力m 1g ,桌面的正压力F N ,摩擦力F f ,悬垂部分对它的张力F T1.作用于悬垂链条的力有:重力m 2g ,桌面部分对它的张力F T2.不考虑桌面边沿的形状和摩擦,则链条两部分中的张力大小应相等,F T1= F T2= F T . 由于链条刚好能开始在桌面上滑动,摩擦力为最大静摩擦力N f F F μ=,此时链条加速度为零,可得mg g m F 431N == N f T F F F μ==T 241F mg g m ==m 2g图2-2由以上各式可解得 31=μ 2-3一物体沿倾角为30°的斜面向上滑动,在斜面底部时其初速为12m/s ,物体与斜面间摩擦系数为0.2,求(1)物体达到最高点所需要的时间,(2)返回底部时的速度,(3)摩擦系数为多大时,将使物体上升到速度为零后就不再往下滑动.分析 滑动摩擦力始终与运动物体相对滑动的方向相反,因此物体在斜面上向上滑动和向下滑动时的摩擦力正好反向,则物体所受合外力不同,加速度也就不同.通常取加速度方向为坐标轴正向,分别就向上滑动和向下滑动选取坐标系建立运动方程.由于牛顿第二定律建立的方程确定的是力和加速度之间的关系,因此,当所讨论的问题涉及到速度、位移和运动时间等运动学的物理量时,还要应用运动学中已经获得的相关公式求解.解 (1) 在上滑过程中,物体受力如图2-3(a)所示,摩擦力F f1沿斜面向下,且N 1f F F μ=.选Oxy 坐标系如图所示,设加速度1a 方向沿x 轴正向,应用牛顿第二定律得上滑过程的运动方程为x 方向: 11f 30ma F mg =-︒-siny 方向: 030N =︒-cos mg F由以上各式解得)cos (sin ︒+︒-=30301μg a由初始条件:0=t 时,m /s 120=v ,而到达最高点时速度为零,有t a 100=-v则到达最高点所需时间为s 1.82s 866020508912 3030010=⨯+⨯-=︒+︒-=-=)...(.)cos (sin μg a t v v (2) 物体向下滑时,受力如图2-3(b)所示,摩擦力F f2沿斜面向上,且N f2F F μ=.选Oxy 坐标系如图所示,设加速度2a 方向沿x 轴正向,应用牛顿第二定律得下滑过程的运动方程为x 方向: 2f230ma F mg =-︒siny 方向: 030N =︒-cos mg F由以上各式解得)cos (sin ︒-︒=30302μg a (1)物体上升时的位移为)cos (sin ︒+︒=-=30302220120μg a s v v 下滑过程由静止开始,到达底部时速率为m/s 8.36m/s 128660205086602050 30303030202=⨯⨯+⨯-=︒+︒︒-︒==......cos sin cos sin v v μμs a(3) 令02=a 代入(1)式,则物体位于最高点时速度为零,又无向下加速度,︒30 m g ︒30 m g(a) (b)图2-3即不再向下滑动,可得577030.tan =︒=μ2-4 细绳跨过轻滑轮连接着质量分别为5kg 和1kg 的二物体,滑轮吊在弹簧称下悬挂于升降机之中,如图2-4(a)所示.(1)当升降机静止不动时,问弹簧称上的示重是多少?(2) 当弹簧称上的示重为58.8 N 时,求升降机的加速度.分析 物体的重量是物体施加在称重仪器设备上的压力或张力,其大小等于称重仪器设备反作用在物体上的压力或张力.当物体在地面上处于静止或作匀速直线运动状态进行称重时,地球对物体的引力和称重仪器设备作用的压力或张力等大而反向,物体的重量与重力的量值相等.当物体在地表附近有沿竖直方向的加速度时,物体的重量与重力的量值就不再相等了.牛顿定律只适用于惯性参考系,当所讨论的问题中参考系本身也有加速度时,就要应用相对运动的加速度合成定理.通常可以选取地球(地面)作为静止参考系,物体相对于地面的加速度PS a 等于物体相对于运动参考系加速度S P 'a 与运动参考系相对于地面加速度S S'a 的矢量和,即S S'PS'PS a a a +=解 二物体质量分别为m 1 = 5 kg , m 2= 1 kg .二物体和滑轮的受力情况如图2-4(b)所示.对于细绳和轻滑轮,忽略绳和滑轮间的摩擦,应有T1T1F F =',T2T2F F =',T2T2F F '='和T2T1T F F F '+'=,因此有 T2T1T F F F += 设升降机有一向上的加速度a ’,物体m 1相对于升降机的加速度a ,方向a ’F F am 2g m 1g(a ) (b )图2-4向下,物体m 2相对于升降机的加速度a ,方向向上.如果假设对于地面参考系,物体m 1的加速度方向向下,物体m 2的加速度方向向上,并以它们各自加速度的方向为坐标轴正向,则根据相对运动加速度合成定理,物体m 1相对于地面的加速度为a -a ’,物体m 2相对于地面的加速度为a +a ’.由牛顿第二定律可得其运动方程分别为)(a a m F g m '-=-1T11 (1))(a a m g m F '+=-22T2 (2)(1) 当升降机静止时,0='a ,由(1)和(2)式以及张力之间的关系,得弹簧称上的示重为N 32.7N 891515112 1221212T =⨯+-+⨯⨯=+-+=.)()(g m m m m m F (2) 当弹簧称上的示重为N 858T .=F 时,由(1)和(2)式以及张力之间的关系,得升降机的加速度为222121T 21m/s 847m/s 1548915485815 44...)()(=⨯⨯⨯⨯⨯-⨯+=-+='m m gm m F m m a 2-5质量均为m 形状相同、相互接触的梯形木块A 、B 放置在光滑的水平桌面上,如图2-5(a)所示.设两木块之间的接触面是光滑的,斜面与水平面之间的夹角为α,今以一水平力F 作用在A 上,求A 、B 之间无相对运动时A 、B 对桌面的压力.分析 在解动力学问题时,隔离物体法是一个基本方法.在有些求物体所受力的问题中,往往碰到该物体的运动状态难以确定的情况,这时可以先求该物体对其他运动物体的反作用力,再利用牛顿第三定律确定所求力的大小和方向.解 分别选取木块A 、B 为研究对象,受力情况如图2-5(b)所示.根据题意,两木块加速度a 相等,且沿外力F 方向.木块之间相互作用的压力大小相等,即T TB TA F F F ==.选取如图所示的Oxy 坐标系,应用牛顿第二定律得其运动方程分别为木块A 的x 方向: ma F F =-αsin Ty 方向: 0T NA =--mg F F αcos木块B 的x 方向: ma F =αsin Ty 方向: 0T NB =--mg F F αcos解以上方程得αcot F mg F 21NA += αcot F mg F 21NB -= 根据牛顿第三定律,木块A 、B 对桌面的压力的大小分别等于桌面给予它们的反作用力F NA 和F NA ,方向向下.2-6在一轻滑轮上跨有一轻绳,绳之两端连接着质量分别为1kg 和2kg 的物A B TB F TA O xm g m g(a ) (b )图2-5体A 、B ,现以50N 的恒力F 向上提滑轮的轴,如图2-5(a)所示,A 和B 的加速度各为多少?不计滑轮质量及滑轮与绳间摩擦.分析 在物体和滑轮组合成系统的动力学问题中,如果滑轮静止,不计滑轮质量及滑轮与绳间摩擦的情况下,用细绳跨过滑轮连接的两物体的速度和加速度的大小相等、方向相反.然而,一旦滑轮本身具有加速度,如果以滑轮为运动参考系,那么细绳跨过滑轮连接的两物体相对于滑轮的加速度大小相等、方向相反,但是它们对于地面参考系的加速度则必须根据相对运动加速度合成定理叠加计算.通常当不必求滑轮加速度时,可以先设定两物体对地面的加速度方向,最后再根据计算结果的正负确定实际加速度的方向.解 以滑轮和物体A 、B 为研究对象,分别作出示力图如图2-6(b )所示.取竖直向上为y 轴正向,假设物体A 、B 的加速度a A 和a B 方向向上,由于不计滑轮质量及滑轮与绳间摩擦,绳中张力大小相等,即T T2T1T2T1F F F F F ='='==,应用牛顿第二定律得滑轮的运动方程为02T =-F F物体A 的运动方程为A A A T a m g m F =-物体B 的运动方程为B B B T a m g m F =-yF T2A B a A a BA B m A g m B g (a ) (b ) 图2-6联立求解得222A A m/s 215m/s 89m/s 12502..=-⨯=-=g m F a 222B B m/s 72m/s 89m/s 22502..=-⨯=-=g m F a 2-7在光滑斜面上沿斜面倾斜方向放有一匀质长杆AB ,长为l ,质量为m ,斜面与水平面间夹角为θ,现沿斜面以恒力F 拉杆,如图2-7(a )所示,求杆内各部分间的相互作用(张力)沿棒长方向的变化规律.分析 求质量连续分布的杆或绳中的内力,要采用隔离物体法,取其中一段作为研究对象分析受力情况,应用牛顿定律建立方程.计算结果通常与所选取的段长有关,即为段长的函数.解 取如图2-7(b )所示的xy 坐标系,以长杆AB 为研究对象,加速度a 沿斜面向上,根据受力情况,应用牛顿第二定律得运动方程为ma mg F =-θsin再取长为x 的一段杆AC 为研究对象,其质量为mg lx m =C ,在C 处杆内张力F T 对于AC 部分成为外力,但AC 仍具有与整个杆相同的加速度,应用牛顿第二定律得AC 部分的运动方程为y x F T θ A A θm C g m g(a ) (b )图2-7ma lx mg l x F =-θsin T 于是可解得F lx g a m l x F =+=)sin (θT 结果表明杆内张力随C 点位置变化.2-8 在如图2-8所示的物体系统中,不计绳和滑轮的质量,并忽略m ’与水平桌面、m ’与m 1之间的摩擦力.问应以多大的水平推力作用在m ’上,才能使系统运动过程中m 1和m ’之间无相对滑动?此时m ’对桌面的压力为多少?(m 1> m 2)分析 当几个物体构成一个系统并以相同的速度平动时,可以将这些物体构成的系统作为一个质点,应用牛顿定律建立合外力与加速度之间的关系,而不必考虑各部分之间的相互作用内力.但是当这个系统的各部分之间有发生相对运动的可能性存在时,就仍然需要用隔离物体法,分析各部分的受力情况,分别建立运动方程,找到发生或不发生相对运动的条件.解 分别取m 1、m 2和m ’为研究对象.根据题意,m 1、m 2和m ’组成系统以同一加速度a 沿水平方向运动,因此连接m 2的细绳将发生倾斜,与竖直方向夹角为θ,绳中张力的水平方向分量使m 2获得加速度a ,各物体受力情况和’ m m 1g F ”T F ’Tm ’ m 2 y F θx N1F ' m ’g m 2g (a ) (b )图2-8坐标选取如图2-8(b)所示.不计绳和滑轮的质量,忽略摩擦,应有T TT F F F ''='=,m 1和m ’之间的压力大小相等N1N1F F '=,应用牛顿第二定律得m 1的运动方程为x 方向: a m F 1T = y 方向: 01N1=-g m Fm 2的运动方程为x 方向: a m F 2T =θsin y 方向: 02T =-g m F θcosm ’的运动方程为x 方向: a m F F F '=--θsin T T y 方向: 0T N1N ='---g m F F F θcos联立求解得g m m m m m m F 2222121-'++=g m m m F )('++=21Nm ’对桌面的压力大小等于桌面对m ’的压力N F ,方向向下.从上式可以看出该压力量值上等于整个系统所受的重力,因为系统中各物体的运动发生在水平面内,竖直方向无加速度和位移.2-9如图2-9(a)所示的滑轮组系统中,不计绳子与滑轮质量,m 1与桌面间无摩擦,求m 1和m 2的加速度以及绳中张力.分析 在质点力学中,对于滑轮和物体组成的连接体问题,往往忽略滑轮质量以及绳与滑轮之间的摩擦,才使得跨过滑轮的绳中张力大小相等.在第五章掌握了刚体的运动定律后,将不再忽略滑轮质量,问题的分析就更接近实际了.当存在动滑轮时,动滑轮的加速度和跨过滑轮的绳上连接物体的加速度之间的相互关系,要根据题意建立方程确立.解 分别以m 1、m 2和动滑轮为研究对象,受力情况如图2-9(b )所示.m 1的加速度a 1向右,m 2和动滑轮的加速度a 2向下.不计绳子与滑轮质量,应有T1T1F F '=,T2T2F F '=.因为都只作直线运动,可取各自的运动方向为坐标轴正向,应用牛顿第二定律,它们的运动方程分别为m 1: 11T1a m F =m 2: 22T22a m F g m =-动滑轮: 02T1T2=-F F 因为绳长不变,当m 1位移为x 时,m 2位移为x /2,于是可得加速度a 1和a 2之间的关系:22222122d d 2d d a x t t x a === 联立以上各式,解得g m m m a 122142+= g m m m a 12224+=a 1 F F ’T1 F ’T2 m F T1 a 2m 1g F T2 m 2gm 2(a ) (b )图2-9g m m m m F 1221T142+= 2-10 在如图所示的滑轮系统中,滑块A 的质量为m A ,与桌面间的摩擦系数为μ,B 是起始质量为m B 的冰块,因溶化使其质量随时间的减少率为k .不计绳与滑轮质量,求A 、B 由静止开始运动后t 时刻的速率.分析 由于有了微积分的基础,在大学物理中可以分析变力作用下的直线运动问题.因为力是时间的函数(有些问题中也可能表示为位置的函数,即为时间的隐函数),应用牛顿定律建立的运动方程就成为微分方程,解微分方程并利用初始条件可以获得所需要的解.在动力学的其他几章和电磁学中都会碰到这类应用积分或求解微分方程的问题,这对于巩固高等数学知识,学会建立物理模型以便为今后工程技术实际应用打下基础,有着重要意义.这些问题对于初学者有一定的难度,但是通过一些习题的训练,是可以逐步掌握方法和技巧的. 解 以滑块A 和冰块B 为研究对象,隔离物体并作受力分析如图2-10(b)所示.不计绳与滑轮质量,绳中张力大小相等,即T T F F '=.取二物体各自运动方向为坐标轴正向,作为连接体它们的加速度大小相等,均为a ,应用牛顿第二定律得其运动方程分别为滑块A : a m F F A f T =- A’Ta B F f m A g m B g(a) (b)图2-10冰块B : ma F mg =-T根据题意,其中t 时刻冰块质量kt m m -=B ,作用于滑块A 的摩擦力g m F A f μ=,由以上各式可得g ktm m m g kt m m kt m m a ])([-++-=-+--=B A A B A A B 11μμ 因ta d d v =,则上式可写为 g ktm m m t ])([-++-=B A A 11d d μv 分离变量:t g ktm m m d 11d B A A ])([-++-=μv 由于初始时,0 0==v ,t ,设t 时刻滑块和冰块速率为v ,上式两边积分t g ktm m m t d 11d B A A 00])([-++-=⎰⎰μv v得 g kt m m km t )]ln()([-+++=B A A 1μv 2-11 质量为0.5kg 的物体沿x 轴作直线运动,在沿x 方向的力t F 610-=的作用下,t = 0时其位置与速度分别为x 0 =5,v 0 =2,求t = 1时该物体的位置和速度.(其中F 以N 为单位,t 以s 为单位,x 0以m 为单位,v 0以m/s 为单位)分析 当作用于物体的力是时间的函数时,由建立的运动方程积分可以求得速度.所求出的速度必定也是时间的函数,当还需要计算t 时刻该物体的位置时,就应该利用速度的定义式tx d d =v ,再积分求出位置的表示式. 解 由加速度的定义ta d d v =,应用牛顿第二定律,可得t t m F t 122050610d d -=-==.v 分离变量:t t d 1220d )(-=v两边积分得C t t +-=2620v由初始条件:t = 0时v=v 0 =2,得20==v C ,即26202+-=t t v (1)因tx d d =v ,上式可写为 2620d d 2+-=t t tx 分离变量:t t t x d 2620d 2)(+-=两边积分得1322210C t t t x ++-=由初始条件:t = 0时x=x 0 =5,得501==x C ,即5221032++-=t t t x (2)当t = 1s 时,由(1)和(2)式得m/s 16=v ,m 15=x . 2-12物体与地面间的摩擦系数为0.20,以轻绳系于物体之一端,并通过滑轮以一水平力F = 8 N 拉此物体,如图2-12(a)所示.设物体的质量为2kg ,(1)问绳与水平方向的夹角α为何值时,物体的加速度有最大值?(2)求此时的加速度以及地面对物体的作用力.分析 若作用力的大小不变,但方向在不断改变,则该作用力仍然是变力.在力的分析过程中就要特别注意力的作用方向与物体运动方向间的关系.求某一物理量的最大值或最小值,通常可以采用数学中的求极值的方法,即对该物理量的表达式求导数并令其等于零,得到相关参量的方程,根据题意求解,得到取最大值或最小值的条件.解 恒力通过滑轮改变方向后作用于物体上,力F 的作用方向与物体运动方向间的夹角α随物体位置变化,运动中物体受力情况如图2-12(b)所示.取图中所示的坐标系,应用牛顿第二定律得运动方程为x 方向: ma F F =-f αcos y 方向: 0N =-+mg F F αsin其中摩擦力N f F F μ=,联立解得g mF a μαμα-+=)sin (cos (1) αsin F mg F -=N (2)(1) 当0d d =αa 时,加速度有极值,因此由(1)式得 0d d =+-=)cos sin (αμααmF a 811120'︒===).arctan(arctan μα(2) 将上面的结果代入(1)和(2)式,得222m/s 2.12 m/s 8920m/s 811120811128 =⨯-'︒⨯+'︒⨯=-+=..)sin .(cos )sin (cos g mF a μαμαFy F f xm g(a) (b)图2-12N 18N 81118N 892 N ='︒⨯-⨯=-=sin .sin αF mg F摩擦力为 N 3.6N 1820N f =⨯==.F F μ2-13 质量为1.5 kg 的物体被竖直上抛,初速度为60 m/s ,物体受到的空气阻力数值与其速率成正比,v k F =阻,s/m N 030⋅=.k ,求物体升达最高点所需的时间及上升的最大高度.分析 在忽略空气阻力的情况下,地面附近的抛体在重力作用下以恒定的重力加速度g 运动.但在实际问题中,空气阻力是不可忽略的,当物体的速度较小时,空气阻力的大小与速率成正比;对于高速运动的物体,空气阻力的大小与速率的平方成正比.下面将应用解微分方程的方法,求解一些简单的直线运动情况下有空气阻力存在时的质点运动问题.解一阶微分方程可以用不定积分也可以用定积分方法.如果采用不定积分,积分常数利用初始条件确定.分离变量法则是通常采用的比较简捷的算法.解 以竖直向上为y 坐标正向,应用牛顿第二定律得物体运动方程为tm k mg d d v v =-- (1) 物体达到最高点时,0=v ,初始条件:0=t 时,m /s 600==v v ,将上式分离变量并积分:⎰⎰+-=000d d v v v k mg m t t 得 s 85s 18951600300305110.)...ln(..)ln(=+⨯⨯⨯=+=mg k k m t v 由于yt y y t d d d d d d d d v v v v ==,代入(1)式,得 ym k mg d d v v v =--根据始末条件,分离变量并积分:⎰⎰+-=000d d v v v v k mg m y y 得 m 170m 600301895160030895103051 100=⎥⎦⎤⎢⎣⎡⨯-⎪⎭⎫ ⎝⎛+⨯⨯⨯⨯⨯-=⎥⎦⎤⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛+-=....ln ....ln v v k mg k mg k m y2-14 将相同材料制作的半径分别为R 和2R 的二小球在粘滞系数为η的液体中无初速地释放.根据斯托克斯定律,半径为r 的小球速度为v 时在液体中受到的粘滞阻力为v r πη6.试计算两球的初始加速度之比和终极速度之比.分析 由斯托克斯定律确定的流体粘滞阻力大小与物体的速率成正比,即为变力,为了求物体的运动状态,需要用到积分方法.由于在例题2-5中已经严格推导出了速度与时间的函数关系,以及小球的运动方程,因此可以利用其结果进行相关的计算.解 设球的密度为ρ,液体的密度为ρ',二小球质量分别为ρπ3134R m =和1328234m R m ==ρπ)(,作用于二小球的液体浮力分别为g R F ρπ'=31B 34和B13B28234F g R F ='=ρπ)(,液体的粘滞阻力分别为v R F πη6r1=和r1r2226F R F ==v )(πη.取竖直向下方向为x 轴的正方向,则二小球的运动方程分别为11r1B11a m F F g m =--22r2B22a m F F g m =--初始时刻0=v ,则0r2r1==F F ,由以上二式及二小球对应量间的关系,得12B21B121=--=m F g m F g a a //由例题2-5的(2-27)式,知半径为r 的小球在液体中下落,足够长时间后的终极速度为2092gr ηρρ'-=v ,因此半径分别为R 和2R 的二小球终极速度比为 4122221==)(R R v v 2-15 质量为1000kg 的船,发动机熄火时速度为90km/h ,水的阻力与船速成正比,F r =-kv ,其中k = 100kg/s .假设水面静止不流动,求(1)熄火后船速减小到45km/h 所需要的时间;(2)熄火后1分钟内船的行程,以及船的最大航程.分析 当作直线运动的物体只受到一个与速率成正比的阻力作用时,用分离变量法解此一阶微分方程比较简单.解 船只受水的阻力F r =-kv 作用,船的运动方程为tm k d d v v =- 初始条件为0=t 时,m /s 25km /h 900==v ,将上式分离变量并积分:⎰⎰-=t t m k 0d d 0vv v v得 v v 0ln k m t = (1) (1) 当船速减小到m/s 512km/h 45.==v 时,由上式得s 936s 512251001000..ln =⨯=t (2) 由(1)式得 t m kt x -==e d d 0v v 初始条件为0=t 时,00=x ,积分得k m t x t m k t t m k )(--⎰-==e 1d e 000v v (2)当s 60=t 时,由上式得m 249.4m 1001000e 190601000100=⨯-⨯=⨯-)(x 当∞→t 时,由(2)式得船的最大航程为m 250m 100100090=⨯=x 结果表明,熄火后1分钟船已接近停止.2-16 长度不等的两根细绳,各系一物体悬于同一点,使二物体在同一高度处作圆周运动,证明这样的两个圆锥摆周期相同.分析 在忽略空气阻力的情况下,如图2-16(a)所示的圆锥摆绕竖直轴线回转一圈的时间为定值,称为周期.当物体作圆周运动时,必定存在法向加速度,在分析力和建立运动方程的过程中,通常选取指向圆心的方向为坐标轴之一的正向,将外力分解到该方向后,可以建立法向合外力与法向加速度之间的关系.证 设物体回转的水平位置距悬点的高度为h ,回转半径为r ,悬线与竖直方向夹角为θ,物体质量为m ,物体受重力g m 与悬线张力T F 作用,选竖直方向为y 轴正向,水平指向回转圆心方向为x轴正向,如图2-16(b)所示,可得运动方程为x 方向: r m F 2T ωθ=sin y 方向: 0T =-mg F θcosm g(a) (b) 图2-16因为物体无切向加速度,作匀速圆周运动,角速度Tπω2=,又由几何关系得hr =θtan ,于是可解得 gh T π2= 结果表明,摆动周期T 只与物体回转高度有关,与物体质量无关,与回转半径无关.2-17 在光滑水平面上固定着一半径为R 的圆环形围屏,质量为m 的滑块沿环形内壁转动,滑块与壁间摩擦系数为μ,如图2-17(a )所示,(1)当滑块速度为v 时,求它与壁间的摩擦力及滑块的切向加速度,(2)求滑块的速率v 由变为v /3所需的时间。
高三物理牛顿第二定律F=ma试题答案及解析
高三物理牛顿第二定律F=ma试题答案及解析1.如图,两根相同的轻质弹簧,沿足够长的光滑斜面放置,下端固定在斜面底部挡板上,斜面固定不动。
质量不同、形状相同的两物块分别置于两弹簧上端。
现用外力作用在物块上,使两弹簧具有相同的压缩量,若撤去外力后,两物块由静止沿斜面向上弹出并离开弹簧,则从撤去外力到物块速度第一次减为零的过程,两物块()A.最大速度相同B.最大加速度相同C.上升的最大高度不同D.重力势能的变化量不同【答案】C【解析】当加速度等于零,即时,速度最大,又两物块的质量不同,故速度最大的位置不同,最大速度也不同,所以A错误;在离开弹簧前加速度先减小后增大,离开弹簧后不变,刚开始运动时,根据牛顿第二定律,弹力相同,质量不同,故加速度不同,离开弹簧后加速度相同,故B错误;根据能量守恒,弹性势能相同,质量不同,故上升的最大高度不同,故C正确;重力势能的变化量等于弹性势能的减少,故是相同的,所以D错误。
【考点】本题考查牛顿第二定律、能量守恒2.如图甲所示,空间存在一范围足够大的垂直于xOy平面向外的匀强磁场,磁感应强度大小为B,让质量为m、电量为q(q>0)的粒子从坐标原点O沿xOy平面以不同的初速度大小和方向入射到该磁场中。
不计粒子重力和粒子间的影响。
(1)若粒子以初速度v1沿y轴正向入射,恰好能经过x轴上的A(a,0)点,求v1的大小;(2)已知某一粒子的初速度大小为v(v>v1),为使该粒子仍能经过A(a,0)点,其入射角θ(粒子初速度与x轴正向的夹角)有几个,并求出对应的sinθ值;(3)如图乙所示,若在此空间再加入沿y轴正向、大小为E的匀强电场,一粒子从O点以初速v0沿y轴正向发射。
研究表明:该粒子将在xOy平面内做周期性运动,且在任一时刻,粒子速度的x分量vx与其所在位置的y坐标成正比,比例系数与场强大小E无关。
求该粒子运动过程中的最大速度值vm?【答案】(1)(2)(3)【解析】(1)当粒子沿y轴正向入射,转过半个圆周至A点,半径R1=a/2由运动定律有解得(2)如右图所示,O、A两点处于同一圆周上,且圆心在x=的直线上,半径为R,当给定一个初速率v时,有2个入射角,分别在第1、2象限。
牛顿第二定律(含答案)
牛顿第二定律1.内容:物体的加速度与所受合外力成正比,跟物体的质量成反比.2.表达式:F=ma.3.力的单位:当质量m的单位是kg、加速度a的单位是m/s2时,力F的单位就是N,即1 kg•m/s2=1 N.4.物理意义:反映物体运动的加速度大小、方向与所受合外力的关系,且这种关系是瞬时的.5.适用范围:(1)牛顿第二定律只适用于惯性参考系(相对地面静止或匀速直线运动的参考系).(2)牛顿第二定律只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况.一、牛顿第二定律的理解牛顿第二定律明确了物体的受力情况和运动情况之间的定量关系.联系物体的受力情况和运动情况的桥梁是加速度.可以从以下角度进一步理解牛顿第二定律.二、应用牛顿运动定律解题的基本方法1.当物体只受两个力作用而做变速运动时,通常根据加速度和合外力方向一致,用平行四边形定则先确定合外力后求解,称为合成法.2.当物体受多个力作用时,通常采用正交分解法.为减少矢量的分解,建立坐标系,确定x 轴正方向有两种方法:(1)分解力不分解加速度,此时一般规定a 方向为x 轴正方向.(2)分解加速度不分解力,此种方法以某种力的方向为x 轴正方向,把加速度分解在x 轴和y 轴上.【例1】如图所示,一轻质弹簧一端系在墙上的O 点,自由伸长到B 点,今将一小物体m 把弹簧压缩到A 点,然后释放,小物体能运动到C 点静止。
物体与水平地面间的动摩擦因数恒定,试判断下列说法正确的是( )A .物体在B 点所受合外力为零B .物体从A 点到B 点速度越来越大,从B 点到C 点速度越来越小C .物体从A 点到B 点速度越来越小,从B 点到C 点加速度不变D .物体从A 点到B 点先加速后减速,从B 点到C 点一直减速运动答案 D【练习1】物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图所示,在A 点物体开始与弹簧接触,到B 点时,物体速度为零,然后被弹回。
(完整版)大学物理牛顿运动定律及其应用习题及答案
第2章 牛顿运动定律及其应用 习题解答1.质量为10kg 的质点在xOy 平面内运动,其运动规律为:543x con t =+(m),5sin 45y t =-(m).求t 时刻质点所受的力.解:本题属于第一类问题54320sin 480cos 4x x x x con t dx v t dtdv a t dt=+==-==- 5sin 4520cos 480sin 4y y y t v t a t=-==-12800cos 4()800sin 4()()800()x x y y x y F ma t N F ma t N F F F N ==-==-=+=2.质量为m 的质点沿x 轴正向运动,设质点通过坐标x 位置时其速率为kx (k 为比例系数),求:(1)此时作用于质点的力;(2)质点由1x x =处出发,运动到2x x =处所需要的时间。
解:(1) 2()dv dx F m mk mk x N dt dt=== (2) 22112111ln ln xx x x x dx dx v kx t x dt kx k k x ==⇒===⎰ 3.质量为m 的质点在合力0F F kt(N )=-(0F ,k 均为常量)的作用下作直线运动,求:(1)质点的加速度;(2)质点的速度和位置(设质点开始静止于坐标原点处).解:由牛顿第二运动定律 200201000232000012111262v t x t F kt dv mF kt a (ms )dt mF t kt F kt dv dt v (ms )m m F t kt F t kt dx dt x (m )m m ---=-⇒=--=⇒=⎰⎰--=⇒=⎰⎰4.质量为m 的质点最初静止在0x 处,在力2F k /x =-(N)(k 是常量)的作用下沿X 轴运动,求质点在x 处的速度。
解: 由牛顿第二运动定律02120v x x dv dv dx dv F k /x mm mv dt dx dt dx k vdv dx v ms )mx -=-====-⇒=⎰⎰ 5.已知一质量为m 的质点在x 轴上运动,质点只受到指向原点的引力的作用,引力大小与质点离原点的距离x 的平方成反比,即2/x k f -=(N),k 是比例常数.设质点在 x =A 时的速度为零,求质点在x =A /4处的速度的大小. 解: 由牛顿第二运动定律02120v x x dv dv dx dv F k /x mm mv dt dx dt dx k vdv dx v ms )mx -=-====-⇒===⎰⎰ 6.质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t m k e v )(0-;(2) 由0到t 的时间内经过的距离为x =(kmv 0)[1-t m k e )(-]; (3)停止运动前经过的距离为)(0km v ; (4)当k m t =时速度减至0v 的e 1,式中m 为质点的质量. 证明: (1) t 时刻的速度为v =t m k e v )(0- 0000ln v t k t m v dv F kv mdt dv k v k dt t v v e v m v m -=-==-⇒=-⇒=⎰⎰(2) 由0到t 的时间内经过的距离为x =(kmv 0)[1-t m k e )(-] 00000(1)k t mx tk k t t m m dx v v e dtmv dx v edt x e k ---===⇒=-⎰⎰(3)停止运动前经过的距离为)(0km v 在x 的表达式中令t=0得到: 停止运动前经过的距离为)(0k m v (4)当k m t =时速度减至0v 的e1,式中m 为质点的质量. 在v 的表达式中令k m t =得到:01v v e = 7.质量为m 的子弹以速度v 0水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为K,忽略子弹的重力,求:(1) 子弹射入沙土后,速度随时间变化的函数式;(2) 子弹进入沙土的最大深度.解: 由牛顿第二运动定律 (1) dv dv k m kv dt dt v m=-⇒=- 考虑初始条件,对上式两边积分: 000v t k t m v dv k dt v v e v m -=-⇒=⎰⎰ (2) max 00max 00x k t m mv dx v e dt x dt k ∞-=-⇒=⎰⎰ 8.质量为m 的雨滴下降时,因受空气阻力,在落地前已是匀速运动,其速率为v = 5.0 m/s .设空气阻力大小与雨滴速率的平方成正比,问:当雨滴下降速率为v = 4.0 m/s 时,其加速度a 多大?(取29.8/g m s =)解: 由牛顿第二运动定律雨滴下降未达到极限速度前运动方程为2mg kv ma -= (1)雨滴下降达到极限速度后运动方程为20mg kv -= (2)将v = 4.0 m/s 代入(2)式得2maxmg k v = (3) 由(1)、(3)式22424max 16(1)10(1) 3.6/25v v v a g m s v ===-=⨯-= 9.一人在平地上拉一个质量为M 的木箱匀速前进,如图. 木箱与地面间的摩擦系数μ=0.6.设此人前进时,肩上绳的支撑点距地面高度为h =1.5 m ,不计箱高,问绳长l 为多长时最省力? 解: 由牛顿第二运动定律有sin 0cos 0T N mg T N θθμ+-=-=联立以上2式得 ()cos sin mgT μθθμθ=+上式T 取得最小值的条件为tg θμ==由此得到2.92l m =≈。
(完整版)高一物理牛顿第二定律典型例题答案及讲解
高一物理牛顿第二定律典型例题讲解与错误分析【例1】在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作将作 [ ] [ ]A .匀减速运动.匀减速运动B .匀加速运动.匀加速运动C .速度逐渐减小的变加速运动.速度逐渐减小的变加速运动D .速度逐渐增大的变加速运动.速度逐渐增大的变加速运动【分析】 木块受到外力作用必有加速度,已知外力方向不变,数值变小,根据牛顿第二定律可知,木块加速度的方向不变,大小在逐渐变小,也就是木块每秒增加的速度在减少,由于加速度方向与速度方向一致,木块的速度大小仍在不断增加,即木块作的是加速度逐渐减小速度逐渐增大的变加速运动.的变加速运动. 【答】 D .【例2】 一个质量m=2kg 的木块,放在光滑水平桌面上,受到三个大小均为F=10N F=10N、与桌面平、与桌面平行、互成120120°角的拉力作用,则物体的加速度多大?若把其中一个力反向,物体的加速度又为多°角的拉力作用,则物体的加速度多大?若把其中一个力反向,物体的加速度又为多少?少?【分析】 物体的加速度由它所受的合外力决定.放在水平桌面上的木块共受到五个力作用:竖直方向的重力和桌面弹力,水平方向的三个拉力.由于木块在竖直方向处于力平衡状态,因此,只需由水平拉力算出合外力即可由牛顿第二定律得到加速度.只需由水平拉力算出合外力即可由牛顿第二定律得到加速度.(1)由于同一平面内、大小相等、互成120120°角的三个力的合力等于零,所以木块的加速度°角的三个力的合力等于零,所以木块的加速度a=0a=0..(2)物体受到三个力作用平衡时,其中任何两个力的合力必与第三个力等值反向.如果把某一个力反向,则木块所受的合力F 合=2F=20N =2F=20N,所以其加速度为:,所以其加速度为:,所以其加速度为:它的方向与反向后的这个力方向相同.它的方向与反向后的这个力方向相同.【例3】 沿光滑斜面下滑的物体受到的力是沿光滑斜面下滑的物体受到的力是 [ ] [ ] A .力和斜面支持力.力和斜面支持力B .重力、下滑力和斜面支持力.重力、下滑力和斜面支持力C .重力、正压力和斜面支持力.重力、正压力和斜面支持力D .重力、正压力、下滑力和斜面支持力.重力、正压力、下滑力和斜面支持力【误解一】选(选(B B )。
牛顿第二定律经典习题训练含答案
精心整理题型一对牛顿第二定律的理解1、关于牛顿第二定律,下列说法正确的是( ) A .公式F =ma 中,各量的单位可以任意选取B .某一瞬间的加速度只决定于这一瞬间物体所受合外力,而与这之前或之后的受力无关C .公式F =ma 中,a 实际上是作用于该物体上每一个力所产生的加速度的矢量和D .物体的运动方向一定与它所受合外力方向一致 【变式】.从牛顿第二定律知道,无论怎样小的力都可以使物体产生加速度,可是当我们用一个很小的力去推很重的桌子时,却推不动它,这是因为( ) A .牛顿的第二定律不适用于静止物体B .桌子的加速度很小,速度增量极小,眼睛不易觉察到C .推力小于静摩擦力,加速度是负的D .桌子所受的合力为零题型二 牛顿第二定律的瞬时性2、如图所示,质量均为m 的A 和B 两球用轻弹簧连接,A 球用细线悬挂起来,两球均处于静止状态.如果将悬挂A 球的细线剪断,此时A 和B 两球的瞬间加速度各是多少? 【变式】.(2010·全国卷Ⅰ)如图4—3—3,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态.现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别 为a 1、a 2.重力加速度大小为g .则有( ) A.a1=0,a2=gB.a1=g,a2=gC.a1=0,a2=(m+M)g/MD.a1=g,a2=(m+M)g/M 题型三 牛顿第二定律的独立性3 如图所示,质量m =2kg 的物体放在光滑水平面上,受到水平且相互垂直的两个力F 1、F 2的作用,且F 1=3N ,F 2=4N .试求物体的加速度大小. 【变式】.如图所示,电梯与水平面夹角为30°,当电梯加速向上运动时,梯面对人的支持力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍? 题型四 运动和力的关系4 如图所示,一轻质弹簧一端固定在墙上的O 点,自由伸长到B 点.今用一小物体m 把弹簧压缩到A 点(m 与弹簧不连接),然后释放,小物体能经B 点运动到C 点而静止.小物体m 与水平面间的动摩擦因数μ恒定,则下列说法中正确的是( ) A .物体从A 到B 速度越来越大 B .物体从A 到B 速度先增加后减小 C .物体从A 到B 加速度越来越小D .物体从A 到B 加速度先减小后增加 【变式】.(2010·福建理综高考)质量为2kg 的物体静止在足够大的水平地面上,物体与地面间的动摩擦因数为0.2,最大静摩擦力与滑动摩擦力大小视为相等.从t =0时刻开始,物体受到方向不变、大小呈周期性变化的水平拉力F 的作用,F 随时间t 的变化规律如图所示.重力加速度g 取10m/s 2,则物体在t =0至t =12s 这段时间的位移大小为( ) A .18mB .54m C .72mD .198m题型五 牛顿第二定律的应用5、质量为2kg 的物体与水平面的动摩擦因数为0.2,现对物体用一向右与水平方向成37°、大小为10N 的斜向上拉力F ,使之向右做匀加速直线运动,如图甲所示,求物体运动的加速度的大小.(g 取10m/s.)牛顿第二定律经典习题训练班级姓名【变式】.一只装有工件的木箱,质量m =40kg.木箱与水平地面的动摩擦因数μ=0.3,现用200N 的斜向右下方的力F 推木箱,推力的方向与水平面成θ=30°角,如下图所示.求木箱的加速度大小.(g 取9.8m/s 2) 强化练习 一、选择题1.下列说法中正确的是( )A .物体所受合外力为零,物体的速度必为零B .物体所受合外力越大,物体的加速度越大,速度也越大C .物体的速度方向一定与物体受到的合外力的方向一致D .物体的加速度方向一定与物体所受到的合外力方向一致 2.关于力的单位“牛顿”,下列说法正确的是( ) A .使2kg 的物体产生2m/s 2加速度的力,叫做1NB .使质量是0.5kg 的物体产生1.5m/s 2的加速度的力,叫做1NC .使质量是1kg 的物体产生1m/s 2的加速度的力,叫做1N D .使质量是2kg 的物体产生1m/s 2的加速度的力,叫做1N 3.关于牛顿第二定律,下列说法中正确的是( )A .加速度和力的关系是瞬时对应关系,即a 与F 是同时产生,同时变化,同时消失B .物体只有受到力作用时,才有加速度,但不一定有速度C .任何情况下,加速度的方向总与合外力方向相同,但与速度v 不一定同向D .当物体受到几个力作用时,可把物体的加速度看成是各个力单独作用所产生的分加速度的合成 4.质量为m 的物体从高处静止释放后竖直下落,在某时刻受到的空气阻力为F f ,加速度a =g ,则F f 的大小是( )A .F f =mgB .F f =mgC .F f =mgD .F f =mg5.如图1所示,底板光滑的小车上用两个量程为20N 、完全相同的弹簧测力计甲和乙系住一个质量为1kg 的物块,在水平地面上当小车做匀速直线运动时,两弹簧测力计的示数均为10N ,当小车做匀加速直线运动时,弹簧测力计甲的示数变为8N ,这时小车运动的加速度大小是( ) A .2m/s 2B .4m/s 2 C .6m/s 2D .8m/s 26.搬运工人沿粗糙斜面把一物体拉上卡车,当力沿斜面向上,大小为F 时,物体的加速度为a 1;若保持力的方向不变,大小变为2F 时,物体的加速度为a 2,则( ) A .a 1=a 2B .a 1<a 2<2a 1 C .a 2=2a 1D .a 2>2a 1 二、非选择题7.如图2所示,三物体A 、B 、C 的质量均相等,用轻弹簧和细绳相连后竖直悬挂,当把A 、B 之间的细绳剪断的瞬间,求三物体的加速度大小为a A 、a B 、a C .8.甲、乙、丙三物体质量之比为5∶3∶2,所受合外力之比为2∶3∶5,则甲、乙、丙三物体加速度大小之比为________.9.质量为2kg 的物体,运动的加速度为1m/s 2,则所受合外力大小为多大?若物体所受合外力大小为8N ,那么,物体的加速度大小为多大?10.质量为6×103kg 的车,在水平力F =3×104N 的牵引下,沿水平地面前进,如果阻力为车重的0.05倍,求车获得的加速度是多少?(g 取10m/s 2)11.质量为2kg 物体静止在光滑的水平面上,若有大小均为10N 的两个外力同时作用于它,一个力水平向东,另一个力水平向南,求它的加速度.12.质量m 1=10kg 的物体在竖直向上的恒定拉力F 作用下,以a 1=2m/s 2的加速度匀加速上升,拉图1 图力F 多大?若将拉力F 作用在另一物体上,物体能以a 2=2m/s 2的加速度匀加速下降,该物体的质量m 2应为多大?(g 取10m/s 2,空气阻力不计)13.在无风的天气里,一质量为0.2g 的雨滴在空中竖直下落,由于受到空气的阻力,最后以某一恒定的速度下落,这个恒定的速度通常叫收尾速度.(1)雨滴达到收尾速度时受到的空气阻力是多大?(g =10m/s 2)(2)若空气阻力与雨滴的速度成正比,试定性分析雨滴下落过程中加速度和速度如何变化. 参考答案1【答案】 BC 答案:D 2答案:B 球瞬间加速度aB =0.aA =2g ,方向向下.答案c 32.5m/s 2答案 4、【答案】 BD 答案:B 5、1234答案:562F 7物体受2g 0 89101112由牛顿第二定律F -m 1g =m 1a 1,代入数据得F =120N.若作用在另一物体上m 2g -F =m 2a 2,代入数据得m 2=15kg.答案:120N 15kg 13、解析:(1)雨滴达到收尾速度时受到的空气阻力和重力是一对平衡力,所以F f =mg =2×10-3N.(2)雨滴刚开始下落的瞬间,速度为零,因而阻力也为零,加速度为重力加速度g ;随着速度的增大,阻力也逐渐增大,合力减小,加速度也减小;当速度增大到某一值时,阻力的大小增大到等于重力,雨滴所受合力也为零,速度将不再增大,雨滴匀速下落.答案:(1)2×10-3N (2)加速度由g 逐渐减小直至为零,速度从零增大直至最后不变5。
牛顿第二定律实验总结、习题(含答案)
实验:验证牛顿第二定律【实验目的】验证牛顿第二定律,就是验证:(1)物体质量一定时,加速度与合外力成正比;(2)合外力一定时,物体的加速度与质量成反比。
【实验原理】1、保持研究对象(小车)的质量(M)不变,改变砂桶内砂的质量(m),即改变牵引力测出小车的对应加速度,用图像法验证加速度是否正比于作用力。
2、保持砂桶内砂的质量(m)不变,改变研究对象的质量(M),即往小车内加减砝码,测出小车对应的加速度,用图像法验证加速度是否反比于质量。
【实验器材】附有定滑轮的长木板、薄木垫、小车、细线、小桶及砂、打点计时器、低压交流电源、导线、天平(带一套砝码)、毫米刻度尺、纸带及复写纸等。
【实验步骤】1、用天平测出小车和小桶的质量M0和m0,并记录数值;2、按照要求安装实验器材,此时不把悬挂小桶用的细绳系在车上,即不给小车加牵引力;3、平衡摩擦力,在长木板不带定滑轮的一端下面垫薄木板,并反复移动其位置,直到打点计时器正常工作后,小车在斜面上的运动可以保持匀速直线运动状态为止。
4、记录小车及车内所加砝码的质量;称好砂子后将砂倒入小桶,把细绳系在小车上并绕过定滑轮悬挂小桶;此时要调整定滑轮的高度使绳与木板平行;接通电源,放开小车,待打点计时器在纸带上打好点后,取下纸带,做好标记。
5、保持小车的总质量不变,改变砂的质量(均要用天平称量),按步骤4中方法打好纸带,做好标记。
6、在每条纸带上选取一段比较理想的部分,分别计算出加速度值。
7、用纵坐标表示加速度,横坐标表示作用力(即砂和砂桶的总重力mg),根据实验结果画出相应的点,如果这些点在一条直线上,便证明了质量一定的情况下,加速度与合外力成正比。
8、保持砂和桶的质量不变,在小车上加砝码(需记录好数据),重复上面的实验步骤,求出相应的加速度,用纵坐标表示加速度,横坐标表示小车及砝码的总质量的倒数1M,根据实验结果画出相应的点,如果这些点在一条直线上,就证明了合外力一定的情况下,加速度与质量成反比。
牛顿第二定律(解析版)
牛顿第二定律1.解题步骤:(1)确定研究对象,进行受力分析,画受力图。
(2)建立XOY 坐标系,将各个力进行正交分解。
(3)根据牛顿第二定律和运动学公式列方程。
(4)统一单位,求解方程,对结果进行讨论。
力 加速度 运动∑F=ma a =t V V t 0- 2022t tV s a -= s V V a t 2202-= 2Tsa ∆=2.牛顿第二定律要点(1)牛顿第二定律:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。
(2)牛顿第二定律是实验定律,实验采用“控制变量法”进行研究。
(3)对牛顿第二定律的理解①矢量性:牛顿第二定律是一个矢量方程,加速度与合外力方向一致.②瞬时性:力是产生加速度的原因,加速度与力同时存在、同时变化、同时消失.③独立性:当物体受几个力的作用时,每一个力分别产生的加速度只与此力有关,与其它力无关,这些加速度的矢量和即物体运动的加速度. ④同体性:公式中,质量、加速度和合外力均应对应同一个物体(系统).1.超重和失重:超重:加速度方向向上(加速向上或减速向下运动) 失重:加速度方向向下(加速向下或减速向上运动) 2.超重、失重和完全失重的比较maF =合超重现象失重现象完全失重现象概念物体对支持物的压力(或对悬挂物的拉力)□05大于物体所受重力的现象物体对支持物的压力(或对悬挂物的拉力)□06小于物体所受重力的现象物体对支持物的压力(或对悬挂物的拉力)□07等于零的现象产生条件物体的加速度方向□08竖直向上物体的加速度方向□09竖直向下物体的加速度方向□10竖直向下,大小□11a=g 原理方程F-mg=maF=m(g+a)mg-F=maF=m(g-a)mg-F=maa=gF=0运动状态□12加速上升或□13减速下降□14加速下降或□15减速上升以a=g□16加速下降或□17减速上升[典例1]如图A所示,一质量为m的物体系于长度分别为l1、l2的两根细线上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,物体处于平衡状态.现将l2线剪断,求剪断瞬时物体的加速度?若将图A中的细线l1改为长度相同、质量不计的轻弹簧,如图B所示,其他条件不变,求求剪断轻弹簧瞬时物体的加速度?【解析】设l1线上拉力为T1,l2轻弹簧上拉力为T2,重力为mg,物体在三力作用下保持平衡T1cosθ=mg,T1sinθ=T2,T2=mg tgθ,剪断线的瞬间,弹簧的长度末发生变化,力大小和方向都不变,物体即在T2反方向获得加速度.因为mg tgθ=ma,所以加速度a=gtgθ,方向在T2反方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
加速度是:
(A) 大小为g,方向向上. (B) 大小为g,方向向下.
(C)
大小为
1 2
g
,方向向上.
(D) 大小为 1 g,方向向下.
2
只有处于完全失重状态,题中两物体才可能 处于“平衡静止”状态。此时电梯加速度大小为g, 方向向下
牛顿运动定律(二)
第二章 牛顿定律
3.质量为m的小球,放在光滑的木板和光滑的墙壁间,
M m
牛顿运动定律(二)
第二章 牛顿定律
5. 如图所示,一轻绳跨过一个定滑轮,两端各系一质量分
别为m1和m2的重物,且m1> m2.滑轮质量及轴上摩擦均 不计,此时重物的加速度的大小为a.今用一竖直向下的
恒力代替质量为m1的物体,可得质量为m2重物的加速度 为的大小a′,则
(A) a′= a (B) a′> a
dt
dt
( dy v y dv) (v2 ay) 即: F ( yg v2 ay)
dt dt
1当a 常矢量时,v2 2ay
y
则
F1 yg 2ay ay
g 3ay
y
2当v 常矢量时,a 0
O
则 F2 gy v2
牛顿运动定律(二) 1m1和m2相对电梯的加速度;
(C) a′< a (D) 不能确定
(m1- m2)g=(m1+m2)a (1) (m1- m2)g=m2a′ (2) 比较(1)(2)式可得:a′> a
m1
m2
牛顿运动定律(二)
第二章 牛顿定律
二、填空题
1. 一个水平圆盘,以每秒转一周的恒定角速度绕过其中
心的竖直固定轴旋转.在盘上距盘心0.80米处放置一质量
在板上建立相对自然坐标系,则在失重瞬间,
绳索的张力未消失,且初速度不等于零,初速
度的方向(切向)与受力方向(法向)垂直,故
判断摆球相对于板作匀速率圆周运动。
支撑物
牛顿运动定律(二)
第二章 牛顿定律
2.站在电梯中的人,看到用细绳连接的质量不同的两物
体,跨过电梯内一个挂在天花板上的无摩擦的定滑轮而处
于“平衡静止”状态,由此,他断定电梯在作加速度运动,
第二章 牛顿定律
3.有一火车,在水平地面上以不变的加速度沿直线向前
运动,在某时刻从火车天花板上掉下一个螺帽.则在地面
上静止的人看螺帽的加速度大小为____g_;_____,方向
是__竖__直__向_下__;_.而在火车上静止的人看螺帽的加速度大小
为_____g_2__a_2_______.
以地面为参照系,螺帽做自由落体运动,加速度 大小为g,方向竖直向下
第二章 牛顿定律
4.一只质量为m的猴,原来抓住一根用绳吊在天花板上的
质量为M的直杆,悬线突然断开,小猴则沿杆子竖直向上
爬以保持它离地面的高度不变,此时直杆下落的加速度为
(A) g (C) M m g
M
(B)
mg M
(D) M m g M m
隔离体法 由于小猴高度不变,故:T-mg=0
T=T’=mg. T’+Mg=Ma, a=(M+m)g/M.
2牛a(a11 g顿) 运动定律(二)
第二章 牛顿定律
一、选择题
1.一单摆挂在木板的小钉上(摆球的质量<<木板的质量), 木板可沿两根竖直且无摩擦的轨道下滑,如图.开始时木 板被支撑物托住,且使单摆摆动.当摆球尚未摆到最高点 时,移开支撑物,木板自由下落,则在下落过程中,摆球 相对于板
(A) 作匀速率圆周运动 (B) 静止 (C) 仍作周期性摆动 (D) 作上述情况之外的运动
2绳的张力。
第二章 牛顿定律
2.设电梯相对地面以加速度铅直向上运动。电梯中有一
质量可略去不计的滑轮,在滑轮的两侧用轻绳挂着质量分
与圆盘的摩擦系数为 ,若小物体刚刚能够随着圆盘一起
转而无相对运动,则以圆盘为参考系,对物体m的牛顿定
律的表示式为_____m__g____R_m____2____0__________.
牛顿运动定律: F ma 0
对物体m:F mg a 2 R
物体m的牛顿定律: mg m 2 R=0
牛顿运动定律(二)
并保持平衡,如图所示.设木板和墙壁之间的夹角为,
当逐渐增大时,小球对木板的压力将
(A) 增加. (B) 减少
(C) 不变.
(D) 先是增加,后又减小.压力增减的分界角为=
45°.
对小球进行受力分析,在竖直方向:N sin mg m
00 900
当逐渐增大时,小球对木板的压力将逐渐减小
牛顿运动定律(二)
以火车为参照系,由加速度的合成知螺帽的加速度 大小为 g2 a2
牛顿运动定律(二)
第二章 牛顿定律
4. 假如地球半径缩短 1%,而它的质量保持不变,则地 球表面的重力加速度g增大的百分比是_____2_%________.
牛顿运动定律(二)
第二章 牛顿定律
5.在如图所示的装置中,两个定滑轮与绳的质量以及滑轮
与其轴之间的摩擦都可忽略不计,绳子不可伸长,m1与平
面之间的摩擦也可不计,F在水m平2 g外力F的作用下,物体m1 与m2的加速度a=_______m_1___m__2 _,绳中的张力 T=__m_1_m_2_m_2__(F____m_1_g.)
T
F
m1
m2
牛顿运动定律(二)
第二章 牛顿定律
对物体m1进行受力分析有:F T m1a(1)
提起的高度为 y 时,作用在绳端的力为少?若以一恒定速度竖直向上提绳时,仍提到 y 高度,此时作用在绳端的
力又时多少?
y
y
O
牛顿运动定律(二)
第二章 牛顿定律
解:以被提起的绳段y为研究对象,建立坐标Oy,它受拉
力F和重力λ y g的作用,如图所示。由牛顿第二定律:
F yg d (mv) d (yv)
为2千克的小物体,则此物体所受的惯性离心力的大小
为____6_3_.2__N_;____.
惯性离心力 F m 2r
2rad / s F 0.2 (2 )2 0.8 63.2N
牛顿运动定律(二)
第二章 牛顿定律
2.一个水平圆盘,以恒定角速度 绕过其中心的竖直固定
轴旋转.在盘上距盘心R处,放置一质量为m的小物体,它
对物体m2进行受力分析有: T m2 g m2a(2)
(1)(2)式联立可得:a F m2 g m1 m2
T m2 (F m1g) m1 m2
牛顿运动定律(二)
第二章 牛顿定律
三、计算题
1.有一条单位长度质量为λ的匀质细绳,开始时盘绕在光
滑的水平桌面上。现以一恒定的加速度竖直向上提绳,当