专题二:平行四边形常用辅助线的作法 含答案解析
数学初三平行四边形中常做的辅助线
数学初三平行四边形中常做的辅助线一、平行四边形的对角线平行四边形有两条对角线,我们可以通过引入对角线来研究平行四边形的性质。
首先,我们可以证明平行四边形的对角线互相平分。
具体证明如下:设平行四边形ABCD的对角线AC和BD相交于点O,连接OA、OB、OC 和OD。
由于平行四边形的两对边分别平行且相等,所以可以得到AO=CO,BO=DO。
又由于AO=CO,BO=DO,所以AOBO和CODA都是菱形。
因为菱形的对角线互相平分,所以AC和BD互相平分。
利用对角线平分的性质,我们可以得到平行四边形中很多有用的结论。
例如,当平行四边形的两对角线相等时,它是一个矩形;当平行四边形的两对角线垂直且相等时,它是一个正方形。
二、平行四边形的中位线平行四边形的中位线是连接相邻两边中点的线段。
通过引入中位线,我们可以研究平行四边形的对应边的关系。
具体来说,我们可以得到以下结论:1. 平行四边形的中位线互相平行且相等;2. 平行四边形的中位线平分平行四边形的面积;3. 平行四边形的中位线长度等于对应边长度的平均值。
三、平行四边形的高线平行四边形的高线是从一个顶点到与对立边垂直相交的线段。
通过引入高线,我们可以研究平行四边形的高度和底边的关系。
具体来说,我们可以得到以下结论:1. 平行四边形的高线互相平行;2. 平行四边形的高线长度相等;3. 平行四边形的高线长度等于底边长度乘以对应高度的比值。
四、平行四边形的角平分线平行四边形的角平分线是从一个内角的顶点到对立边上的一点并且与对立边相交的线段。
通过引入角平分线,我们可以研究平行四边形的内角之间的关系。
具体来说,我们可以得到以下结论:1. 平行四边形的角平分线互相平行;2. 平行四边形的角平分线平分对立角,即对立内角的两个角平分线相交于对立边上的一点。
五、平行四边形的中心连线平行四边形的中心连线是连接两对对边中点的线段。
通过引入中心连线,我们可以研究平行四边形的对角线之间的关系。
与平行四边形有关的常用辅助线作法归类
与平行四边形有关的常用辅助线作法归类解析第一类:连结对角线,把平行四边形转化成两个全等三角形。
例1如左下图1,在平行四边形ABCD 中,点F E ,在对角线AC 上,且CF AE =,请你以F 为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一条线段即可)⑴连结BF ⑵DE BF =⑶证明:连结DF DB ,,设AC DB ,交于点O∵四边形ABCD 为平行四边形 ∴OB DO OC AO ==, ∵FC AE = ∴FC OC AE AO -=- 即OF OE = ∴四边形EBFD 为平行四边形 ∴DE BF =图2图1ECAAB第二类:平移对角线,把平行四边形转化为梯形。
例2如右图2,在平行四边形ABCD 中,对角线AC 和BD 相交于点O ,如果12=AC , 10=BD ,m AB =,那么m 的取值范围是( )A 111<<mB 222<<mC 1210<<mD 65<<m解:将线段DB 沿DC 方向平移,使得CE DB =,BE DC =,则有四边形CDBE 为平行四边形,∵在ACE ∆中, 12=AC ,10==BD CE ,m AB AE 22==∴101221012+<<-m ,即2222<<m 解得111<<m 故选A第三类:过一边两端点作对边的垂线,把平行四边形转化为矩形和直角三角形问题。
例3已知:如左下图3,四边形ABCD 为平行四边形求证:222222DA CD BC AB BD AC +++=+证明:过D A ,分别作BC AE ⊥于点E ,BC DF ⊥的延长线于点F∴BC BE BC AB BE BC BE AB CE AE AC ⋅-+=-+-=+=2)(22222222 CF BC BC CD CF BC CF CD BF DF BD ⋅++=++-=+=2)()(22222222 则BE BC CF BC DA CD BC AB BD AC ⋅-⋅++++=+22222222∵四边形ABCD 为平行四边形 ∴AB ∥CD 且CD AB =,BC AD =∴DCF ABC ∠=∠ ∵090=∠=∠DFC AEB∴DCF ABE ∆≅∆ ∴CF BE = ∴222222DA CD BC AB BD AC +++=+图4图3KDCFBB第四类:延长一边中点与顶点连线,把平行四边形转化为三角形。
专题二:平行四边形常用辅助线的作法(精排版)
平行四边形几何辅助线的作法补充中位线定理、三角形相似的性质及判定第一类:连结对角线,把平行四边形转化成两个全等三角形。
例1如左下图1,在平行四边形ABCD 中,点F E ,在对角线AC 上,且CF AE =,请你以F 为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一条线段即可) ⑴连结BF ⑵DE BF = ⑶证明:连结DF DB ,,设AC DB ,交于点O∵四边形ABCD 为平行四边形 ∴OB DO OC AO ==,∵FC AE = ∴FC OC AE AO -=- 即OF OE = ∴四边形EBFD 为平行四边形 ∴DE BF =图2图1OOECCDDEF练习1:如图1,E 是平行四边形ABCD 中AD 延长线上一点,ED 交BC 于F ,求证:。
简证:连BD ,由图易得(同底等高),(同底等高)所以,所以,即。
第二类:平移对角线,把平行四边形转化为梯形。
例2 如图2,平行四边形ABCD 中,对角线AC 、BD 交于O ,AC=a+b ,BD=a+c (),AB=m ,求m 的取值范围。
简解:要求AB 的值,需把AC 、BD 、AB 集中在一个三角形中,过C 作CE ∥DB 交AB 的延长线于E ,由图易得DBEC 是平行四边形,所以,,即,在△ACE 中,,即。
练习2:如右图2,在平行四边形ABCD 中,对角线AC 和BD 相交于点O ,如果12=AC ,10=BD ,m AB =,那么m 的取值范围是( )A 111<<mB 222<<mC 1210<<mD 65<<m 解:将线段DB 沿DC 方向平移,使得CE DB =,BE DC =,则有四边形CDBE 为平行四边形,∵在ACE ∆中,12=AC ,10==BD CE ,m AB AE 22==∴101221012+<<-m ,即2222<<m 解得111<<m 故选A第三类:过一边两端点作对边的垂线,把平行四边形转化为矩形和直角三角形问题。
平行四边形几何辅助线专题详解
平行四边形几何辅助线专题详解1 平行四边形知识框架{分类讨论思想{动态讨论{1个点的移动2个点的移动高的位置的讨论{过点作下(上)侧边的高过点作右(左)侧边的高求平行四边形第4个点的坐标平行四边形的面积{利用面积解决问题方程思想构造中位线{连接法{连接两中点知一中点,取另一中点知两中点,构双中位线倍长法{倍长垂直于角平分线的线段倍长线段 方法1 分类讨论思想分类讨论思想{动态讨论{1个点的移动2个点的移动高的位置的讨论{过点作下(上)侧边的高过点作右(左)侧边的高求平行四边形第4点坐标一、动态讨论解题技巧:点在线段的不同位置,也会造成不同的结果 (1)1个点的移动如下图,1个点C 在直线AB 上移动,会出现3种情况:①在线段AB 左侧;②在线段AB 当中;③在线段AB 右侧,具体见例1.(2)2个点的移动如下图,2个点C、D在线段AB上移动(C、D两点在AB中),会出现2种情况:①点C在点D的左侧;②点C在点D的右侧,具体见例2.例1.▱ABCD的内角∠BCD的平分线CE交射线DA于点E,若AE=3,DE=4,求▱ABCD的周长。
例2.在▱ABCD中,AD=8,AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,且EF=2,求AB的长。
二、高的位置的讨论解题技巧:在平行四边形中作高,会出现2种情况:①在图形内;②在图形外。
(1)过点作下(上)侧边的高如下图,过点A作▱ABCD下侧的边CD上的高AE。
因▱ABCD倾斜方向的变化,高会存在两种情况,具体见例1(2)过点右(左)侧边的高如下图,过点B作▱ABCD的右侧边AD上的高AE。
因▱ABCD倾斜大小的变化,高会存在两种情况,具体见例2上述两种情况实质是同一种情况经过翻折后得到的,为同一种情况。
例1.在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,若AB=5,BC=6,求CE的值。
例2.在▱ABCD中,AD=BD=4,BE是AD边上的高,∠EBD=30°,求△ABD的面积。
(完整版)平行四边形有关的常用辅助线(20201019185928)
PART A 知识讲解六类与平行四边形有关的常见辅助线,供借鉴:第一类:连结对角线,把平行四边形转化成两个全等三角形。
例1如左下图1,在平行四边形 ABCD 中,点E,F 在对角线AC 上,且AE CF ,请你以F 为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已 有的某一条线段相等(只需证明一条线段即可)⑴连结BF⑵BF DE⑶证明:连结 DB,DF ,设DB,AC 交于点0第二类:平移对角线,把平行四边形转化为梯形。
例2如右图2,在平行四边形 ABCD 中,对角线AC 和BD 相交于点O,如果AC 12,BD 10, AB m ,那么m 的取值范围是()A 1 m 11B 2 m 22C 10 m 12D 5 m 6解:将线段 DB 沿DC 方向平移,使得 DB CE ,DC BE ,则有四边形CDBE 为平 行四边形「••在ACE 中,AC 12,CE BD 10, AE 2AB 2m• 12 10 2m 12 10,即 2 2m 22 解得 1 m 11故选 A第三类:过一边两端点作对边的垂线,把平行四边形转化为矩形和直角三角形问题。
例3已知:如左下图3,四边形ABCD 为平行四边形求证:2 2 2 2 2 2AC BD AB BC CD DA证明:过A,D 分别作AE BC 于点E , DF BC 的延长线于点FAB 2 BE 2 (BC BE)2 AB 2 BC 2 2BE BC BD 2DF 2 BF 2 (CD 2 CF 2) (BC CF)22 2CD 2BC 2 2BC CF则AC 2BD 2 AB 2 BC 2 CD 2 DA 2 2BC CF 2BC BE••四边形 ABCD 为平行四边形 • AB // CD 且AB CD , AD BC•••四边形 ABCD 为平行四边形••• AE •••四边形FC • AO AE EBFD 为平行四边形• AO OC,DO OBOC FC 即 OE OF• BF DE••• AC 2 AE 2 CE 2 C图1图2ABC DCF AEB DFC 900ABEDCF••• BE CFAC 22 2BD AB 2 2 2BC CDDA第四类:延长一边中点与顶点连线,把平行四边形转化为三角形。
初二数学专题 四边形辅助线
初二数学专题:四边形辅助线做法总结(一)辅助线类型1.平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种:(1)连对角线或平移对角线:(2)过顶点作对边的垂线构造直角三角形(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。
(5)过顶点作对角线的垂线,构成线段平行或三角形全等.2.和菱形有关的辅助线的作法和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定理解决问题:(1)作菱形的高;(2)连接菱形的对角线3.与矩形有关的辅助线的作法:(1)计算题型,一般通过作辅助线构造直角三角形借助勾股定理、锐角三角函数或相似解决问题(2)证明或探索问题,一般连接矩形的对角线,借助于对角线相等且平分这一性质解决问题4.与正方形有关辅助线的作法正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多.解决正方形的问题有时需要作辅助线,作正方形对角线或过对角线上的点向边作垂线、平行线是解决正方形问题的常用辅助线.(二)例题分析1.如图,E是正方形ABCD的边BC上的一个动点(E与B、C两点不重合),过点E作射线EP⊥AE,在射线EP上截取线段EF,使得EF=AE,过点F作FG⊥BC交BC的延长线于点G.(1)求证:FG=BE;(2)探索点F是否在∠DCG的平分线上,并说明你的理由.2. 已知□ABCD,对角线AC与BD相交于点O,点P在边AD上,过点P分别作PE⊥AC、PF⊥BD,垂足分别为E、F,PE=PF.(1)如图,若PE=3,EO=1,求∠EPF的度数;(2)若点P是AD的中点,点F是DO的中点,BF =BC+32-4,求BC的长.3. 如图,在菱形ABCD中,M,N分别是边AB,BC的中点,MP⊥AB交边CD于点P,连接NM,NP.(1)若∠B=60°,这时点P与点C重合,则∠NMP= 度;(2)求证:NM=NP;(3)当△NPC为等腰三角形时,求∠B的度数.4.(2015年辽宁葫芦岛)在△ABC中,AB=AC,点F是BC延长线上一点,以CF为边,作菱形CDEF,使菱形CDEF与点A在BC的同侧,连接BE,点G是BE的中点,连接AG、DG.(1)如图①,当∠BAC=∠DCF=90°时,直接写出AG与DG的位置和数量关系;(2)如图②,当∠BAC=∠DCF=60°时,试探究AG与DG的位置和数量关系,(3)当∠BAC=∠DCF=α时,直接写出AG与DG的数量关系.5.如图,点O是平行四边形ABCD的对角线AC与BD的交点,四边形OCDE是平行四边形.求证:OE与AD互相平分.6. 如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,且AE∥CD,CE∥AB.(1)证明:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求菱形ADCE的高.(计算结果保留根号)7 如图,四边形ABCD为矩形,DE∥AC,且DE=AB,过点E作AD的垂线交AC于点F.(1)依题意补全图,并证明四边形EFCD是菱形;(2)若AB=3,BC=3,求平行线DE与AC间的距离.8. 如图,在▱ABCD中,E是AD上一点,连接BE,F为BE中点,且AF=BF,(1)求证:四边形ABCD为矩形;(2)过点F作FG⊥BE,垂足为F,交BC于点G,若BE=BC,S△BFG=5,CD=4,求CG.9. 如图,四边形ABCD是矩形,E为AD上一点,且∠CBD=∠EBD,P为对角线BD上一点,PN⊥BE于点N,PM⊥AD于点M.(1)求证:BE=DE;(2)试判断AB和PM,PN的数量关系并说明理由.10. 如图,点F在▱ABCD的对角线AC上,过点F、B分别作AB、AC的平行线相交于点E,连接BF,∠ABF=∠FBC+∠FCB.(1)求证:四边形ABEF是菱形;(2)若BE=5,AD=8,sin∠CBE=,求AC的长.11. (2015年广西玉林)如图,在矩形ABCD中,AB=5,AD=3,点P是AB边上一点(不与A,B重合),连接CP,过点P作PQ⊥CP交AD边于点Q,连接CQ.(1)当△CDQ≌△CPQ时,求AQ的长;(2)取CQ的中点M,连接MD,MP,若MD⊥MP,求AQ的长.。
北师大八年级数学:平行四边形辅助线的作法
专题:平行四边形中辅助线的作法一、和平行四边形有关的辅助线作法(1)利用一组对边平行且相等构造平行四边形例1、如图,已知点O 是平行四边形ABCD 的对角线AC 的中点,四边形OCDE 是平行四边形.求证: OE 与AD 互相平分.(2)利用两组对边平行构造平行四边形例2、如图,在△ABC 中,E 、F 为AB 上两点,AE=BF ,ED//AC ,FG//AC 交BC 分别为D ,G.求证: ED+FG=AC.(3)利用对角线互相平分构造平行四边形例3、如图,已知AD 是△ABC 的中线,BE 交AC 于E ,交AD 于F ,且AE=EF.求证BF=AC.(4)过一边两端点作对边的垂线,把平行四边形转化为矩形和直角三角形问题。
例6、已知:如图,四边形ABCD 为平行四边形求证:222222DA CD BC AB BD AC +++=+(5)延长一边中点与顶点连线,把平行四边形转化为三角形。
例7、已知:如右上图4,在正方形ABCD 中,F E ,分别是CD 、DA 的中点,BE 与CF 交于P 点,求证:AB AP =二、课堂练习:1、如图,E 是平行四边形ABCD 的边AB 的中点,AC 与DE 相交于点F ,若平行四边形ABCD的面积为S ,则图中面积为S 21的三角形有( ) A .1个 B .2个 C .3个D .4个3、如图,AD ,BC 垂直相交于点O ,AB ∥CD ,BC=8,AD=6,则AB+CD 的长=___________。
4、已知等边三角形ABC 的边长为a , P 是△ABC 内一点,PD ∥AB ,PE ∥BC ,PF ∥AC ,点D 、E 、F 分别在 BC 、AC 、AB 上,猜想:PD +PE+PF=______,并证明你的猜想.5、平行四边形ABCD 中,H F G E ,,,分别是四条边上的点,且DH BC CF AE ==,,试说明:EF 与GH 相互平分.6、如图,平行四边形ABCD 的对角线AC 和BD 交于O ,E 、F 分别为OB 、OD 的中点,过O 任作一直线分 别交AB 、CD 于G 、H . 试说明:GF ∥EH .7、如图,已知AC AB =,B 是AD 的中点,E 是AB 的中点.试说明:CE CD 2=B8、如图,E 是梯形ABCD 腰DC 的中点. 试说明:ABCD ABE S S 梯形21=∆9、已知六边形ABCDEF 的6个内角均为120°,CD =2cm ,BC =8cm ,AB =8cm ,AF=5cm ,试求此六边形的周长.10、已知ABC∆是等腰三角形,AB=AC ,D是BC 边上的任一点,且,ABDE ⊥AB CH AC DF ⊥⊥,,垂足分别为E 、F 、H ,求 证:CH DF DE =+11、已知:在ABC Rt ∆中,BC AB =;在ADE Rt ∆中,DE AD =;连结EC ,取EC 的中点M , 连结DM 和BM .(1)若点D 在边AC 上,点E 在边AB 上且与点B 不重合,如图①,求证:DM BM =且DM BM ⊥;(2)如果将图8-①中的ADE ∆绕点A 逆时针旋转小于45°的角,如图②,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.D E。
平行四边形辅助线总结
平行四边形辅助线总结1.利用一组对边平行且相等构造平行四边形例1 如图1,已知点O是平行四边形ABCD的对角线AC 的中点,四边形OCDE是平行四边形.求证:OE与AD互相平分.2.利用两组对边平行构造平行四边形例2 如图2,在△ABC中,E、F为AB上两点,AE=BF,ED证:ED+FG=AC.3.利用对角线互相平分构造平行四边形例3 如图3,已知AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证BF=AC.图3二、和菱形有关的辅助线的作法和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题.例4 如图5,在△ABC中,∠ACB=90°,∠BAC的平分线交BC于点D,E是AB上一点,且AE=AC,EF例5 如图6,四边形ABCD是菱形,E为边AB上一个定点,F是AC上一个动点,求证EF+BF的最小值等于DE长.图6说明:菱形是一种特殊的平行四边形,和菱形的有关证明题或计算题作辅助线的不是很多,常见的几种辅助线的方法有:(1)作菱形的高;(2)连结菱形的对角线.与矩形有辅助线作法和矩形有关的题型一般有两种:(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题;(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少.例6 如图7,已知矩形ABCD内一点,PA=3,PB=4,PC=5.求 PD的长.分析:要利用已知条件,因为矩形ABCD,可过P分别作两组对边的平行线,构造直角三角形借助勾股定理解决问题.图7四、与正方形有关辅助线的作法正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多.解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线.例7如图8,过正方形ABCD的顶点B作BE证:∠BCF=21∠AEB.。
平行四边形辅助线技巧
平行四边形辅助线技巧
平行四边形是一个具有两对相邻边平行的四边形。
在绘制平行四边形时,我们可以使用辅助线技巧来准确地绘制它。
第一种方法是绘制两条相交的线段,这些线段应该是平行四边形的相邻边。
然后,我们可以绘制一条线段连接两个相交点,这条线段应该与两个相邻边平行。
这条线段将会成为我们绘制平行四边形的一条边。
第二种方法是绘制两条相交的线段,这些线段应该是平行四边形的对角线。
然后,我们可以在对角线的中心点绘制一个点,并通过这个点绘制一条垂直于对角线的线段。
这条线段将会与对角线交叉,它的两个端点也将会成为我们绘制平行四边形的一对相邻顶点。
接下来,我们可以绘制另一条线段连接这两个顶点,这条线段应该与对角线平行。
这条线段将会成为我们绘制平行四边形的一条边。
这些辅助线技巧可以使我们在绘制平行四边形时更加准确和方便。
同时,这些技巧也可以应用于其他几何形状的绘制中。
- 1 -。
四边形辅助线常用做法
四边形常用的辅助线做法作辅助线的方法一:中点、中位线,延线,平行线。
如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。
二:垂线、分角线,翻转全等连。
如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转 180 度,得到全等形,,这时辅助线的做法就会应运而生。
其对称轴往往是垂线或角的平分线。
三:边边若相等,旋转做实验。
如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。
其对称中心,因题而异,有时没有中心。
故可分“有心”和“无心”旋转两种。
四 :造角、平、相似,和、差、积、商见。
如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。
在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。
故作歌诀:“造角、平、相似,和差积商见。
”五:面积找底高,多边变三边。
如遇求面积,(在条件和结论中出现线段的平方、乘积,仍可视为求面积),往往作底或高为辅助线,而两三角形的等底或等高是思考的关键。
如遇多边形,想法割补成三角形;反之,亦成立。
四边形平行四边形出现,对称中心等分点。
梯形问题巧转换,变为△和□。
平移腰,移对角,两腰延长作出高。
如果出现腰中点,细心连上中位线。
上述方法不奏效,过腰中点全等造。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
添加辅助线解特殊四边形题特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需要添加辅助线.下面介绍一些辅助线的添加方法.和平行四边形有关的辅助线作法平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形 .平行四边形中常用辅助线的添法平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:(1)连对角线或平移对角线:(2)过顶点作对边的垂线构造直角三角形(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。
常见四边形辅助线
一.和平行四边形有关的辅助线作法1.利用一组对边平行且相等构造平行四边形例1如图,已知点0是平行四边形ABCD的对角线AC的中点,四边形OCDE是平行四边形. 求证:0E与AD互相平分.EBC2.利用两组对边平行构造平行四边形例2如图,在4ABC中,E、F为AB上两点,AE=BF,ED//AC,FG//AC交BC分别为D,G.求证:ED+FG=AC.3.利用对角线互相平分构造平行四边形例3如图,已知人口是4ABC的中线,BE交AC于E,交AD于F,且AE二EF.求证BF二AC.二、和菱形有关的辅助线的作法和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题.例4如图,在AABC中,NACB=90°,NBAC的平分线交BC于点D,E是AB上一点,且AE=AC,EF//BC交AD于点F,求证:四边形CDEF是菱形.CBB例5如图,四边形ABCD是菱形,E为边AB上一个定点,F是AC上一个动点,求证EF+BF的最小值等于DE长.(3)与矩形有辅助线作法和矩形有关的题型一般有两种:(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题;(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题和矩形有关的试题的辅助线的作法较少.例6如图,已知矩形ABCD内一点,PA=3,PB=4,PC=5.求PD的长.1例7如图,过正方形ABCD的顶点B作BE//AC,且AE=AC,又CF//AE.求证:NBCF=2NAEB.5.与梯形有关的辅助线的作法和梯形有关的辅助线的作法是较多的.主要涉及以下几种类型:(1)作一腰的平行线构造平行四边形和特殊三角形;(2)作梯形的高,构造矩形和直角三角形;(3)作一对角线的平行线,构造直角三角形和平行四边形;(4)延长两腰构成三角形;(5)作两腰的平行线等.例8已知,如图,在梯形ABCD中,AD//BC,AB=AC,ZBAC=90°,BD=BC,BD交AC于点0.求证:CO=CD.例9如图,在等腰梯形ABCD中,AD//BC,AC±BD,AD+BC=10,DELBC于E.求DE的长.6.和中位线有关辅助线的作法例10如图H,在四边形ABCD中,AC于BD交于点0,AOBD,E、F分别是AB、CD中点,EF分别交AC、BD于点H、G.求证:OG=OH.1.(1)如图1所示,在四边形ABCD中,AC=BD,AC与BD相交于点O,E、F分别是AD.BC的中点,联结EF,分别交AC、BD于点M、N,试判断^OMN的形状,并加以证明;(2)如图2,在四边形ABCD中,若AB■CD,E、F分别是AD、BC的中点,联结FE并延长,分别与BA、CD的延长线交于点M、N,请在图2中画图并观察,图中是否有相等的角,若有,请直接写出结论:;图1图2图3练习1、为了让州城居民有更多休闲和娱乐的地方,政府又新建了几处广场,工人师傅在铺设地面时,准备选用同一种正多边形地砖.现有下面几种形状的正多边形地砖,其中不能进行平面镶嵌的是..()A.正三角形B.正方形C.正五边形D.正六边形2、如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线8口重合,折痕为DG,则AG的长为()A.1 B.C.D.23、把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H(如图).试问线段HG与线段HB相等吗?请先观察猜想,然后再证明你的猜想.4、如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA 方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=x cm(x丰0),则AP=2x cm,CM=3x cm,DN=x2:m.(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;(2)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形;(3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由.题45.如图,在四边形ABCD中,E是BC边的中点,连结DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是()A.AD=BCB.CD=BFC.A A=/CD./F=/CDE6.如图,矩形ABCD中,AB=3,BC=5.过对角线交点。
与平行四边形有关的常用辅助线作法解析
与平行四边形有关的常用辅助线作法解析作者:李顺业来源:《中学课程辅导·教师通讯》2013年第06期【内容摘要】在几何教学中,多数学生感觉困难,原因是很多几何题需要添加辅助线。
如何添加辅助线?不仅要把握定理和概念,还要刻苦练习,归纳总结找出规律。
【关键词】辅助线平移延长转化解决几何问题,当所给的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。
添加辅助线有两种情况:一、按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
二、按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,这样可防止乱添线,添辅助线也有规律可循。
添加辅助线的作用:一、揭示图形中隐含的性质:当条件与结论间的逻辑关系不明朗时,通过添加适当的辅助线,将条件中隐含的有关图形的性质充分揭示出来,以便取得过渡性的推论,达到推导出结论的目的。
二、聚拢集中原则:通过添置适当的辅助线,将图形中分散,远离的元素,通过变换和转化,是他们相对集中,聚拢到有关图形上来,使题设条件与结论建立逻辑关系,从而推导出要求的结论。
三、化繁为简原则:对一类几何命题,其题设条件与结论之间在已知条件所给的图形中,其逻辑关系不明朗,通过添置适当辅助线,把复杂图形分解成简单图形,从而达到化繁为简,化难为易的目的。
四、发挥特殊点、线的作用:在题设条件所给的图形中,对尚未直接显现出来的各元素,通过添置适当辅助线,将那些特殊点,特殊线,特殊图形性质恰当揭示出来,并充分发挥这些特殊点,线的作用,达到化难为易,导出结论的目的。
五、构造图形的作用:对一类几何证明,常须用到某种图形,这种图形在题设条件所给的图形中却没有发现,必须添置这些图形,才能导出结论,常用方法有构造出线段和角的和差倍分,新的三角形,直角三角形,等腰三角形等。
龙文一对一与平行四边形有关的常用辅助线作法归类解析
龙文一对一与平行四边形有关的常用辅助线作法归类解析 辅助线是解几何题的重要工具,也是沟通已知条件和未知结论的重要桥梁。
与平行四边形有关的辅助线有哪些呢?下面本文结合例题归纳六类与平行四边形有关的常见辅助线,供同学们借鉴:第一类:连结对角线,把平行四边形转化成两个全等三角形。
例1如左下图1,在平行四边形ABCD 中,点F E ,在对角线AC 上,且CF AE =,请你以F 为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一条线段即可)⑴连结BF ⑵DE BF =⑶证明:连结DF DB ,,设AC DB ,交于点O∵四边形ABCD 为平行四边形 ∴OB DO OC AO ==,∵FC AE = ∴FC OC AE AO -=- 即OF OE =∴四边形EBFD 为平行四边形 ∴DE BF =图2图1E CAA B第二类:平移对角线,把平行四边形转化为梯形。
例2如右图2,在平行四边形ABCD 中,对角线AC 和BD 相交于点O ,如果12=AC , 10=BD ,m AB =,那么m 的取值范围是( )A 111<<mB 222<<mC 1210<<mD 65<<m解:将线段DB 沿DC 方向平移,使得CE DB =,BE DC =,则有四边形CDBE 为平行四边形,∵在ACE ∆中, 12=AC ,10==BD CE ,m AB AE 22==∴101221012+<<-m ,即2222<<m 解得111<<m 故选A第三类:过一边两端点作对边的垂线,把平行四边形转化为矩形和直角三角形问题。
例3已知:如左下图3,四边形ABCD 为平行四边形求证:222222DA CD BC AB BD AC +++=+证明:过D A ,分别作BC AE ⊥于点E ,BC DF ⊥的延长线于点F∴BC BE BC AB BE BC BE AB CE AE AC ⋅-+=-+-=+=2)(22222222CF BC BC CD CF BC CF CD BF DF BD ⋅++=++-=+=2)()(22222222 则BE BC CF BC DA CD BC AB BD AC ⋅-⋅++++=+22222222∵四边形ABCD 为平行四边形 ∴AB ∥CD 且CD AB =,BC AD =∴DCF ABC ∠=∠ ∵090=∠=∠DFC AEB∴DCF ABE ∆≅∆ ∴CF BE =∴222222DA CD BC AB BD AC +++=+图4图3KD C F B B第四类:延长一边中点与顶点连线,把平行四边形转化为三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题讲义 平行四边形+几何辅助线的作法一、知识点1.四边形的内角和与外角和定理: (1)四边形的内角和等于360°; (2)四边形的外角和等于360°. 2.多边形的内角和与外角和定理: (1)n 边形的内角和等于(n-2)180°; (2)任意多边形的外角和等于360°. 3.平行四边形的性质:四边形ABCD 是平行四边形 ⎪⎪⎪⎩⎪⎪⎪⎨⎧.54321)邻角互补()对角线互相平分;()两组对角分别相等;()两组对边分别相等;()两组对边分别平行;(4、平行四边形判定方法的选择5、和平行四边形有关的辅助线作法(1)利用一组对边平行且相等构造平行四边形例1、如图,已知点O 是平行四边形ABCD 的对角线AC 的中点,四边形OCDE 是平行四边形. 求证: OE 与AD 互相平分.A B CD 1234ABCDABD O C 性质判定 说明:当已知条件中涉及到平行,且要求证的结论中和平行四边形的性质有关,可试通过添加辅助线构造平行四边形.(2)利用两组对边平行构造平行四边形例2、如图,在△ABC中,E、F为AB上两点,AE=BF,ED//AC,FG//AC交BC分别为D,G.求证: ED+FG=AC.说明:当图形中涉及到一组对边平行时,可通过作平行线构造另一组对边平行,得到平行四边形解决问(3)利用对角线互相平分构造平行四边形例3、如图,已知AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证BF=AC.说明:本题通过利用对角线互相平分构造平行四边形,实际上是采用了平移法构造平行四边形.当已知中点或中线应思考这种方法.(4)连结对角线,把平行四边形转化成两个全等三角形。
例4、如图,在平行四边形ABCD 中,点F E ,在对角线AC 上,且CF AE =,请你以F 为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一条线段即可)(5)平移对角线,把平行四边形转化为梯形。
例5、如右图2,在平行四边形ABCD 中,对角线AC 和BD 相交于点O ,如果12=AC ,10=BD ,m AB =,那么m 的取值范围是( )A 、111<<mB 、222<<mC 、1210<<mD 、65<<m(6)过一边两端点作对边的垂线,把平行四边形转化为矩形和直角三角形问题。
例6、已知:如图,四边形ABCD 为平行四边形求证:222222DA CD BC AB BD AC +++=+图2图1OOECC AB DAB DEF图2OECAB D 321图图3PEDCFEDABCB(7)延长一边中点与顶点连线,把平行四边形转化为三角形。
例7、已知:如右上图4,在正方形ABCD 中,F E ,分别是CD 、DA 的中点,BE 与CF 交于P 点,求证:AB AP =二、课堂练习:1、如图,E 是平行四边形ABCD 的边AB 的中点,AC 与DE 相交于点F ,若平行四边形ABCD的面积为S ,则图中面积为S 21的三角形有( ) A .1个 B .2个 C .3个 D .4个2、顺次连接一个任意四边形四边的中点,得到一个 ___________四边形.3、如图,AD ,BC 垂直相交于点O ,AB ∥CD ,BC=8,AD=6, 则AB+CD 的长=___________。
4、已知等边三角形ABC 的边长为a , P 是△ABC 内一点,PD ∥AB ,PE ∥BC ,PF ∥AC ,点D 、E 、F 分别在 BC 、AC 、AB 上,猜想:PD +PE+PF=______,并证明你的猜想.321图4KPF EDCBA5、平行四边形ABCD中,HFGE,,,分别是四条边上的点,且DHBCCFAE==,, 试说明:EF与GH相互平分.6、如图,平行四边形ABCD的对角线AC和BD交于O,E、F分别为OB、OD的中点,过O 任作一直线分别交AB、CD于G、H.试说明:GF∥EH.7、如图,已知ACAB=,B是AD的中点,E是AB的中点.试说明:CECD2=8、如图,E是梯形ABCD腰DC的中点.BDE试说明:ABCD ABE S S 梯形21=∆9、已知六边形ABCDEF 的6个内角均为120°,CD =2cm ,BC =8cm ,AB =8cm ,AF=5cm ,试求此六边形的周长.10、已知ABC ∆是等腰三角形,AB=AC ,D 是BC 边上的任一点,且,AB DE ⊥ AB CH AC DF ⊥⊥,,垂足分别为E 、F 、H , 求 证:CH DF DE =+11、已知:在ABC Rt ∆中,BC AB =;在ADE Rt ∆中,DE AD =;连结EC ,取EC 的中点M ,连结DM 和BM .(1)若点D 在边AC 上,点E 在边AB 上且与点B 不重合,如图①,求证:DM BM =且DM BM ⊥;(2)如果将图8-①中的ADE 绕点A 逆时针旋转小于45°的角,如图②,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.MD BACE图①图-②MDBA CE答案:例4、⑴ 连结BF ⑵DE BF =⑶ 证明:连结DF DB ,,设AC DB ,交于点O∵四边形ABCD 为平行四边形 ∴OB DO OC AO ==,∵FC AE = ∴FC OC AE AO −=− 即OF OE = ∴四边形EBFD 为平行四边形 ∴DE BF =例5、解:将线段DB 沿DC 方向平移,使得CE DB =,BE DC =,则有四边形CDBE 为平行四边形,∵在ACE ∆中, 12=AC ,10==BD CE ,m AB AE 22==∴101221012+<<−m ,即2222<<m 解得111<<m 故选A 例6、证明:过D A ,分别作BC AE ⊥于点E ,BC DF ⊥的延长线于点F∴BC BE BC AB BE BC BE AB CE AE AC ⋅−+=−+−=+=2)(22222222 CF BC BC CD CF BC CF CD BF DF BD ⋅++=++−=+=2)()(22222222 则BE BC CF BC DA CD BC AB BD AC ⋅−⋅++++=+22222222 ∵四边形ABCD 为平行四边形 ∴AB ∥CD 且CD AB =,BC AD = ∴DCF ABC ∠=∠ ∵090=∠=∠DFC AEB ∴DCF ABE ∆≅∆ ∴CF BE = ∴222222DA CD BC AB BD AC +++=+ 例7、证明:延长CF 交BA 的延长线于点K∵四边形ABCD 为正方形∴AB ∥CD 且CD AB =,AD CD =,090=∠=∠=∠D BCD BAD∴K ∠=∠1 又∵090=∠=∠DAK D ,AF DF = ∴CDF ∆≌KAF ∆ ∴AB CD AK == ∵AD DF CD CE 21,21==∴DF CE = ∵090=∠=∠D BCD ∴BCE ∆≌CDF ∆ ∴21∠=∠ ∵09031=∠+∠ ∴09032=∠+∠ ∴090=∠CPB ,则090=∠KPB∴AB AP =二、课堂练习1、 C2、平行3、104、a5、分析:观察图形,EF 与HG 为四边形HEGF 的对角线,若能说明四边形HEGF 是平行四边形,根据平行四边形的对角线互相平分这一性质即可得到EF 与GH 相互平分。
6、分析:观察图形,GF 与EH 为四边形GEHF 的对边,若能说明四边形EHFG 是平行四边形,平行四边形具有对边平行的性质可得GF ∥EH .7、分析:延长CE 至F ,使EF =CE ,连结AF 、BF ,得四边形AFBC 是平行四边形,利用平行四边形的性质证明△DBC ≌△FBC 即可。
8、分析:过点E 作MN ∥AB ,交BC 于N ,交AD 的延长线于M ,则四边形ABNM 是平行四边形,△ABE 与四边形ABNM 等底等高,所以S △ABE =21S 平行四边形ABNM ,接下来说明 S 梯形ABCD =S 平行四边形ABNM 即可。
9、10、证明:过D点作DG⊥CH于G又DE⊥AB于E,CH⊥AB于H∴四边形DGHE为矩形∴DE=GH EH∥DG∴∠B=∠GDC又AB=AC ∴∠B=∠ACB∴∠GDC=∠ACB又∠DGC=∠DFC=90°CD=DC(公共边)∴△CDG≌△DCF(AAS)∴DF=CG又CH=CG+GH∴CH=DF+DG(等量代换)11、平行四边形中常用辅助线的添法平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:(1)连对角线或平移对角线:(2)过顶点作对边的垂线构造直角三角形(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。
(5)过顶点作对角线的垂线,构成线段平行或三角形全等. 第一类:连结对角线,把平行四边形转化成两个全等三角形。
例1如左下图1,在平行四边形ABCD 中,点F E ,在对角线AC 上,且CF AE =,请你以F 为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一条线段即可) ⑴连结BF ⑵DE BF = ⑶证明:连结DF DB ,,设AC DB ,交于点O∵四边形ABCD 为平行四边形 ∴OB DO OC AO ==, ∵FC AE = ∴FC OC AE AO −=− 即OF OE = ∴四边形EBFD 为平行四边形 ∴DE BF =图2图1OOECCABDABDEF第二类:平移对角线,把平行四边形转化为梯形。
例2如右图2,在平行四边形ABCD 中,对角线AC 和BD 相交于点O ,如果12=AC , 10=BD ,m AB =,那么m 的取值范围是( )A 111<<mB 222<<mC 1210<<mD 65<<m解:将线段DB 沿DC 方向平移,使得CE DB =,BE DC =,则有四边形CDBE 为平行四边形,∵在ACE ∆中, 12=AC ,10==BD CE ,m AB AE 22==∴101221012+<<−m ,即2222<<m 解得111<<m 故选A第三类:过一边两端点作对边的垂线,把平行四边形转化为矩形和直角三角形问题。