《复数复习小结》教学设计方案(含教学反思)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题名称《复数复习小结》
莆田第十三中学李春涵
一、概述
本节课的内容是《选修1—2》最后一章《复数》的复习小结,涉及复数有关概念、运算法则的知识梳理和具体的应用。教学对象是本校高二(4)班。所需课时一节课。《复数》是高中文科数学的最后一章,固然内容不多、难度不大,但它扩大了数域,当然扩大了我们的视野,也再给了我们一个联系数与形的崭新工具,尤其在提高数学思想方法水平上具有积极的意义。
教学重点:
复数有关概念、运算法则的知识梳理和具体的应用.
教学难点:
梳理复数的知识结构。
二、教学目标分析(融合知识与技能、过程与方法、情感态度价值观)
1.理解复数的有关概念、掌握复数的代数表示及向量表示.
2.会运用复数的分类、复数相等的充要条件求出相关复数的实参数值.
3.掌握复数加法、乘法运算律;能进行复数的代数形式的加法、减法、乘法、除法等运算。
4.掌握复数代数形式的运算法则及加减法运算的几何意义
5.领会复数问题实数化的思想方法,能应用数形结合、待定系数法等数学思想方法解决复数问题。
6.领会数系扩充的过程。
三、学习者特征分析
1.学生是莆田第十三中学(农村一般校)的高二文科重点班学生,学习自觉性较强,一般都能预习。
2.作为高二学生,好奇心较强,对数学有较强的探究欲望;
3.学生有过较多的小组合作经验;
4.学生已经熟练掌握实数的有关概念、运算律、数学思想方法等知识;
5.学生已经学过复数的有关概念、运算律、数学思想方法等的基础知识;
6.学生能够进行简单的复数计算和应用;
四、教学策略选择与设计
这是一节《复数》的复习课,零零碎碎的知识点很多。只能以学生为主体,自主学习;教师起主导作用,给以适当的辅导。所以我采用的策略是通过导课语激发学生的兴趣和求知欲后,播放PPT,让学生阅读知识点。老师适当点拨,后又进行总结归纳梳理出本章的知识体系图。这样才能把复习知识点的时间控制在15分钟内而且又能达到让学生系统把握本章知识的目的。而复习的根本目的是提高知识的应用能力,由于学生都有预习,所以对-111的例题1——2采用阅读提问指导的方法来教学,时间控制在10分钟内。对于补充例题,先用PPT播放题目,让学生思考,老师进行点拨指导,后给出PPT答案,时间控制也在10分钟内。特别要强调的是老师指导的内容侧重于数学思想方法的启发应用。最后,为巩固知识,
提高解题能力和数学思想方法水平,特设课堂训练,用时8分钟。剩下2分钟,留于课堂小结和作业布置(根据不同层次布置不同难度的作业)。
五、教学资源与工具设计
教学媒体选择分析表
了探究问题的习惯。
①媒体在教学中的作用分为:A.提供事实,建立经验;B.创设情境,引发动机;C.举例验证,建立概念;D.提供示范,正确操作;E.呈现过程,形成表象;F.演绎原理,启发思维;G .设难置疑,引起思辨;H.展示事例,开阔视野;I.欣赏审美,陶冶情操;J.归纳总结,复习巩固;K.其它。
②媒体的使用方式包括:A.设疑—播放—讲解;B.设疑—播放—讨论;C.讲解—播放—概括;D.讲解—播放—举例;E.播放—提问—讲解;F.播放—讨论—总结;G .边播放、边讲解;H.播放—提问—讨论—总结
六、教学过程
(一)、知识要点:
1.虚数单位i :(1) 2
1i =-; (2)实数可以与i 进行四则运算,原有加、乘运算律仍然成立。
2. 若x 2=-1,则x i =±
3. i 的幂性质:i 4n+1=i, i 4n+2=-1, i 4n+3=-i, i 4n =1
4.复数的定义:形如(,)a bi a b R +∈的数叫复数,a 叫复数的实部,b 叫复数的虚部。全体复数所成的集合叫做复数集,用字母C 表示。
5. 复数的代数形式: 复数通常用字母z 表示,如(,)z a bi a b R =+∈, a +bi 叫做复数的代数形式
6. 复数与实数、虚数、纯虚数及0的关系:对于复数(,)a bi a b R +∈,当且仅当b =0时,复数a +bi (a 、b ∈R )是实数a ;当b ≠0时,复数z =a +bi 叫做虚数;当a =0且b ≠0时,z =bi 叫做纯虚数;当且仅当a =b =0时,z 就是实数0.
7.数集间的关系:N Z Q R C . 8. 两个复数相等的定义(充要条件):当a ,b ,c ,d ∈R 时, a +bi =c +di ⇔a =c ,b =d 两个复数间有相等或不相等关系,当它们全是实数时,可以比较大小。否则不能比较大小
9.复数z 1与z 2的和:z 1+z 2=(a +bi )+(c +di )=(a +c )+(b +d )i . 10. 复数z 1与z 2的差:z 1-z 2=(a +bi )-(c +di )=(a -c )+(b -d )i . 11. 复数的加法运算律:
(1)交换律: z 1+z 2=z 2+z 1(2)结合律: (z 1+z 2)+z 3=z 1+(z 2+z 3) 12.乘法运算规则:设z 1=a +bi ,z 2=c +di (a 、b 、c 、d ∈R ),则
(a +bi )(c +di )=(ac -bd )+(bc +ad )i .
两个复数相乘,类似两个多项式相乘,在所得的结果中把i 2换成-1,并且把实部与虚部分别合并.两个复数的积仍然是一个复数.
13.乘法运算律:
(1) 结合律: z 1(z 2z 3)=(z 1z 2)z 3 ; (2) 交换律:z 1z 2=z 2z 1; (3)分配律:z 1(z 2+z 3)=z 1z 2+z 1z 3. 14.复数代数形式开平方: