八年级数学下册单元评价检测(一)华东师大版

合集下载

华师大版八年级下学期数学平行四边形单元测试卷(含参考答案和评分标准)

华师大版八年级下学期数学平行四边形单元测试卷(含参考答案和评分标准)

新华师大版八年级下册数学平行四边形单元测试卷姓名____________ 时间: 90分钟 满分:120分 总分____________ 一、选择题(每小题3分,共30分)1. 在四边形ABCD 中,CD AB //,再添加下列一个条件,四边形ABCD 不一定是平行四边形的是 【 】 (A )CD AB = (B )BC AD = (C )BC AD // (D )C A ∠=∠2. 如图所示,在□ABCD 中,︒=∠︒=∠115,25A DBC ,则=∠BDC 【 】 (A )︒25 (B )︒30 (C )︒40 (D )︒65第 2 题图ADBC第 3 题图EBACD3. 如图所示,在△ABC 中,BC AB A ⊥︒=∠,40,点D 在AC 边上,以CB 、CD 为边作□BCDE ,则E ∠的度数为 【 】 (A )︒40 (B )︒50 (C )︒60 (D )︒704. 如图所示,EF 过□ABCD 对角线的交点O ,交AD 于点E ,交BC 于点F ,若□ABCD 的周长是30,3=OE ,则四边形ABFE 的周长是 【 】 (A )18 (B )21 (C )24 (D )27第 4 题图F ODBCAE第 5题图5. 如图,在□ABCD 中,AB BE ⊥交对角线AC 于点E ,若︒=∠201,则2∠的度数为 【 】 (A )︒120 (B )︒100 (C )︒110 (D )︒906. 如图所示,□ABCD 的周长周长为24,AC 、BD 相交于点O ,BD OE ⊥交AD 于点E ,则△ABE 的周长为 【 】 (A )8 (B )10 (C )12 (D )16第 6 题图EODBCA第 7 题图FECABD7. 如图所示,在□ABCD 中,E 、F 是对角线BD 上不同的两点,若添加下列条件,不能得出四边形AECF 一定是平行四边形的为 【 】 (A )DF BE = (B )CE AF // (C )DCF BAE ∠=∠ (D )CF AE =8. 如图,平行四边形OABC 的顶点A 、C 的坐标分别为()0,5,()3,2,则顶点B 的坐标为 【 】 (A )()3,7 (B )()7,3 (C )()7,4 (D )()4,7yx第 8 题图BCAO第 9 题图9. 如图所示,已知□AOBC 的顶点()0,0O ,()2,1-A ,点B 在x 轴正半轴上,按以下步骤作图:①以点O 为圆心,适当长为半径作弧,分别交边OA 、OB 于点D 、E ;②分别以点D 、E 为圆心,大于DE 21的长为半径作弧,两弧交于点F ;③作射线OF ,交边AC 于点G .则点G 的坐标为 【 】 (A )()2,5 (B )()2,53- (C )()2,25- (D )()2,15-第 15 题图EF CABDP10. 如图所示,在□ABCD 中,点E 、F 在对角线BD 上,连结AE 、CE 、CF 、AF ,添加下列条件中的一个:①DE BF =;②AF AE =;③CF AE =;④CFD AEB ∠=∠;⑤BD CF BD AE ⊥⊥,.其中,能使四边形AECF 为平行四边形的有 【 】 (A )2个 (B )3个 (C )4个 (D )5个第 10 题图FEDBCA第 11 题图D二、填空题(每小题3分,共15分)11. 如图,在□ABCD 中,AB CE ⊥,若︒=∠65D ,则=∠BCE _________.12. 已知□ABCD 的周长为10,对角线AC 、BD 交于点O ,△AOD 的周长比△AOB 的周长多1,则AB 的长为_________.13. 如图所示,四边形AEDF 是平行四边形,△CED 和△DFB 的周长分别为5和10,则△ABC 的周长为_________.第 13 题图F DABCE第 14 题图ADEBC14. 如图所示,在□ABCD 中,ABC ∠和BCD ∠的平分线交AD 边于同一点E ,且3,4==CE BE ,则AB 的长是_________.15. 如图所示,四边形ABCD 是平行四边形,点E 是CD 上一点,且EC BC =,BE CF ⊥交AB 于点 F ,P 是EB 延长线上的一点,下列结论:①BE 平分CBF ∠; ②CF 平分DCB ∠; ③BC BF =; ④PC PF =. 其中,正确结论的序号是__________.三、解答题(共75分)16.(9分)证明命题“一组对边平行且相等的四边形是平行四边形”,要根据题意,画出图形,并写出已知、求证、证明过程.下面是某同学根据题意画出的图形,并写出了不完整的已知和求证.已知: 如图所示,在四边形ABCD中,CDAB//,__________.求证:___________________________________.请补全已知和求证部分,并写出证明过程.DB CA17.(8分)已知:如图所示,在□ABCD中,点E是BC边的中点,连结DE并延长交AB边的延长线于点F.求证:BFAB .BC EA FD18.(9分)已知:如图所示,在□ABCD 中,点F 在AB 的延长线上,且AB BF =,连结FD ,交BC 于点E .(1)求证:△DCE ≌△FBE ; (2)若3=EC ,求AD 的长.FEDBCA19.(9分)如图所示,点B 、E 、C 、F 在同一条直线上,DE AC DF AB ==,,FC BE =. (1)求证:△ABC ≌△DFE ;(2)连结AF 、BD ,求证:四边形ABDF 是平行四边形.EDBFAC20.(9分)如图所示,AC 、BD 相交于点O ,BC AD CD AB //,//,E 、F 分别是OB 、OD 的中点.求证:四边形AFCE 是平行四边形.FEODBCA21.(10分)如图所示,已知︒=∠=∠90E B ,点B 、C 、F 、E 在一条直线上,EC BF DF AC ==,. 求证:四边形ACDF 是平行四边形.22.(10分)如图所示,在□ABCD 中,E 、F 分别是AB 、CD 的中点,DE 、BF 与对角线AC 分别交于点M 、N ,连结MF 、NE . (1)求证:BF DE //;(2)判断四边形MENF 是何特殊的四边形,并说明理由.NMEFCABD23.(11分)如图所示,在四边形ABCD 中,︒=∠90,//A BC AD ,12=AB ,21=BC ,16=AD .动点P 从点B 出发,沿射线BC 以每秒2个单位长度的速度运动,动点Q 同时从点A 出发,在线段AD 上以每秒1个单位长度的速度向点D 运动,当点Q 到达点D 时另一个动点也随之停止运动.设运动的时间为t 秒.(1)填空:=AQ _________,=BP _________,(用含t 的代数式表示),t 的取值范围是__________;(2)设△DPQ 的面积为S ,用含t 的式子表示S ; (3)当=t _________时,PQ PD =;(4)当t 为何值时,以点P 、C 、D 、Q 为顶点的四边形是平行四边形?DABCQP新华师大版八年级下册数学摸底试卷平行四边形单元测试卷 参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共15分)11. ︒25 12. 2 13. 15 14. 2515. ①②③④ 部分题目答案提示9. 如图所示,已知□AOBC 的顶点()0,0O ,()2,1-A ,点B 在x 轴正半轴上,按以下步骤作图:①以点O 为圆心,适当长为半径作弧,分别交边OA 、OB 于点D 、E ;②分别以点D 、E 为圆心,大于DE 21的长为半径作弧,两弧交于点F ;③作射线OF ,交边AC 于点G .则点G 的坐标为 【 】 (A )()2,5 (B )()2,53- (C )()2,25- (D )()2,15-第 9 题图解析 本题考查平行四边形的性质和尺规作图的原理,注意角平分线+平行线模型的识别.由尺规作图可知:OF 平分AOB ∠根据角平分线+平行线模型可知:AG OA = ∵()2,1-A∴()52122=+-=OA ∴5=AG ∵x AC //轴 ∴2==A G y y∵()51==--=-AG x x x G A G∴51=+G x ∴15-=G x∴点G 的坐标为()2,15-∴选择答案【 D 】.10. 如图所示,在□ABCD 中,点E 、F 在对角线BD 上,连结AE 、CE 、CF 、AF ,添加下列条件中的一个:①DE BF =;②AF AE =;③CF AE =;④CFD AEB ∠=∠;⑤BD CF BD AE ⊥⊥,.其中,能使四边形AECF 为平行四边形的有 【 】 (A )2个 (B )3个 (C )4个 (D )5个第 10 题图FEDBCA解析 本题主要考查平行四边形的性质以及判定.对于①DE BF =,连结AC ,交BD 于点O ,如图1所示.图 1∵四边形ABCD 为平行四边形 ∴OD OB OC OA ==, ∵DE BF =∴OE OD OF OB +=+ ∴OE OF =∵OF OE OC OA ==, ∴四边形AECF 是平行四边形.对于②AF AE =,不能确定四边形AECF 是平行四边形;对于③CF AE =,不能确定四边形AECF 是平行四边形;对于④CFD AEB ∠=∠,如图2所示.图 2∵CFD AEB ∠=∠ ∴21∠=∠∴CF AE //∵四边形ABCD 为平行四边形 ∴CD AB CD AB =,// ∴43∠=∠在△ABE 和△CDF 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CD AB CFD AEB 43 ∴△ABE ≌△CDF (AAS ) ∴CF AE =∵CF AE //,CF AE = ∴四边形AECF 是平行四边形. 对于⑤BD CF BD AE ⊥⊥,,如图3所示.图 3∵BD CF BD AE ⊥⊥, ∴CF AE //(在同一平面内,垂直于同一条直线的两条直线互相平行) 易证:△ABD ≌△CDB ∴CDB ABD S S ∆∆=∴CF BD AE BD ⋅=⋅2121 ∴CF AE =∵CF AE //,CF AE = ∴四边形AECF 是平行四边形.(或易证:△ABE ≌△CDF ,∴CF AE =) 综上所述,能使四边形AECF 为平行四边形的条件有:①④⑤,共3个. ∴选择答案【 B 】.14. 如图所示,在□ABCD 中,ABC ∠和BCD ∠的平分线交AD 边于同一点E ,且3,4==CE BE ,则AB 的长是_________.第 14 题图ADEBC解析 本题主要考查平行四边形的性质,注意角平分线+平行线模型的识别. 根据角平分线+平行线模型不难确定:△ABE 和△DCE 都是等腰三角形 ∴DC DE AB AE ==, ∵四边形ABCD 为平行四边形 ∴AD BC CD AB CD AB ==,//, ∴︒=∠+∠=180,BCD ABC DE AE ∴AB AE AD BC 22=== ∵BE 平分ABC ∠,CE 平分BCD ∠ ∴22,12∠=∠∠=∠BCD ABC ∴︒=∠+∠1802212 ∴︒=∠+∠9021 ∴︒=∠90BEC在Rt △BCE 中,由勾股定理得:222CE BE BC +=∴53422=+=BC ∴2521==BC AB . 15. 如图所示,四边形ABCD 是平行四边形,点E 是CD 上一点,且EC BC =,BE CF ⊥交AB 于点F ,P 是EB 延长线上的一点,下列结论:①BE 平分CBF ∠; ②CF 平分DCB ∠;③BC BF =; ④PC PF =. 其中,正确结论的序号是__________.第 15 题图EF CABDP解析 本题主要考查平行四边形的性质.图 1对于①,∵四边形ABCD 为平行四边形 ∴CD AB //∴31∠=∠(如图1所示) ∵EC BC = ∴21∠=∠ ∴32∠=∠ ∴BE 平分CBF ∠; 故结论①正确; 对于②,如图1所示. ∵EC BC =,BE CF ⊥ ∴CF 平分DCB ∠(等腰三角形“三线合一”) 故结论②正确; 对于③,如图2所示.图 2由结论②可知: CF 平分DCB ∠ ∴21∠=∠∵四边形ABCD 为平行四边形 ∴CD AB //∴31∠=∠ ∴32∠=∠ ∴BC BF =. 故结论③正确;对于④,∵BC BF =,CF BE ⊥∴直线BE 垂直平分CF ∴PC PF = 故结论④正确.综上所述,正确结论的序号是①②③④. 三、解答题(共75分)16.(9分)证明命题“一组对边平行且相等的四边形是平行四边形”,要根据题意,画出图形,并写出已知、求证、证明过程.下面是某同学根据题意画出的图形,并写出了不完整的已知和求证.已知: 如图所示,在四边形ABCD 中,CD AB //,__________.求证:________________________________. 请补全已知和求证部分,并写出证明过程.CD AB =…………………………………………1分四边形ABCD 为平行四边形…………………………………………2分 证明:连结AC ∵CD AB // ∴21∠=∠在△ABC 和△CDA 中∵⎪⎩⎪⎨⎧=∠=∠=CA AC CD AB 21 ∴△ABC ≌△CDA (SAS ) ∴43∠=∠ ∴BC AD //…………………………………………6分 ∵CD AB //,BC AD // ∴四边形ABCD 为平行四边形…………………………………………9分 点评 要证明平行四边形的判定定理,必须按照平行四边形的定义进行,即证明四边形的两组对边分别平行.17.(8分)已知:如图所示,在□ABCD 中,点E 是BC 边的中点,连结DE 并延长交AB 边的延长线于点F . 求证:BF AB =.BC EAFD证明:∵点E 是BC 边的中点 ∴CE BE =∵四边形ABCD 是平行四边形 ∴CD AB CD AB =,//…………………………………………2分 ∴CD AF // ∴1∠=∠F在△BEF 和△CED 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CE BE F 321 ∴△BEF ≌△CED (AAS ) ∴CD BF =…………………………………………6分 ∵CD BF CD AB ==, ∴BF AB =…………………………………………8分 18.(9分)已知:如图所示,在□ABCD 中,点F 在AB 的延长线上,且AB BF =,连结FD ,交BC 于点E .(1)求证:△DCE ≌△FBE ; (2)若3=EC ,求AD 的长.FEDBCA(1)证明:∵四边形ABCD 是平行四边形 ∴CD AB CD AB =,//…………………………………………2分 ∴CD AF //∴1∠=∠F∵AB BF = ∴CD BF =在△DCE 和△FBE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠BF CD FEB DEC F 1 ∴△DCE ≌△FBE (AAS );…………………………………………5分 (2)解:由(1)可知:△DCE ≌△FBE ∴3==BE CE ∴62==CE BC…………………………………………7分 ∵四边形ABCD 是平行四边形 ∴6==BC AD .…………………………………………9分 19.(9分)如图,点B 、E 、C 、F 在同一条直线上,DE AC DF AB ==,,FC BE =. (1)求证:△ABC ≌△DFE ;(2)连结AF 、BD ,求证:四边形ABDF 是平行四边形.证明:(1)∵FC BE = ∴CE FC CE BE +=+ ∴FE BC =…………………………………………1分EDBFAC在△ABC 和△DFE 中∵⎪⎩⎪⎨⎧===FE BC DE AC DFAB ∴△ABC ≌△DFE (SSS );…………………………………………4分(2)由(1)可知:△ABC ≌△DFE ∴21∠=∠ ∴DF AB //…………………………………………6分 ∵DF AB =∴DF AB =// ∴四边形ABDF 是平行四边形.…………………………………………9分 20.(9分)如图所示,AC 、BD 相交于点O ,BC AD CD AB //,//,E 、F 分别是OB 、OD 的中点.求证:四边形AFCE 是平行四边形.FEODBCA证明:∵BC AD CD AB //,// ∴四边形ABCD 是平行四边形…………………………………………3分 ∴OD OB OC OA ==,…………………………………………5分 ∵E 、F 分别是OB 、OD 的中点 ∴OD OF OB OE 21,21==∴OF OE =…………………………………………6分 ∵OF OE OC OA ==, ∴四边形AFCE 是平行四边形.…………………………………………9分 21.(10分)如图,已知︒=∠=∠90E B ,点B 、C 、F 、E 在一条直线上,EC BF DF AC ==,. 求证:四边形ACDF 是平行四边形.证明:∵EC BF = ∴CF EC CF BF -=- ∴EF BC =…………………………………………1分在Rt △ABC 和Rt △DEF 中∵⎩⎨⎧==EF BC DF AC∴Rt △ABC ≌Rt △DEF (HL )…………………………………………5分 ∴DFE ACB ∠=∠ ∴21∠=∠ ∴DF AC //…………………………………………7分 ∵DF AC //,DF AC = ∴四边形ACDF 是平行四边形.…………………………………………10分 22.(10分)如图所示,在□ABCD 中,E 、F 分别是AB 、CD 的中点,DE 、BF 与对角线AC 分别交于点M 、N ,连结MF 、NE . (1)求证:BF DE //;(2)判断四边形MENF 是何特殊的四边形,并说明理由.NMEFCABD(1)证明:∵四边形ABCD 是平行四边形∴CD AB CD AB =,//…………………………………………2分 ∴BE DF //∵E 、F 分别是AB 、CD 的中点 ∴AB BE CD DF 21,21==∴BE DF =∵BE DF //,BE DF = ∴四边形BEDF 是平行四边形 ∴BF DE //;…………………………………………5分(2)解:四边形MENF 是平行四边形 …………………………………………6分 理由如下:由(1)可知:BF DE // ∴,//NF ME ABF ∠=∠1 ∵CD AB //∴ABF ∠=∠2,43∠=∠ ∴21∠=∠∵E 、F 分别是AB 、CD 的中点 ∴CD CF AB AE 21,21==∴CF AE =在△AME 和△CNF 中∵⎪⎩⎪⎨⎧∠=∠=∠=∠4321CF AE ∴△AME ≌△CNF (ASA )∴NF ME =∵,//NF ME NF ME = ∴四边形MENF 是平行四边形.…………………………………………10分 23.(11分)如图所示,在四边形ABCD 中,︒=∠90,//A BC AD ,12=AB ,21=BC ,16=AD .动点P 从点B 出发,沿射线BC 以每秒2个单位长度的速度运动,动点Q 同时从点A 出发,在线段AD 上以每秒1个单位长度的速度向点D 运动,当点Q 到达点D 时另一个动点也随之停止运动.设运动的时间为t 秒.(1)填空:=AQ ________,=BP ________,(用含t 的代数式表示),t 的取值范围是__________;(2)设△DPQ 的面积为S ,用含t 的式子表示S ;(3)当=t _________时,PQ PD =; (4)当t 为何值时,以点P 、C 、D 、Q 为顶点的四边形是平行四边形?DABCQP解:(1)t ,t 2,0≤t ≤16;…………………………………………3分 (2)由题意可知:t AQ AD DQ -=-=16∴()966121621+-=⋅-=t t S ; …………………………………………5分(3)316;…………………………………………7分 提示: 当PQ PD =时,作AD PE ⊥,如图1所示.P由等腰三角形“三线合一”的性质可知:DE QE =易知:四边形ABPE 是矩形(即长方形) ∴t BP AE 2==∴t t t AQ AE QE =-=-=2 t AE AD DE 216-=-= ∵DE QE = ∴t t 216-=解之得:316=t∴当316=t 时,PQ PD =.(4)分为两种情况:图 2P QDABC①当点P 在BC 边上时,四边形PCDQ 是平行四边形,则有DQ PC = ∴t t -=-16221解之得:5=t ;(如图2所示)…………………………………………9分 ②当点P 在BC 边的延长线上时,四边形CPDQ 是平行四边形,则有DQ PC = ∴t t -=-16212解之得:337=t .(如图3所示) 图 3PQDABC综上所述,当5=t 或337=t 时,以点P 、C 、D 、Q 为顶点的四边形是平行四边形.…………………………………………11分学生整理用图。

华东师大版2019-2020学年八年级数学下学期第18章 平行四边形单元测试卷(含答案)

华东师大版2019-2020学年八年级数学下学期第18章 平行四边形单元测试卷(含答案)

华东师大版八年级数学下册第18章平行四边形单元检测卷一、选择题(每小题4分,共28分)1.如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD 于点F,则∠1=()A.40°B.50°C.60°D.80°(第1题)(第4题)(第5题)2.平行四边形两邻角的平分线相交所成的角为()A.锐角B.直角C.钝角D.不确定3.在▱ABCD中,AD=3cm,AB=2cm,则▱ABCD的周长等于()A.10 cmB.6 cmC.5 cmD.4 cm4.如图,四边形ABCD是平行四边形,点E在边BC上.如果点F是边AD上的点,那么△CDF 与△ABE不一定全等的条件是()A.DF=BEB.AF=CEC.CF=AED.CF∥AE5.如图,在平行四边形ABCD中,下列各式不一定正确的是()A.∠1+∠2=180°B.∠2+∠3=180°C.∠3+∠4=180°D.∠2+∠4=180°6.如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA 的取值范围是()A.3cm<OA<5cm ;B.2cm<OA<8cmC.1cm<OA<4cmD.3cm<OA<8cm(第6题)(第7题) (第8题)7.如图所示,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD 于点F,连结AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD 是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是()A.4B.3C.2D.1二、填空题(每小题5分,共25分)8.如图,在▱ABCD中,对角线AC,BD相交于点O,若AC=14,BD=8,AB=10,则△OAB 的周长为.9.如图,在平行四边形ABCD中,AB=,AD=4,将平行四边形ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为.(第9题) (第10题)10.如图所示,平行四边形ABCD的周长是18cm,对角线AC,BD相交于点O,若△AOD与△AOB的周长差是5cm,则边AB的长是cm.11.如图,在平行四边形ABCD中,CE是∠DCB的平分线,F是AB的中点,AB=6,BC=4,则AE∶EF∶FB的值是.(第11题)(第12题)12.如图,已知直线a∥b,点A、点C分别在直线a,b上,且AB⊥b,CD⊥a,垂足分别为B,D,有以下五种说法:①点A到直线b的距离为线段AB的长;②点D到直线b的距离为线段CD的长;③a,b两直线之间距离为线段AB的长;④a,b两直线之间距离为线段CD的长;⑤AB=CD,其中正确的有(只填相应的序号).三、解答题(共47分)13.(10分)已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.求证:四边形ABCD为平行四边形.14.(12分)如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形.(2)求证:∠DHF=∠DEF.15.(12分)如图,在▱ABCD中,点O是对角线AC,BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=BC,求证:四边形OCFE是平行四边形.16.(13分)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图的四边形ABCD,并写出了如下不完整的已知和求证.已知,如图在四边形ABCD中,BC=AD,AB=.求证:四边形ABCD是四边形.(1)在方框中填空,以补全已知和求证.(2)按嘉淇的想法写出证明:(3)用文字叙述所证命题的逆命题为.参考答案一、选择题(每小题4分,共28分)1.如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD 于点F,则∠1=()A.40°B.50°C.60°D.80°【解析】选B.∵四边形ABCD是平行四边形,∴AD∥BC,∵∠B=80°,∴∠BAD=100°,又∵AE平分∠BAD交BC于点E,∴∠EAD=∠BAD=50°,∵CF∥AE,∴四边形AECF是平行四边形,∴∠1=∠EAD=50°.2.平行四边形两邻角的平分线相交所成的角为()A.锐角B.直角C.钝角D.不确定【解析】选B.▱ABCD的∠DAB的平分线和∠ABC的平分线交于点O,∴∠DAB+∠ABC=180°,∠DAO=∠BAO=∠DAB,∠ABO=∠CBO=∠ABC,∴∠BAO+∠ABO=90°,∴∠AOB=180°-90°=90°.3.在▱ABCD中,AD=3cm,AB=2cm,则▱ABCD的周长等于()A.10 cmB.6 cmC.5 cmD.4 cm【解析】选A.因为平行四边形的对边相等,所以AD=BC=3cm,AB=CD=2cm,所以周长为10 cm.4.如图,四边形ABCD是平行四边形,点E在边BC上.如果点F是边AD上的点,那么△CDF 与△ABE不一定全等的条件是()A.DF=BEB.AF=CEC.CF=AED.CF∥AE【解析】选C.由平行四边形的性质可得AB=CD,AD=BC,∠B=∠D等.A中,DF=BE,∠B=∠D,AB=CD,符合“边角边”定理,△CDF≌△ABE,选项A成立;B中,AF=CE,可得DF=BE,同选项A,选项B成立;C中,CF=AE,∠B=∠D,AB=CD,条件为两边及一边的对角,C 不一定成立;D中,CF∥AE,可得四边形AECF是平行四边形,得AF=CE,所以BE=DF,同选项A,该选项成立.综上所述,选C.5.如图,在平行四边形ABCD中,下列各式不一定正确的是()A.∠1+∠2=180°B.∠2+∠3=180°C.∠3+∠4=180°D.∠2+∠4=180°【解析】选D.由平行四边形的性质及图形可知:∠1和∠2是邻补角,故∠1+∠2=180°,A 正确;因为AD∥BC,所以∠2+∠3=180°,B正确;因为AB∥CD,所以∠3+∠4=180°,C 正确;D.根据平行四边形的对角相等,∠2=∠4,∠2+∠4=180°不一定正确,故选D.6.如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA 的取值范围是()A.3cm<OA<5cmB.2cm<OA<8cmC.1cm<OA<4cmD.3cm<OA<8cm【解析】选C.在△ABC中,BC-AB<AC<AB+BC,即2cm<AC<8cm,所以1cm<OA<4cm.7.如图所示,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连结AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD 是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是()A.4B.3C.2D.1【解析】选B.∵AE⊥BD于点E,CF⊥BD于点F,∴∠DFC=∠BEA=90°.∵DE=BF,∴DF=BE.又∵AB=CD,∴△DFC≌△BEA,∴CF=AE,①正确,∠CDF=∠ABE,∴AB∥C D.又∵AB=CD,∴四边形ABCD是平行四边形,③正确,∴OD=O B.又∵DF=BE,∴OE=OF,②正确,易知图中的全等三角形有:△DFC≌△BEA,△OFC≌△OEA,△AOF≌△COE,△AEF≌△CFE,△ACF≌△CAE,△AOB≌△COD,△AOD≌△COB,△ABD≌△CDB,△ACD≌△CAB,…,故④不正确.综上可知,正确的结论为①②③,共3个.二、填空题(每小题5分,共25分)8.如图,在▱ABCD中,对角线AC,BD相交于点O,若AC=14,BD=8,AB=10,则△OAB 的周长为.【解析】因为平行四边形的对角线互相平分,所以OA=AC=7,OB=BD=4,又因为AB=10,所以△OAB的周长=7+4+10=21.答案:219.如图,在平行四边形ABCD中,AB=,AD=4,将平行四边形ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为.【解析】点B恰好与点C重合,且四边形ABCD是平行四边形,根据翻折的性质,则AE⊥BC,BE=CE=2,在Rt△ABE中,由勾股定理得AE===3.答案:310.如图所示,平行四边形ABCD的周长是18cm,对角线AC,BD相交于点O,若△AOD 与△AOB的周长差是5cm,则边AB的长是cm.【解析】∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵△AOD的周长=OA+OD+AD,△AOB的周长=OA+OB+AB,又∵△AOD与△AOB的周长差是5cm,∴AD=AB+5,设AB=x,AD=5+x,则2(x+5+x)=18,解得x=2,即AB=2cm.答案:211.如图,在平行四边形ABCD中,CE是∠DCB的平分线,F是AB的中点,AB=6,BC=4,则AE∶EF∶FB的值是.【解析】∵四边形ABCD是平行四边形,∴∠DCE=∠BE C.∵CE是∠DCB的平分线,∴∠DCE=∠BCE,∴∠CEB=∠BCE,∴BE=BC=4.∵F是AB的中点,AB=6,∴FB=3.∴EF=BE-FB=1,∴AE=AB-BE=2,∴AE∶EF∶FB=2∶1∶3.答案:2∶1∶312.如图,已知直线a∥b,点A、点C分别在直线a,b上,且AB⊥b,CD⊥a,垂足分别为B,D,有以下五种说法:①点A到直线b的距离为线段AB的长;②点D到直线b的距离为线段CD的长;③a,b两直线之间距离为线段AB的长;④a,b两直线之间距离为线段CD的长;⑤AB=CD,其中正确的有(只填相应的序号). 【解析】本题主要考查点到直线的距离和平行线间的距离,①②③④⑤都正确.答案:①②③④⑤三、解答题(共47分)13.(10分)已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.求证:四边形ABCD为平行四边形.【证明】∵AB∥CD,∴∠BAE=∠DCF,∵BE∥DF,∴∠BEF=∠DFE,∴∠AEB=∠CF D.在△AEB和△CFD中,∴△AEB≌△CFD,∴AB=C D.又∵AB∥CD,∴四边形ABCD是平行四边形.14.(12分)如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形.(2)求证:∠DHF=∠DEF.【证明】(1)∵点D,E分别是AB,BC的中点,∴DE∥AC;同理:EF∥AB,∴四边形ADEF是平行四边形.(2)∵四边形ADEF是平行四边形,∴∠DAF=∠DEF.∵在Rt△AHB中,D是AB中点,∴DH=AB=AD,∴∠DAH=∠DHA,同理:∠F AH=∠FHA,∴∠DAF=∠DHF,∴∠DHF=∠DEF.15.(12分)如图,在▱ABCD中,点O是对角线AC,BD的交点,点E是边CD的中点,点F 在BC的延长线上,且CF=BC,求证:四边形OCFE是平行四边形.【证明】∵四边形ABCD是平行四边形,∴点O是BD的中点.又∵点E是边CD的中点,∴OE是△BCD的中位线,∴OE∥BC,且OE=B C.又∵CF=BC,∴OE=CF.又∵点F在BC的延长线上,∴OE∥CF,∴四边形OCFE是平行四边形.16.(13分)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图的四边形ABCD,并写出了如下不完整的已知和求证.已知,如图在四边形ABCD中,BC=AD,AB=.求证:四边形ABCD是四边形.(1)在方框中填空,以补全已知和求证.(2)按嘉淇的想法写出证明:(3)用文字叙述所证命题的逆命题为. 【解析】(1)CD平行(2)证明:连结B D.在△ABD和△CDB中,∵AB=CD,AD=CB,BD=DB,∴△ABD≌△CDB,∴∠1=∠2,∠3=∠4,∴AB∥CD,AD∥CB,∴四边形ABCD是平行四边形.(3)平行四边形的对边相等.。

新课标华师版数学八年级(下)单元测评卷参考答案

新课标华师版数学八年级(下)单元测评卷参考答案

新课标华师版数学八年级(下)单元测评卷参考答案(2011年春季使用)卷 (一)1.A ;2.C ;3.D ;4.B ;5.D ;6.B ;7.A ;8.1; 9.2-=x ; 10.229yx ; 11.y x 3-; 12.52; 13.xy x +2; 14.224y x ; 15.12+-x x ; 16.x x S +2; 17.3-; 18.(1)2221y x x xy =,2221yx y y x =; (2)22)1(11++=+x x x x x ,22)1(121+=++x x x x x ; 19.(1)2;(2)2;(3)23+-m m ;(4)y x -;(5)32+-m ;(6)121--a a ; 20.7434=+x ; 21.nm m n m ++22.卷 (二)1.B ;2.D ;3.C ;4.A ;5.B ;6.C ;7.C ;8.91; 9.2102.2-⨯; 10.n ; 11.1; 12.4; 13.210xy ; 14.53ba ; 15.24; 16.11; 17.720a b -,n n n ab 13)1(-⋅-; 18.2; 19.(1)x ;(2)a a 2+; 20.(1)37=x ;(2)无解;21.121-=+-x ; 22.818x -; 23.(1)6天;(2)3.6天. 卷 (三)1.A ;2.D ;3.B ;4.C ;5.C ;6.B ;7.D ;8.2≠x ; 9.(5,3); 10.π2; 11.10510+=x y ; 12.(21,0); 13.-1; 14.331-=x y ; 15.(0,-2); 16.答案不唯一,如x y 2=等; 17.增大,3; 18.(1)甲,2;(2)乙,2;(3)18,90; 19.(1)(1,0),(0,-3);(2)画图略,面积为23; 20.(1)B (0,3);(2)32+-=x y ;21.(1)405+-=x y ;(2)8小时;22.(1)22+=x y ;(2)10;(3)123.(1)当100≤≤x 时,x y 3.2=;当10>x 时,73-=x y ;(2)13吨;24.(1)点A 表示这条线路的运营成本为1万元.点B 表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)图(3);图(2).(3)将图(1)中的射线AB 绕A 点逆时针适当旋转且向上平移,图略.卷 (四)1.C ;2.D ;3.A ;4.B ;5.D ;6.C ;7.A ;8.增大; 9.(-3,2); 10.1; 11.3; 12.0; 13.)y =-x +5; 14.-5; 15.1>x ;16.(2,-1); 17.答案不唯一,如12+-=x y 等;18.(1)50000200+=x y ;(2)100套.19.(1)x y -=4,40<<x ;(2)图象略.20.(1)94095+=x y ;(2)30℃. 21.(1)2=m ;(2)1+-=x y .22.(1)xx y 42+=;(2)9. 23.(1)30cm 和25cm ,2h 和2.5h ;(2)甲:y =-15x +30,乙:y =-10x +25;(3)x =1.24.(1)y =34x , 0<x ≤8,y =48x;(2)30;(3)此次消毒有效. 卷 (五)1.A ;2.D ;3.B ;4.B ;5.C ;6.D ;7.A ;8.假; 9.△ABD ≌△ACD ; 10.乙、丙; 11.同位角相等,两直线平行; 12.如果两个角是等角的余角,那么这两个角相等; 13.70; 14.),(a b -; 15.答案不唯一,如∠A =∠B 等;16.5; 17.△COD ,4;18.(1)如果一个四边形是菱形,那么它的对角线互相平分;(2)如果等式两边加上同一个数或同一个整式,那么所得的结果仍是等式.19.(1)假命题,反例略;(2)假命题,反例略;20.用SAS 证明;21.用HL 证明;22.用ASA 或AAS 证明23.(1)答案不唯一,如∠A =∠D 或BC =EF 或∠ACB =∠F 等;(2)证明略;24.(1)用SSS 证明;(2)用AAS 证明;25.(1)如果①③,那么②;如果②③,那么①;(2)略;卷 (六)1.A ;2.D ;3.B ;4.A ;5.B ;6.C ;7.C ;8.12; 9.5或7; 10.同位角相等,两直线平行;真; 11.40°或100°; 12.135+;13.AB 平分∠CAD ; 14.5; 15.10; 16.2; 17.n 2;18.略; 19.(1)如果一个整数能被5整除,那么这个整数的个位数字是0;假命题;(2)每个内角都等于60°的三角形是等边三角形;真命题;20.13cm ; 21.略; 22.(1)证明△AB D ≌△ACE 或利用等腰三角形的三线合一证明;23.(1)①③或②③;(2)略;24.(1)a =n 2-1,b =2n ,c =n 2+1;(2)是直角三角形.卷 (七)1.B ;2.D ;3.C ;4.D ;5.A ;6.B ;7.A ;8.假; 9.内错角相等,两直线平行; 10.直角; 11.100; 12.DCF ; 13.2;14.如果两个三角形全等,那么它们的对应边相等; 15.17; 16.答案不唯一,如BC =EF 或∠A =∠D 或∠C =∠F ; 17.120°;18.用SSS 证明; 19.用HL 证明; 20.略;21.证△BDE ≌△CDF 得DE =DF ;22.(1)答案不唯一,如∠A =∠D 或∠ACB =∠DBC 或AB =CD ;(2)略;23.有三种情况:(1)已知AE =DE ,∠1=∠2,求证:∠3=∠4.(2)已知AE =DE ,∠3=∠4,求证:∠1=∠2.(3)已知∠1=∠2,∠3=∠4,求证:AE =DE .证明略.24.(1)△ABE ≌△ACD ,△BCD ≌△CBE ,△BDF ≌△CEF ;(2)略;25.(1)AP =CQ ,证△ABP ≌△CBQ 即可;(2)由勾股定理的逆定理,可证PQ 2+QC 2=PC 2,即△PQC 是直角三角形.期 中 卷(A )1.A ; 2.C ; 3.D ; 4.B ; 5.B ; 6.A ; 7.C ; 8.91; 9.cb ; 10.(2,-3); 11.28; 12.如果两个三角形全等,那么它们的对应边相等; 13.32+=x y ; 14.答案不唯一,如BF =DE 等; 15.330340-=+x x ; 16.答案不唯一,如x y 2=等; 17.3,5;18.1; 19.)1(2-a a ; 20.9=x ; 21.由“等腰三角形的三线合一”及“角平分线的性质”得到或证△BDE ≌△CDF 得到; 22.9;23.已知AB =DE ,AC =DF 或∠ACB=∠F,∠A=∠D 或∠ACB=∠F,AC =DF ,证明略;24.(1)5,5==k m ;(2)15=∆AO C S ;25.(1)2,10;(2)①y =10x ;②y =5x+20;(3)x =4h .期 中 卷 (B )1.B ;2.A ;3.C ;4.D ;5.C ;6.D ;7.B ;8.5102.3-⨯; 9.假; 10.2±≠x ; 11.1; 12.2=x ; 13.AC =AE 或∠C =∠E或∠B =∠D ; 14.四; 15.①②③; 16.答案不唯一,如(-1,2)等; 17.23-; 18.-26; 19.1+x ; 20.用SAS 证明; 21.(1)s=2t ;(2)在0< t < 1时,甲的行驶速度小于乙的行驶速度;在t > 1时,甲的行驶速度大于乙的行驶速度.22.(1)略;(2)12cm ;23.(1)用ASA 证明;(2)由“等腰三角形的三线合一”证明;24.(1)2,6==n m ;(2)82+-=x y ;(3)84+-=x y ;25.(1)5.0=a ;(2) ①当购进螺丝x 个时,则购进螺母(2003+x )个3000)2003(≤++x x700≤x②设最大利润为y 元,则)2.06.0)(2002()5.01(21)9.02(21-++-+-=x x x y808.025.055.0+++=x x x806.1+=x ∵06.1>=k ,∴y 随x 的增大而增大,当700=x 时,1200=最大y (元)230020070032003=+⨯=+x答:购进螺丝700个、螺母2300个,才能获得最大利润,最大利润为1200元.卷 (八)1.D ;2.A ;3.C ;4.C ;5.B ;6.D ;7.B ;8.平行四边; 9.矩; 10.60; 11.相等且互相平分; 12.10; 13.矩; 14.答案不唯一,如AB ∥DC 或AD =BC 等; 15.12; 16.矩; 17.3;18.证∠B =90°; 19.证△AB C ≌△CDA ; 20.证AD 与BC 平行且相等;21.证∠A =90°; 22.三个条件都可以,证明略; 23.23cm ;24.先证四边形DEBF 是平行四边形;25.(1)根据SSS 证明;(2)添加AB ∥DC 或AD =BC ,证明略.卷 (九)1.D ;2.C ;3.B ;4.A ;5.D ;6.A ;7.B ;8.60; 9.24; 10.2; 11.336或1086; 12.68; 13.7.5; 14.正方;15.答案不唯一,如BE=DF 等; 16.三; 17.8;18.证AC=BD ; 19.证OE=OF ; 20.先证四边形CFDE 为矩形,再证DE=DF ;21.证AC=BD ; 22.略; 23.(1)是,利用勾股定理的逆定理证明;(2)13.2;24.(1)证BD ⊥AC ;(2)证∠ADC=90°;25.(1)利用SAS 证明;(2)矩形.先证四边形AGBD 是平行四边形,再证∠ADB=90°.。

华东师大版八年级数学下册单元测试题及答案全套

华东师大版八年级数学下册单元测试题及答案全套

华师大版八年级数学下册单元测试题及答案全套第16章检测题时间:120分钟 满分:120分一、选择题(每小题3分,共30分) 1.2 0180的值是( C )A .2 018B .0C .1D .-1 2.下列运算正确的是( C )A .(3xy 2)2=6xy 4B .2x -2=14x2C .(-x )7÷(-x )2=-x 5D .(6xy 2)2÷3xy =23.化简(a +3a -4a -3)(1-1a -2)的结果等于( B )A .a -2B .a +2 C.a -2a -3 D.a -3a -24.下列结论错误的是( D )A .(2×10-6)2÷(10-4)3=4B .当a =1,p =2;a =2,p =2;a =3,p =4时,等式a -p =1ap 都能成立C .方程y -y -12=2-y +25是整式方程D .(-5)÷32×23=(-5)÷1=-55.将(16)-1,(-2)0,(-3)2这三个数按从小到大的顺序排列,正确的结果是( A )A .(-2)0<(16)-1<(-3)2B .(16)-1<(-2)0<(-3)2C .(-3)2<(-2)0<(16)-1D .(-2)0<(-3)2<(16)-16.下列等式中,正确的有( B )①2m -x +1=-2m x -1;②x 2-y 2x -y =x +y ;③|b -a |a -b =-1;④x +2x +3=(x +2)(x -1)(x +3)(x -1);⑤15a -15b =15(a -b ).A .1个B .2个C .3个D .4个7.下列算式:①[2+(-2)]0=1;②10-4·104=1;③(a +b)-1=a -1+b -1;④(b a )-2=(a b)2,其中运算正确的有( B )A .1个B .2个C .3个D .4个8.如果分式A x +2与B2x -3的和是5x -112x 2+x -6,那么A 、B 的值分别是( B )A .A =5,B =-11 B .A =3,B =-1C .A =-1,B =3D .A =-5,B =119.若x =12+2-p ,y =2+2p ,则x 等于( C )A.y +1y -1B.y +2y -1C.y 2y -4D.2y -4y10.某中学图书馆添置图书,用240元购进一种科普书,同时用200元购进一种文学书,由于科普书的单价比文学书的单价高出一半,因此学校所购买的文学书比科普书多4本,求文学书的单价.设这种文学书的单价为x 元,则根据题意,所列方程正确的是( B )A.1.5×200x -240x =4B.200x -2401.5x=4C.2401.5x -200x =4 D.1.5×200x +4=240x 二、填空题(每小题3分,共24分)11.当x__≠3__时,分式4-x x -3有意义;当x =__9__时,分式|x |-9x +9的值等于零.12.(攀枝花中考)计算:9+|4|+(-1)0-(12)-1=__6__.13.分式x 3x 、3a +13a +b 、m +n m 2-n 2、2-2x2x中,最简分式的个数是__1__个.14.(襄阳中考)分式方程1x -5-10x 2-10x +25=0的解是__x =15__.15.(常德中考)埃是表示极小长度的单位名称,是为纪念瑞典物理学家埃基特朗而定的.1埃等于一亿分之一厘米,用科学记数法表示1埃为__1×10-8__厘米.16.若方程k x -2-3xx -2=0有增根,则k 的值为__6__.17.一列数a 1,a 2,a 3,…,其中a 1=12,a n =11-a n -1(n 为不小于2的整数),则a 100=__12__.18.若x +1x =52,则x x 2+x +1=__27__.三、解答题(共66分) 19.(8分)计算:(1)4-(15+2)0+(-2)3÷3-1;解:原式=2-1+(-8)÷13=2-1-24=-23. (2) 3-1+(π-3)0-|-13|.解:原式=13+1-13=1.20.(10分)(1)先化简,再求值:x 2-2x +1x 2-1÷(1-3x +1),其中x =0.解:原式=(x -1)2(x +1)(x -1)÷(x +1x +1-3x +1)=(x -1)2(x +1)(x -1)·x +1x -2 =x -1x -2, 当x =0时,原式=12.(2)已知A =x 2+2x +1x 2-1-xx -1.①化简A ;②当x 满足不等式组⎩⎨⎧x -1≥0,x -3<0,且x 为整数时,求A 的值.解:①A =(x +1)2(x +1)(x -1)-x x -1=x +1x -1-x x -1=x +1-x x -1=1x -1;②解不等式组,得1≤x <3.∵x 为整数,∴x =1或2.∵A =1x -1,∴x ≠1.当x =2时,A =1x -1=12-1=1.21.(10分)解下列分式方程:(1)x 2x -3+53-2x=4; 解:去分母,得x -5=4(2x -3), 去括号,得x -5=8x -12, 移项,得-7x =-7, 解得x =1.检验:x =1时,2x -3≠0. ∴原分式方程的解为x =1.(2)x -3x -2+1=32-x.解:方程两边同乘(x -2),得 x -3+(x -2)=-3, 解得x =1.检验:x =1时,x -2≠0. ∴x =1是原分式方程的解.22.(8分)“母亲节”前夕,某商店根据市场调查,用3 000元购进第一批盒装花,上市后很快售完,接着又用5 000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元,求第一批盒装花每盒的进价是多少元.解:设第一批盒装花的进价是每盒x 元.由题意,得2×3 000x =5 000x -5,解得x =30.经检验,x =30是原分式方程的解. 答:第一批盒装花的进价是每盒30元.23.(8分)某学校准备组织部分学生到少年宫参加活动,陈老师从少年宫带回来两条信息:①按原来报名参加的人数,共需费用320元,如果参加的人数能够增加到原来人数的2倍,就可以享受优惠,此时只需费用480元;②如果能享受优惠,那么参加活动的每位同学平均分摊的费用比原来少4元.根据以上信息,原来报名参加的学生有多少人?解:设原来报名参加的学生有x 人.依题意,得320x -4802x=4.解得x =20.经检验,x =20是原分式方程的解,且符合题意. 答:原来报名参加的学生有20人.24.(10分)2017年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷与乙种货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷;(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.解:(1)设甲种货车每辆车可装x 件帐篷,则乙种货车每辆车可装(x -20)件帐篷,由题意,得 1 000x =800x -20, 解得x =100,经检验,x =100是原分式方程的解, ∴x -20=80.答:甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷. (2)设甲种货车有m 辆,乙种货车有n 辆,由题意,得⎩⎨⎧m +n =16,100m +80(n -1)+50=1 490,解得⎩⎨⎧m =12,n =4.答:甲种货车有12辆,乙种货车有4辆.25.(12分)(哈尔滨中考)华昌中学开学初在金利源商场购进A 、B 两种品牌的足球,购买A 品牌足球花费了2 500元,购买B 品牌足球花费了2 000元,且购买A 品牌足球的数量是购买B 品牌足球数量的2倍,已知购买一个B 品牌足球比购买一个A 品牌的足球多花30元.(1)求购买一个A 品牌、一个B 品牌的足球各需多少元;(2)华昌中学为响应习总书记“足球进校园”的号召,决定再次购进A 、B 两种品牌足球共50个.恰逢金利源商场对两种品牌足球的售价进行调整,A 品牌足球的售价比第一次购买时提高了8%,B 品牌足球按第一次购买时售价的9折出售.如果这所中学此次购买A 、B 两种品牌足球的总费用不超过3 260元,那么华昌中学此次最多可购买多少个B 品牌足球?解:(1)设购买一个A 品牌足球需x 元,则购买一个B 品牌足球需(x +30)元,根据题意,得2 500x =2 000x +30×2,解得x =50.经检验,x =50是原分式方程的解.50+30=80(元).答:购买一个A 品牌足球需50元,购买一个B 品牌足球需80元.(2)设本次购买a 个B 品牌足球,则购买A 品牌足球(50-a )个,根据题意,得50×(1+8%)(50-a )+80×0.9a ≤3 260,解得a ≤3119.∵a 取正整数,∴a 最大值为31.答:此次华昌中学最多可购买31个B 品牌足球.第17章检测题时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.下列各式中,表示y 是x 的函数的有( B )①2y +x =3;②y =x +2z ;③y =2;④y =kx +1(k 为常量);⑤y 2=2x . A .0个 B .1个 C .2个 D .3个2.下列函数中,当x <0时,y 随x 的增大而减小的是( C )A .y =-2xB .y =x -2C .y =5xD .y =(a -3)x +23.已知正比例函数y =(1-m)x 的图象上有两点A(x 1,y 1),B(x 2,y 2),且当x 1>x 2时,y 1>y 2,则m 的取值范围是( C )A .m <0B .m >0C .m <1D .m >14.一次函数y =-x +5的图象与反比例函数y =6x的图象的交点情况是( C )A .只有一个交点,在第一象限B .只有一个交点,在第二象限C .有两个交点,都在第一象限D .没有交点5.将点P(4,3)向下平移1个单位后,落在函数y =kx的图象上,则k 的值为( D )A .12B .10C .9D .86.关于函数y =-x -2的图象,有如下说法:①图象过点(0,-2);②图象与x 轴的交点是(-2,0);③从图象知y 随x 增大而增大;④图象不经过第一象限;⑤图象是与y =-x 平行的直线.其中正确的说法有( C )A .2种B .3种C .4种D .5种7.下列图形中,阴影部分的面积相等的是( C )A .①②B .②③C .③④D .①④8.在同一直角坐标系中,函数y =-kx +k 与y =kx(k ≠0)的图象大致是( C )9.如图,反比例函数y =-4x 的图象与直线y =-13x 的交点为A 、B ,过点A 作y 轴的平行线与过点B 作的x 轴的平行线相交于点C ,则△ABC 的面积为( A )A .8B .6C .4D .210.如图,在四边形ABCD 中,动点P 从点A 开始沿A →B →C →D 的路径匀速前进到D 为止.在这个过程中,△APD 的面积S 随时间t 的变化关系用图象表示正确的是( B )二、 填空题(每小题3分,共24分)11.点(-3,2),(a ,a +1)在函数y =kx -1的图象上,则k =__-1__,a =__-1__.12.如图,函数y =x 与y =4x的图象交于A 、B 两点,过点A 作AC 垂直于y 轴,垂足为C ,则△ABC的面积为__4__.13.一次函数y =kx +b 的自变量的取值范围是-3≤x ≤6,相应函数值的取值范围是-5≤y ≤-2,则这个函数的表达式是__y =-13x -3或y =13x -4__.14.定义[p ,q]为一次函数y =px +q 的特征数,若特征数是[2,k -2]的一次函数为正比例函数,则k 的值是__2__.15.函数y =xx -3-(x -2)0中,自变量x 的取值范围是__x ≥0_且x ≠2且x ≠3__.16.已知点P(a ,b)在一次函数y =4x +3的图象上,则代数式4a -b -2的值等于__-5__.17.直线y =kx +b 经过点A(-6,0)和y 轴交于点B ,如果△ABO(O 为坐标原点)的面积为6,则b 的值为__±2__.18.已知平面上四点A(0,0),B(10,0),C(10,6),D(0,6),直线y =mx -3m +2将四边形ABCD分成面积相等的两部分,则m 的值为__12__.三、 解答题(共66分)19.(10分)已知一次函数的图象经过点A(2,1),B(-1,-3). (1)设此一次函数的表达式;(2)求此一次函数的图象与x 轴、y 轴的交点坐标;(3)求此一次函数的图象与两坐标轴所围成的三角形面积.解:(1)设此一次函数的表达式为y =kx +b ,由A (2,1),B (-1,-3),得⎩⎨⎧2k +b =1,-k +b =-3,解得⎩⎨⎧k =43,b =-53,∴y =43x -53.(2)在y =43x -53中,令y =0,得x =54;令x =0,得y =-53,∴此一次函数图象与x 轴的交点坐标为(54,0),与y 轴的交点坐标为(0,-53).(3)此一次函数的图象与两坐标轴所围成的三角表面积为54×|-53|×12=2524.20.(10分)如图,在平面直角坐标系xOy 中,Rt △OCD 的一边OC 在x 轴上,∠C =90°,点D 在第一象限,OC =3,DC =4,反比例函数的图象经过OD 的中点A.(1)求该反比例函数的表达式;(2)若该反比例函数的图象与Rt △OCD 的另一边DC 交于点B ,求过A 、B 两点的直线的表达式.解:(1)由题意,易得点A 的坐标是(1.5,2),则该反比例函数的表达式为y =3x.(2)把x =3代入y =3x,得y =1,则点B 的坐标是(3,1).设过A 、B 两点的直线的表达式为y =kx +b ,则⎩⎨⎧1=3k +b ,2=1.5k +b.解得⎩⎪⎨⎪⎧k =-23,b =3.则过A 、B 两点的直线的表达式为y =-23x +3.21.(10分)如图,直线y =12x 与双曲线y =kx(k >0)交于A 、B 两点,且点A 的横坐标为4.(1)求k 的值;(2)若双曲线y =kx(k >0)上一点C 的纵坐标为8,求△AOC 的面积.解:(1)∵点A 的横坐标为4,点A 在直线y =12x 上,∴点A 的纵坐标为y =12×4=2,即A (4,2).又∵点A (4,2)在双曲线y =kx上,∴k =2×4=8.(2)∵点C 在双曲线y =8x上,且点C 纵坐标为8,∴C (1,8).如图,过点C 作CM ⊥x 轴于M ,过点A 作AN ⊥x 轴于N.∵S △COM =S △AON =82=4,∴S △AOC =S 四边形CMNA =12×(|y A |+|y C |)×(|x A |-|x c |)=15.22.(12分)向阳花卉基地出售两种花卉——百合和玫瑰,其单价为玫瑰4元/株、百合5元/株,如果同一客户所购的玫瑰数量大于1 200株,那么每株玫瑰还可降价1元.现某鲜花店向向阳花卉基地采购玫瑰1 000~1 500株、百合若干株,恰好花去了9 000元,然后再以玫瑰5元/株、百合6.5元/株的价格卖出.问:此鲜花店应如何采购这两种鲜花才能使获得的毛利润最大?(注:1 000~1 500株,表示大于或等于1 000株,且小于或等于1 500株,毛利润=鲜花店卖出百合和玫瑰所获的总金额—购进百合和玫瑰所需的总金额)解:设采购玫瑰x 株、百合y 株,毛利润为W 元.①当1 000≤x ≤1 200时,4x +5y =9 000,即y =9 000-4x 5,则W =x +1.5y =2 700-x5,当x 取1 000时,W 有最大值2 500,此时y =1 000.②当1 200<x ≤1 500时,3x +5y =9 000,即y =9 000-3x 5,则W =2x +1.5y =2 700+11x10,∴当x 取1 500时,W 有最大值4 350,此时y =900.综上所述,当采购玫瑰1 500株、百合900株时,毛利润最大,为4 350元.23.(12分)如图①,在矩形ABCD 中,AB =10 cm ,BC =8 cm .点P 从点A 出发,沿A →B →C →D 的路线运动,到点D 停止;点Q 从点D 出发,沿D →C →B →A 的路线运动,到点A 停止.若点P 、点Q 同时出发,点P 的速度为每秒1 cm ,点Q 的速度为每秒2 cm ,a 秒时,点P 、点Q 同时改变速度,点P 的速度变为每秒b cm ,点Q 的速度变为每秒d cm .图②是点P 出发x 秒后△APD 的面积S 1(cm 2)与时间x(秒)的函数关系图象;图③是点Q 出发x 秒后△AQD 的面积S 2(cm 2)与时间x(秒)的函数关系图象.(1)参照图②,求a 、 b 及图②中c 的值; (2)求d 的值;(3)设点P 离开点A 的路程为y 1(cm ),点Q 到点A 还需要走的路程为y 2(cm ),请分别写出改变速度后,y 1、y 2与出发后的运动时间x(秒)的函数关系式,并求出点P 、点Q 相遇时x 的值;(4)当点Q 出发__19__秒时,点Q 的运动路程为25 cm.解:(1)观察图②,得当x =a 时,S △APD =12PA ·AD =12a ×8=24,∴a =6,b =10-1×68-6=2,c =8+8+102=17.(2)依题意,得(22-6)d =28-12,解得d =1.(3)y 1=2x -6,y 2=22-x.当点P 、点Q 相遇时,2x -6=22-x ,得x =283.24.(12分)已知一次函数y =■的图象过点A(2,4),B(0,3),题目中的矩形部分因墨水污染而无法辨别.(1)根据现有的信息,请求出题中的一次函数的表达式; (2)根据表达式画出这个函数的图象;(3)过点B 能不能画出一直线BC 将△ABO(O 为坐标原点)分成面积比为1∶2的两部分?如能,可以画出几条?并求出其中一条直线所对应的函数表达式,其他的直接写出函数关系式;若不能,说明理由.解:(1)设一次函数的表达式是y =kx +b ,把A (2,4)、B (0,3)代入y =kx +b ,得⎩⎨⎧3=b ,4=2k +b ,解得k =0.5,b =3,∴一次函数的表达式是y =0.5x +3. (2)如图.(3)能,如图,直线BC 和BC ′都符合题意.∵S △BOC ∶S △ABC =S △ABC ′∶S △BOC ′=1∶2,∴OC =CC ′=AC ′,则点C 的纵坐标是13×4=43,点C ′的纵坐标是23×4=83.设直线OA 的表达式是y =k 1x ,把点A (2,4)代入y =k 1x ,得k 1=2,∴y =2x.把点C 、C ′的纵坐标代入y =2x ,得点C 的横坐标是23,点C ′的横坐标是43,∴C (23,43),C ′(43,83).设直线BC 的表达式是y =k 2x +3,把点C 的坐标代入y =k 2x +3,得k 2=-2.5, ∴直线BC 的表达式是y =-2.5x +3.同理求出直线BC ′的表达式是y =-0.25x +3.即过点B 能画出直线BC 将△ABO (O 为坐标原点)分成面积比为1∶2的两部分,且可以画出2条,直线BC 所对应的函数表达式是y =-2.5x +3或y =-0.25x +3.第18章检测题时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.下面关于平行四边形的性质的结论中,错误的是( D ) A .对边平行 B .对角相等C .对边相等D .对角线互相垂直2.如图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AD 于点F ,则∠1=( B )A .40°B .50°C .60°D .80°,第3题图) ,第5题图)3.如图,在平行四边形ABCD 中,CE ⊥AB ,E 为垂足.如果∠A =125°,则∠BCE 等于( B ) A .55° B .35° C .25° D .30°4.如图,在平行四边形ABCD 中,按下列条件得到的四边形EFGH 不一定是平行四边形的是( A )5.如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,E 、F 是对角线AC 上的两点,给出下列四个条件:①AE =CF ;②DE =BF ;③∠ADE =∠CBF ;④∠ABE =∠CDF.其中不能判定四边形DEBF 是平行四边形的有( B )A .0个B .1个C .2个D .3个6.平行四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,则图中共有平行四边形的个数是( C )A .2个B .3个C .4个D .5个,第6题图) ,第7题图),第9题图)7.如图,在▱ABCD 中,E 、F 分别在BC 、AD 上,若想使四边形AFCE 为平行四边形,须添加一个条件,这个条件可以是( C )①AF =CF ;②AE =CF ;③∠BAE =∠FCD ;④∠BEA =∠FCE . A .①或② B .②或③或④ C .③或④ D .①或③或④8.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB =CD ,AD =BC ;③AO =CO ,BO =DO ;④AB ∥CD ,AD =BC.其中一定能判定这个四边形是平行四边形的条件有( C )A .1组B .2组C .3组D .4组9.如图,在四边形ABCD 中,对角线AC 、BD 相交于点E ,∠CBD =90°,BC =8,AE =AC =10,若四边形ABCD 的面积为96,则CD 的长为( D )A .16B .12C .213D .41310.如图,在等边三角形ABC 中,AB =6 cm ,射线AG ∥BC ,点E 从点A 出发沿射线AG 以1 cm /s 的速度运动,点F 从点B 出发沿射线BC 以2 cm /s 的速度运动,如果点E 、F 同时出发,当四边形AEFC 是平行四边形时,运动时间t 的值为( B )A .2 sB .6 sC .8 sD .2 s 或6 s二、 填空题(每小题3分,共24分)11.在平行四边形ABCD 中,若∠A =∠B +∠D ,则∠A =__120°__.12.在平行四边形ABCD 中,∠A =50°,AB =a ,BC =b.则∠B =__130°__,∠C =__50°__,平行四边形ABCD 的周长=__2(a +b )__.13.在▱ABCD 中,一角的平分线把一条边分成3 cm 和4 cm 两部分,则▱ABCD 的周长为__20_cm 或22_cm __.14.在平行四边形ABCD 中,BC =35AB ,它的周长为32 cm ,则AB =__10_cm __.15.如图,在▱ABCD 中,点E 在边AD 上,以BE 为折痕将△ABE 向上翻折,点A 正好落在CD 上的点F ,若△FDE 的周长为8,△FCB 的周长为22,则FC 的长为__7__.,第15题图) ,第16题图) ,第17题图),第18题图)16.如图,在四边形ABCD 中,AD ∥BC ,∠B =70°,∠C =40°,DE ∥AB 交BC 于点E ,若AD =5 cm ,BC =12 cm ,则CD 的长是__7__cm.17.如图,分别以△ABC 的两条边为边作平行四边形,所有的平行四边形有__3__个;平行四边形第四个顶点的坐标是__(0,-4)、(-6,4)、(6,4)__.18.如图,△ABC中,如果AB=30,BC=24,AC=27,DN∥GM∥AB,EG∥DF∥AC,则图中阴影部分的三个三角形周长之和为__81__.三、解答题(共66分)19.(6分)如图,BD是▱ABCD的一条对角线.AE⊥BD于点E,CF⊥BD于点F.求证:∠DAE=∠BCF.解:∵在▱ABCD中,AD=BC,AD∥BC,∴∠ADB=∠CBD.∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,∴△ADE≌△CBF.∴∠DAE=∠BCF.20.(6分)如图,在△ABC中,AD平分∠BAC交BC于点D,点E、F分别在边AB、AC上,且BE =AF,FG∥AB交线段AD于点G,连结BG、EF.求证:四边形BGFE是平行四边形.证明:∵FG∥AB,∴∠BAD=∠AGF.∵AD平分∠BAC,∴∠BAD=∠GAF,∴∠AGF=∠GAF,∴AF=GF.∵BE=AF,∴FG=BE.又∵FG∥BE,∴四边形BGFE是平行四边形.21.(8分)如图,点O是▱ABCD的对角线AC与BD的交点,四边形OCDE是平行四边形.求证:OE与AD互相平分.证明:连结AE.∵四边形OCDE是平行四边形,∴DE∥OC,DE=OC.∵O是▱ABCD的对角线AC与BD的交点,∴AO=OC,∴DE=OA.∴四边形ODEA是平行四边形,∴OE与AD互相平分.22.(8分)如图,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD、等边△ACE、等边△BCF.证明四边形DAEF是平行四边形.证明:∵△ABD和△BCF都是等边三角形,∴∠DBF+∠FBA=∠ABC+∠ABF=60°,BD=BA,BF=BC,∴∠DBF=∠ABC.∴△ABC≌△DBF,∴AC=DF.又∵AC=AE,∴DF=AE.同理可证得△ABC≌△EFC,∴AB=EF.又∵AB=AD,∴EF=AD,∴四边形DAEF是平行四边形.23.(12分)如图,在平行四边形ABCD中,∠C=60°,M、N分别是AD、BC的中点,BC=2CD.(1)求证:四边形MNCD是平行四边形;(2)求证:BD=3MN.证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵M、N分别是AD、BC的中点,∴MD=NC,MD∥NC.∴四边形MNCD是平行四边形.(2)如图,连结DN.∵N是BC的中点,BC=2CD,∴CD=NC.又∵∠C=60°,∴△DCN是等边三角形.∴ND=NC,∠DNC=∠NDC=60°,∴ND=NB=CN,∴∠DBC=∠BDN=30°,∴∠BDC=∠BDN+∠NDC=90°,∴BD=BC2-CD2=(2DC)2-CD2=3CD.∵四边形MNCD是平行四边形,∴MN=CD,∴BD=3MN.24.(12分)已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC.(1)证明:四边形ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.解:(1)证明:∵BD垂直平分AC,∴AB=BC,AD=DC,∴∠BAC=∠BCA,∠DAC=∠DCA,∴∠BAD=∠BCD.∵∠BCD=∠ADF,∴∠BAD=∠ADF,∴AB∥FD.∵BD ⊥AC ,AF ⊥AC ,∴AF ∥BD ,∴四边形ABDF 是平行四边形.(2)∵四边形ABDF 是平行四边形,∴AB =DF ,AF =BD.∵AF =DF =5,∴AB =BD =5.设BE =x ,则DE =5-x ,∴AB 2-BE 2=AD 2-DE 2,即52-x 2=62-(5-x )2,解得x =75,∴AE =AB 2-BE 2=245,∴AC =2AE =485.25.(14分)分别以▱ABCD(∠CDA ≠90°)的三边AB 、CD 、DA 为斜边作等腰直角三角形△ABE 、△CDG 、△ADF.(1)如图①,当三个等腰直角三角形都在该平行四边形外部时,连结GF 、EF.请判断GF 与EF 的关系;(2)如图②,当三个等腰直角三角形都在该平行四边形内部时,连结GF 、EF ,(1)中结论还成立吗?若成立,给出证明;若不成立,请说明理由.解:(1)GF =EF.理由如下:∵四边形ABCD 是平行四边形,∴CD =BA.∵△CDG 和△BAE 分别是以CD 和BA 为斜边的等腰直角三角形,∴DG =AE =22CD =22AB. 在△GDF 中,∠GDF =∠GDC +∠FDA +∠CDA =90°+∠CDA ,在△EAF 中,∠EAF =360°-∠BAD -∠BAE -∠DAF =360°-(180°-∠CDA )-90°=90°+∠CDA ,∴∠GDF =∠EAF.在△GDF 和△EAF 中,⎩⎨⎧DG =AE ,∠GDF =∠EAF ,DF =FA ,∴△GDF ≌△EAF ,∴GF =EF. (2)成立,理由如下:∵四边形ABCD 是平行四边形,∴CD =BA.∵△CDG 和△BAE 分别是以CD 和BA 为斜边的等腰直角三角形,∴DG =AE =22CD =22AB. 在△GDF 中,∠GDF =∠GDC +∠FDA -∠CDA =90°-∠CDA ,在△EAF 中,∠EAF =∠BAD -∠BAE -∠DAF =180°-∠CDA -90°=90°-∠CDA ,∴∠GDF =∠EAF.在△GDF 和△EAF 中,⎩⎨⎧DG =AE ,∠GDF =∠EAF ,DF =FA ,∴△GDF ≌△EAF ,∴GF =EF.第19章检测题时间:120分钟 满分:120分一、 选择题(每题3分,共30分)1.下列说法中,错误的是( D )A.平行四边形的对角线互相平分B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.对角线互相垂直的四边形是菱形2.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( C )A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB3.如图,将平行四边形ABCD沿AE翻折,使点B恰好落在AD上的点F处,则下列结论不一定成立的是( C )A.AF=EF B.AB=EF C.AE=AF D.AF=BE,第3题图),第4题图),第5题图),第6题图)4.如图,在△ABC中,AB>BC>AC,小华依下列方法作图,①作∠C的角平分线交AB于点D;②作CD的中垂线,分别交AC、BC于点E、F;③连结DE、DF.根据小华所作的图,下列说法中一定正确的是( A )A.四边形CEDF为菱形B.DE=DAC.DF⊥CB D.CD=BD5.如图△ABC中,AD是角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F,若AE=4 cm,那么平行四边形AEDF周长为( B )A.12 cm B.16 cm C.20 cm D.22 cm6.如图,在△ABC中,AC的垂直平分线分别交AC、AB于点D、F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是( A )A.2 3 B.3 3 C.4 D.437.菱形ABCD的对角线的交点在坐标原点,且AD平行于x轴,若点A的坐标为(-1,2),则点C 的坐标为( A )A.(1,-2) B.(2,-1) C.(1,-3) D.(2,-3)8.如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连结AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形;④BD⊥DE.其中正确的个数是( D )A.1个B.2个C.3个D.4个,第8题图),第9题图),第10题图)9.如图,两条笔直的公路l1、l2相交于点O,村庄C的村民在公路的旁边建三个加工厂A、B、D,已知AB=BC=CD=DA=5公里,村庄C到公路l1的距离为4公里,则村庄C到公路l2的距离是( B ) A.3公里B.4公里C.5公里D.6公里10.(2017·攀枝花)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连结AC交EF于点G,过点G作GH⊥CE于点H,若S△EGH=3,则S△ADF=( A )A.6 B.4 C.3 D.2二、填空题(每小题3分,共24分)11.矩形内有一点P到各边的距离分别为1、3、5、7,则该矩形的最大面积为__64__.12.若菱形的一条对角线长为2 cm ,面积为2 3 cm 2,则它的周长为__8_cm __.13.如图,P 是正方形ABCD 内一点,将△ABP 绕点B 顺时针方向旋转到能与△CBP ′重合,若PB=3,则PP ′=.14.如图,在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,D 为斜边AB 上一点,以线段CD 、CB为边作▱CDEB ,当AD =__75__时,▱CDEB 为菱形. ,第13题图) ,第14题图) ,第15题图)15.如图,点P 是矩形ABCD 的边AD 上的一动点,矩形的两条边AB 、BC 的长分别是6和8,则点P 到矩形的两条对角线距离之和PE +PF =__4.8__.16.在矩形ABCD 中,对角线AC 、BD 交于点O ,AE ⊥BD 于点E ,若OE ∶ED =1∶3,AE =3,则BD =__45. 17.如图,在正方形ABCD 中,点E 、F 分别在边BC 、CD 上,且AE =EF =FA.下列结论:①△ABE ≌△ADF ;②CE =CF ;③∠AEB =75°;④BE +DF =EF ;⑤S △ABE +S △ADF =S △CEF .其中正确的是__①②③⑤__.(只填写序号),第17题图) ,第18题图)18.如图,在四边形ABCD 中,AD ∥BC ,BC =CD =AC =23,AB =6,则BD 的长为.三、 解答题(共66分)19.(10分)如图,四边形ABCD 为菱形,已知A(0,4),B(-3,0).(1)求点D 的坐标;(2)求经过点C 的反比例函数表达式.解:(1)∵A (0,4),B (-3,0),∴OB =3,OA =4,∴AB =5.∵在菱形ABCD 中,AD =AB =5,∴OD =1,∴D (0,-1).(2)∵BC ∥AD ,BC =AB =5,∴C (-3,-5).设经过点C 的反比例函数表达式为y =k x.把(-3,-5)代入表达式,得k =15, ∴y =15x.20.(10分)已知:如图,在△ABC 中,D 是BC 边上的一点,连结AD ,取AD 的中点E ,过点A 作BC 的平行线与CE 的延长线交于点F ,连结DF.(1)求证:AF =DC ;(2)请问:AD 与CF 满足什么条件时,四边形AFDC 是矩形?并说明理由.解:(1)证明:∵AF∥BC,∴∠AFE=∠DCE,∵E为AD的中点,∴AE=DE.又∵∠AEF=∠DEC,∴△AEF≌△DEC,∴AF=DC.(2)当AD=CF时,四边形AFDC是矩形,理由如下:由(1)得AF=DC且AF∥DC,∴四边形AFDC是平行四边形.又∵AD=CF,∴四边形AFDC是矩形(对角线相等的平行四边形是矩形).21.(10分)如图,在矩形ABCD中,F是BC上一点,连结AF,AF=BC,DE⊥AF,垂足为E,连结DF.求证:(1)△ABF≌△DEA.(2)DF是∠EDC的平分线.证明:(1)∵四边形ABCD为矩形,∴∠B=∠BAD=90°,∴∠BAF+∠BFA=90°,∠BAF+∠EAD=90°,∴∠BFA=∠EAD.∵DE⊥AF,∴∠AED=∠B=90°.又∵AF=BC=AD,∴△ABF≌△DEA.(2)∵△ABF≌△DEA,∴DE=AB.∵四边形ABCD为矩形,∴∠C=90°,AB=CD,∴DE=CD,∴DF是∠EDC的平分线.22.(12分)如图,平行四边形ABCD中,AC=6,BD=8,点P从点A出发以每秒1 cm的速度沿射线AC移动,点Q从点C出发以每秒1 cm的速度沿射线CA移动.(1)经过几秒,以P、Q、B、D为顶点的四边形为矩形?(2)若BC⊥AC垂足为C,求(1)中矩形边BQ的长.解:(1)经过7秒,四边形BPDQ为矩形.理由如下:经过7秒,PA=QC=7,∵AC=6,∴CP=AQ=1,∴PQ=BD=8.∵四边形ABCD为平行四边形,BD=8,AC=6,∴AO=OC=3,∴BO=DO=4,∴OQ=OP=4,∴四边形BPDQ为平行四边形.∵PQ=BD=8,∴四边形BPDQ为矩形,(2)由(1)得BO=4,CQ=7,CO=3.∵BC ⊥AC ,∴∠BCA =90°,∴BC =OB 2-OC 2=7.又BC 2+CQ 2=BQ 2,∴BQ =56=214.23.(12分)如图①,在正方形ABCD 中,M 是AB 的中点,E 是AB 延长线上的一点,MN ⊥DM 且交∠CBE 的平分线于点N.(1)求证:MD =MN.(2)若将上述条件中的“M 是B 的中点”改为“M 是AB 上的任意一点”,其余条件不变(如图②),则结论“MD =MN ”还成立吗?如果成立,请证明;如果不成立,请说明理由.解:(1)证明:取AD 的中点F ,连结FM.∵四边形ABCD 是正方形,∴AB =AD ,∠A =∠ABC =90°.又∵M 、F 分别是AB 、AD 的中点,∴AM =MB =12AB =12AD =DF =AF. ∴AF =AM ,DF =MB.又∵∠A =90°,∴∠AFM =45°,∴∠DFM =135°.∵BN 平分∠CBE ,∴∠MBN =90°+45°=135°,∴∠DFM =∠MBN.∵MN ⊥DM ,∴∠NMB +∠DMA =90°.又∵∠FDM +∠DMA =90°,∴∠FDM =∠NMB ,∴△DFM ≌△MBN (ASA ).∴MD =MN.(2)成立.证明:在AD 上取一点F ,使得AF =AM.同理于(1)的证明过程,可得∠FDM =∠NMB ,∠DFM =∠MBN =135°.∵AD =AB ,AF =AM ,∴DF =MB.∴△DFM ≌△MBN (ASA ).∴MD =MN.24.(12分)(1)如图矩形ABCD 的对角线AC 、BD 交于点O ,过点D 作DP ∥OC ,且DP =OC ,连结CP ,判断四边形CODP 的形状并说明理由;(2)如果题目中的矩形变为菱形,结论变为什么?说明理由;(3)如果题目中的矩形变为正方形,结论又应变为什么?说明理由.解:(1)四边形CODP 的形状是菱形.理由:∵四边形ABCD 是矩形,∴AC =BD ,OA =OC =12AC ,OB =OD =12BD ,∴OC =OD. ∵DP ∥OC ,DP =OC ,∴四边形CODP 是平行四边形.∵OC =OD ,∴平行四边形CODP 是菱形.(2)四边形CODP 的形状是矩形.理由:∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠DOC =90°.∵DP ∥OC ,OP =OC ,∴四边形CODP 是平行四边形.∵∠DOC =90°,∴四边形CODP 是矩形.(3)四边形CODP 的形状是正方形.理由:∵四边形ABCD 是正方形,∴AC ⊥BD ,AC =BD ,OA =OC =12AC ,OB =OD =12BD , ∴∠DOC =90°,OD =OC.∵DP ∥OC ,DP =OC ,∴四边形CODP 是平行四边形.∵∠DOC =90°,OD =OC ,∴平行四边形CODP 是正方形.第20章检测题时间:120分钟 满分:120分一、 选择题(每小题3分,共30分)1.某人一手拿六个骰子掷了一下,结果如图所示,则这些点数的众数是( B )A .1B .2C .3D .62.已知一组数据2,1,x ,7,3,5,3,2的众数是2,则这组数据的中位数是( B )A .2B .2.5C .3D .53.某小组5名同学在一周内参加家务劳动的时间如下表所示:A .中位数是4,平均数是3.75B .众数是4,平均数是3.75C .中位数是4,平均数是3.8D .众数是2,平均数是3.84.甲、乙两位战士在射击训练中,打靶的次数相同,且中环的平均数相等,如果甲的射击成绩比较稳定,那么方差的大小关系是( B )A .s 甲2>s 乙2B .s 甲2<s 乙2C .s 甲2=s 乙2D .不确定5.若一组数据1,a ,2,3,4的平均数与中位数相同,则a 不可能是下列选项中的( C )A .0B .2.5C .3D .56.今年,我省启动了“关爱留守儿童工程”.某村小学为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误..的是( C ) A .平均数是15 B .众数是10 C .中位数是17 D .方差是4437.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分,80分,90分,若依次按照2∶3∶5的比例确定成绩,则小王的成绩是( D )A .255分B .84分C .84.5分D .86分8.某校九年级(1)班学生2016年初中毕业体育学业考试成绩统计如下表:..A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分9.如果一组数据x 1,x 2,…,x n 的方差是4,则另一组数据4x 1+3,4x 2+3,…,4x n +3的方差是( B )A .12B .16C .18D .1910.(2017·维坊)甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示,丙、丁两人的成绩如统计图所示.欲选一名运动员参赛,从平均数和方差两个因素分析,应选( C )方差 1 1A .甲B .乙C .丙D .丁二、 填空题(每小题3分,共24分)11.平均数、中位数、众数中,受极端值影响最大的是__平均数__.12.有20个数,其中有8个数的平均数是17,其余数的平均数是12,则这20个数的平均数是__14__.13.(2017·长沙)甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.6米,方差分别是S 甲2=1.2,S 乙2=0.5,则在本次测试中,__乙__同学的成绩更稳定(填“甲”或“乙”).14.某校抽样调查了七年级部分学生每天上网的时间,整理数据后制成了如下所示的统计表,这个样本的中位数在第__2__组.第5组 2≤t <2.5 6,第14题图) 第15题图)15.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定.根据图中的信息,估计这两人中的新手是___小李__.16.某大学自主招生考试只考数学和物理,计算综合得分时,按数学占60%,物理占40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是__90__分.17.若一组数据 1,2,x ,1,3,2,4 的众数是1,则这组数据的方差为__87__. 18.计算一组数据的方差时,列式为:s 2=110[(x 1-2)2+(x 2-2)2+…+(x 10-2)2]. 如果这些数据的平方和为50,那么方差为__1__.三、 解答题(共66分)19.(8分)(2017·宜昌)YC 市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现将随机抽取的某五天在同一时段的调查数据汇成如下表格.请回答下列问题:。

华东师大版2019-2020学年八年级数学下册第18章 平行四边形单元测试卷(含答案)

华东师大版2019-2020学年八年级数学下册第18章 平行四边形单元测试卷(含答案)

华东师大版八年级数学下册第18章平行四边形单元检测卷一、选择题(每小题4分,共28分)1.如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD 于点F,则∠1=()A.40°B.50°C.60°D.80°(第1题)(第4题)(第5题)2.平行四边形两邻角的平分线相交所成的角为()A.锐角B.直角C.钝角D.不确定3.在▱ABCD中,AD=3cm,AB=2cm,则▱ABCD的周长等于()A.10 cmB.6 cmC.5 cmD.4 cm4.如图,四边形ABCD是平行四边形,点E在边BC上.如果点F是边AD上的点,那么△CDF 与△ABE不一定全等的条件是()A.DF=BEB.AF=CEC.CF=AED.CF∥AE5.如图,在平行四边形ABCD中,下列各式不一定正确的是()A.∠1+∠2=180°B.∠2+∠3=180°C.∠3+∠4=180°D.∠2+∠4=180°6.如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA 的取值范围是()A.3cm<OA<5cm ;B.2cm<OA<8cmC.1cm<OA<4cmD.3cm<OA<8cm(第6题)(第7题) (第8题)7.如图所示,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD 于点F,连结AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD 是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是()A.4B.3C.2D.1二、填空题(每小题5分,共25分)8.如图,在▱ABCD中,对角线AC,BD相交于点O,若AC=14,BD=8,AB=10,则△OAB 的周长为.9.如图,在平行四边形ABCD中,AB=,AD=4,将平行四边形ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为.(第9题) (第10题)10.如图所示,平行四边形ABCD的周长是18cm,对角线AC,BD相交于点O,若△AOD与△AOB的周长差是5cm,则边AB的长是cm.11.如图,在平行四边形ABCD中,CE是∠DCB的平分线,F是AB的中点,AB=6,BC=4,则AE∶EF∶FB的值是.(第11题)(第12题)12.如图,已知直线a∥b,点A、点C分别在直线a,b上,且AB⊥b,CD⊥a,垂足分别为B,D,有以下五种说法:①点A到直线b的距离为线段AB的长;②点D到直线b的距离为线段CD的长;③a,b两直线之间距离为线段AB的长;④a,b两直线之间距离为线段CD的长;⑤AB=CD,其中正确的有(只填相应的序号).三、解答题(共47分)13.(10分)已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.求证:四边形ABCD为平行四边形.14.(12分)如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形.(2)求证:∠DHF=∠DEF.15.(12分)如图,在▱ABCD中,点O是对角线AC,BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=BC,求证:四边形OCFE是平行四边形.16.(13分)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图的四边形ABCD,并写出了如下不完整的已知和求证.已知,如图在四边形ABCD中,BC=AD,AB=.求证:四边形ABCD是四边形.(1)在方框中填空,以补全已知和求证.(2)按嘉淇的想法写出证明:(3)用文字叙述所证命题的逆命题为.参考答案一、选择题(每小题4分,共28分)1.如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD 于点F,则∠1=()A.40°B.50°C.60°D.80°【解析】选B.∵四边形ABCD是平行四边形,∴AD∥BC,∵∠B=80°,∴∠BAD=100°,又∵AE平分∠BAD交BC于点E,∴∠EAD=∠BAD=50°,∵CF∥AE,∴四边形AECF是平行四边形,∴∠1=∠EAD=50°.2.平行四边形两邻角的平分线相交所成的角为()A.锐角B.直角C.钝角D.不确定【解析】选B.▱ABCD的∠DAB的平分线和∠ABC的平分线交于点O,∴∠DAB+∠ABC=180°,∠DAO=∠BAO=∠DAB,∠ABO=∠CBO=∠ABC,∴∠BAO+∠ABO=90°,∴∠AOB=180°-90°=90°.3.在▱ABCD中,AD=3cm,AB=2cm,则▱ABCD的周长等于()A.10 cmB.6 cmC.5 cmD.4 cm【解析】选A.因为平行四边形的对边相等,所以AD=BC=3cm,AB=CD=2cm,所以周长为10 cm.4.如图,四边形ABCD是平行四边形,点E在边BC上.如果点F是边AD上的点,那么△CDF 与△ABE不一定全等的条件是()A.DF=BEB.AF=CEC.CF=AED.CF∥AE【解析】选C.由平行四边形的性质可得AB=CD,AD=BC,∠B=∠D等.A中,DF=BE,∠B=∠D,AB=CD,符合“边角边”定理,△CDF≌△ABE,选项A成立;B中,AF=CE,可得DF=BE,同选项A,选项B成立;C中,CF=AE,∠B=∠D,AB=CD,条件为两边及一边的对角,C 不一定成立;D中,CF∥AE,可得四边形AECF是平行四边形,得AF=CE,所以BE=DF,同选项A,该选项成立.综上所述,选C.5.如图,在平行四边形ABCD中,下列各式不一定正确的是()A.∠1+∠2=180°B.∠2+∠3=180°C.∠3+∠4=180°D.∠2+∠4=180°【解析】选D.由平行四边形的性质及图形可知:∠1和∠2是邻补角,故∠1+∠2=180°,A 正确;因为AD∥BC,所以∠2+∠3=180°,B正确;因为AB∥CD,所以∠3+∠4=180°,C 正确;D.根据平行四边形的对角相等,∠2=∠4,∠2+∠4=180°不一定正确,故选D.6.如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA 的取值范围是()A.3cm<OA<5cmB.2cm<OA<8cmC.1cm<OA<4cmD.3cm<OA<8cm【解析】选C.在△ABC中,BC-AB<AC<AB+BC,即2cm<AC<8cm,所以1cm<OA<4cm.7.如图所示,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连结AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD 是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是()A.4B.3C.2D.1【解析】选B.∵AE⊥BD于点E,CF⊥BD于点F,∴∠DFC=∠BEA=90°.∵DE=BF,∴DF=BE.又∵AB=CD,∴△DFC≌△BEA,∴CF=AE,①正确,∠CDF=∠ABE,∴AB∥C D.又∵AB=CD,∴四边形ABCD是平行四边形,③正确,∴OD=O B.又∵DF=BE,∴OE=OF,②正确,易知图中的全等三角形有:△DFC≌△BEA,△OFC≌△OEA,△AOF≌△COE,△AEF≌△CFE,△ACF≌△CAE,△AOB≌△COD,△AOD≌△COB,△ABD≌△CDB,△ACD≌△CAB,…,故④不正确.综上可知,正确的结论为①②③,共3个.二、填空题(每小题5分,共25分)8.如图,在▱ABCD中,对角线AC,BD相交于点O,若AC=14,BD=8,AB=10,则△OAB 的周长为.【解析】因为平行四边形的对角线互相平分,所以OA=AC=7,OB=BD=4,又因为AB=10,所以△OAB的周长=7+4+10=21.答案:219.如图,在平行四边形ABCD中,AB=,AD=4,将平行四边形ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为.【解析】点B恰好与点C重合,且四边形ABCD是平行四边形,根据翻折的性质,则AE⊥BC,BE=CE=2,在Rt△ABE中,由勾股定理得AE===3.答案:310.如图所示,平行四边形ABCD的周长是18cm,对角线AC,BD相交于点O,若△AOD 与△AOB的周长差是5cm,则边AB的长是cm.【解析】∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵△AOD的周长=OA+OD+AD,△AOB的周长=OA+OB+AB,又∵△AOD与△AOB的周长差是5cm,∴AD=AB+5,设AB=x,AD=5+x,则2(x+5+x)=18,解得x=2,即AB=2cm.答案:211.如图,在平行四边形ABCD中,CE是∠DCB的平分线,F是AB的中点,AB=6,BC=4,则AE∶EF∶FB的值是.【解析】∵四边形ABCD是平行四边形,∴∠DCE=∠BE C.∵CE是∠DCB的平分线,∴∠DCE=∠BCE,∴∠CEB=∠BCE,∴BE=BC=4.∵F是AB的中点,AB=6,∴FB=3.∴EF=BE-FB=1,∴AE=AB-BE=2,∴AE∶EF∶FB=2∶1∶3.答案:2∶1∶312.如图,已知直线a∥b,点A、点C分别在直线a,b上,且AB⊥b,CD⊥a,垂足分别为B,D,有以下五种说法:①点A到直线b的距离为线段AB的长;②点D到直线b的距离为线段CD的长;③a,b两直线之间距离为线段AB的长;④a,b两直线之间距离为线段CD的长;⑤AB=CD,其中正确的有(只填相应的序号). 【解析】本题主要考查点到直线的距离和平行线间的距离,①②③④⑤都正确.答案:①②③④⑤三、解答题(共47分)13.(10分)已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.求证:四边形ABCD为平行四边形.【证明】∵AB∥CD,∴∠BAE=∠DCF,∵BE∥DF,∴∠BEF=∠DFE,∴∠AEB=∠CF D.在△AEB和△CFD中,∴△AEB≌△CFD,∴AB=C D.又∵AB∥CD,∴四边形ABCD是平行四边形.14.(12分)如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形.(2)求证:∠DHF=∠DEF.【证明】(1)∵点D,E分别是AB,BC的中点,∴DE∥AC;同理:EF∥AB,∴四边形ADEF是平行四边形.(2)∵四边形ADEF是平行四边形,∴∠DAF=∠DEF.∵在Rt△AHB中,D是AB中点,∴DH=AB=AD,∴∠DAH=∠DHA,同理:∠F AH=∠FHA,∴∠DAF=∠DHF,∴∠DHF=∠DEF.15.(12分)如图,在▱ABCD中,点O是对角线AC,BD的交点,点E是边CD的中点,点F 在BC的延长线上,且CF=BC,求证:四边形OCFE是平行四边形.【证明】∵四边形ABCD是平行四边形,∴点O是BD的中点.又∵点E是边CD的中点,∴OE是△BCD的中位线,∴OE∥BC,且OE=B C.又∵CF=BC,∴OE=CF.又∵点F在BC的延长线上,∴OE∥CF,∴四边形OCFE是平行四边形.16.(13分)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图的四边形ABCD,并写出了如下不完整的已知和求证.已知,如图在四边形ABCD中,BC=AD,AB=.求证:四边形ABCD是四边形.(1)在方框中填空,以补全已知和求证.(2)按嘉淇的想法写出证明:(3)用文字叙述所证命题的逆命题为. 【解析】(1)CD平行(2)证明:连结B D.在△ABD和△CDB中,∵AB=CD,AD=CB,BD=DB,∴△ABD≌△CDB,∴∠1=∠2,∠3=∠4,∴AB∥CD,AD∥CB,∴四边形ABCD是平行四边形.(3)平行四边形的对边相等.。

华师大版初中八年级下学期数学单元测试卷1及答案

华师大版初中八年级下学期数学单元测试卷1及答案
3,
0);丙 说:该 函 数
探索 一 元 二 次 方 程 x2 +3x -5=0 的 一 个 正 数 解 的 过 程
4.
x
A
(C )
D.
0、-4、

抛物线 y=-2(
3.
x-3)-4 的顶点坐标为


D.
y3<y1<y2
如图 ① 正面看
葡萄酒杯 的 上 半 部 分 是 一 条 抛 物 线 的
一部分,且 是 轴 对 称 图 形 .
若 AB =4,
C
D
数学课上,老师把一个二次函数图象给甲、乙、丙、丁 四 位 同
9.
学看过后,四位同学分别进行了描述,甲说:该函数的图象经
7m,草坪上与 O 的 水 平 距 离 为 18m 的 点 A 处 有 一 棵 高
17 元/件,且该玩具的月销售量 y(件)与销售单价 x(元)之
销售单价 x(元)
(
2)将点 B 向 右 平 移 4 个 单 位 得 到 点 C ,若 抛 物 线 y =x2 +
射出的水流与喷灌架的水平距离为 12m 时,达到最大高度
C 作CN ∥AM 交x 轴于点 N ,连 结 MN ,是 否 存 在 点 M ,
使得 △AMN 的面积最大? 若存在,求出点 M 的坐标;若不
存在,请说明理由 .
(考查范围:第 26 章 二次函数)
满分:
120 分 训练时间:
100 分钟
(A )
系,则抛物线对应的函数表达式为
3 2
A.
y= x
a、
b 分别是
A.
-1、

B.
0、

C.
1、

D.

八年级数学下册单元测试题全套及答案(华师版)

八年级数学下册单元测试题全套及答案(华师版)

八年级数学下册单元测试题全套及答案(华师版)第16章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)(每小题都给出A ,B ,C ,D 四个选项,其中只有一个是正确的)1.下列各式:x3x +1,x +12,x 3+y ,2x -y x +2,x π,其中分式共有( )A .1个B .2个C .3个D .4个 2.当分式|x|-3x +3的值为0时,x 的值为( )A .0B .3C .-3D .±33.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( ) A .2+x x -y B .2y x 2 C .2y 33x 2 D .2y 2(x -y )24.一种花粉颗粒直径约为0.000 006 5米,数字0.000 006 5用科学记数法表示为( ) A .0.65×10-5 B .65×10-7 C .6.5×10-6 D .6.5×10-5 5.式子(a -1)0+1a +1有意义,则a 的取值范围是( )A .a ≠1且a ≠-1B .a ≠1或a ≠-1C .a =1或a =-1D .a ≠0且a ≠-1 6.下列计算正确的是( )A .⎝⎛⎭⎫b a 2=b 2a B .a 2÷a -1=a 3 C .1x +1y =2x +y D .-x -y x -y =-1 7.化简a 2-4a 2+2a +1÷a 2-4a +4(a +1)2-2a -2的结果为( ) A .a +2a -2 B .a -4a -2 C .a a -2 D .a 8.若关于x 的分式方程x x -3+3a3-x=2a 无解,则a 的值为( ) A .1 B .12 C .1或12D .以上都不是9.若关于x 的方程x +m x -3+3m3-x =3的解为正数,则m 的取值范围是( )A .m <92B .m <92且m ≠32C .m >-94D .m >-94且m ≠-3410.学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10 000元,购买文学类图书花费9 000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本,求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x 元,则可列方程为( )A .10 000x -9 000x -5=100B .9 000x -5-10 000x =100C .10 000x -5-9 000x =100D .9 000x -10 000x -5=100二、填空题(每小题3分,共24分) 11.计算:2x x +1+2x +1=________.12.分式方程1x +2-3xx 2-4=0的解为x =__________.13.若x +y =1,且x ≠0,则(x +2xy +y 2x )÷x +yx 的值为________.14.已知1x -1y =3,则代数式2x +3xy -2y x -xy -y 的值是________.15.将(3m 3n -3)3·(-mn -3)-2的结果化为只含有正整数指数幂的形式为________.16.当m =________时,解分式方程x -5x -3=m3-x会出现增根.17.观察下列一组数:32,1,710,917,1126……它们是按一定规律排列的,那么这组数的第n 个数是__________.(n 为正整数)18.若x -1x =4,则x 2x 4+x 2+1=__________.三、解答题(共66分)19.(6分)计算:-22+(13)-2-|-9|-(π-2 018)0.20.(10分)化简:(1)a 2-2ab +b 2a 2-b 2÷⎝⎛⎭⎫1a -1b ; (2)⎝ ⎛⎭⎪⎫x +2x -3+x +2÷x 2-4x +4x -3.21.(10分)先化简,再求值: (1)(1+4x -2)÷x +2x 2-4.其中x =3.(2)(3x -1-x -1)÷x -2x 2-2x +1,其中x 是不等式组⎩⎨⎧x -3(x -2)≥2,①4x -2<5x -1,②的一个整数解.22.(10分)解分式方程:(1)x x -1-1=2x 3x -3; (2)4x 2-1+1=x -1x +1.23.(8分)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了13,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?24.(10分)若1(2n -1)(2n +1)=a 2n -1+b2n +1,对任意自然数n 都成立.(1)求a ,b 的值;(2)计算11×3+13×5+15×7+…+119×21的值.25.(12分)某商场购进甲、乙两种商品,甲种商品共用了2 000元,乙种商品共用了2 400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2 460元,问甲种商品按原销售单价至少销售多少件?第16章检测题1.B 2.B 3.D 4.C 5.A 6.B 7.C 8.C 9.B 10.B 11.2 12.-1 13.1 14.34 15.27m 7n 3 16.217.2n +1n 2+1 18.119 19.1 20.(1)原式=-aba +b(2)原式=x +2x -2 21.(1)原式=x +2,当x =3时,原式=5 (2)原式=-x 2-x +2,解不等式组得-1<x ≤2,其整数解为0,1,2,由于x 不能取1和2,所以当x =0时,原式=2 22.(1)解得x =1.5,经检验,当x =1.5时,3(x -1)≠0,则原方程的解为x =1.5 (2)解得x =-1,经检验,当x =-1时,x 2-1=0,则原方程无解23.设软件升级前每小时生产x 个零件,则软件升级后每小时生产(1+13)x 个零件,根据题意得:240x -240(1+13)x=4060+2060,解得x =60,经检验,x =60是原方程的解,且符合题意,∴(1+13)x =80.答:24.(1)1(2n -1)(2n +1)=a 2n -1+b2n +1=a (2n +1)+b (2n -1)(2n -1)(2n +1),可得2n(a +b)+a -b =1,即⎩⎨⎧a +b =0,a -b =1,解得⎩⎨⎧a =12,b =-12(2)11×3+13×5+15×7+…+119×21=12×(1-13+13-15+…+119-121)=12×(1-121)=102125.(1)设甲种商品每件进价为x 元,则乙种商品每件进价为(x +8)元.根据题意,得,2 000x =2 400x +8,解得x =40.经检验,x =40是原方程的解.答:甲种商品每件进价为40元,乙种商品每件进价为48元 (2)甲乙两种商品的销售量为2 00040=50.设甲种商品按原销售单价销售a 件,则(60-40)a +(60×0.7-40)(50-a)+(88-48)×50≥2 460,解得a ≥20.答:甲种商品按原销售价至少销售20件第17章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)(每小题都给出A ,B ,C ,D 四个选项,其中只有一个是正确的)1.函数y =1x -1中,自变量x 的取值范围是( ) A .x ≠1 B .x >1 C .x ≥1 D .x >1 2.下面说法错误的是( )A .点(0,-2)在y 轴的负半轴上B .点(3,2)与(3,-2)关于x 轴对称C .点(-4,-3)关于原点的对称点是(4,3)D .点(-2,-3)在第二象限3.如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h(cm )与注水时间t(s )之间的函数关系图象大致是( )4.正比例函数y =2kx 的图象如图所示,则y =(k -2)x +1-k 的图象大致是( )5.已知一次函数y =(m +2)x +(1-m),若y 随x 的增大而减小,且此函数图象与y 轴的交点在x 轴的上方,则m 的取值范围是( )6.如图,一次函数y =k 1x +b 的图象与反比例函数y =k 2x 的图象相交于A(2,3),B(6,1)两点,当k 1x +b<k 2x时,x 的取值范围为( )A .x <2B .2<x<6C .x>6D .0<x <2或x >6,第7题图) ,第8题图)7.如图所示,已知A(12,y 1),B(2,y 2)为反比例函数y =1x 图象上的两点,动点P(x ,0)在x 轴正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( )A .(12,0)B .(1,0)C .(32,0)D .(52,0)8.如图,点A ,B ,C 在一次函数y =-2x +m 的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是( )A .3(m -1)B .32(m -2) C .1 D .39.如图,在平面直角坐标系中,过点M(-3,2)分别作x 轴、y 轴的垂线与反比例函数y =4x 的图象交于A ,B 两点,则四边形MAOB 的面积为( )A .6B .8C .10D .12,第9题图) ,第10题图) ,第12题图)10.某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是( )A .4小时B .4.4小时C .4.8小时D .5小时 二、填空题(每小题3分,共24分)11.已知点A(x 1,y 1),B(x 2,y 2)在直线y =kx +b 上,且直线经过第一、二、四象限,当x 1<x 2时,y 1与y 2的大小关系为________.(填“>”“<”或“=”)12.如图所示,直线AB 是一次函数y =kx +b 的图象.若AB =5,则函数表达式为________. 13.在平面直角坐标系中,若点M(1,3)与点N(x ,3)的距离是8,则x 的值是____________.14.已知:点P(m ,n)在直线y =-x +2上,也在双曲线y =-1x 上,则m 2+n 2的值为______.15.如图,已知一次函数y =2x +b 和y =kx -3(k ≠0)的图象交于点P(4,-6),则二元一次方程组⎩⎪⎨⎪⎧y -2x =b ,y -kx =-3的解是__________.,第15题图) ,第16题图),第17题图) ,第18题图)16.如图,把Rt △ABC 放在平面直角坐标系内,其中∠CAB =90°,BC =5,点A ,B 的坐标分别为(1,0),(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为________.17.某电信公司推出手机两种收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差________元.18.如图,点D 为长方形OABC 的AB 边的中点,反比例函数y =kx (x>0)的图象经过点D ,交BC边于点E.若△BDE 的面积为1,则k =________.三、解答题(共66分)19.(8分)已知一次函数y =(6+3m)x +n -4. (1)当m ,n 为何值时,函数的图象过原点?(2)当m ,n 满足什么条件时,函数的图象经过第一、二、三象限?20.(8分)如图,在平面直角坐标系中,反比例函数y =kx (x >0)的图象上有一点A(m ,4),过点A作AB ⊥x 轴于点B ,将点B 向右平移2个单位得到点C ,过点C 作y 轴的平行线交反比例函数的图象于点D ,CD =43.(1)点D 的横坐标为__________;(用含m 的式子表示) (2)求反比例函数的表达式.21.(8分)已知一次函数y=kx+b的图象与x轴交于点A(-6,0),与y轴交于点B.若△AOB的面积为12,且y随x的增大而增大.(1)求一次函数的表达式;(2)当x=6时,其对应的y值是多少?22.(10分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y(升)关于加满油后已行驶的路程x(千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.23.(10分)如图,点M在函数y=3x(x>0)的图象上,过点M分别作x轴和y轴的平行线交函数y=1x(x>0)的图象于点B,C.(1)若点M的坐标为(1,3).①求B,C两点的坐标;②求直线BC的表达式;(2)求△BMC的面积.24.(10分)如图,是药品研究所所测得的某种新药在成人用药后,血液中的药物浓度y(微克/毫升)随用药后的时间x(小时)变化的图象(图象由线段OA与部分双曲线AB组成).并测得当y=a时,该药物才具有疗效.若成人用药4小时,药物开始产生疗效,且用药后9小时,药物仍具有疗效,则成人用药后,血液中药物浓度至少需要多长时间达到最大浓度?25.(12分)某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:设集团调配给甲连锁店x y(元).(1)求y关于x的函数关系式,并求出x的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?第17章检测题持不变,则4小时的时候已经调进结束,且共调进物资60吨;货物还剩10吨,说明在2小时内,调出物资50吨,可得调出物资的速度为25吨/时,则剩下10吨用时:1025=0.4小时,故共用时间4.4小时11.> 12.y =2x +2 13.9或-7 14.6 15.⎩⎪⎨⎪⎧x =4,y =-6 16.16 17.1018.4 [点拨]设D(a ,k a ),∵点D 为矩形OABC 的AB 边中点,∴B(2a ,k a ),∴E(2a ,k2a ),∵△BDE 的面积为1,∴12·a ·(k a -k2a)=1,解得k =419.(1)∵一次函数y =(6+3m)x +n -4的图象过原点,∴6+3m ≠0,且n -4=0,解得m ≠-2,n=4 (2)∵该函数的图象经过第一、二、三象限,∴6+3m >0,且n -4>0,解得m >-2,n >420.(1)m +2 (2)∵CD ∥y 轴,CD =43,∴点D 的坐标为(m +2,43),∵A ,D 在反比例函数y =kx (x>0)的图象上,∴4m =43(m +2),解得m =1,∴点A 的横坐标为(1,4),∴k =4m =4,∴反比例函数的表达式为y =4x21.(1)∵图象经过点A(-6,0),∴0=-6k +b ,即b =6k ①,∵图象与y 轴的交点是B(0,b),∴S △AOB =12OA ·OB =12,即|b|=4,∴b 1=4,b 2=-4,代入①得,k 1=23,k 2=-23,∵y 随x 的增大而增大,∴k >0,∴k =23,b =4,∴一次函数的表达式为y =23x +4 (2)当x =6时,y =822.(1)由图像可知:汽车行驶400千米,剩余油量30升,∵行驶时的耗油量为0.1升/千米,则汽车行驶400千米,耗油400×0.1=40(升)∴加满油时邮箱的油量是40+30=70升 (2)设y =kx +b(k ≠0),把(0,70),(400,300)坐标代入可得:k =-0.1,b =70,∴y =-0.1x +70,当y =5时,x =650,即已行驶的路程为650千米23.(1)①C(1,1),B(13,3).②设直线BC 解析式为y =kx +b ,把B 、C 点坐标代入得,⎩⎪⎨⎪⎧1=k +b 3=13k +b ,解得⎩⎨⎧k =-3,b =4,∴直线BC 表达式为y =-3x +4 (2)设点M 坐标为(a ,b),∴ab =3.由(1)知点C 坐标为(a ,1a ),点B 坐标为(1b ,b),∴BM =a -1b =ab -1b ,MC =b -1a =ab -1a ,∴S △BMC =12·ab -1b ·ab -1a =12×(ab -1)2ab =2324.设直线OA 的表达式为y =kx ,把(4,a)代入,得a =4k ,解得k =a4,即直线OA 的表达式为y=a 4x.根据题意,(9,a)在反比例函数的图象上,则反比例函数的表达式为y =9a x .当a 4x =9ax 时,解得x =±6(负值舍去),故成人用药后,血液中药物浓度至少需要6小时达到最大浓度25.(1)由题意可知,调配给甲连锁店电冰箱(70-x)台,调配给乙连锁店空调机(40-x)台,调配给乙连锁店电冰箱60-(70-x)=(x -10)台,则y =200x +170(70-x)+160(40-x)+150(x -10),即y =20x+16 800,∵⎩⎪⎨⎪⎧x ≥0,70-x ≥0,40-x ≥0,x -10≥0,∴10≤x ≤40且x 为整数,∴y =20x +16 800(10≤x ≤40且x 为整数) (2)由题意得:y =(200-a)x +170(70-x)+160(40-x)+150(x -10),即y =(20-a)x +16 800.∵200-a >170,∴a <30.当0<a <20时,20-a >0,函数y 随x 的增大而增大,故当x =40时,总利润最大,即调配给甲连锁店空调机40台,电冰箱30台,乙连锁店空调0台,电冰箱30台;当a =20时,x 的取值在10≤x ≤40内的所有方案利润相同;当20<a <30时,20-a <0,函数y 随x 的增大而减小,故当x =10时,总利润最大,即调配给甲连锁店空调机10台,电冰箱60台,乙连锁店空调30台,电冰箱0台第18章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)(每小题都给出A ,B ,C ,D 四个选项,其中只有一个是正确的)1.若▱ABCD 中,∠A +∠C =160°,则∠D 的度数是( ) A .120° B .100° C .60° D .70° 2.如图,在▱ABCD 中,∠ODA =90°,AC =10 cm ,BD =6 cm ,则AD 的长为( ) A .4 cm B .5 cm C .6 cm D .8 cm,第2题图) ,第3题图) ,第5题图) ,第6题图)3.如图,▱ABCD 的周长是48,对角线AC ,BD 相交于点O ,△AOD 的周长比△AOB 的周长多6,若设AD =x ,AB =y ,则可用列方程组的方法求AD ,AB 的长,这个方程组可以是( )A .⎩⎪⎨⎪⎧2(x +y )=48,x -y =6B .⎩⎪⎨⎪⎧2(x +y )=48,y -x =6C .⎩⎪⎨⎪⎧x +y =48,x -y =6D .⎩⎪⎨⎪⎧x +y =48,y -x =6 4.在▱ABCD 中,E ,F 为对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是( )A .BE =DFB .AE =CFC .AF ∥CED .∠BAE =∠DCF5.如图,在四边形ABCD 中,AB =CD ,对角线AC ,BD 相交于点O ,AE ⊥BD 于点E ,CF ⊥BD 于点F ,连结AF ,CE ,若DE =BF ,则下列结论:①CF =AE ;②OE =OF ;③四边形ABCD 是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是( )A .4个B .3个C .2个D .1个6.如图,M 是▱ABCD 的边AD 上任意一点,若△CMB 的面积为S ,△CDM 的面积为S 1,△ABM 的面积为S 2,则下列S ,S 1,S 2的大小关系中正确的是( )A .S >S 1+S 2B .S =S 1+S 2C .S <S 1+S 2D .S 与S 1+S 2的大小关系无法确定7.将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积.则这样的折纸方法共有()A.1种B.2种C.4种D.无数种8.根据下列条件,能作出平行四边形的是()A.两边长分别是4和5,一条对角线为10 B.一边长为1,两条对角线长分别为2和5C.两条对角线的长分别为3和5,它们的夹角为45°D.以上均作不出9.如图,E是▱ABCD的边AD的中点,CE与BA的延长线交于点F,若∠FCD=∠D,则下列结论不成立的是()A.AD=CF B.BF=CF C.AF=CD D.DE=EF10.如图,在▱ABCD中,分别以AB,AD为边向外作等边三角形△ABE,△ADF,延长CB 交AE于点G(点G在点A,E之间),连结CE,CF,EF,则以下四个结论中,正确的个数是()①△CDF≌△EBC;②∠CDF=∠EAF;③△CEF是等边三角形;④CG⊥AE.A.1个B.2个C.3个D.4个,第9题图),第10题图),第12题图),第13题图)二、填空题(每小题3分,共24分)11.平行四边形的两邻角的平分线相交所成的夹角为__________.12.如图,四边形ABCD中,对角线BD⊥AD,BD⊥BC,AD=11-x,BC=x-5,则当x=______时,四边形ABCD是平行四边形.13.如图,在△ABC中,AB=BC,AB=12 cm,F是AB边上一点,过点F作FE∥BC交AC于点E,过点E作ED∥AB交BC于点D.则四边形BDEF的周长是________cm.14.如图,在▱ABCD中,∠C=43°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数是________度.,第14题图),第15题图)15.如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D,E分别是BC,AD的中点,AF ∥BC交CE的延长线于F,则四边形AFBD的面积为__________.16.如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=4,AF=6,▱ABCD的周长=__________.为40,则S▱ABCD17.在矩形ABCD中,点E,F分别在边CD,BC上,且DC=3DE=3a,将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP=________.,第16题图),第17题图),第18题图)18.如图,已知在▱OABC的顶点A,C分别在直线x=2和x=6上,O是坐标原点,则对角线OB 长的最小值为____________.三、解答题(共66分)19.(8分)如图,在平行四边形ABCD中,点E在BA的延长线上,且BE=AD,点F在AD上,AF=AB.求证:CF=EF.20.(8分)如图,在▱ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F,点G,H分别为AD,BC 的中点,GH与BD相交于点O.求证:EF和GH互相平分.21.(8分)如图,在▱ABCD中,点E,F分别在边DC,AB上,DE=BF,把平行四边形沿直线EF 折叠,使得点B,C分别落在B′,C′处,线段EC′与线段AF相交于点G,连结DG,B′G.求证:(1)∠1=∠2;(2)DG=B′G.22.(10分)如图是某城市部分街道,AF∥BC,EC⊥BC,EF=CF,BA∥DE,BD∥AE,甲,乙两人同时从B站乘车到F站,甲乘1路车,路线是B⇒A⇒E⇒F;乙乘2路车,路线是B⇒D⇒C⇒F,假设两车速度相同,途中耽误的时间相同,问:谁先到达F站,请说明理由.23.(10分)在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AE平分∠CAB交CD于点E,交CB 于点F,过点E作EH∥AB,交BC于点H.求证:CE=BH.24.(10分)如图,四边形ABCD中,BD垂直平分AC,垂足为点F,E为四边形ABCD外一点,且∠ADE=∠BAD,AE⊥AC.(1)求证:四边形ABDE是平行四边形;(2)如果DA平分∠BDE,AB=5,AD=6,求AC的长.25.(12分)在▱ABCD中,∠ADC的平分线交直线BC于点E,交AB的延长线于点F,连结AC.(1)如图①,若∠ADC=90°,G是EF的中点,连结AG,CG.①求证:BE=BF;②请判断△AGC的形状,并说明理由;(2)如图②,若∠ADC=60°,将线段FB绕点F顺时针旋转60°至FG,连结AG,CG.那么△AGC 又是怎样的形状.(直接写出结论不必证明)第18章检测题1.B 2.A 3.A 4.B 5.B 6.B7.D8.C9.B10.C11.90°12.813.2414.4715.12 16.4817.23a18.8[点拨]过点B作BD⊥直线x=6,交直线x=6于点D,过点B作BE⊥x轴,交x轴于点E,直线x=2与OC交于点M,与x轴交于点F,直线x=6与AB交于点N,如图,易证△OAF≌△BCD(ASA).∴BD=OF=2,∴OE=6+2=8,∴OB=OE2+BE2.由于OE的长不变,所以当BE最小时(即B点在x轴上),OB取得最小值,最小值为OB=OE=819.证明:∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB,∴∠D=∠EAF,∵BE=AD,AF=AB,∴AE=DF,CD=AF,∴△DCF≌△AFE(SAS),∴CF=EF20.连结BG,DH,∵四边形ABCD为平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∴△ABE≌△CDF(AAS),∴BE=DF,又∵G,H 分别为AD,BC的中点,易证四边形BHDG为平行四边形,∴OG=OH,OB=OD,∴OB-BE=OD -DF,即OE=OF,∴EF和GH互相平分21.(1)∵在平行四边形ABCD中,DC∥AB,∴∠2=∠FEC,由折叠得∠1=∠FEC,∴∠1=∠2 (2)∵∠1=∠2,∴EG=GF,∵AB∥DC,∴∠DEG=∠EGF,由折叠得EC′∥B′F,∴∠B′FG=∠EGF=∠DEG,∵DE=BF=B′F,∴△DEG≌△B′FG(SAS),∴DG=B′G22.两人同时到达F站.理由:∵BA∥DE,BD∥AE,∴四边形ABDE是平行四边形,∴AE=BD,AB=DE,∵AF∥BC,EC⊥BC,EF=CF,∴AF是EC的垂直平分线,∴DE=CD=AB,∴BA+AE +EF =BD +CD +CF ,∵两车速度相同,途中耽误的时间相同,∴甲乙两人同时到达23.过E 作EG ∥BC 交BD 于点G ,∴∠DCB =∠DEG ,∵∠ACB =90°,CD 为AB 边上的高,∴∠ACD +∠DCB =90°,∠DEG +∠DGE =90°,∴∠ACD =∠DGE ,∵EG ∥BC ,EH ∥AB ,∴四边形BGEH 是平行四边形,则BH =EG ,∵AF 平分∠CAB ,∴∠CAE =∠GAE ,在△CEA 和△GEA中,⎩⎨⎧∠ACE =∠AGE ,∠CAE =∠GAE ,AE =AE ,∴△CEA ≌△GEA(AAS),∴CE =GE ,∴CE =BH24.(1)证明:∵∠ADE =∠BAD ,∴AB ∥DE ,∵AE ⊥AC ,BD ⊥AC ,AE ∥BD ,∴四边形ABDE 是平行四边形 (2)∵DA 平分∠BDE ,∴∠EAD =∠BDA ,∴∠BAD =∠BDA ,∴BD =AB =5,设BF =x ,则DF =5-x ,∴AD 2-DF 2=AB 2-BF 2,∴62-(5-x)2=52-x 2,∴x =75,∴AF =AB 2-BF 2=245,∴AC =2AF =48525.(1)①∵四边形ABCD 是平行四边形,∠ADC =90°,∴∠ABC =90°,AB ∥DC ,AD ∥BC ,∴∠F =∠FDC ,∠BEF =∠ADF ,∵DF 是∠ADC 的平分线,∴∠ADF =∠FDC ,∴∠F =∠BEF ,∴BE =BF ②△AGC 是等腰直角三角形.理由:连结BG ,由①知,BE =BF ,∠FBC =90°,∴∠F =∠BEF =45°,∵G 是EF 的中点,∴BG =FG ,∠F =∠CBG =45°,∵∠FAD =90°,∴AF =AD ,又∵AD =BC ,∴AF =BC ,∴△AFG ≌△CBG(SAS),∴AG =CG ,∠FAG =∠BCG ,又∵∠FAG +∠GAC +∠ACB =90°,∴∠BCG +∠GAC +∠ACB =90°,即∠GAC +∠ACG =90°,∴∠AGC =90°,∴△AGC 是等腰直角三角形 (2)连结BG ,∵FB 绕点F 顺时针旋转60°至FG ,∴△BFG 是等边三角形,∴FG =BG ,∠FBG =60°,又∵四边形ABCD 是平行四边形,∠ADC =60°,∴∠ABC =∠ADC =60°,∴∠CBG =180°-∠FBG -∠ABC =180°-60°-60°=60°,∴∠AFG =∠CBG ,∵DF 是∠ADC 的平分线,∴∠ADF =∠FDC ,∵AB ∥DC ,∴∠AFD =∠FDC ,∴∠AFD =∠ADF ,∴AF=AD =BC ,在△AFG 和△CBG 中,⎩⎨⎧FG =BG ,∠AFG =∠CBG ,AF =CB ,△AFG ≌△CBG(SAS),∴AG =CG ,∠FAG=∠BCG ,∴∠GAC +∠ACG =∠ACB +∠BCG +∠GAC =∠ACB +∠BAG +∠GAC =∠ACB +∠BAC =180°-60°=120°,∴∠AGC =180°-(∠GAC +∠ACG)=180°-120°=60°,∴△AGC 是等边三角形第19章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)(每小题都给出A ,B ,C ,D 四个选项,其中只有一个是正确的)1.菱形具有而矩形不一定具有的性质是( ) A .对角线平分一组对角 B .对角线互相平分 C .对角相等 D .对边平行且相等2.如图,矩形的两条对角线的一个交角为60°,两条对角线的长度的和为20 cm ,则这个矩形的一条较短边的长度为( )A .10 cmB .8 cmC .6 cmD .5 cm,第2题图) ,第3题图) ,第4题图) ,第5题图)3.如图,菱形ABCD 的周长是20,对角线AC ,BD 相交于点O.若BD =6,则菱形ABCD 的面积是( )A .6B .12C .24D .484.如图,将矩形纸片ABCD 沿其对角线AC 折叠,使点B 落到点B ′的位置,AB ′与CD 相交于点E ,若AB =8,AD =3,则图中阴影部分的周长为( )A .11B .16C .19D .225.如图,点P 是正方形ABCD 对角线BD 上一点,且BP =BC ,则∠ACP 度数是( ) A .45° B .22.5° C .67.5° D .75° 6.如图,点E 、F 分别是菱形ABCD 的边BC 、CD 上的点,且∠EAF =∠D =60°,∠FAD =45°,则∠CFE 的度数为( )A .30°B .45°C .60°D .75°7.如图,在△ABC 中,AC 的垂直平分线交AC ,AB 于点D ,F ,BE ⊥DF 交DF 延长线于点E ,若AC =23,BC =2,AF =BF ,则四边形BCDE 的面积是( )A .2 3B .2 2C .3 3D .3 2,第6题图) ,第7题图) ,第8题图) ,第9题图)8.如图,在△ABC 中,点E ,D ,F 分别在边AB ,BC ,CA 上,且DE ∥CA ,DF ∥BA ,下列四个判断中,不正确的是( )A .四边形AEDF 是平行四边形B .如果∠BAC =90°,那么四边形AEDF 是矩形 C .如果AD 平分∠BAC ,那么四边形AEDF 是菱形 D .如果AD ⊥BC ,那么四边形AEDF 是菱形9.如图,边长为2的正方形ABCD 的顶点A 在y 轴上,顶点D 在反比例函数y =kx (x >0)的图象上,已知点B 的坐标是(65,115),则k 的值为( )A .4B .6C .8D .1010.如图,在矩形ABCD 中,点E 是AD 的中点,∠EBC 的平分线交CD 于点F.将△DEF 沿EF折叠,点D恰好落在BE上的M点处,延长BC,EF交于点N,有下列四个结论:①DF=CF;②BF ⊥EN;③△BEN是等边三角形;④S△BEF=3S△DEF.其中,正确的结论有()A.1个B.2个C.3个D.4个,第10题图),第11题图),第13题图),第14题图)二、填空题(每小题3分,共24分)11.如图,在矩形ABCD中,对角线AC,BD交于点O,要使矩形ABCD成为正方形,应添加的一个条件是________(答案不唯一).12.已知一个菱形的边长为2,较长的对角线长为23,则这个菱形的面积是________.13.如图,在矩形ABCD中,AB=3,BC=4,则图中五个小矩形的周长之和为________.14.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,则点C的坐标是________.15.矩形ABCD与CEFG按如图放置,点B,C,E共线,点C,D,G共线,连结AF,取AF的中点H,连结GH.若BC=EF=2,CD=CE=1,则GH=________.16.如图,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F,且AD交EF 于O,则∠AOF=________度.,第15题图),第16题图),第17题图),第18题图)17.如图,边长为4的正方形ABCD,点P是对角线BD上一动点,点E在边CD上,EC=1,则PC+PE的最小值是________.18.如图,在矩形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连结PE、PF、PG、PH,则△PEF 和△PGH的面积和等于________.三、解答题(共66分)19.(8分)如图,矩形ABCD中,AE⊥BD,垂足为E,∠BAE∶∠DAE=1∶3,求∠BAE,∠DAE 的度数.20.(8分)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是________.21.(8分)如图,点E是正方形ABCD内一点,△CDE是等边三角形,连结EB,EA,延长BE交边AD于点F.(1)求证:△ADE≌△BCE;(2)求∠AFB的度数.22.(10分)如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=BE.(1)求证:四边形BECF是菱形;(2)当∠A的大小满足什么条件时,菱形BECF是正方形?回答并证明你的结论.23.(10分)如图,点M是矩形ABCD的边AD的中点,点P是BC边上的一个动点,PE⊥CM,PF ⊥BM,垂足分别为E,F.(1)当矩形的长与宽满足什么条件时,四边形PEMF为矩形?猜想并证明;(2)在(1)的条件下,当点P运动到什么位置时,矩形PEMF变为正方形,并证明.24.(10分)如图,在正方形ABCD中,点E,F分别在边AB,BC上,∠ADE=∠CDF.(1)求证:AE=CF;(2)连结DB交EF于点O,延长OB至点G,使OG=OD,连结EG,FG,判断四边形DEGF是否是菱形,并说明理由.25.(12分)四边形ABCD是正方形,AC与BD相交于点O,点E,F是直线AD上两动点,且AE =DF,CF所在直线与对角线BD所在直线交于点G,连结AG,直线AG交BE于点H.(1)如图①,当点E,F在线段AD上时,①求证:∠DAG=∠DCG;②猜想AG与BE的位置关系,并加以证明;(2)如图②,在(1)条件下,连结HO,试说明HO平分∠BHG;(3)当点E,F运动到如图③所示的位置时,其他条件不变,请将图形补充完整,并直接写出∠BHO 的度数.第19章检测题1.A 2.D 3.C 4.D 5.B 6.B 7.A 8.D 9.C 10.C [点拨]①②④正确 11.AB =BC(答案不唯一) 12.23 13.14 14.(-5,4) 15.2216.90° 17.5 18.7 19.设∠BAE =x °,则∠DAE =3x °,由题意,得x +3x =90,解得x =22.5.∴∠BAE =22.5°,∠DAE =67.5° 20.(1)证明:∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠COD =90.∵CE ∥OD ,DE ∥OC ,∴四边形OCED 是平行四边形,∴平行四边形OCED 是矩形 (2)421.(1)证明:∵ABCD 是正方形,∴AD =BC ,∠ADC =∠BCD =90°.又∵三角形CDE 是等边三角形,∴DE =CE ,∠EDC =∠ECD =60°,∴∠ADE =∠BCE ,∴△ADE ≌△BCE(SAS) (2)∵△CDE 是等边三角形,∴CE =CD =DE.∵四边形ABCD 是正方形,∴CD =BC ,∴CE =BC ,∴△CBE 为等腰三角形,且顶角∠ECB =90°-60°=30°,∴∠EBC =12(180°-30°)=75°.∵AD ∥BC ,∴∠AFB=∠EBC =75°22.(1)证明:∵EF 垂直平分BC ,∴BE =EC ,BF =CF.∵CF =BE ,∴BE =EC =CF =BF ,∴四边形BECF 是菱形 (2)当∠A =45°时,菱形BECF 是正方形.∵∠A =45°,∠ACB =90°,∴∠EBC =45°,∴∠EBF =2∠EBC =2×45°=90°,∴菱形BECF 是正方形 23.(1)当矩形的长AD =2AB 时,四边形PEMF 为矩形.证明如下:∵四边形ABCD 是矩形,∴AD =BC ,AB =CD ,∠A =∠D =90°.∵AD =2AB ,M 是AD 的中点,∴AB =AM =DM =CD ,∴△ABM 和△DCM 是等腰直角三角形,且BM =CM ,∴∠AMB =∠DMC =45°,∴∠BMC =90°.∵PE ⊥CM ,PF ⊥BM ,∴∠PFM =∠PEM =90°,∴四边形PEMF 为矩形 (2)当点P 运动到BC 的中点时,矩形PEMF 变为正方形.证明如下:由(1)知∠AMB =∠DMC =45°,∴∠PBF =90°-∠ABM =45°,∠PCE =90°-∠DCM =45°,又∵∠PFB =∠PEC =90°,PB =PC ,∴△BPF ≌△CPE(AAS),∴PE =PF ,∴矩形PEMF 为正方形24.(1)易证△ADE ≌△CDF(ASA),∴AE =CF (2)四边形DEGF 是菱形.理由:在正方形ABCD 中,AB =BC ,∵AE =CF ,∴AB -AE =BC -CF ,即BE =BF ,∵△ADE ≌△CDF(SAS),∴DE =DF ,∴BD 垂直平分EF ,又∵OG =OD ,∴四边形DEGF 是菱形25.(1)①易证△ADG ≌△CDG(SAS),∴∠DAG =∠DCG ②AG ⊥BE.理由:∵四边形ABCD 为正方形,∴AB =DC ,∠BAD =∠CDA =90°,在△ABE 和△DCF 中,⎩⎨⎧AB =DC ,∠BAE =∠CDF ,AE =DF ,∴△ABE≌△DCF(SAS),∴∠ABE =∠DCF ,∵∠DAG =∠DCG ,∴∠DAG =∠ABE ,∵∠DAG +∠BAG =90°,∴∠ABE +∠BAG =90°,∴∠AHB =90°,∴AG ⊥BE(2)由(1)可知AG ⊥BE.如答图①所示,过点O 作OM ⊥BE 于点M ,ON ⊥AG 于点N ,则四边形OMHN 为矩形.∴∠MON =90°,∠ANO =∠BMO =90°.又∵OA ⊥OB ,∴∠AON =∠BOM.在△AON 与△BOM 中,⎩⎨⎧∠ANO =∠BMO ,OA =OB ,∠AON =∠BOM ,∴△AON ≌△BOM(ASA).∴OM =ON ,∴矩形OMHN 为正方形,∴HO 平分∠BHG (3)将图形补充完整,如答图②所示,∠BHO =45°.与(1)同理,可以证明AG ⊥BE.过点O作OM⊥BE于点M,ON⊥AG于点N,与(2)同理,可以证明△AON≌△BOM,可得OMHN为正方形,所以HO平分∠BHG,∴∠BHO=45°第20章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)(每小题都给出A,B,C,D四个选项,其中只有一个是正确的)1.一组数据2A.2 B.4 C.6 D.82.一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如下表:A.平均数B.中位数C.众数D.方差3.某超市对员工进行三项测试:电脑、语言、商品知识,并将三项测试得分按5∶3∶2的比例确定测试总分,已知某员工三项得分分别为80,70,75,则这位超市员工的总分为() A.78 B.76 C.77 D.794.某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:则这些学生年龄的众数和中位数分别是()A.16,15 B.16,14 C.15,15 D.14,155.已知一组数据:1,2,3,x,5,它们的平均数是3,则这一组数据的方差为()A.1 B.2 C.3 D.46.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3% C.平均数是15.98% D.方差是07.若一组数据:1,2,x,4,5的众数为5,则这组数据的中位数是()A.1 B.2 C.4 D.58.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁9.如图是在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图,对于本次训练,有如下结论:①s2甲>s2乙;②s2甲<s2乙;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定,由统计图可知正确的结论是()A.①③B.①④C.②③D.②④,第9题图),第10题图)10.对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分、2分、3分、4分4个等级,将调查结果绘制成如图的条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是() A.2.25 B.2.5 C.2.95 D.3二、填空题(每小题3分,共24分)11.某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数是________.12.若李老师六个月的手机上网流量(单位:M)分别为526,600,874,480,620,500,则李老师这六个月平均每个月的手机上网流量为________M.13.在“中国梦·我的梦”演讲比赛中,将5个评委对某选手打分情况绘成如图的统计图,则该选手得分的中位数是________分.14.某校组织八年级三个班学生参加数学竞赛,竞赛结果三个班总平均分为72.5,已知一班参赛人数30人,平均分75分,二班参赛人数30人,平均分为80分,三班参赛人数40人,则三班的平均分为__________.15.小米的爸爸为了了解她的数学成绩情况,现随机抽取他的三次数学考试成绩,分别是87,93,90,则这三次数学成绩的方差是________.16.某班的中考英语口语考试成绩如表:17.一组数据3,4,9,x的平均数比它的唯一众数大1,则x=________.18.五个正整数从小到大排列,若这组数据的中位数是4,唯一众数是5,则这五个正整数的和最小为________.三、解答题(共66分)19.(8分)某同学参加了学校举行的“五好小公民·红旗飘飘”演讲比赛,7名评委给该同学的打分(单位:分)情况如下表:。

2020年华师大新版数学下册八年级《第18章 平行四边形》单元综合评价试卷含解析

2020年华师大新版数学下册八年级《第18章 平行四边形》单元综合评价试卷含解析

2020年华师大新版数学下册八年级《第18章平行四边形》单元综合评价试卷含解析姓名座号题号一二三总分得分考后反思(我思我进步):一.选择题(共12小题)1.▱ABCD中,∠A:∠B:∠C:∠D可以为()A.1:2:3:4B.1:2:2:1C.2:2:1:1D.2:1:2:1 2.在▱ABCD中,∠A=50°,则∠C为()A.40°B.50°C.130°D.无法确定3.如图,O为▱ABCD两对角线的交点,图中全等的三角形有()A.1对B.2对C.3对D.4对4.如图,▱ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD交BC于点E,若△CDE的周长为10,则▱ABCD的周长为()A.14B.16C.20D.185.如图,四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB∥DC,AD=BC6.下列条件中,不能判定四边形ABCD是平行四边形的是()A.AB=CD,AD=BC B.AB∥CD,∠B=∠DC.AB∥CD,AD=BC D.AB∥CD,AB=CD7.已知四边形ABCD的对角线AC、BD相交于点O,给出下列5个条件:①AB∥CD;②OA =OC;③AB=CD;④∠BAD=∠DCB;⑤AD∥BC,从以上5个条件中任选2个条件为一组,能判定四边形ABCD是平行四边形的有()组.A.4B.5C.6D.78.如图,四边形ABCD的对角线AC,BD相交于点O,且AB∥CD,添加下列条件后仍不能判断四边形ABCD是平行四边形的是()A.AB=CD B.AD∥BC C.OA=OC D.AD=BC9.如图,在▱ABCD中,点E、F分别在边AB和CD上,下列条件不能判定四边形DEBF 一定是平行四边形的是()A.AE=CF B.DE=BF C.∠ADE=∠CBF D.∠AED=∠CFB 10.在▱ABCD中,E、F分别在BC、AD上,若想要使四边形AFCE为平行四边形,需添加一个条件,这个条件不可以是()A .AF =CEB .AE =CFC .∠BAE =∠FCD D .∠BEA =∠FCE11.如图,已知△ABC 是边长为3的等边三角形,点D 是边BC 上的一点,且BD =1,以AD 为边作等边△ADE ,过点E 作EF ∥BC ,交AC 于点F ,连接BF ,则下列结论中①△ABD ≌△BCF ;②四边形BDEF 是平行四边形;③S 四边形BDEF =;④S △AEF =.其中正确的有( )A .1个B .2个C .3个D .4个12.▱ABCD 中,E ,F 是对角线BD 上不同的两点.下列条件中,不能得出四边形AECF 一定为平行四边形的是( ) A .BE =DFB .AE =CFC .AF ∥CED .∠BAE =∠DCF二.填空题(共8小题)13.如图,▱ABCD 中,点E 是AD 边的中点,BE 交对角线AC 于点F ,若AF =2,则对角线AC 长为 .14.如图,在▱ABCD 中,AB =6,AD =8,∠B =60°,∠BAD 与∠CDA 的角平分线AE 、DF 相交于点G ,且交BC 于点E 、F ,则图中阴影部分的面积是 .15.平行四边形ABCD中,∠A比∠B小20°,那么∠C=.16.如图,点D是直线l外一点,在l上取两点A,B,连接AD,分别以点B,D为圆心,AD,AB的长为半径画弧,两弧交于点C,连接CD,BC,则四边形ABCD是平行四边形,理由是.17.若O是四边形ABCD的对角线AC和BD的交点,且OB=OD,AC=14cm,则当OA =cm时,四边形ABCD是平行四边形.18.下列命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线互相平分的四边形是平行四边形;③在四边形ABCD中,AB=AD,BC=DC,那么这个四边形ABCD是平行四边形;④一组对边相等,一组对角相等的四边形是平行四边形.其中正确的命题是(将命题的序号填上即可).19.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有次.20.如图,分别以Rt△ABC的斜边AB、直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为平行四边形;③AD=4AG;④△DBF≌△EFA.其中正确结论的序号是.三.解答题(共8小题)21.如图,在▱ABCD中,点E、F分别是AD、BC的中点,分别连接BE、DF、BD.(1)求证:△AEB≌△CFD;(2)若四边形EBFD是菱形,求∠ABD的度数.22.如图,在平行四边形ABCD中,E、F分别是BC、AD上的点,且BE=DF.求证:AE =CF.23.已知:如图,点E,F分别为▱ABCD的边BC,AD上的点,且∠1=∠2.求证:AE=CF.24.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4;(1)求证:四边形ACED是平行四边形(2)求四边形ACEB的周长.25.如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF,以AD为边作等边△ADE.(1)求证:△ACD≌△CBF;(2)点D在线段BC上何处时,四边形CDEF是平行四边形且∠DEF=30°.26.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.27.如图,在平行四边形ABCD中,点E、F分别是AD、BC的中点.求证:AF=CE.28.如图,已知E、F是平行四边形ABCD对角线AC上的两点,并且AE=CF.请说明四边形BFDE是平行四边形.2020年华师大新版数学下册八年级《第18章平行四边形》单元测试卷参考答案与试题解析一.选择题(共12小题)1.▱ABCD中,∠A:∠B:∠C:∠D可以为()A.1:2:3:4B.1:2:2:1C.2:2:1:1D.2:1:2:1【分析】根据平行四边形对角相等可得答案.【解答】解:∵平行四边形对角相等,∴对角的比值数应该相等,其中A,B,C都不满足,只有D满足.故选:D.【点评】此题主要考查了平行四边形的性质.其性质:平行四边形的两组对角分别相等.2.在▱ABCD中,∠A=50°,则∠C为()A.40°B.50°C.130°D.无法确定【分析】由平行四边形的性质:对角相等,得出∠C=∠A.【解答】解:∵四边形ABCD是平行四边形,∴∠C=∠A=50°.故选:B.【点评】此题考查的是平行四边形的性质,运用其对角相等求解.3.如图,O为▱ABCD两对角线的交点,图中全等的三角形有()A.1对B.2对C.3对D.4对【分析】由四边形ABCD是平行四边形,可得AD=BC,AB=CD,OA=OC,OB=OD,∠ABC=∠ADC,即可证得△ABC≌△CDA(SAS),△ABD≌△CDB;△AOD≌△COB (SAS),△AOB≌△COD.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,OA=OC,OB=OD,∠ABC=∠ADC,在△ABC和△CDA中,,∴△ABC≌△CDA(SAS),同理:△ABD≌△CDB;在△AOD和△COB中,,∴△AOD≌△COB(SAS),同理:△AOB≌△COD.故选:D.【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.4.如图,▱ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD交BC于点E,若△CDE的周长为10,则▱ABCD的周长为()A.14B.16C.20D.18【分析】由平行四边形的性质得出AB=CD,BC=AD,OB=OD,再根据线段垂直平分线的性质得出BE=DE,由△CDE的周长得出BC+CD=6cm,即可求出平行四边形ABCD 的周长.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,OB=OD,∵OE⊥BD,∴BE=DE,∵△CDE的周长为10,∴DE+CE+CD=BE+CE+CD=BC+CD=10,∴平行四边形ABCD的周长=2(BC+CD)=20;故选:C.【点评】本题考查了平行四边形的性质、线段垂直平分线的性质以及三角形、平行四边形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.5.如图,四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB∥DC,AD=BC【分析】根据平行四边形判定定理进行判断.【解答】解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;故选:D.【点评】此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定定理.6.下列条件中,不能判定四边形ABCD是平行四边形的是()A.AB=CD,AD=BC B.AB∥CD,∠B=∠DC.AB∥CD,AD=BC D.AB∥CD,AB=CD【分析】根据平行四边形的判断方法一一判断即可解决问题.【解答】解:A、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,故A可以判断四边形ABCD是平行四边形;B、∵AB∥CD,∴∠B+∠C=180°,∵∠B=∠D,∴∠D+∠C=180°,∴AC∥BD,∴四边形ABCD是平行四边形,故B可以判断四边形ABCD是平行四边形;C、∵AB∥CD,AD=BC,∴四边形ABCD可能是平行四边形,有可能是等腰梯形.故C不可以判断四边形ABCD是平行四边形D、∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,故D可以判断四边形ABCD是平行四边形;故选:C.【点评】本题考查平行四边形的判断、解题的关键是记住平行四边形的判定方法:两组对边分别平行的四边形是平行四边形.两组对边分别相等的四边形是平行四边形.一组对边平行且相等的四边形是平行四边形.两组对角分别相等的四边形是平行四边形.对角线互相平分的四边形是平行四边形.属于中考常考题型.7.已知四边形ABCD的对角线AC、BD相交于点O,给出下列5个条件:①AB∥CD;②OA =OC;③AB=CD;④∠BAD=∠DCB;⑤AD∥BC,从以上5个条件中任选2个条件为一组,能判定四边形ABCD是平行四边形的有()组.A.4B.5C.6D.7【分析】根据平行四边形的判定进行选择即可.【解答】解:①与⑤根据两组对边分别平行的四边形是平行四边形,能推出四边形ABCD 为平行四边形;①与③根据一组对边平行且相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与④,⑤与④根据两组对角分别相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与②,②与⑤根据对角线互相平分的四边形是平行四边形,能推出四边形ABCD为平行四边形.所以能推出四边形ABCD为平行四边形的有6组.故选:C.【点评】本题考查了平行四边形的判定,熟练掌握判定定理是解题的关键.8.如图,四边形ABCD的对角线AC,BD相交于点O,且AB∥CD,添加下列条件后仍不能判断四边形ABCD是平行四边形的是()A.AB=CD B.AD∥BC C.OA=OC D.AD=BC【分析】A、由“一组对边平行且相等的四边形是平行四边形”可得出四边形ABCD是平行四边形;B、由“两组对边分别平行的四边形是平行四边形”可得出四边形ABCD是平行四边形;C、由AB∥CD可得出∠BAO=∠DCO、∠ABO=∠CDO,结合OA=OC可证出△ABO≌△CDO(AAS),根据全等三角形的性质可得出AB=CD,由“一组对边平行且相等的四边形是平行四边形”可得出四边形ABCD是平行四边形;D、由AB∥CD、AD=BC无法证出四边形ABCD是平行四边形.此题得解.【解答】解:A、∵AB∥CD、AB=CD,∴四边形ABCD是平行四边形;B、∵AB∥CD、AD∥BC,∴四边形ABCD是平行四边形;C、∵AB∥CD,∴∠BAO=∠DCO,∠ABO=∠CDO.在△ABO和△CDO中,,∴△ABO≌△CDO(AAS),∴AB=CD,∴四边形ABCD是平行四边形;D、由AB∥CD、AD=BC无法证出四边形ABCD是平行四边形.故选:D.【点评】本题考查了平行四边形的判定以及全等三角形的判定与性质,逐一分析四个选项给定条件能否证明四边形ABCD是平行四边形是解题的关键.9.如图,在▱ABCD中,点E、F分别在边AB和CD上,下列条件不能判定四边形DEBF 一定是平行四边形的是()A.AE=CF B.DE=BF C.∠ADE=∠CBF D.∠AED=∠CFB 【分析】根据平行四边形的判断方法一一判断即可;【解答】解:A、由AE=CF,可以推出DF=EB,DF∥EB,四边形DEBF是平行四边形;B、由DE=BF,不能推出四边形DEBF是平行四边形,有可能是等腰梯形;C、由∠ADE=∠CBF,可以推出△ADE≌△CBF,推出DF=EB,DF∥EB,四边形DEBF是平行四边形;D、由∠AED=∠CFB,可以推出△ADE≌△CBF,推出DF=EB,DF∥EB,四边形DEBF是平行四边形;故选:B.【点评】本题考查平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.在▱ABCD中,E、F分别在BC、AD上,若想要使四边形AFCE为平行四边形,需添加一个条件,这个条件不可以是()A .AF =CEB .AE =CFC .∠BAE =∠FCD D .∠BEA =∠FCE【分析】根据平行四边形的性质和判定即可解决问题.【解答】解:A 、错误.∵四边形ABCD 是平行四边形,∴AF ∥EC ,∵AF =EC ,∴四边形AECF 是平行四边形.∴选项A 错误.B 、正确.根据AE =CF ,所以四边形AECF 可能是平行四边形,有可能是等腰梯形,故选项B 正确.C 、错误.由∠BAE =∠FCD ,∠B =∠D ,AB =CD 可以推出△ABE ≌△CDF , ∴BE =DF ,∵AD =BC ,∴AF =EC ,∵AF ∥EC ,∴四边形AECF 是平行四边形.故选项C 错误.D 、错误.∵∠BEA =∠FCE ,∴AE ∥CF ,∵AF ∥EC ,∴四边形AECF 是平行四边形.故选项D 错误.故选:B .【点评】此题考查了平行四边形的性质与判定.解题的关键是选择适宜的证明方法,需要熟练掌握平行四边形的判定方法,属于中考常考题型.11.如图,已知△ABC 是边长为3的等边三角形,点D 是边BC 上的一点,且BD =1,以AD 为边作等边△ADE ,过点E 作EF ∥BC ,交AC 于点F ,连接BF ,则下列结论中①△ABD ≌△BCF ;②四边形BDEF 是平行四边形;③S 四边形BDEF =;④S △AEF =.其中正确的有( )A .1个B .2个C .3个D .4个【分析】连接EC ,作CH ⊥EF 于H .首先证明△BAD ≌△CAE ,再证明△EFC 是等边三角形即可解决问题;【解答】解:连接EC ,作CH ⊥EF 于H .∵△ABC ,△ADE 都是等边三角形,∴AB =AC ,AD =AE ,∠BAC =∠DAE =∠ABC =∠ACB =60°,∴∠BAD =∠CAE ,∴△BAD ≌△CAE ,∴BD =EC =1,∠ACE =∠ABD =60°,∵EF ∥BC ,∴∠EFC =∠ACB =60°,∴△EFC 是等边三角形,CH =,∴EF =EC =BD ,∵EF ∥BD ,∴四边形BDEF 是平行四边形,故②正确,∵BD =CF =1,BA =BC ,∠ABD =∠BCF ,∴△ABD ≌△BCF ,故①正确,∵S 平行四边形BDEF =BD •CH =, 故③正确,S △AEF =S △AEC =•S △ABD =故④错误,故选:C .【点评】本题考查平行四边形的性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是准确寻找全等三角形解决问题,属于中考选择题中的压轴题.12.▱ABCD中,E,F是对角线BD上不同的两点.下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF 【分析】连接AC与BD相交于O,根据平行四边形的对角线互相平分可得OA=OC,OB=OD,再根据对角线互相平分的四边形是平行四边形,只要证明得到OE=OF即可,然后根据各选项的条件分析判断即可得解.【解答】解:如图,连接AC与BD相交于O,在▱ABCD中,OA=OC,OB=OD,要使四边形AECF为平行四边形,只需证明得到OE=OF即可;A、若BE=DF,则OB﹣BE=OD﹣DF,即OE=OF,故本选项不符合题意;B、若AE=CF,则无法判断OE=OF,故本选项符合题意;C、AF∥CE能够利用“角角边”证明△AOF和△COE全等,从而得到OE=OF,故本选项不符合题意;D、∠BAE=∠DCF能够利用“角角边”证明△ABE和△CDF全等,从而得到DF=BE,然后同A,故本选项不符合题意;故选:B.【点评】本题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定方法是解题的关键.二.填空题(共8小题)13.如图,▱ABCD中,点E是AD边的中点,BE交对角线AC于点F,若AF=2,则对角线AC长为6.【分析】由四边形ABCD是平行四边形,可得AD∥BC,即可证得:△AEF∽△CBF;由平行四边形ABCD中,E是AD的中点,易得AE:CB=1:2,又由相似三角形的对应边成比例,即可得A:CF=1:2,继而求得答案.【解答】证明:∵四边形ABCD是平行四边形,AD=BC,∴AD∥BC,∴△AEF∽△CBF.∵E是A的中点,∴AE=AD=BC,∴==∵AF=2,∴CF=4.∴AC=AF+CF=6.故答案是:6.【点评】此题考查了相似三角形的判定与性质以及平行四边形的性质.此题难度适中,注意掌握数形结合思想与方程思想的应用.14.如图,在▱ABCD中,AB=6,AD=8,∠B=60°,∠BAD与∠CDA的角平分线AE、DF相交于点G,且交BC于点E、F,则图中阴影部分的面积是14.【分析】首先过G 作GH ⊥AD 于点H ,反向延长,交BC 于点I ,则HI 是平行四边形的高,求得平行四边形的面积,然后根据平行线的性质,以及角平分线的定义证得∠BAE =∠AEB ,则BE =AB ,同理求得CF 的长,则EF 即可求得,根据△ADG ∽△EFG ,相似三角形对应边上的高的比等于相似比,即可求得HG 和GI ,求得△ADG 和△EFG 的面积,根据S 阴影=S 平行四边形ABCD ﹣S △ADG ﹣S △EFG 求解.【解答】解:过G 作GH ⊥AD 于点H ,反向延长,交BC 于点I .则HI =AB •sin B =6×=3,S 平行四边形ABCD =8×3=24.∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DAE =∠AEB ,又∵∠DAE =∠BAE ,∴∠BAE =∠AEB ,∴BE =AB =6,同理,CF =CD =AB =6,∴EF =BE +CF ﹣BC =6+6﹣8=4,∵AD ∥BC ,∴△ADG ∽△EFG ,∴===2,∴HG =2,GI =,则S △ADG =AD •HG =×8×2=8, S △EFG =EF •GI =×4×=2,∴S 阴影=S 平行四边形ABCD ﹣S △ADG ﹣S △EFG =24﹣8﹣2=14. 故答案是:14.【点评】本题考查了平行线的性质,等腰三角形的判定方法,等角对等边,以及相似三角形的判定与性质,求得HG和GI的长是关键.15.平行四边形ABCD中,∠A比∠B小20°,那么∠C=80°.【分析】根据平行四边形的性质分别求出∠A和∠B的度数,然后根据平行四边形对角相等的性质可得∠C=∠A,即可求解.【解答】解:∵四边形ABCD为平行四边形,∴,解得:,∴∠C=∠A=80°.故答案为:80°.【点评】本题考查了平行四边形对边平行的性质,得到邻角互补的结论,这是运用定义求四边形内角度数的常用方法.16.如图,点D是直线l外一点,在l上取两点A,B,连接AD,分别以点B,D为圆心,AD,AB的长为半径画弧,两弧交于点C,连接CD,BC,则四边形ABCD是平行四边形,理由是两组对边分别相等的四边形是平行四边形.【分析】先根据分别以点B,D为圆心,AD,AB的长为半径画弧,两弧交于点C,连接CD,BC,得出AB=DC,AD=BC,再判断四边形ABCD是平行四边形的依据.【解答】解:根据尺规作图的画法可得,AB=DC,AD=BC,∴四边形ABCD是平行四边形,故答案为:两组对边分别相等的四边形是平行四边形.【点评】本题主要考查了平行四边形的判定,解题时注意:两组对边分别相等的四边形是平行四边形.符号语言为:∵AB=DC,AD=BC,∴四边行ABCD是平行四边形.17.若O是四边形ABCD的对角线AC和BD的交点,且OB=OD,AC=14cm,则当OA =7cm时,四边形ABCD是平行四边形.【分析】根据OA求出OC,得出OA=OC,平行四边形的判定定理根据得出平行四边形ABCD,即可得出答案.【解答】解:由题意得:当OA=7时,OC=14﹣7=7=OA,∵OB=OD时,∴四边形ABCD是平行四边形,故答案为:7.【点评】本题考查平行四边形的判定,解题关键是熟练掌握平行四边形的判定定理:对角线互相平分的四边形是平行四边形,难度一般.18.下列命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线互相平分的四边形是平行四边形;③在四边形ABCD中,AB=AD,BC=DC,那么这个四边形ABCD是平行四边形;④一组对边相等,一组对角相等的四边形是平行四边形.其中正确的命题是②(将命题的序号填上即可).【分析】根据平行四边形的判定定理进行判断.定理:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组邻角分别相等的四边形可能为梯形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【解答】解:①一组对边平行,另一组对边相等的四边形不一定是平行四边形,等腰梯形也满足该条件.故①错误;②对角线互相平分的四边形是平行四边形.故②正确;③在四边形ABCD中,AB=AD,BC=DC,那么这个四边形ABCD不一定是平行四边形,筝形也满足该条件.故③错误;④一组对边相等,一组对角相等的四边形不能证明另一组对边也相等或平行.故④错误;故填:②.【点评】此题主要考查了平行四边形的判定.在判定平行四边形时,应仔细观察题目所给的条件,推导分析,看是否符合平行四边形的判定定理.19.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有3次.【分析】首先设经过t秒,根据平行四边形的判定可得当DP=BQ时,以点P、D、Q、B为顶点组成平行四边形,然后分情况讨论,再列出方程,求出方程的解即可.【解答】解:设经过t秒,以点P、D、Q、B为顶点组成平行四边形,∵以点P、D、Q、B为顶点组成平行四边形,∴DP=BQ,分为以下情况:①点Q的运动路线是C﹣B,方程为12﹣4t=12﹣t,此时方程t=0,此时不符合题意;②点Q的运动路线是C﹣B﹣C,方程为4t﹣12=12﹣t,解得:t=4.8;③点Q的运动路线是C﹣B﹣C﹣B,方程为12﹣(4t﹣24)=12﹣t,解得:t=8;④点Q的运动路线是C﹣B﹣C﹣B﹣C,方程为4t﹣36=12﹣t,解得:t=9.6;⑤点Q的运动路线是C﹣B﹣C﹣B﹣C﹣B,方程为12﹣(4t﹣48)=12﹣t,解得:t=16,此时P点走的路程为16>AD,此时不符合题意.∴共3次.故答案为:3.【点评】此题考查了平行四边形的判定.注意能求出符合条件的所有情况是解此题的关键,注意掌握分类讨论思想的应用.20.如图,分别以Rt△ABC的斜边AB、直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为平行四边形;③AD=4AG;④△DBF≌△EFA.其中正确结论的序号是①②③④.【分析】根据已知先判断△ABC≌△EFA,则∠AEF=∠BAC,得出EF⊥AC,由等边三角形的性质得出∠BDF=30°,从而证得△DBF≌△EFA,则AE=DF,再由FE=AB,得出四边形ADFE为平行四边形,根据平行四边形的性质得出AD=4AG,从而得到答案.【解答】解:∵△ACE是等边三角形,∴∠EAC=60°,AE=AC,∵∠BAC=30°,∴∠FAE=∠ACB=90°,AB=2BC,∵F为AB的中点,∴AB=2AF,∴BC=AF,∴△ABC≌△EFA,∴FE=AB,∴∠AEF=∠BAC=30°,∴EF⊥AC,故①正确,(含①的只有B和D,它们的区别在于有没有④.它们都是含30°的直角三角形,并且斜边是相等的),∵AD=BD,BF=AF,∴∠DFB=90°,∠BDF=30°,∵∠FAE=∠BAC+∠CAE=90°,∴∠DFB=∠EAF,∵EF⊥AC,∴∠AEF=30°,∴∠BDF=∠AEF,∴△DBF≌△EFA(AAS),故④正确.∴AE=DF,∵FE=AB,∴四边形ADFE为平行四边形,故②正确;∴AG=AF,∴AG=AB,∵AD=AB,则AD=AG,故③,故答案为①②③④.【点评】本题考查了平行四边形的判定和性质,以及全等三角形的判定和性质,解决本题需先根据已知条件先判断出一对全等三角形,然后按排除法来进行选择.三.解答题(共8小题)21.如图,在▱ABCD中,点E、F分别是AD、BC的中点,分别连接BE、DF、BD.(1)求证:△AEB≌△CFD;(2)若四边形EBFD是菱形,求∠ABD的度数.【分析】(1)根据平行四边形的性质和已知条件证明即可;(2)由菱形的性质可得:BE=DE,因为∠EBD+∠EDB+∠A+∠ABE=180°,所以∠ABD =∠ABE+∠EBD=×180°=90°,问题得解.【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AD=BC,AB=CD.∵点E、F分别是AD、BC的中点,∴AE=AD,FC=BC.∴AE=CF.在△AEB与△CFD中,,∴△AEB≌△CFD(SAS).(2)解:∵四边形EBFD是菱形,∴BE=DE.∴∠EBD=∠EDB.∵AE=DE,∴BE=AE.∴∠A=∠ABE.∵∠EBD+∠EDB+∠A+∠ABE=180°,∴∠ABD=∠ABE+∠EBD=×180°=90°.【点评】本题考查了平行四边形的性质、全等三角形的判定和性质以及菱形的性质、等腰三角形的判断和性质,题目的综合性较强,难度中等.22.如图,在平行四边形ABCD中,E、F分别是BC、AD上的点,且BE=DF.求证:AE =CF.【分析】由四边形ABCD是平行四边形,即可得AB=CD,AD∥BC,又由BE=DF,易证得四边形AECF是平行四边形,则可得AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∵BE=DF,∴AF=CE,∴四边形AECF是平行四边形,∴AE=CF.【点评】此题考查了平行四边形的判定与性质.此题难度不大,关键是根据平行四边形的性质解答.23.已知:如图,点E,F分别为▱ABCD的边BC,AD上的点,且∠1=∠2.求证:AE=CF.【分析】先由平行四边形的对边平行得出AD∥BC,再根据平行线的性质得到∠DAE=∠1,而∠1=∠2,于是∠DAE=∠2,根据平行线的判定得到AE∥CF,由两组对边分别平行的四边形是平行四边形得到四边形AECF是平行四边形,从而根据平行四边形的对边相等得到AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠1,∵∠1=∠2,∴∠DAE=∠2,∴AE∥CF,∵AF∥EC,∴四边形AECF是平行四边形,∴AE=CF.【点评】本题考查了平行四边形的判定与性质,平行线的判定与性质,难度适中.证明出AE∥CF是解题的关键.24.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4;(1)求证:四边形ACED是平行四边形(2)求四边形ACEB的周长.【分析】(1)先根据垂直于同一条直线的两直线平行,得AC∥DE,又CE∥AD,所以四边形ACED是平行四边形;(2)四边形ACED是平行四边形,可得DE=AC=2.由勾股定理和中线的定义可求AB和EB的长,从而求出四边形ACEB的周长.【解答】解:(1)证明:∵∠ACB=90°,DE⊥BC,∴AC∥DE又∵CE∥AD∴四边形ACED是平行四边形.(2)∵四边形ACED是平行四边形.∴DE=AC=2.在Rt△CDE中,由勾股定理得CD=.∵D是BC的中点,∴BC=2CD=4.在△ABC中,∠ACB=90°,由勾股定理得AB==2.∵D是BC的中点,DE⊥BC,∴EB=EC=4.∴四边形ACEB的周长=AC+CE+EB+BA=10+2.【点评】本题考查了平行四边形的判定与性质,勾股定理和中线的定义,注意寻找求AB 和EB的长的方法和途径是解题的关键.25.如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF,以AD为边作等边△ADE.(1)求证:△ACD≌△CBF;(2)点D在线段BC上何处时,四边形CDEF是平行四边形且∠DEF=30°.【分析】(1)在△ACD和△CBF中,根据已知条件有两边和一夹角对应相等,可根据边角边来证明全等.(2)当∠DEF=30°,即为∠DCF=30°,在△BCF中,∠CFB=90°,即F为AB的中点,又因为△ACD≌△CBF,所以点D为BC的中点.【解答】证明:(1)由△ABC为等边三角形,AC=BC,∠FBC=∠DCA,在△ACD和△CBF中,,所以△ACD≌△CBF(SAS);(2)当D在线段BC上的中点时,四边形CDEF为平行四边形,且角DEF=30度按上述条件作图,连接BE,在△AEB和△ADC中,AB=AC,∠EAB+∠BAD=∠DAC+∠BAD=60°,即∠EAB=∠DAC,AE=AD,∴△AEB≌△ADC(SAS),又∵△ACD≌△CBF,∴△AEB≌△ADC≌△CFB,∴EB=FB,∠EBA=∠ABC=60°,∴△EFB为正三角形,∴EF=FB=CD,∠EFB=60°,又∵∠ABC=60°,∴∠EFB=∠ABC=60°,∴EF∥BC,而CD在BC上,∴EF平行且相等于CD,∴四边形CDEF为平行四边形,∵D在线段BC上的中点,∴F在线段AB上的中点,∴∠FCD=×60°=30°则∠DEF=∠FCD=30°.【点评】本题考查了平行四边形的判定和三角形全等的知识,三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.26.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.【分析】(1)根据全等三角形的判定定理ASA证得△AFD≌△CEB;(2)利用(1)中的全等三角形的对应边相等得到AD=CB,则由“有一组对边相等且平行的四边形是平行四边形”证得结论.【解答】证明:(1)如图,∵AD∥BC,DF∥BE,∴∠1=∠2,∠3=∠4.又AE=CF,∴AE+EF=CF+EF,即AF=CE.在△AFD与△CEB中,,∴△AFD≌△CEB(ASA);(2)由(1)知,△AFD≌△CEB,则AD=CB.又∵AD∥BC,∴四边形ABCD是平行四边形.。

最新华师大版八年级数学下册单元测试题及答案全套

最新华师大版八年级数学下册单元测试题及答案全套

最新华师大版八年级数学下册单元测试题及答案全套第一单元测验题一、填空题(每空2分,共10分)1. 分别计算下列各商① 5.4÷4 ② 7.98 ÷ 6 ③ 12.6 ÷ 2.1 ④ 24÷0.8 ⑤ 5÷1.25答案:① 1.35 ② 1.33 ③ 6 ④ 30 ⑤ 42. 在下表中,按照最新的科技成果对计算器排序。

[ ]先进 [ ]最后进A. 通信功能键程问题B. 声音大小台数问题C. 提供的功能维护问题答案:A. 先进B. 维护问题C. 台数问题3. 在长方体 ABCDEFGH 中,AB=2,AD=3,AF=4,江明先把A点连接到线段CE 的中点 O ,再把线段AF 连接到线段DG 的中点 N ,线段 ON 的中点为 M ,求 CN 的长度。

54. 解方程...答案:5. 等边三角形的面积公式是 ______。

答案:s²√3/4二、选择题(每空3分,共15分)() 1. 能在五边形中有四个顶点共线的五边形是()A. 四边形B. 平行四边形C. 梯形D. 三角形答案:C() 2. 与已知平行线互相垂直的直线叫()A. 水平线B. 垂直线C. 交线D. 主线B() 3. 赏心悦目的图形不包括()A. 等腰梯形B. 等边三角形C. 矩形D. 正方形答案:C() 4. 十字框等腰梯形的边长比是()A. 2比 3B. 1比 3C. 1比 2D. 2比1答案:C() 5. 判断对错,标√或×()周长相等的四边形,面积相等。

()答案:×三、应用题(每题12分,共24分)1. 计算运算结果。

()1. 24 × 0.2 + 0.24 =()答案:4.8()2. (320 ×2 + 0.32)÷8 = ()答案:80.082. 解简单方程。

()2. 设 5x + 3 = 3x - 15 ,求 x 的值()答案:-9()3. 解方程:3y + 2 = 7 ,求 y 的值()答案:1四、解答题1. 简答解释如下几个概念。

新课标华师版数学八年级(下)单元测评卷答案

新课标华师版数学八年级(下)单元测评卷答案

新课标华师版数学八年级(下)单元测评卷答案卷 (五)1-7:ACBA DBB ; 8、AD =BC 或A B ∥CD ;9、122°,1.5;10、57;11、60°,120°; 12、12; 13、20°;14、12;15、4;16、68;17、9;18、∵∠D=∠DCE ,∴AD ∥BC ,又∵AD=BC ,∴四边形ABCD 是平行四边形;19、∵四边形AB CD 是平行四边形,∴AB ∥DC ,AB=CD .∵E 、F•分别是AB 、CD 的中点,∴BE=21AB ,CF =21CD ,∴BE=CF,四边形EBCF 是平行四边形,∴EF=BC. 20、提示:可证△ABE ≌△CDF ,或由DE ∥BF 且DE=BF 证四边形EBFD 是平行四边形,得到BE=DF. 21、∵四边形ABCD 是平行四边形,∴AO=CO=21AC ,OB=OD .∵BD ⊥AB ,∴在Rt △A BO 中,AB=12cm ,AO=13cm .∴BO=522=-AB AO .∴BD=2B0=10cm .22、(1)由平行四边形的性质得AB=CD ,∠ABE =∠CDF ,又BE=DF ,∴△ABE ≅△CDF(2)由(1)•可得∠AEB=∠CFD ,于是∠AED=∠CFB ,所以AE ∥CF23、证明:∵四边形ABCD 是平行四边形,∴CD=AB ,AD=CB ,∠DAB=∠BCD . 又∵△ADE 和△CBF 都是等边三角形,∴DE=BF ,AE=CF .∠DAE=∠BCF=60°. ∵∠DCF=∠BCD ﹣∠BCF ,∠BAE=∠DAB ﹣∠DAE ,∴∠DCF=∠BAE .∴△DCF ≌△BAE (SAS ).∴DF=BE .∴四边形BEDF 是平行四边形.24、设P ,Q 同时出发t 秒后四边形PDCQ 或四边形APQB 是平行四边形,根据已知得到AP=t ,PD=24﹣t ,CQ=2t ,BQ=30﹣2t .(1)若四边形PDCQ 是平行四边形,则PD=CQ ,∴24﹣t=2t ∴t=8∴8秒后四边形PDCQ 是平行四边形;(2)若四边形APQB 是平行四边形,则AP=BQ ,∴t=30﹣2t ∴t=10∴10秒后四边形APQB 是平行四边形,综上,当t =8或10(秒)时,其中一个四边形为平行四边形。

华东师大八年级下册第1章分式单元检测卷(含答案)

华东师大八年级下册第1章分式单元检测卷(含答案)

2018-2019华师大八年级下第1章分式单元检测卷姓名:__________班级:__________考号:__________一 、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.某种细胞的直径是0.000067厘米,将0.000067用科学记数法表示为( )A .6.7×10﹣5B .6.7×10﹣6C .0.67×10﹣5D . 6.7×10﹣62.下列运算结果正确的是( )A .a 3•a 2=a 5B .(a 3)2=a 5C .a 3+a 2=a 5D .a ﹣2=﹣a 23.下列计算不正确的是( )A .B .C .D .4.分式与的最简公分母是A . abB . 3abC .D .5.方程=的解为( ) A .x=﹣1 B .x=0C .x=D .x=16.把,,通分过程中,不正确的是A . 最简公分母是B .C .D .7.若等于它的倒数,则的值是( )A .B .C .D . 08.已知,则的值是 A . 60B . 64C . 66D . 729.甲、乙两人沿同一个方向到同一个地点去,甲一半时间以速度a 行走,另一半时间以速度b 行走(b≠a );乙一半的路程以速度a 行走,另一半路程以速度b 行走,则先到达目的地的是( ) A .甲B .乙C .同时到达D .与路程有关10.如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a 1,第2幅图形中“●”的个数为a 2,第3幅图形中“●”的个数为a 3,…,以此类推,则+++…+的值为( )A .B .C .D .11.对于下列说法,错误的个数是( )①是分式;②当1x ≠时,2111x x x -=+-成立;③当时,分式33x x +-的值是零;④11a b a a b ÷⨯=÷=;⑤2a a a x y x y +=+;⑥3232x x-⋅=-.A .6B .5C .4D .312.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x+(x >0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x ,则另一边长是,矩形的周长是2(x+);当矩形成为正方形时,就有x=(0>0),解得x=1,这时矩形的周长2(x+)=4最小,因此x+(x >0)的最小值是2.模仿张华的推导,你求得式子(x >0)的最小值是( ) A .2B . 1C . 6D . 10二 、填空题(本大题共6小题,每小题3分,共18分) 13.代数式11x -有意义时,x 应满足的条件是_____________. 14.我国自主研发的某型号手机处理器采用10nm 工艺,已知1nm=0.000000001m ,则10nm 用科学记数法可表示为 m .15.已知x =2 012,y =2 013,则(x +y)·2244x y x y+-=__________.16.观察下列分式:-,-,-,…,根据你的发现,它的第8项是_____________.17.已知,则整式A-B=__________.18.已知实数m满足m2﹣3m+1=0,则代数式m2+的值等于.三、解答题(本大题共8小题,共64分)19.(1)计算:﹣(2﹣)0+()﹣2.(2)解分式方程: +=4.20.下列各式中,哪些是整式,哪些是分式,哪些是有理式?(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)21.计算:(1) (2)22.先化简,再求值:(+)÷,其中x=.23.有一道题“先化简,再求值:.其中a =-,马小虎同学做题时把“a = -”错抄成了“a =”,但他的计算结果却与别的同学一致,也是正确的,请你解释这是怎么回事?24.先化简,再求值:(﹣)÷,在﹣2,0,1,2四个数中选一个合适的代入求值.25.填空: =1﹣, =﹣,=﹣, =﹣,….(1)试求= ,= .(2)请猜想能表示上述规律的等式,并用含字母n(n 整数)的式子表示出来(3)请你直接利用(2)所得的结论计算下列式子:.26.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为常分数,如: ==2+=2.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;再如:,这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如: ==1﹣;解决下列问题:(1)分式是分式(填“真分式”或“假分式”);(2)将假分式化为带分式;(3)如果x为整数,分式的值为整数,求所有符合条件的x的值.答案解析一、选择题1..解:将0.000067用科学记数法表示为6.7×10﹣5.故选A2.解:A.a3•a2=a5,正确,故本选项符合题意;B、(a3)2=a6,故本选项不符合题意;C、不是同类项不能合并,故本选项不符合题意;D、a﹣2=,故本选项不符合题意,故选:A.3.解:A.,正确.B. , ,正确.C. ,正确.D. 故错误.故选:D.4.解:∵分式与的分母分别是a2b、3ab2,∴最简公分母是3a2b2.故选:C.5.解:去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解,故选:D.6.解:A.最简公分母是,故正确;B. ,故正确;C. ,故正确;D. ,故不正确;故选D.7.解:原式等于它的倒数,则故选:A.8.解:当时,原式,故选:A.9.解:设总路程为单位1,乙到达目的地所用的时间为t1,甲到达目的地所用的时间为t2.由题意可得:t1=+=,又∵a+b=1,∴t2=,∴t1﹣t2=﹣=>0,∴t1>t2,(因为根据题意可得a≠b)所以甲先到.故选:A.10.解:a1=3=1×3,a2=8=2×4,a3=15=3×5,a4=24=4×6,…,a n=n(n+2);∴+++…+=++++…+=(1﹣+﹣+﹣+﹣+…+﹣)=(1+﹣﹣)=,故选C.11.解:①不是分式,本选项错误;②当x≠1时,==x+1,本选项正确;③当x=-3时,分式分母为0,没有意义,错误;④a÷b×=,本选项错误;⑤+=,本选项错误;⑥2-x•=2-=,本选项错误,则错误的选项有5个.故选B12.解:得到x>0,得到=x+≥2=6,则原式的最小值为6.故选C【点评】此题考查了分式的混合运算,弄清题意是解本题的关键二、填空题13.解:由题意得,|x|﹣1≠0,解得x≠±1.故答案为:x≠±1.14.解:10nm用科学记数法可表示为1×10﹣8m,故答案为:1×10﹣8.15.解:(x +y)·2244x y x y +-=(x +y)·222222()()x y x y x y ++-=(x +y)·221x y -=(x +y)·11()()x y x y x y =+--,当x =2 012,y =2 013时, 原式=1120122013x y =--=-1. 16.解:∵第1项,第2项, 第3项, 第4项,… ∴第n 项,∴第8项,故答案为:.17.解:因为,,所以,解得,所以,故答案为:-1. 18.解:∵m 2﹣3m+1=0, ∴m 2=3m ﹣1, ∴m 2+=3m ﹣1+=3m﹣1+=====9,故答案为:9.三解答题19.解:(1)﹣(2﹣)0+()﹣2=﹣1+4=+3;(2)方程两边同乘(x﹣1),得:x﹣2=4(x﹣1),整理得:﹣3x=﹣2,解得:x=,经检验x=是原方程的解,故原方程的解为x=.20.解:①②④⑧⑨12是整式,③⑤⑥⑦⑩11是分式,此12个代数式全都是有理式21.解:(1)(2)==-22.解:原式=[+]×(x﹣3)2=×(x﹣3)2=x﹣3,把x=代入得:原式=﹣3=﹣.23.解:原式===+4.因为当a = -或a =时,的结果均为5,所以马小虎同学做题时把“a = -”错抄成了“a =”也能得到正确答案9.24.解:原式=•=2x+8,当x=1时,原式=2+8=10.25.解:(1)=﹣,=﹣;(2)=﹣;(3)+++…+,=﹣+﹣+﹣+…+﹣,=﹣,=,=.故答案为:(1)﹣,﹣,(2)﹣.26.解:(1)分式是真分式;故答案为:真;(2)原式==x﹣=x﹣=x﹣2+;(3)原式==2﹣,由x为整数,分式的值为整数,得到x+1=﹣1,﹣3,1,3,解得:x=﹣2,﹣4,0,2,则所有符合条件的x值为0,﹣2,2,﹣4.。

华东师大版八年级下册第16章《分式》单元测试卷(原卷版+解析版)

华东师大版八年级下册第16章《分式》单元测试卷(原卷版+解析版)

华东师大版八年级下册第16章《分式》单元测试卷(原卷版)本试卷三个大题共22个小题,全卷满分120分,考试时间120分钟。

题号一二三全卷总分总分人1718 19 20 21 22 得分1、答题前,请考生务必将自己姓名、考号、班级等写在试卷相应的位置上;2、选择题选出答案后,用钢笔或黑色水笔把答案标号填写在选择题答题卡的相应号上。

一、选择题(本大题共12个小题,每小题4分,共48分.以下每小题都给出了A 、B 、C 、D 四个选项,其中只有一个是符合题目要求的。

)1、在代数式m 1,3b ,π1-x ,y x +2,aa 1+中,分式的个数是( )A 、2B 、3C 、4D 、52、下列各分式中,是最简分式的是( )A 、x x 22B 、1122+++x x xC 、x x 1+ D 、112--x x 3、将分式yx x42-中的x ,y 的值同时扩大为原来的2022倍,则变化后分式的值( )A 、扩大为原来的2022倍B 、缩小为原来的20221C 、保持不变D 、以上都不正确4、已知0132=+-x x ,则xx 1-的值是( ) A 、5B 、7±C 、5±D 、35、若b a ≠,则下列分式化简正确的是( )A 、b a b a =--22B 、b a mb a m =+C 、b ab a =22D 、b abab =26、下列运算正确的是( )A 、692432b b a a b =•B 、2323132b a b ab =+ C 、a a a 32121=+ D 、1211112-=+--a a a 7、分式方程13132=----xx x 的解为( ) A 、2=xB 、无解C 、3=xD 、3-=x8、若关于x 的分式方程2113+-=--x mx x 产生增根,则m 的值为( ) A 、1-B 、2-C 、1D 、29、随着电影《你好,李焕英》热映,其同名小说的销量也急剧上升、某书店分别用400元和600元两次购进该小说,第二次数量比第一次多1倍,且第二次比第一次进价便宜4元,设书店第一次购进x 套,根据题意,下列方程正确的是( )A 、42600400=-x x B 、42400600=-x x C 、46002400=-xx D 、44002600=-xx 10、若关于x 的分式方程21121=----x k x kx 无解,则k 的值为( ) A 、31-=kB 、1=kC 、31=k 或2 D 、0=k 11、已知关于x 的分式方程xkx x -=--343的解为负数,则k 的取值范围是( ) A 、12-≤k 且3-≠k B 、12->k C 、12-<k 且3-≠k D 、12-<k 12、若关于x 的不等式组()⎪⎩⎪⎨⎧-≤+-≥-+12224131x a x x x 有解,且使关于y 的分式方程32221-=--+--yya y y 的解为非负数、则满足条件的所有整数a 的和为( ) A 、9- B 、8- C 、5- D 、﹣4二、填空题(本大题共4个小题,每小题4分,共16分) 13、已知611=+y x ,则yxy x y xy x +-++525的值为 ; 14、对于实数a 、b ,定义一种新运算“*”为:ba ab a -=*,这里等式右边是实数运算。

2022年华东师大版八年级数学下册第十八章平行四边形章节测评试卷(含答案详解)

2022年华东师大版八年级数学下册第十八章平行四边形章节测评试卷(含答案详解)

八年级数学下册第十八章平行四边形章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,在平行四边形ABCD中,AB=3.5cm,BC=5cm,AE平分∠BAD,CF∥AE,则AF的长度是()A.1.5cm B.2.5cm C.3.5cm D.0.5cm2、如图,在▱ABCD中,对角线AC、BD相交于点O,过点O作OE⊥AC,交AD于点E,连接CE,若△CDE的周长为8,则▱ABCD的周长为()A.8 B.10 C.16 D.203、在平行四边形ABCD中,∠A比∠B大40°,那么∠D的度数为()A.60°B.70°C.80°D.110°4、下列性质中,平行四边形不具有的是( )A .对角线相等B .对角线互相平分C .相邻两角互补D .两组对边分别相等5、在ABCD 中,∠ABC 的平分线交AD 于E ,∠BED =140°,则∠A 的大小为( )A .140°B .130°C .120°D .100°6、如图,在ABCD 中,BE 垂直平分CD 于点E ,45BAD ∠=︒,6AD =,则ABCD 的对角线AC 的长为( )A .B .C .D .7、如图,ABCD 的对角线AC 、BD 相交于点O ,则下列结论一定成立的是( )A .ABC ADC ∠=∠B .OA OB =C .AC BD = D .AC BD ⊥8、下列∠A :∠B :∠C :∠D 的值中,能判定四边形ABCD 是平行四边形的是( )A .1:2:3:4B .1:4:2:3C .1:2:2:1D .3:2:3:29、平行四边形的一边长为10,那么它的两条对角线的长可以是( )A .4和6B .6和8C .8和12D .20和3010、四边形四条边长分别是a ,b ,c ,d ,其中a ,b 为对边,且满足222222a b c d ab cd ++=++,则这个四边形是( )A .任意四边形B .平行四边形C .对角线相等的四边形D .对角线垂直的四边形第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、(1)平行四边形的对边________.几何语言:因为四边形ABCD 是平行四边形,所以AB =________,AD =________.(2)平行四边形的对角________.几何语言:因为四边形ABCD 是平行四边形,所以∠A =________,∠B =________.2、如图,在ABCD 中,4AB =,6BC =,ABC ∠的平分线交AD 于点E ,则ED =______.3、在平行四边形ABCD 中,若70A B ∠-∠=︒,则A ∠度数是____.4、在平行四边形ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,AB =6,EF =2,则BC 的长为_____.5、两组对边分别________的四边形叫做平行四边形.平行四边形不相邻的两个顶点连成的线段叫它的________.如图所示的四边形ABCD 是平行四边形.记作:________,读作:平行四边形ABCD线段________、________就是平行四边形ABCD 的对角线.平行四边形相对的边,称为 ________,相对的角称为________.对边:AB 与CD ;BC 与DA .对角:∠ABC 与∠CDA ;∠BAD 与∠DCB .6、如图,在ABCD 中,6,9,AB AD BAD ==∠的平分线交BC 于点E ,交DC 的延长线于点F ,BG AE ⊥,垂足为G ,6,AF BG ==CEF △的周长为________.7、如图,P 是面积为S 的▱ABCD 内任意一点,如果△PAD 的面积为S 1,△PBC 的面积为S 2,那么S 1+S 2=___________(用含S 的代数式表示)8、如图,在△ABC 中,90ACB ∠=︒,3BC =,6AC =.点D 在AC 边上,连结BD ,将△ABD 沿直线BD 翻折得△A BD ',连结A C '.当四边形A DBC '为平行四边形时,该四边形的周长是____.9、两组对边分别________的四边形叫做平行四边形. 平行四边形的性质:平行四边形的两组对边分别________;平行四边形的两组对角分别________;平行四边形的对角线________.10、如图,平行四边形ABCD 中,AC 、BD 交于点O ,分别以点A 和点C 为圆心,大于12AC 的长为半径作弧,两弧相交于M 、N 两点,作直线MN ,交AB 于点E ,交CD 于点F ,连接CE ,若AD =6,△BCE 的周长为14,则CD 的长为_________.三、解答题(5小题,每小题6分,共计30分)1、如图,方格纸中每个小正方形的边长都是1.⊥,BE与CD相交于点E,BF与CD相交于点F;(1)过点B分别画BE//AD,BF CD(2)求BEF的面积.2、如图,四边形ABCD为平行四边形,∠BAD的平分线AF交CD于点E,交BC的延长线于点F.点E 恰是CD的中点.求证:(1)△ADE≌△FCE;(2)BE⊥AF.3、如图,ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A,C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作⊥于点E,连接PQ交AB于点D.PE AB(1)若设AP=x,则PC= ,QC= ;(用含x的式子表示)(2)当∠BQD=30°时,求AP的长;(3)在运动过程中线段DE的长是否发生变化?如果不变,求出线段DE的长;如果变化,请说明理由.4、如图,平行四边形ABCD中,对角线AC、BD相交于点O,AB⊥AC,AB=3,AD=5,求BD的长.5、△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,将△ADE绕点A逆时针旋转一周,连接DB,将线段DB绕点D逆时针旋转90°得DF,连接EF.(1)如图1,当D在AC边上时,线段CD与EF的关系是,(2)如图2,当D在△ABC的内部时,(1)的结论是否成立?说明理由;(3)当AB=3,AD,∠DAC=45°时,直接写出△DEF的面积.-参考答案-一、单选题1、A【解析】首先证明四边形AECF是平行四边形,推出AF=CE,想办法求出CE即可解决问题.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE∥CF,∴四边形AECF是平行四边形,∴AF=CE,∵AE平分∠BAD,∴∠BAE=∠EAD,∴∠BAE=∠AEB,∴AB=BE=3.5cm,∴EC=BC−B E=5−3.5=1.5(cm),∴AF=1.5cm故选:A.【点睛】本题考查平行四边形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2、C【解析】【分析】根据线段垂直平分线的判定和性质,可得AE=CE,又由CE+DE+CD=8,即AD+CD=8,继而可得ABCD的【详解】解:∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC,∵OE⊥AC,∴OE是线段AC的垂直平分线,∴AE=CE,∵△CDE的周长为8,∴CE+DE+CD=8,即AD+CD =8,∴平行四边形ABCD的周长为2(AD+CD)=16.故选:C.【点睛】本题考查了平行四边形的性质、线段垂直平分线的判定和性质,关键是根据线段垂直平分线的性质进行分析.此题难度不大,注意掌握数形结合思想的应用.3、B【解析】【分析】根据平行四边形的对角相等,邻角之和为180°,即可求出该平行四边形各个内角的度数.【详解】解:画出图形如下所示:∵四边形ABCD是平行四边形,∴∠B=∠D,∠A+∠B=180°,又∵∠A−∠B=40°,∴∠A=110°,∠B=70°,∴∠D=∠B=70°.故选:B.【点睛】本题考查平行四边形的性质,解题关键是掌握平行四边形的对角相等,邻角之和为180°,难度一般.4、A【解析】【分析】根据平行四边形的性质逐项判断即可确定答案.【详解】解:A、平行四边形不具有对角线相等的性质,符合题意;B、平行四边形具有对角线互相平分的性质,不符合题意;C、平行四边形具有相邻角互补的性质,不符合题意;D、平行四边形具有两组对边分别相等的性质,不符合题意,故选:A.本题考查了平行四边形的性质,解题 关键是了解其性质,难度不大.5、D【解析】【分析】由平行四边形的性质得出∠AEB =∠CBE ,由角平分线的定义和邻补角关系得出∠ABE =∠CBE =∠AEB =180°-∠BED =40°,再由三角形内角和定理即可得出∠A 的度数.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AEB =∠CBE ,∵∠ABC 的平分线交AD 于E ,∠BED =140°,∴∠ABE =∠CBE =∠AEB =180°-∠BED =40°,∴∠A =180°-∠ABE -∠AEB =100°.故选:D .【点睛】本题考查了平行四边形的性质、三角形内角和定理;熟练掌握平行四边形的性质,求出∠ABE =∠CBE =∠AEB 是解决问题的关键.6、A【解析】【分析】连接BD 交AC 于点F ,根据平行四边形和线段垂直平分线的性质可以推出6BD AD ==,即可推出90ADB ∠=,先利用勾股定理求出AF 的长,即可求出AC 的长.解:如图,连接BD 交AC 于点F .∵BE 垂直平分CD ,∴BD BC =,∵四边形ABCD 为平行四边形,∴BC AD =,BF=DF ,AC=2AF∴6BD AD ==, ∴132DF BD == ∵45BAD ∠=,∴45ABD ∠=,∴90ADB ∠=.在Rt ADF 中,由勾股定理得,AF∴2AC AF ==,故选A .【点睛】本题主要考查了平行四边形的性质,线段垂直平分线的性质,等腰三角形的性质与判定,勾股定理,解题的关键在于能够熟练掌握相关知识进行求解.7、A【解析】【分析】直接根据平行四边形的性质判断即可.【详解】∠=∠,平行四边形对角相等,解:A.ABC ADC故此选项正确,符合题意;=,不能判断,故此选项不符合题意;B.OA OB=,对角线不一定相等,故此选项不符合题意;C.AC BDD.AC BD⊥,对角线不一定垂直,故此选项不符合题意;故选:A.【点睛】本题考查了平行四边形的性质,熟知平行四边形的性质是解本题的关键.8、D【解析】【分析】两组对角分别相等的四边形是平行四边形,所以∠A和∠C是对角,∠B和∠D是对角,对角的份数应相等.【详解】解:根据平行四边形的判定:两组对角分别相等的四边形是平行四边形,所以只有D符合条件.故选:D.【点睛】本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.9、D【解析】【分析】根据平行四边形对角线互相平分和三角形两边之和大于第三边逐项判断即可.【详解】解:如图,设AB=10,对角线相交于点E,它的两条对角线的长为4和6时,465102AE BE++==<,不符合题意;它的两条对角线的长为6和8时,687102AE BE++==<,不符合题意;它的两条对角线的长为8和12时,812102AE BE++==,不符合题意;它的两条对角线的长为20和30时,设AE=15,BE=10,AB BE AE+>,符合题意;故选:D.【点睛】本题考查了平行四边形的性质和三角形的三边关系,解题关键是明确两条较短边的和大于最长边可构成三角形.10、B【解析】【分析】根据完全平方公式分解因式得到a=b,c=d,利用边的位置关系得到该四边形的形状.【详解】解:222222+,a b c d ab cd++=+22220a ab bc cd d-++-+=,2222-=a b+-(,c d()0)a b=,--=c d0,0∴a=b,c=d,∵四边形四条边长分别是a,b,c,d,其中a,b为对边,∴c、d是对边,∴该四边形是平行四边形,故选:B.【点睛】此题考查了完全平方公式分解因式,平行四边形的判定方法,熟练掌握完全平方公式分解因式是解题的关键.二、填空题1、相等CD BC相等∠C∠D【解析】略2、2【解析】【分析】=,利用两直线平行得到一对内错角相由四边形ABCD为平行四边形,得到AD与BC平行,AD BC等,由BE为角平分线得到一对角相等,等量代换得到AEB ABE∠=∠,利用等角对等边得到4AB AE ==,由AD AE -求出ED 的长即可.【详解】解:∵四边形ABCD 为平行四边形,∴//,6AD BC AD BC ==,∴AEB EBC ∠=∠,∵BE 平分ABC ∠,∴ABE EBC ∠=∠,∴AEB ABE ∠=∠,∴4AB AE ==,∴642ED AD AE BC AE =-=-=-=.故答案为:2.【点睛】此题考查了平行四边形的性质,熟练掌握平行四边形的性质是解本题的关键.3、125°【解析】【分析】由在平行四边形ABCD 中,若∠A -∠B =70°,根据平行四边形的邻角互补,即可得∠A +∠B =180°,继而求得答案.【详解】解:∵四边形ABCD 是平行四边形,∴∠A +∠B =180°,∵∠A -∠B =70°,∴∠A =125°,∠B =55°.故答案为:125°.【点睛】此题考查了平行四边形的性质.注意平行四边形的邻角互补.4、10或14##14或10【解析】【分析】=,通过BF和CE 利用BF平分∠ABC, CE平分∠BCD,以及平行关系,分别求出AB AF=、DE DC是否相交,分两类情况讨论,最后通过边之间的关系,求出BC的长即可.【详解】解:四边形ABCD是平行四边形,∥,==,AD BCAD BCAB CD∴=,6∠=∠,AFE FBC∴∠=∠,DEC ECBBF平分∠ABC, CE平分∠BCD,∠=∠,∴∠=∠,DCE ECBABF FBC∠=∠,AFE ABF∴∠=∠,DCE DEC∴由等角对等边可知:6AF ABDE DC==,==,6情况1:当BF与CE相交时,如下图所示:=+-,AD AF DE EF10∴=,AD∴=,10BC情况2:当BF与CE不相交时,如下图所示:=++AD AF DE EFAD,14∴=BC∴=,14故答案为:10或14.【点睛】本题主要是考查了平行四边形的性质,熟练运用平行关系+角平分线证边相等,是解决本题的关键,还要注意根据BF和CE是否相交,本题分两类情况,如果没考虑仔细,会漏掉一种情况.5、平行对角线ABCD AC BD对边对角【解析】略6、8【解析】【分析】根据平行四边形的性质以及角平分线的性质得出ADF是等腰三角形,同理可得ABE△是等腰三角形,然后证明CEF△的周长.△为等腰三角形,求出对应线段长即可得出CEF【详解】解:∵在ABCD 中,6,9,AB AD BAD ==∠的平分线交BC 于点E ,∴//,AB CD BAF DAF ∠=∠,∴BAF F ∠=∠,∴DAF F ∠=∠,∴AD FD =,∴ADF 是等腰三角形,同理ABE △是等腰三角形,∴9AD DF ==,6AB BE ==,∴3CF DF DC =-=,∵DAF CEF ∠=∠,DAF F ∠=∠,∴CEF F ∠=∠,∴3CF CE ==,∴在ABG 中,BG AE ⊥,6,AB BG ==则2AG ==,∴24AE AG ==,∵6AF =,∴642EF AF AE =-=-=,∴CEF △的周长为:3328CF CE EF ++=++=,故答案为:8.【点睛】本题考查了平行四边形的性质,勾股定理,等腰三角形的判定与性质等知识点,根据等腰三角形的判定与性质求出各线段长是解本题的关键.7、2S 【解析】【分析】根据题意,作出合适的辅助线,然后根据图形和平行四边形的面积、三角形的面积,即可得到S 和S 1、S 2之间的关系,本题得以解决.【详解】解:过点P 作EF ⊥AD 交AD 于点E ,交BC 于点F ,∵四边形ABCD 是平行四边形,∴AD =BC ,∴S =BC •EF ,S 1=•2AD PE ,S 2=•2BC PF , ∵EF =PE +PF ,AD =BC ,∴S 1+S 2=()••••22222BC PE PF AD PE BC PF BC EF S ++===, 故答案为:2S . 【点睛】 本题考查平行四边形的性质、三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.8、6+【分析】由平行四边形的性质得A′C=BD,A′D=BC=3,再由翻折的性质得AD=A′D=3,则CD=AC-AD=3,然后证△BCD是等腰直角三角形,得BD BC=【详解】解:∵四边形A'DBC为平行四边形,∴A′C=BD,A′D=BC=3,由翻折的性质得:AD=A′D=3,∴CD=AC-AD=6-3=3,∴CD=BC,∵∠ACB=90°,∴△BCD是等腰直角三角形,∴BD=)=6+∴四边形A'DBC的周长=2(BD+BC)=2×(故答案为:6+【点睛】本题考查了翻折变换的性质、平行四边形的性质、等腰直角三角形的判定与性质等知识;熟练掌握翻折变换和平行四边形的性质,证明△BCD为等腰直角三角形是解题的关键.9、平行相等相等互相平分【解析】略10、8【分析】根据题意可知用MN垂直平分AC,则EA=EC,利用等线段代换得到△BCE的周长=AB+BC,然后根据平行四边形的性质AD=BC可确定答案.【详解】∵四边形ABCD为平行四边形,∴AD=BC,由题可知,MN是AC的垂直平分线,∴CE=AE,∴△BCE的周长=BC+CE+BE=BC+AB=14,∵BC=AD=6,∴CD=AB=14−6=8.故答案为:8.【点睛】本题考查了垂直平分线的性质、平行四边形的性质,做题的关键是证明EA=EC,将△CDE的周长转化为AB+BC.三、解答题1、 (1)见解析(2)5【解析】【分析】(1)根据平行四边形的性质可画出BE//AD;根据勾股定理可计算BF,CF,运用勾股定理逆定理判断⊥;出BCF∆是直角三角形可得出BF CD(2)运用勾股定理得出EF ,再运用三角形面积公式求出即可.(1)如图,BE ,BF 即为所求;(2)∵BF =EF =∴11522BEF S BE EF ∆==⨯=【点睛】本题考查作图-应用与设计作图,掌握三角形的面积的求法与勾股定理及其逆定理的应用是解题的关键.2、(1)见解析;(2)见解析.【解析】【分析】(1)由平行四边形的性质得出AD ∥BC ,得出∠D =∠ECF ,则可证明△ADE ≌△FCE (ASA );(2)由平行四边形的性质证出AB =BF ,由全等三角形的性质得出AE =FE ,由等腰三角形的性质可得出结论.【详解】证明:(1)∵四边形ABCD 为平行四边形,∴AD ∥BC ,∴∠D =∠ECF ,∵E 为CD 的中点,∴ED =EC ,在△ADE 和△FCE 中,D ECF ED ECAED FEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE ≌△FCE (ASA );(2)∵四边形ABCD 为平行四边形,∴AB =CD ,AD ∥BC ,∴∠FAD =∠AFB ,又∵AF 平分∠BAD ,∴∠FAD =∠FAB .∴∠AFB =∠FAB .∴AB =BF ,∵△ADE ≌△FCE ,∴AE =FE ,∴BE ⊥AF .【点睛】本题主要考查了平行四边形的性质,全等三角形的性质与判定,角平分线的定义,等腰三角形的性质与判定,熟知相关知识是解题的关键.3、(1)6−x ,6+x ;(2)2;(3)当点P 、Q 运动时,线段DE 的长度不会改变.理由见解析【分析】(1)由△ABC是边长为6的等边三角形,设AP=x,则PC=6−x,QB=x,由此即可解决问题.(2)在Rt△QCP中,∠BQD=30°,PC=12QC,即6−x=12(6+x),求出x的值即可;(3)作QF⊥AB,交直线AB的延长线于点F,连接QE,PF,由点P、Q作匀速运动且速度相同,可知AP=BQ,再根据全等三角形的判定定理得出△APE≌△BQF,再由AE=BF,PE=QF且PE//QF,可知四边形PEQF是平行四边形,进而可得出EB+AE=BE+BF=AB,DE=12AB,由等边△ABC的边长为6可得出DE=3,故当点P、Q运动时,线段DE的长度不会改变.【详解】解:(1)∵△ABC是边长为6的等边三角形,∴AB=BC=AC=6,设AP=x,则PC=6−x,QB=x,∴QC=QB+BC=6+x,故答案为:6−x,6+x;(2)∵在Rt△QCP中,∠BQD=30°,∴PC=12QC,即6−x=12(6+x),解得x=2,∴AP=2;(3)当点P、Q运动时,线段DE的长度不会改变.理由如下:如图,作QF⊥AB,交直线AB的延长线于点F,连接QE,PF,又∵PE⊥AB于E,∴∠DFQ=∠AEP=90°,∵点P、Q速度相同,∵△ABC是等边三角形,∴∠A=∠ABC=∠FBQ=60°,在△APE和△BQF中,∵∠AEP=∠BFQ=90°,∴∠APE=∠BQF,∴在△APE和△BQF中,AEP BFQA FBQAP BQ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△APE≌△BQF(AAS),∴AE=BF,PE=QF且PE∥QF,∴四边形PEQF是平行四边形,∴DE=12EF,∵EB+AE=BE+BF=AB,∴DE=12AB,又∵等边△ABC的边长为6,∴DE=3,∴当点P、Q运动时,线段DE的长度不会改变.本题考查的是等边三角形的性质及全等三角形的判定定理、平行四边形的判定与性质,根据题意作出辅助线构造出全等三角形是解答此题的关键.4、【解析】【分析】根据平行四边形的性质可得5BC AD ==,AD OC =,BO DO =勾股定理求得AC ,BO ,进而求得BD【详解】 解:四边形ABCD 是平行四边形115,,22BC AD OA OC AC OB OD BD ∴====== AB ⊥AC ,90BAC ∴∠=︒在Rt ABC 中,3,5AB BC ==4∴=AC122AO AC ∴== 在Rt ABO 中,3,2AB AO ==BO ∴2BD BO ∴==BD ∴=本题考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的性质是解题的关键.5、(1)CD∥EF,CD=EF;(2)结论成立,理由见解析;(3)1或2【解析】【分析】(1)如图所示,连接CE,延长BD交CE于H,先证明△BAD≌△CAE得到BD=CE,∠ABD=∠ACE,然后证明四边形CDFE是平行四边形,即可得到CD∥EF,CD=EF;(2)连接CE,延长BD交CE于点H,交AC于点G,类似(1)进行证明即可;(3)分两种情况:当D在直线AC的左侧和当D在直线AC的右侧,分别讨论求解即可.【详解】解:(1)CD∥EF,CD=EF,理由如下:如图所示,连接CE,延长BD交CE于H,∵△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AE=AD,∴△BAD≌△CAE(SAS),∴BD=CE,∠ABD=∠ACE,∵∠ABD+∠ADB=90°,∠ADB=∠CDH,∴∠ACE+∠CDH=90°,∴∠BHC=90°,∴∠BHE=90°,由旋转的性质可得∠BDF=90°,BD=FD,∴∠BDF=∠BHE=90°,BD=CE,∴DF∥CE,∴四边形CDFE是平行四边形,∴CD∥EF,CD=EF;(2)结论成立,理由如下:连接CE,延长BD交CE于点H,交AC于点G,∵∠BAC=∠DAE=90°,∴∠DAB=∠EAC=90°-∠DAC,∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS),∴BD=CE,∠DBA=∠ECA,∵∠BGA+∠DBA=90°,∠BGA=∠CGH,∠DBA=∠ECA,∴∠CGH+∠ECA=90°,∴∠DHE=90°,由旋转的性质可得∠BDF=90°,BD=FD,∴DF∥CE,∵DF=BD,∴DF∥CE,CD=CE,∴四边形DCEF是平行四边形∴CD∥EF,CD=EF;(3)如图3所示,当∠DAC=45°时,设AC与DE交于H,∵∠ADE=90°,∴∠EAC=∠ADC=45°,又∵AD=AE,∴2DE==,∴1=12DH EH AH DE===;∴=2AH AC AH AB AH=--=,由(2)可知四边形DFEC是平行四边形,∴1=22DEF DCES S DE AH=⋅=△△;如图4所示,当∠DAC =45°时,∴∠DAC =∠ADE =45°,∴AC ∥DE ,∴DEC ADE S S =△△,同理可证四边形CEFD 是平行四边形, ∴1==12DEF DEC ADE S S S AD AE =⋅=△△△, 综上所述,△DEF 的面积为1或2.【点睛】本题主要考查了旋转的性质,等腰直角三角形的性质与判定,全等三角形的性质与判定,平行四边形的性质与判定,解题的关键在于能够正确作出辅助线构造平行四边形求解.。

华东师大版数学八年级下册-第16章-分式--章节检测题-含答案

华东师大版数学八年级下册-第16章-分式--章节检测题-含答案

华东师大版数学八年级下册 第16章 分式 章节检测题一、选择题1.下列分式是最简分式的是( )A 。

错误!B 。

错误!C.a +b a 2+b 2D.错误! 2.使分式错误!有意义,x 应满足的条件是( )A .x ≠1B .x ≠2C .x ≠1或x ≠2D .x ≠1且x ≠23.若分式x -2x +3的值为0,则x 的值是( ) A .-3 B .-2 C .0 D .24.下列各式中,与分式错误!相等的是( )A.错误! B 。

错误!C.错误!(x ≠y ) D 。

错误!5.下列等式成立的是( )A .(-3)-2=-9B .(-3)-2=错误!C .a -2×b -2=a 2×b 2 D.a 2-b 2b -a=a +b 6.分式方程3x =4x +1+1的解是( ) A .x =-3 B .x =1C .x 1=3,x 2=-1D .x 1=1,x 2=-37.若关于x 的分式方程错误!=2-错误!的解为正数,则满足条件的正整数m 的值为( )A .1,2,3B .1,2C .1,3D .2,38.已知a 2+a -2=7,则a +a -1的值( )A .49B .47C .±3D .39.甲、乙两人同时分别从A ,B 两地沿同一条公路骑自行车到C 地.已知A,C 两地间的距离为110千米,B ,C 两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时,结果两人同时到达C 地,求两人的平均速度.为解决此问题,设乙骑自行车的平均速度为x 千米/时,由题意列出方程,下列正确的是( )A.错误!=错误!B.错误!=错误!C 。

错误!=错误!D 。

错误!=错误!二、填空题10.若分式错误!(m -n≠0)的分母经过通分后变为m 2-n 2,则分子变为_____5m 2+5mn _______.11.已知错误!与错误!互为倒数,则x 的值为________.12.在学习负整数指数幂的知识后,明明给同桌晶晶出了如下题目:将(p 3q -2)2(-3p 4q ( ))-3的结果化为只含有正整数指数幂的形式,其结果为-错误!,其中“( )"处的数字是多少?聪明的你替晶晶同学填上“( )”的数字______.13.若关于x 的分式方程错误!-2=错误!有增根,则m 的值为______.14.环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM 2.5检测指标,“PM 2.5”是指大气中危害健康的直径小于或等于2。

八年级数学下册单元评价检测一华东师大版

八年级数学下册单元评价检测一华东师大版

单元评价检测(一)一、选择题(每小题4分,共28分)1.在下列各式2223a x33a,,a b,,m2x4m+-π中,是分式的有( )(A)2个(B)3个(C)4个(D)5个2.如果分式61x+的值为正整数,则整数x的值的个数是( )(A)2个(B)3个(C)4个(D)5个3.a ba b+(ab≠0)的所有可能值的个数为( )(A)1 (B)2 (C)3 (D)44.下列各式从左到右的变形正确的是( )(A)222323a0.2a a2aa0.3a a3a--=--(B)x1x1x y x y+--=--(C)11a63a216a2a3--=++(D)22b aa ba b-=-+5.(2012·鄂州中考)2011年3月11日,日本发生了里氏9.0级大地震,导致当天地球自转时间减少了0.000 001 6 秒,将 0.000 001 6 用科学记数法表示为( ) (A)16×10-7 (B)1.6×10-6(C)1.6×10-5 (C)0.16×10-56.(2012·达州中考)为保证达万高速公路在2012年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,如果甲、乙两队合作,可比规定时间提前14天完成任务,若设规定的时间为x天,由题意列出的方程是( )(A)111 x10x40x14+=--+(B)111 x10x40x14+=++-(C)111 x10x40x14-=++-(D)111 x10x14x40+=-+-7.化简22x 42x x (),x 4x 4x 2x 2--+÷-++-其结果是( ) (A)8x 2-- (B)8x 2- (C)8x 2-+ (D)8x 2+ 二、填空题(每小题5分,共25分)8.若分式()()a 2a 2a 3--+的值为0,则a=_________. 9.使分式方程2x m 2x 3x 3-=--产生增根,m 的值为_________. 10.要使5x 1-与4x 2-的值相等,则x=_________. 11.关于x 的方程m 1x 2=+的解是负数,则m 的取值范围是________. 12.汛期将至,我军机械化工兵连的官兵为驻地群众办实事,计划加固驻地附近20千米的河堤.根据气象部门预测,今年的汛期有可能提前,因此官兵们发扬我军不怕苦、不怕累的优良传统,早出晚归,使实际施工速度提高到计划的1.5倍,结果比计划提前10天完成,问该连实际每天加固河堤多少千米?列方程解此应用题时,若计划每天加固河堤x 千米,则实际每天加固1.5x 千米,根据题意可列方程为__________.三、解答题(共47分)13.(每小题4分,共12分)(1)不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数: ①2x 1x -;②22x .x 3--+ (2)已知a ,b 为实数,且ab=1,设a b P ,a 1b 1=+++11Q ,a 1b 1=+++请比较P 与Q 的大小关系. (3)若2A B 5x 4,x 5x 2x 3x 10-+=-+--试求A ,B 的值. 14.(10分)(1)(2012·南通中考)先化简,再求值:()()22x 4x 31x 1x 2x 1-++÷+--[],其中x=6; (2)(2011·雅安中考)先化简下列式子,再从2,-2,1,0,-1中选择一个合适的数进行计算2x 4x 2().x 22x 2x++÷-- 15.(14分)(1)计算:()2 01102131(3)()2--+-⨯π-; (2)(2012·上海中考)解方程:2x 61.x 3x 9x 3+=+--16.(11分)阳光五金超市准备从大河机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金超市本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出阳光五金超市本次从大河机械厂购进甲、乙两种零件有几种方案?请你设计出来.答案解析1.【解析】选A.∵223a 3,a b m 4+-π,是整式;2x 3a ,2x m分母中含有字母是分式;∴是分式的有2个. 2.【解析】选C.∵分式61x+的值为正整数, ∴1+x 为6的正的约数,∴1+x=1,2,3,6,∴x=0,1,2,5 即分式61x+的值为正整数时,x 的值有4个. 3.【解析】选C.当a ,b 都大于0时,a b 2a b +=;当a ,b 都小于0时,a b 2a b +=---;当a>0,b<0或a<0,b>0时,原式=0.4.【解析】选C.依据分式的基本性质分式的分子、分母都乘6,即:111a 6(1a)63a 22.116a 2a 6(a )33---==+++ 5.【解析】选B.0.000 001 6=1.6×1100 000 0=1.6×10-6.故选B. 6.【解析】选B.由题意得甲的工作效率为1,x 10+乙的工作效率为1x 40+,则两队的工作效率为11x 10x 40+++;根据如果甲、乙两队合作,可比规定时间提前14天完成任务,则两队的工作效率为1.x 14-故选B.7.【解析】选D.原式=()()()2x 2x 22x x 2x 2x x 2-+--+⋅+-[] =()()22x x 22x x 2x 2()x 2x 2x x x x 2-+--++⋅=--++ =()()()22x 22x 8.x x 2x 2+--=++ 8.【解析】根据题意得,(a-2)(a+3)≠0且|a|-2=0,解得a=-2.答案:-29.【解析】去分母得x-2x+6=m 2,又分式方程 2x m2x 3x 3-=--有增根,所以x=3,把x=3代入x-2x+6=m 2,解得m=答案:10.【解析】根据题意得54,x 1x 2=--解分式方程得x=6,经检验x=6是原分式方程的解.即x=6时,5x 1-与4x 2-的值相等. 答案:611.【解析】解方程m 1x 2=+得,x=m-2,因为方程m 1x 2=+的解是负数,所以m-2<0,∴m <2,又x ≠-2, ∴m-2≠-2,∴m ≠0.∴m <2且m ≠0.答案:m <2且m ≠012.【解析】计划完成任务需要的天数是:20x 天,实际施工完成任务需要的天数是:201.5x天,根据题意得202010.x 1.5x-= 答案:202010x 1.5x-= 13.【解析】(1)①()222x x x 1x x 11x =-=-----; ②()()2222x 2x x 2.x 3x 3x 3----==-+---+ (2)∵ab=1,∴()()()()()()()()a b 1b a 1a b ab a ab b P a 1b 1a 1b 1a 1b 1a 1b 1+++++=+=+=++++++++=()()()()2ab a b 2a ba 1b 1a 1b 1++++=++++; Q=()()()()11b 1a 1a 1b 1a 1b 1a 1b 1+++=+++++++=()()()()b 1a 12a ba 1b 1a 1b 1+++++=++++;即P=Q.(3)∵2AB5x 4,x 5x 2x 3x 10-+=-+--∴()()()()()()()()A x 2B x 55x 4,x 5x 2x 5x 2x 5x 2+--+=-+-+-+即A(x+2)+B(x-5)=5x-4,∴(A+B)x+(2A-5B)=5x-4,∴A+B=5,2A-5B=-4,解得A=3,B=2.14.【解析】(1)原式=()()()()()2x 1x 22x 4x 3x 1x 2x 1+-+-+÷+--=()()()()2x 1x 1x x 22x 4x 1x 2x 3+---+-⨯+-+=()()()()()()x 3x 2x 1x 1x 1.x 1x 2x 3+-+-⨯=-+-+将x=6代入得:原式=6-1=5.(2)原式=2x 4x 2()x 22x 2x ++÷-- =2x 4x 2()x 2x 22x +-÷-- =2x 42xx 2x 2-⋅-+=2x ;根据分式的概念,观察分式可知x ≠2,x ≠0且x ≠-2,当x=1时,原式=2x=2×1=2;当x=-1时,原式=2x=2×(-1)=-2.15.【解析】(1)()2 01102131(3)()2--+-⨯π-=3+(-1)×1-3+4=3;(2)x(x-3)+6=x+3,x 2-4x+3=0,x 1=1或x 2=3.经检验:x=3是方程的增根,x=1是原方程的根.16.【解析】(1)设每个乙种零件进价为x 元,则每个甲种零件进价为(x-2)元. 由题意得:80100.x 2x =-解得:x=10.检验:当x=10时,x(x-2)≠0∴x=10是原分式方程的根.x-2=10-2=8,答:每个甲种零件的进价为8元,每个乙种零件的进价为10元.(2)设购进乙种零件y 个,则购进甲种零件(3y-5)个.由题意得:()()()3y 5y 951283y 51510y 371,-+≤⎧⎪⎨--+-⎪⎩,>解得:23<y ≤25,∵y 为整数,∴y=24或25,∴共有2种方案.方案一:购进甲种零件67个,乙种零件24个;方案二:购进甲种零件70个,乙种零件25个.。

2020—2021年华东师大版八年级数学下册《分式》单元测试题1及答案.docx

2020—2021年华东师大版八年级数学下册《分式》单元测试题1及答案.docx

(新课标)华东师大版八年级下册16章分式单元测试题姓名:;成绩:;一、选择题(每小题4分,共48分)1、代数式11,,3,,652a b x y b c m x yπ+-+-+中,是分式的有( )个。

A 、1 B 、2 C 、3 D 、42、分式21x x +-有意义的条件是( )A 、x=-2B 、x ≠-2C 、x =1D 、x ≠13、分式13x x -+无意义的条件是( )A 、x=-3B 、x ≠-3C 、x =1D 、x ≠14、分式55x x -+的值为零的条件是( ) A 、x=5 B 、x =-5 C 、x =±5D 、x ≠-55、把分式xy x y +中的x 、y 都扩大3倍,则分式的值( )A 、不变B 、扩大3倍C 、扩大9倍D 、扩大6倍6、分式方程23x a x -=+产生的增根是( )A、x=2B、x=-2C、x=3D、x =-37、小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x千米/小时,则所列方程正确的为()A.+=B.﹣=C.+10=D.﹣10=8、施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x米,则根据题意所列方程正确的是()A.﹣=2B.﹣=2C.﹣=2D.﹣=29、小亮从家出发去距离9千米的姥姥家,他骑自行车前往比乘汽车多用20分钟,乘汽车的平均速度是骑自行车的3倍,设骑自行车的平均速度为x千米/时,根据题意列方程得()A.B.C.D.10、若分式,则分式的值等于()A.﹣B.C.﹣D.11、设实数a,b,c满足a+b+c=3,a2+b2+c2=4,则++=()A.9 B.6 C.3 D.012、如果关于x的分式方程﹣3=有负分数解,且关于x的不等式组的解集为x<﹣2,那么符合条件的所有整数a的积是()A .﹣3B .0C .3D .9二、填空题(每小题4分,共24分) 13、把分式20.150.32x x -+中字母的系数化为整数为; 14、把分式中212x x ---+的分子、分母中字母系数中的“-”去掉后为;15、分式21x x +-的值是正数,则x 的取值范围是;16、若a 2+5ab ﹣b 2=0,则的值为.17、计算:+()﹣2+(π﹣1)0=.18、已知关于x的方程=m的解满足(0<n<3),若y>1,则m的取值范围是.三、解答题(每小题7分,共14分)19、|﹣3|+(﹣1)2011×(π﹣3)0﹣+.20、解方程:解方程:=1﹣.四、解答题(每小题10分,共40分)21、先化简,再求值:,其中x满足x2﹣x﹣1=0.22、绵阳人民商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.(1)求甲种牛奶、乙种牛奶的进价分别是多少元?(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,两种牛奶的总数不超过95件,该商场甲种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价﹣进价)超过371元,请通过计算求出该商场购进甲、乙两种牛奶有哪几种方案?23、观察下面的变形规律:=1﹣;=﹣;=﹣;…解答下面的问题:(1)若n为正整数,请你猜想=﹣;(2)证明你猜想的结论;(3)求和:+++…+.24、阅读下面材料,并解答问题.材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由分母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b 则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=2,b=1∴==x2+2 +这样,分式被拆分成了一个整式x2+2与一个分式的和.解答:(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式.(2)试说明的最小值为8.[来^&%源:中教网@~]五、解答题(每小题12分,共24分)25、随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?26、对x,y定义一种新运算T,规定:T(x,y)=(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==b.(1)已知T(1,﹣1)=﹣2,T(4,2)=1.①求a,b的值;②若关于m的不等式组恰好有3个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T (x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?16章分式单元测试题答案一、选择题 BDAAB DBCDB CD 二、填空题 13、41320x x -+14、212x x +-15、x>1或x<-2 16、5 17、818、<m<三、解答题19、解:原式=3+(﹣1)×1﹣3+4=320、解:=1﹣方程两边同乘以x﹣2,得1﹣x=x﹣2﹣3解得,x=3,检验:当x=3时,x﹣2≠0,故原分式方程的解是x=3.四、解答题21、解:原式=×,=×=,∵x2﹣x﹣1=0,∴x2=x+1,将x2=x+1代入化简后的式子得:==1.22、解:(1)设乙种牛奶的进价为每件x元,则甲种牛奶的进价为每件(x﹣5)元,由题意得,=,解得x=50.经检验,x=50是原分式方程的解,且符合实际意义.(2)设购进乙种牛奶y件,则购进甲种牛奶(3y﹣5)件,由题意得,解得23<y≤25.∵y为整数,∴y=24或25,∴共有两种方案:方案一:购进甲种牛奶67件,乙种牛奶24件;方案二:购进甲种牛奶70件,乙种牛奶25件.23、解:(1)由=﹣;=﹣;=﹣,…则:=;(2)﹣=﹣= =;(3)+++…+=1﹣+﹣+﹣+…+﹣。

第17章 函数及其图象 华东师大版数学八年级下册自我评估(一)及答案

第17章 函数及其图象 华东师大版数学八年级下册自我评估(一)及答案

第17章函数及其图象自我评估(一)(本试卷满分100分)一、选择题(本大题共10小题,每小题3分,共30分) 1. 下列各图中,能表示y 是x 的函数的是( )A B C D2. 已知正比例函数的图象如图1所示,则这个函数的关系式为( ) A .y =xB .y =-xC .y =-3xD .y =-x3图1 图23. 若函数y =kx(k ≠0)的图象过点(4,-7),那么它一定还经过点( ) A .(4,7) B .(-4,-7) C .(-4,7) D .(3,-7) 4. 将函数y =2x 的图象向上平移5个单位长度,得到的函数关系式为( ) A .y =2x +5 B .y =2x -5 C .y =-2x +5 D. y =2x -55. 一次函数y =-kx +1(k ≠0)的图象如图2所示,则方程kx =1的解是( ) A .x =-2 B .x =-1 C .x =0 D .x =16. 若实数k ,b 满足k +b =0,且k >b ,则一次函数y =kx +b 的图象可能是( )A B C D7. 若点(-6,y 1),(2,y 2),(3,y 3)都是反比例函数y =21a x --图象上的点,则下列各式中正确的是( )A .y 1<y 3<y 2B .y 2<y 3<y 1C .y 3<y 2<y 1D .y 1<y 2<y 38. 在《科学》课上,老师讲到温度计的使用方法及液体的沸点时,好奇的王红同学准备测量食用油的沸点,已知食用油的沸点温度高于水的沸点温度(100 ℃),王红家只有刻度不超过100 ℃的温度计,她的方法是在锅中倒入一些食用油,用煤气灶均匀加热,并每隔10 s 测量一次锅中油温,测量得到的数据如下表:时间t /s 0 10 20 30 40 油温y /℃1030507090王红发现,烧了110 s 时,油沸腾了,则下列说法不正确的是( ) A .没有加热时,油的温度是10 ℃B .y 与t 都是变量,t 是自变量,y 是t 的函数C .估计这种食用油的沸点温度约是220 ℃D .每加热10 s ,油的温度升高20 ℃9. 一辆慢车和一辆快车沿相同路线从A 地到B 地,所行驶的路程与时间的函数图象如图3所示,下列说法:①快车追上慢车需6 h ;②慢车比快车早出发2 h ;③快车的速度为46 km/h ;④慢车的速度为46 km/h ;⑤AB 两地相距828 km. 其中正确的有( )A .2个B .3个C .4个D .5个10. 一次函数y =ax +b 与y =abx 在同一个平面直角坐标系中的图象不可能是( )二、填空题(本大题共6小题,每小题3分,共18分) 11. 若点A (x ,2)在第二象限,则x 的取值范围是.12. 若函数y =(m +1)x |m |是正比例函数,则y 随x 的增大而. 13. 若方程组()3,312y kx y k x =+⎧⎪⎨=++⎪⎩无解,则y =kx -2图象不经过第象限.14. 请写出一个一次函数,满足以下条件:①经过第二、三、四象限;②与y 轴的交点坐标为(0,-2).此一次函数的表达式可以是.15. 物理学中有这样的事实:当压力F 不变时,压强P 和受力面积S 之间是反比例函数,可以表示成P=FS.如图3图,一个圆台形物体的上底面积是下底面积的23,正放在桌面上时,对桌面的压强是200 Pa,如果倒放在桌面上,对桌面的压强为Pa.图4 图516. 反比例函数y1,y2在第一象限的图象如图5所示,已知y1=4x,过y1上的任意一点A,作x轴的平行线,交y2于点B,交y轴于点C,若S△AOB=12,则反比例函数y2的表达式是.三、解答题(本大题共7小题,共52分)17. (6分)已知直线y=kx+b经过点(2,6)和(0,2).(1)求此函数的表达式;(2)求直线与x轴的交点坐标.18. (6分)已知反比例函数y=8mx(m为常数).(1)若函数图象经过点A(-1,6),求m的值;(2)若函数图象在第二、四象限内,求m的取值范围;(3)若x>0时,y的值随x值的增大而减小,求m的取值范围.19. (6分)已知y-3与x成正比例,且x=6时,y=15.(1)求y与x之间的函数关系式;(2)当x=9时,求y的值;(3)当y=2时,求x的值.20. (8分)如图6,已知一次函数y=kx+3的图象经过点(4,0).(1)求k的值;(2)画出该函数的图象;(3)当x时,y>0;图621. (8分)(2020年咸宁)如图7,已知一次函数y1=kx+b与反比例函数y2=mx的图象在第一、三象限分别交于A(6,1),B(a,-3)两点,连接OA,OB.(1)求一次函数和反比例函数的表达式;(2)△AOB的面积为;(3)直接写出y1>y2时x的取值范围.图722. (8分)我国政府把发展新能源汽车作为解决能源及环境问题、实现可持续发展的重大举措.某品牌汽车经销商向网约车公司提供新能源与燃油两种动力类型汽车:燃油汽车的燃料费用为0.7元/公里;新能源汽车的销售价格为24万元.设燃油汽车的运营成本(运营成本=购车费用+燃料费用)为y1(万元),新能源汽车的运营成本为y2(万元),两种汽车行驶的里程数为x(万公里),y1,y2与x之间的函数关系图象如图8所示,结合函数图象解答下列问题:(1)燃油汽车的销售价格为万元,两种汽车行驶万公里时,运营成本相同;(2)求y2与x的函数关系式;(3)请问:新能源汽车行驶多少天与燃油汽车的运营成本相同?图822. (10分)如图9,直线y=2x与反比例函数y=kx(x>0)的图象交于点A(4,n),AB⊥x轴,垂足为B.(1)求k的值;(2)点C在AB上,若OC=AC,求AC的长;(3)点D为x轴正半轴上一点,在(2)的条件下,若S△OCD=S△ACD,求点D的坐标.图9 附加题(20分,不计入总分)某校的甲、乙两位老师同住一小区,该小区与学校相距2400米.甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校,骑行若干米到达还车点后,立即步行走回学校.已知甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x(分),图1中线段OA和折线B-C-D分别表示甲、乙离开小区的路程y(米)与甲步行时间x(分)的函数关系图象;图2表示甲、乙两人之间的距离s(米)与甲步行时间x(分)的函数关系图象(不完整).根据图1和图2中所给信息,解答下列问题:(1)求甲步行的速度和乙出发时甲离开小区的路程;(2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)在图2中画出当25≤x≤30时s与x的函数关系的大致图象(注意:需要标清数据的标清数据).图1 图2参考答案一、1. C 2. B 3. C 4. A 5. A 6. A 7. B 8. C 9. B 10. D 二、11. x <2 12. 增大13. 一14. y =﹣x ﹣2(答案不唯一) 15. 30016. y 2=5x 提示:设y 2的表达式为y 2=k x .由反比例函数k 的几何意义,得S △AOC =12×4=2,S △BOC =12k .因为S △AOB =S △BOC -S △AOC ,所以12k -2=12,解得k =5.所以反比例函数y 2的表达式为y 2=5x.三、17. (1)y =2x +2. (2)(-1,0). 18. (1)2. (2)m <8. (3)m >8.19. 解:(1)设y 与x 之间的函数关系式为y -3=kx .把x =6,y =15代入y -3=kx ,得6k =15-3,解得k =2.所以y -3=2x ,即y =2x +3. (2)把x =9代入y =2x +3,得y =2×9+3=21.(3)把y =2代入y =2x +3,得2x +3=2,解得x =-12.20. 解:(1)因为一次函数y =kx +3的图象经过点(4,0),所以4k +3=0,解得k =-34. (2)画出函数y =-34x +3的图象如图所示:(3)<421. 解:(1)把A (6,1)代入y 2=mx中,解得m =6. 所以反比例函数的表达式为y 2=6x; 把B (a ,-3)代入y 2=6x中,解得a =-2.故B (-2,-3). 把A (6,1),B (-2,-3)代入y 1=kx +b 中,得61,23,k b k b +=⎧⎨-+=-⎩解得1,22.k b ⎧=⎪⎨⎪=-⎩所以一次函数表达式为y 1=12x -2. (2)8(3)-2<x<0或x>6.22. 解:(1)20 10(2)由(1)知燃油汽车的销售价格为20万元,所以y1=0.7x+20.当x=10时,y1=0.7×10+20=27.设y2与x的函数关系式为y2=kx+b2.将(0,24),(10,27)代入y2=kx+b2,得b2=24,10k+b2=27,解得k=0.3. 所以y2与x的函数关系式为y2=0.3x+24.(3)由y1=y2,得0.7x+20=0.3x+24,解得x=10.所以新能源汽车行驶10天与燃油汽车的运营成本相同.23. 解:(1)把点A(4,n)代入y=2x,得n=2×4=8.所以A(4,8).把点A(4,n)代入y=kx,得k=4×8=32.(2)设AC=x,则OC=x,BC=8-x.由勾股定理,得OC2=OB2+BC2,即x2=42+(8-x)2,解得x=5.所以AC=5. (3)由(2)得,BC=AB-AC=8-5=3.设点D的坐标为(x,0).①当x>4时,如图1,因为S△OCD=S△ACD,所以12OD•BC=12AC•BD,即12×3x=12×5(x-4),解得x=10.②当0<x<4时,如图2,同理,得12×3x=12×5(4-x),解得x=52.所以点D的坐标为(10,0)或52⎛⎫ ⎪⎝⎭,.附加题解:(1)由题意,得甲步行的速度是2400÷30=80(米/分).所以乙出发时甲离开小区的路程是80×10=800(米).(2)设直线OA的表达式为y=kx.因为直线OA过点A(30,2400),所以30k=2400,解得k=80.所以直线OA的表达式为y=80x.所以当x=18时,y=80×18=1440.图3所以乙骑自行车的速度是1440÷(18-10)=180(米/分).所以乙骑自行车的路程为180×(25-10)=2700(米).当x=25时,甲走过的路程是y=80x=80×25=2000(米),所以乙到达还车点时,甲、乙两人之间的距离是2700-2000=700(米).(3)乙步行的速度为80-5=75(米/分).所以乙到达学校用的时间为25+(2700-2400)÷75=29(分).此时,甲、乙之间的距离为2400-(29×80)=80(米).当25≤x≤30时,s与x的函数关系的大致图象如图3所示.。

最新华师大版八年级数学下册各章检测试卷(全册 共5章 附答案)

最新华师大版八年级数学下册各章检测试卷(全册 共5章 附答案)

最新华师大版八年级数学下册各章检测试卷(全册 共5章 附答案)第16章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.下列式子是分式的是( )A .a -b 2B .5+y πC .x +3xD .1+x 2.分式x -y x 2+y2有意义的条件是( ) A .x ≠0 B .y ≠0 C .x ≠0或y ≠0 D .x ≠0且y ≠03.分式①a +2a 2+3,②a -b a 2-b 2,③4a 12(a -b ),④1x -2中,最简分式有( ) A .1个 B .2个 C .3个 D .4个4.把分式2ab a +b中的a ,b 都扩大到原来的2倍,则分式的值( ) A .扩大到原来的4倍 B .扩大到原来的2倍 C .缩小到原来的12D .不变 5.下列各式中,取值可能为零的是( )A .m 2+1m 2-1B .m 2-1m 2+1C .m +1m 2-1D .m 2+1m +16.分式方程2x -3=3x的解为( ) A .x =0 B .x =3 C .x =5 D .x =97.嘉怡同学在化简1m 1m 2-5m 中,漏掉了“ ”中的运算符号,丽娜告诉她最后的化简结果是整式,由此可以猜想嘉怡漏掉的运算符号是( )A .+B .-C .×D .÷8.若a =-0.32,b =-3-2,c =⎝⎛⎭⎫-13-2,d =⎝⎛⎭⎫-130,则正确的是( ) A .a <b <c <d B .c <a <d <b C .a <d <c <b D .b <a <d <c9.已知a 2-3a +1=0,则分式a 2a 4+1的值是( ) A .3 B .13C .7 D .1710.某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列分式方程为( )A .20x +10x +4=15B .20x -10x +4=15C .20x +10x -4=15D .20x -10x -4=15 二、填空题(每题3分,共30分)11.纳米(nm )是一种长度单位,常用于度量物质原子的大小,1 nm =10-9m .已知某种植物孢子的直径为45 000 nm ,用科学记数法表示该孢子的直径为____________m .12.若关于x 的分式方程2x -a x -1=1的解为正数,那么字母a 的取值范围是____________. 13.若|a|-2=(a -3)0,则a =________.14.已知1a +1b =4,则4a +3ab +4b -3a +2ab -3b=________. 15.计算:a a +2-4a 2+2a=________. 16.当x =________时,2x -3与54x +3的值互为倒数. 17.已知a 2-6a +9与|b -1|互为相反数,则式子⎝⎛⎭⎫a b -b a ÷(a +b)的值为________. 18.若关于x 的分式方程x x -3-m =m 2x -3无解,则m 的值为________. 19.当前控制通货膨胀、保持物价稳定是政府的头等大事,许多企业积极履行社会责任,在销售中保持价格稳定已成为一种自觉行为.某企业原来的销售利润率是32%.现在由于进价提高了10%,而售价保持不变,所以该企业的销售利润率变成了________.(注:销售利润率=(售价-进价)÷进价)20.若1(2n -1)(2n +1)=a 2n -1+b 2n +1,对任意自然数n 都成立,则a =________,b =________;计算:m =11×3+13×5+15×7+…+119×21=________. 三、解答题(21题20分,22题8分,23,24题每题6分,其余每题10分,共60分)21.计算:(1)⎝⎛⎭⎫12-1+(3.14-π)0+16-|-2|; (2)b 2c -2·⎝⎛⎭⎫12b -2c 2-3;(3)⎝⎛⎭⎫x 2y 2·⎝⎛⎭⎫-y 2x 3÷⎝⎛⎭⎫-y x 4; (4)⎝⎛⎭⎫1+1m +1÷m 2-4m 2+m;(5)⎣⎡⎦⎤4a -2×⎝⎛⎭⎫a -4+4a ÷⎝⎛⎭⎫4a -1.22.解分式方程:(1)12x -1=12-34x -2. (2)1-2x -3=1x -3.23.已知y =x 2+6x +9x 2-9÷x +3x 2-3x-x +3,试说明:x 取任何有意义的值,y 值均不变.24.先化简,再求值:x -2x 2-1·x +1x 2-4x +4+1x -1,其中x 是从-1,0,1,2中选取的一个合适的数.25.某校组织学生到生态园春游,某班学生9:00从樱花园出发,匀速前往距樱花园2 km 的桃花园.在桃花园停留1 h 后,按原路返回樱花园,返程中先按原来的速度行走了6 min ,随后接到通知,要尽快回到樱花园,故速度提高到原来的2倍,于10:48回到了樱花园,求这班学生原来的行走速度.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单元评价检测(一)一、选择题(每小题4分,共28分)1.在下列各式2223a x33a,,a b,,m2x4m+-π中,是分式的有( )(A)2个(B)3个(C)4个(D)5个2.如果分式61x+的值为正整数,则整数x的值的个数是( )(A)2个(B)3个(C)4个(D)5个3.a ba b+(ab≠0)的所有可能值的个数为( )(A)1 (B)2 (C)3 (D)44.下列各式从左到右的变形正确的是( )(A)222323a0.2a a2aa0.3a a3a--=--(B)x1x1x y x y+--=--(C)11a63a216a2a3--=++(D)22b aa ba b-=-+5.(2012·鄂州中考)2011年3月11日,日本发生了里氏9.0级大地震,导致当天地球自转时间减少了0.000 001 6 秒,将 0.000 001 6 用科学记数法表示为( ) (A)16×10-7 (B)1.6×10-6(C)1.6×10-5 (C)0.16×10-56.(2012·达州中考)为保证达万高速公路在2012年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,如果甲、乙两队合作,可比规定时间提前14天完成任务,若设规定的时间为x天,由题意列出的方程是( )(A)111 x10x40x14+=--+(B)111 x10x40x14+=++-(C)111 x10x40x14-=++-(D)111 x10x14x40+=-+-7.化简22x 42x x (),x 4x 4x 2x 2--+÷-++-其结果是( ) (A)8x 2-- (B)8x 2- (C)8x 2-+ (D)8x 2+ 二、填空题(每小题5分,共25分)8.若分式()()a 2a 2a 3--+的值为0,则a=_________. 9.使分式方程2x m 2x 3x 3-=--产生增根,m 的值为_________. 10.要使5x 1-与4x 2-的值相等,则x=_________. 11.关于x 的方程m 1x 2=+的解是负数,则m 的取值范围是________. 12.汛期将至,我军机械化工兵连的官兵为驻地群众办实事,计划加固驻地附近20千米的河堤.根据气象部门预测,今年的汛期有可能提前,因此官兵们发扬我军不怕苦、不怕累的优良传统,早出晚归,使实际施工速度提高到计划的1.5倍,结果比计划提前10天完成,问该连实际每天加固河堤多少千米?列方程解此应用题时,若计划每天加固河堤x 千米,则实际每天加固1.5x 千米,根据题意可列方程为__________.三、解答题(共47分)13.(每小题4分,共12分)(1)不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数: ①2x 1x -;②22x .x 3--+ (2)已知a ,b 为实数,且ab=1,设a b P ,a 1b 1=+++11Q ,a 1b 1=+++请比较P 与Q 的大小关系. (3)若2A B 5x 4,x 5x 2x 3x 10-+=-+--试求A ,B 的值. 14.(10分)(1)(2012·南通中考)先化简,再求值:()()22x 4x 31x 1x 2x 1-++÷+--[],其中x=6; (2)(2011·雅安中考)先化简下列式子,再从2,-2,1,0,-1中选择一个合适的数进行计算2x 4x 2().x 22x 2x++÷-- 15.(14分)(1)计算:()2 01102131(3)()2--+-⨯π-; (2)(2012·上海中考)解方程:2x 61.x 3x 9x 3+=+-- 16.(11分)阳光五金超市准备从大河机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金超市本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出阳光五金超市本次从大河机械厂购进甲、乙两种零件有几种方案?请你设计出来.答案解析1.【解析】选A.∵223a 3,a b m 4+-π,是整式;2x 3a ,2x m分母中含有字母是分式;∴是分式的有2个. 2.【解析】选C.∵分式61x+的值为正整数, ∴1+x 为6的正的约数,∴1+x=1,2,3,6,∴x=0,1,2,5 即分式61x+的值为正整数时,x 的值有4个. 3.【解析】选C.当a ,b 都大于0时,a b 2a b +=;当a ,b 都小于0时,a b 2a b +=---;当a>0,b<0或a<0,b>0时,原式=0.4.【解析】选C.依据分式的基本性质分式的分子、分母都乘6,即:111a 6(1a)63a 22.116a 2a 6(a )33---==+++ 5.【解析】选B.0.000 001 6=1.6×1100 000 0=1.6×10-6.故选B. 6.【解析】选B.由题意得甲的工作效率为1,x 10+乙的工作效率为1x 40+,则两队的工作效率为11x 10x 40+++;根据如果甲、乙两队合作,可比规定时间提前14天完成任务,则两队的工作效率为1.x 14-故选B.7.【解析】选D.原式=()()()2x 2x 22x x 2x 2x x 2-+--+⋅+-[]=()()22x x 22x x 2x 2()x 2x 2x x x x 2-+--++⋅=--++ =()()()22x 22x 8.x x 2x 2+--=++ 8.【解析】根据题意得,(a-2)(a+3)≠0且|a|-2=0,解得a=-2.答案:-2 9.【解析】去分母得x-2x+6=m 2,又分式方程 2x m2x 3x 3-=--有增根,所以x=3,把x=3代入x-2x+6=m 2,解得m=答案:10.【解析】根据题意得54,x 1x 2=--解分式方程得x=6,经检验x=6是原分式方程的解.即x=6时,5x 1-与4x 2-的值相等. 答案:611.【解析】解方程m 1x 2=+得,x=m-2,因为方程m 1x 2=+的解是负数,所以m-2<0,∴m <2,又x ≠-2, ∴m-2≠-2,∴m ≠0.∴m <2且m ≠0.答案:m <2且m ≠012.【解析】计划完成任务需要的天数是:20x 天,实际施工完成任务需要的天数是:201.5x天,根据题意得202010.x 1.5x-= 答案:202010x 1.5x-= 13.【解析】(1)①()222x x x 1x x 11x =-=-----; ②()()2222x 2x x 2.x 3x 3x 3----==-+---+ (2)∵ab=1,∴()()()()()()()()a b 1b a 1a b ab a ab b P a 1b 1a 1b 1a 1b 1a 1b 1+++++=+=+=++++++++ =()()()()2ab a b 2a b a 1b 1a 1b 1++++=++++;Q=()()()()11b 1a 1a 1b 1a 1b 1a 1b 1+++=+++++++ =()()()()b 1a 12a b a 1b 1a 1b 1+++++=++++; 即P=Q.(3)∵2A B 5x 4,x 5x 2x 3x 10-+=-+-- ∴()()()()()()()()A x 2B x 55x 4,x 5x 2x 5x 2x 5x 2+--+=-+-+-+ 即A(x+2)+B(x-5)=5x-4,∴(A+B)x+(2A-5B)=5x-4,∴A+B=5,2A-5B=-4,解得A=3,B=2.14.【解析】(1)原式=()()()()()2x 1x 22x 4x 3x 1x 2x 1+-+-+÷+-- =()()()()2x 1x 1x x 22x 4x 1x 2x 3+---+-⨯+-+ =()()()()()()x 3x 2x 1x 1x 1.x 1x 2x 3+-+-⨯=-+-+ 将x=6代入得:原式=6-1=5.(2)原式=2x 4x 2()x 22x 2x++÷-- =2x 4x 2()x 2x 22x+-÷-- =2x 42x x 2x 2-⋅-+ =2x ;根据分式的概念,观察分式可知x ≠2,x ≠0且x ≠-2,当x=1时,原式=2x=2×1=2;当x=-1时,原式=2x=2×(-1)=-2.15.【解析】(1)()2 01102131(3)()2--+-⨯π- =3+(-1)×1-3+4=3;(2)x(x-3)+6=x+3,x 2-4x+3=0,x 1=1或x 2=3. 经检验:x=3是方程的增根,x=1是原方程的根.16.【解析】(1)设每个乙种零件进价为x 元,则每个甲种零件进价为(x-2)元. 由题意得:80100.x 2x=- 解得:x=10.检验:当x=10时,x(x-2)≠0∴x=10是原分式方程的根.x-2=10-2=8,答:每个甲种零件的进价为8元,每个乙种零件的进价为10元.(2)设购进乙种零件y 个,则购进甲种零件(3y-5)个.由题意得:()()()3y 5y 951283y 51510y 371,-+≤⎧⎪⎨--+-⎪⎩,> 解得:23<y ≤25,∵y 为整数,∴y=24或25,∴共有2种方案.方案一:购进甲种零件67个,乙种零件24个;方案二:购进甲种零件70个,乙种零件25个.。

相关文档
最新文档