第四章解析数的级数表示

合集下载

复变函数第四章解析函数的幂级数表示法知识点总结

复变函数第四章解析函数的幂级数表示法知识点总结

第四章解析函数的幂级数表示法§1.复级数的基本性质1.(定理)复级数收敛的充要条件:实部虚部分别收敛。

2.(定理)复级数收敛的充要条件(用定义):对任给的>0,存在正整数N(),当n>N且p为任何正整数时,注1:收敛级数通项必趋近于零;注2:收敛级数各项必有界;注3:级数省略有限个项不改变敛散性。

3.(定理)收敛4.(定理)(1)绝对收敛的复级数可任意重排,不改变收敛性,不改变和;(2)两个绝对收敛的复级数可按对角线方法得出乘积(柯西积)级数,也绝对收敛于。

5.一致收敛的定义:对任给的>0以及给定的,存在正整数N=N(,z),当n>N 时,有式中6.不一致收敛的定义7.(定理柯西一致收敛准则):级数收敛的充要条件是:任给>0,存在正整数N=N(),使当n>N时,对一切,均有8.(定理’不一致收敛准则):9.(优级数准则):如果有正数列,使对一切,有|)|≤,且正项级数收敛复级数在集E上绝对收敛且一致收敛。

10.优级数定义:称为的优级数。

11.(定理)级数各项在点集E上连续,且一致收敛于f(z),则和函数也在E上连续。

12.(定理积分求和符号可交换)级数的各项在曲线C上连续,且一致收敛于f(z),则沿C可逐项积分13.内闭一致收敛:有界闭集上一致收敛14.(定理)在圆K:|z-a|<R内闭一致收敛的充要条件:对任意正整数,只要<R,级数在闭圆上一致收敛。

15.(定理魏尔斯特拉斯定理):设(1)函数在区域D内解析;(2)在D内内闭一致收敛于函数f(z):则:(1)f(z)在D内解析;(2)(3)在D内内闭一致收敛于§2.幂级数1.(定理阿贝尔定理):幂级数在某点(≠a)收敛它必在圆K:|z-a|<|-a|(以a为圆心,圆周通过的圆)内绝对收敛且内闭一致收敛。

2.(推论):幂级数在某点(≠a)发散在以a为圆心,圆周通过的圆周外发散。

第四章 解析函数的幂级数表示方法

第四章  解析函数的幂级数表示方法

第四章 解析函数的幂级数表示方法第一节 级数和序列的基本性质 1、复数项级数和复数序列: 复数序列就是:111222,,...,,...n n n z a ib z a ib z a ib =+=+=+在这里,n z 是复数,,Im ,Re n n n n b z a z ==一般简单记为}{n z 。

按照|}{|n z 是有界或无界序列,我们也称}{n z 为有界或无界序列。

设0z 是一个复常数。

如果任给0ε>,可以找到一个正数N ,使得当n>N 时ε<-||0z z n ,那么我们说{}n z 收敛或有极限0z ,或者说{}n z 是收敛序列,并且收敛于0z ,记作0lim z z n n =+∞→。

如果序列{}n z 不收敛,则称{}n z 发散,或者说它是发散序列。

令0z a ib =+,其中a 和b 是实数。

由不等式0||||||||||n n n n n a a b b z z a a b b --≤-≤-+-及容易看出,0lim z z n n =+∞→等价于下列两极限式:,lim ,lim b b a a n n n n ==+∞→+∞→因此,有下面的注解:注1、序列{}n z 收敛(于0z )的必要与充分条件是:序列{}n a 收敛(于a )以及序列{}n b 收敛(于b )。

注2、复数序列也可以解释为复平面上的点列,于是点列{}n z 收敛于0z ,或者说有极限点0z 的定义用几何语言可以叙述为:任给0z 的一个邻域,相应地可以找到一个正整数N ,使得当n N >时,n z在这个邻域内。

注3、利用两个实数序列的相应的结果,我们可以证明,两个收敛复数序列的和、差、积、商仍收敛,并且其极限是相应极限的和、差积、商。

定义4.1复数项级数就是12......n z z z ++++或记为1n n z +∞=∑,或n z ∑,其中n z 是复数。

定义其部分和序列为:12...n n z z z σ=+++如果序列{}n σ收敛,那么我们说级数n z ∑收敛;如果{}n σ的极限是σ,那么说n z ∑的和是σ,或者说n z ∑收敛于σ,记作1nn zσ+∞==∑,如果序列{}n σ发散,那么我们说级数n z ∑发散。

4.3 泰勒级数

4.3 泰勒级数
1 2i f (z)
| z | .
n 0


(1 i ) n (1 i ) n n z n!
n 0


( 2 )n nπ n sin z , | z | . n! 4
15
§4.3 泰勒级数
2 f ( z ) sin z 在 z 0 点展开为幂级数。 例 将函数 第 四 2 4 6 1 1 ( 2 z ) ( 2 z ) ( 2 z ) 章 解 sin2 z (1 cos 2 z ) [1 (1 )] 2 2 2! 4! 6! 解 ( 2 z ) 2 ( 2 z )4 ( 2 z )6 析 , | z | . 2 2! 2 4! 2 6! 函 数 的 例 将函数 f ( z ) sin z 在 z 1 点展开为幂级数。 级 数 解 sin z sin[1 ( z 1)] sin1 cos(z 1) cos1 sin(z 1) 表 2n ( z 1 ) 示 sin1 ( 1)n ( 2n)! n 0
a0 a n 1 f (z) n 1 n 1 2 ( z z0 ) ( z z0 ) ( z z0 )
C
R
z0
l D
an a n 1 , z z0
f (z) l d z 0 2π i a n 0 , n 1 ( z z0 ) 1 an 2π i f (z) 1 ( n) l ( z z0 )n1 dz n! f ( z0 ) .
n 1 1 1 ' n ( z i ) (2) 2 n 1 (1 z ) ( 1 i ) 1 z n 1

n 0

第四章、级数

第四章、级数
n=1 +∞
的复变函数项级数,简记为 ∑ f n ( z ) .
17
一、基本概念
2. 复变函数项级数收敛的定义
定义 设 ∑ f n ( z ) 为区域 G 内的复变函数项级数,
n
第四章 解析函数的级数表示
(1) 称 sn ( z ) = ∑ f k ( z ) 为级数 ∑ f n ( z ) 的部分和。
注意 级数在收敛圆的边界上 各点的收敛情况是不一定的。 约定 R = 0 表示级数仅在 z = 0 点收敛;
⇒ lim z n = 0 ,
n→ +∞
7
二、复数项级数
1. 基本概念
定义 设 { z n }n=1 , 2 ," 为一复数序列,
第四章 解析函数的级数表示
(1) 称 ∑ z n = z1 + z 2 + " 为复数项级数, 简记为 ∑ z n .
n =1
+∞
(2) 称 sn = ∑ z k = z1 + z 2 + " + z n 为级数的部分和;
⇒ | an z
n
n | = | a n z0 |⋅
z z0
n
z ≤ Mq , 其中 q = z , 0
n
+∞
n Mq | a z | ≤ ∑ | z | < | z | q < 1 , 当 即得 ∑ n 收敛。 0 时,
n
+∞
n= 0
n= 0
20
二、幂级数
2. 阿贝尔 ( Abel ) 定理
定理 对于幂级数 ∑ a n z ,有
n→ +∞
第四章 解析函数的级数表示

第四章解析函数的级数表示(Therepresentationofpower

第四章解析函数的级数表示(Therepresentationofpower
第四章 解析函数的级数表示
(The representation of power series of analytic function)
§4.1 复数项级数
§4.2 复变函数项级数
§4.3 泰勒(Taylo§4.1 复数项级数 §4.2 复变函数项级数
f z fnz n1
二、 幂级数
形如:
的复函数项级数称为幂级数,其中 a,c0,c1,
c2 ,…, 都是复常数. 以上幂级数还可以写成如下形式
cnzn c0 c1z c2z2 cnzn
n0
定理4.5(阿贝尔)如果幂级数(4.3) 在某点z1(≠a)收敛,则它必在圆 K:|z-a|<|z1-a|(即以a为圆心圆周通过z1的圆) 内绝对收敛.
n1 n
n1
n
n1 n
n1
n
因为级数 1 发散, n1 n
(1)n 1收敛,
n1
n
故 原 级 数 仍 发 散.
定理4.3级数 收敛的必要条件是
其中zn xn yn
证明 因为级数 收敛的充分必要条件是
都收敛,再由实级数 收敛的必要条件是
定理4.4若级数 zn n 1
收敛,
则级数
z
n也收敛.
lim
n
zn
z0
.
此时也称复数列{zn }收敛于 z0 .
定理4.1设复数列n an ibn, a ib,则
lim
n
n
的充分必要条件是
证明
那末对于任意给定 0
就能找到一个正数N,
从而有
所以
lim
n
an
a.
同理
lim
n
bn

复变函数和积分变换第二版本-4.4 洛朗级数-PPT文档资料

复变函数和积分变换第二版本-4.4 洛朗级数-PPT文档资料
(进入证明?)
8
§4.4 洛朗级数 第 二、洛朗(Laurent)定理 四 章 注 (1) 展开式中的系数 a n 可以用下面得方法直接给出。 解 析 函 数 的 级 数 表 示
n 1 n n 1 f ( z ) a ( z z ) a ( z z ) a ( z z ) n 10 n0 n 10
则其收敛域为:R | z z | . 0 上述两类收敛域被看作是一种特殊的环域。 6
§4.4 洛朗级数 第 一、含有负幂次项的“幂级数” 四 an(z z0)n 的收敛特性 章 2. 级数
n 解 an(z z0)n 收敛, 结论 (1) 如果级数 析 n 函 R | z z | R . 则其收敛域“一定”为环域: 1 0 2 数 的 n 级 a ( z z ) (2) 级数 n 在收敛域内其和函数是解析的, 0 n 数 表 而且具有与幂级数同样的运算性质和分析性质。 示
1 1 1 1 ,( | z | 1 ) . 2 3 1 z z z z
3
§4.4 洛朗级数
第 一、含有负幂次项的“幂级数” 四 章 1. 问题分析 启示 如果不限制一定要展开为只含正幂次项的幂级数的话, 解 析 即如果引入负幂次项,那么就有可能将一个函数在整个 函 数 复平面上展开(除了奇点所在的圆周上)。 的 级 下面将讨论下列形式的级数: 数 表 n 2 1 a ( z z ) a ( z z ) a ( z z ) n 0 2 0 1 0 示 n 2 a a ( z z ) a ( z z ) . 0 1 0 2 0 在引入了负幂次项以后,“幂级数”的收敛特性如何呢? 4
§4.4 洛朗级数 第 一、含有负幂次项的“幂级数” 四 an(z z0)n 的收敛特性 章 2. 级数

复变函数与积分变换第4章4.1收敛数列与收敛级数

复变函数与积分变换第4章4.1收敛数列与收敛级数
n
3
§4.1 复数项级数 第 一、收敛序列 四 章 2. 复数序列极限存在的充要条件 定理 设 zn xn i yn , a i , 则 lim z n a 的充要条件是 解 n P76 析 定理 lim x , lim y . n n n 函 4.1 n 数 zn 证明 必要性 “ ” 的 | zn - a | | yn - | 级 若 lim z n a , 则 e 0 , N , n 数 a | xn - | 表 当 n N 时,| zn - a | e , 示
即得级数 z n 收敛的充要条件是 x n 和 yn 都收敛。
9
§4.1 复数项级数 第 二、复数项级数 四 章 3. 复数项级数收敛的必要条件 定理 设 zn xn i yn , 则 z n 收敛的必要条件是 lim zn 0 . n 解 析 P79 函 证明 由于级数 z 收敛的充要条件是 x 和 y 都收敛, n n n 数 的 而实数项级数 x n 和 yn 收敛的必要条件是: 级 数 lim xn 0 , lim yn 0 等价于 lim zn 0 , 表 n n n 示 因此 z n 收敛的必要条件是 lim zn 0 .
1 n 1 zn 2 i 2 e n n
i
π n 2
§4.1 复数项级数 第 二、复数项级数 四 章 4. 复数项级数的绝对收敛与条件收敛 定义 (1) 若 | z n | 收敛,则称 z n 绝对收敛。 解 析 P79 (2) 若 | z n | 发散, z n 收敛,则称 z n 条件收敛。 函 数 的 定理 若 | z n | 收敛,则 z n 必收敛。 P80 定理4.4 级 2 2 | z | x y 证明 由 收敛, n n 收敛, n 数 表 2 2 2 2 | x | x y , | y | x y 又 示 n n n n n n,

2023大学_工程数学《复变函数》西安交通大学第四版课后答案下载

2023大学_工程数学《复变函数》西安交通大学第四版课后答案下载

2023工程数学《复变函数》西安交通大学第四版课后答案下载工程数学《复变函数》内容简介第一章复数与复变函数第一节复数及其运算第二节复数的几何表示第三节复数的乘幂与方根第四节复平面上的点集第五节复变函数第六节复变函数的极限与连续性小结习题第二章解析函数第一节复变函数的导数第二节解析函数第三节初等函数小结习题第三章复变函数的积分第一节复变函数的积分第二节柯西积分定理第三节不定积分第四节柯西积分公式第五节调和函数小结习题第四章解析函数的级数表示第一节复数项级数第二节幂级数第三节泰勒级数第四节洛朗级数小结习题第五章留数定理及其应用第一节孤立奇点第二节留数定理第三节应用留数定理计算实积分第四节辐角原理小结习题第六章保形映射第一节复平面上的曲线及其简单性质第二节保形映射第三节几个初等函数构成的映射第四节分式线性映射第五节关于保形映射的例题第六节几个特殊的保形映射和一般性定理第七节保形映射的一个应用小结习题第七章傅立叶变换第一节傅立叶变换第二节傅立叶变换的性质小结习题第八章拉普拉斯变换第一节拉普拉斯变换第二节拉普拉斯变换的性质第三节拉普拉斯逆变换小结习题习题解答工程数学《复变函数》图书目录本书是根据复变函数课程教学基本要求编写的,全书共八章,包括复数与复变函数、解析函数、复变函数的积分、解析函数的'级数表示、留数定理及其应用、保形映射、傅立叶变换、拉普拉斯变换,每章末有小结,以帮助学生掌握要点;书后附有习题答案,供学生参考。

书中带“__”号内容,可供各专业选用。

复变函数论第4章

复变函数论第4章

n1
n
当z 2时,
原级数成为
n1
1, n
调和级数,发散.
说明:在收敛圆周上既有级数的收敛点, 也有 级数的发散点.
首页
上页
返回
下页
结束


例3 求幂级数 (cosin)zn的收敛半径:
n0

因为
cn
cos in

cosh n
1 (en 2
en ),
所以
lim cn1 n cn
n1 n
解 (1) 因为 lim cn1 lim ( n )3 1,
n cn
n n 1

1
lim n
n
cn
lim n n
n3
lim 1 1. n n n3
首页
上页
返回
下页
结束

所以收敛半径 R 1, 即原级数在圆 z 1内收敛, 在圆外发散,


补充求:等比级数
ar n1 的敛散性。
n1
解:等比级数的部分和为:
Sn

n
ar k 1
k 1

a ar n1 r 1 r

a(1 r n ) 1 r
已利用等比数列求和公式:
Sn

a1 anq 1 q
当公比|r|<1时,lim n
Sn

lim
n
a(1 rn ) 1 r
n0
n0



f (z) g(z) anzn bnzn (an bn )zn ,
n0
n0
n0
R min( r1, r2 )

09第四章解析函数的级数表示

09第四章解析函数的级数表示

第四章 解析函数的级数表示§1. 复数项级数 一. 复数序列的极限定义: 设{}n z 为一个复数序列,其中n n n y i x z +=, 又设000y i x z +=为一个复定值. 若,0,0>∃>∀N ε使得,N n >∀有不等式ε<-0z z n恒成立,则称复数序列{}n z 收敛于0z ,或称{}n z 以0z 为极限,记作0l i m z z n n =∞→ 或()∞→→n z z n 0.如果对于任意复数0z ,上式均不成立,则称复数序列{}n z 不收敛或发散.定理1 设000y i x z +=,n n n y i x z +=,则⎪⎩⎪⎨⎧==⇔=∞→∞→∞→.lim ,limlim 000y y x x z z n n n n n n 定理1说明: 可将复数列的敛散性转化为判别两个实数列的敛散性.二. 复数项级数定义: 设{}n z 为一个复数序列,表达式 +++++n z z z z 321称为复数项无穷级数.如果它们的部分和序列() 2,1321=++++=n z z z z S n n有极限S S n n =∞→l i m (有限复数),则称级数是收敛的,S 称为级数的和;如果{}n S 没有极限,则称级数是发散的. 例1.当1<z 时,判断级数++++++nz z z z 321是否收敛?定理2 级数 ++++n z z z 21收敛的充分必要条件是实数项级数 ++++n x x x 21与 ++++n y y y 21都收敛.定理2说明: 可将复级数的敛散性转化为判别两 个实级数的敛散性.定理3 (级数收敛的必要条件)若级数++++n z z z 21收敛,则0lim =∞→n n z . 定理4 若级数+++++=∑∞=n n n z z z z z 3211收敛,则级数+++++=∑∞=n n nz z z z z3211一定收敛.定义: 若级数 ++++=∑∞=n n n z z z z 211收敛, 则称级数++++=∑∞=n n nz z z z 211绝对收敛,若级数 ++++=∑∞=n n n z z z z 211发散,而级数 ++++=∑∞=n n n z z z z 211收敛,则称级数 ++++=∑∞=n n nz z z z211条件收敛.例2.判断下列级数的敛散性:(1)∑∞=⎪⎭⎫⎝⎛+121n n i n ;(2)∑∞=1n nni ;(3)∑∞=12n nn i.§2. 复变函数项级数一. 复变函数项级数定义: 设(){}() ,,n z f n 21=为区域D 内的函数序列,称以()z f n 为一般项的复级数 ()()()()+++++z f z f z f z f n 321为区域D 内的复变函数项级数.该级数的前n 项的和()()()()()z f z f z f z f z S n n ++++= 321称为该级数在D 内的部分和. 设0z 为区域D 内的一个定点,若极限()()00lim z S z S n n =∞→存在,则称该复变函数项级数在0z 点收敛,()0z S 为其和,即()()01z S z f n n=∑∞=.如果该复变函数项级数在D 内处处收敛,则称该复变函数项级数在D 内收敛,由此所定义的函数()z S 称为和函数,记作()∑∞=1n n z f .即 ()()∑∞==1n n z f z S 二. 幂级数定义: 形如()()()()+-++-+-+=-∑∞=nn n nnz z C z z C z z C C z z C 02020100的复变函数项级数称为幂级数,其中n C 与0z 均为复常数. 定理5如果幂级数()∑∞=-00n nn z z C 在点()011z z z ≠ 收敛,则该级数在圆域010z z z z -<-内绝对收敛.推论 如果幂级数()∑∞=-10n nn z z C 在点2z 发散,则在区域020z z z z ->-内发散.定义:若存在圆R z z <-0,使得幂级数()∑∞=-10n nn z z C 在此圆内绝对收敛,在此圆外发散,则称该圆为幂级数的收敛圆,称该圆的半径R 为幂级数的收敛半径. 结论:对幂级数()∑∞=-10n nn z z C 而言,一定存在某一圆R z z <-0,使得该幂级数在此圆内绝对收敛,在此圆外发散.达朗贝尔比值判别法——若 λ=+∞→n n n C C 1lim ,则幂级数()∑∞=-10n nn z z C 的收敛半径λ1=R .柯西根值判别法——若 λ=∞→nnn C lim ,则幂级数()∑∞=-10n nn z z C 的收敛半径λ1=R .例3. 求级数∑∑∑∞=∞=∞=1210,,n nn nn nn z nzz 的收敛半径. 例4.求级数()∑∞=-11n nnz 的收敛半径.说明:达朗贝尔比值判别法与柯西根值判别法都只是充分条件,而非必要条件. 例5. 把函数z 1表示成形如()∑∞=-02n nn z c 的幂级数. 性质 (1)幂级数()∑∞=-00n nn z z C 的和函数在收敛圆内一定解析;(2)在收敛圆内,幂级数()∑∞=-00n nn z z C 可以逐项积分或求任意阶导数,所得到的幂级数在该圆内也收敛,且相应的和函数即为对幂级数()∑∞=-00n nn z z C 的和函数进行积分或求相应阶导数所得的结果.例6 求幂级数∑∞=12n nz n 的和函数,并计算级数∑∞=122n n n 之值.§3. 泰勒级数定理6 (泰勒定理) 设函数()z f 在区域D 内解析,0z 为D 内的一点,设R 为0z 到D 的边界的距离,则当R z z <-0时,()z f 可展为幂级数()()∑∞=-=00n nn z z C z f 其中()() 2,1,0!10==n z f n C n n .称该幂级数为()z f 在区域D 内以0z 为心的泰勒级数.说明:1.复变函数展开为泰勒级数的条件要比实函数时弱得多; (想一想, 为什么?);, , )( .200z d z d D z f -=αα即之间的距离一个奇点到最近等于则内有奇点在如果4.任何解析函数在一点的泰勒级数是唯一的. 结论:函数在()z f 点0z 解析的充分必要条件是在0z 点()z f 可展成幂级数.根据结论,解析函数()z f 在点0z 可展成泰勒 级数,其展开法分别是直接展开法和间接展开法.直接展开法是指由泰勒展开定理计算系数间接展开法是指借助于一些已知函数的展开式 , 结合解析函数的性质, 幂级数运算性质 (逐项求导, 积分等)和其它数学技巧 (代换等) , 求函数的泰勒展开式.例7.将()0==z e z f z在处展开为泰勒级数.例8. 将()0sin ==z z z f 在处展开为泰勒级数.;,0.30级数级数也可称为麦克劳林时当=z,2,1,0,)(!10)(==n z f n c n n .)( 0展开成幂级数在将函数z z f例9.将()z z f -=11在z =0的邻域展开.例10. 求函数()0112=+=z zz f 在的邻域内的泰勒 展开式.例11. 例12. 求函数()21-=z z f 在1-=z 的邻域内的泰勒展开式.例13.将函数()()211z z f -=展开为i z -的幂级数.例14.求对数函数ln (1+z )在z =0处的泰勒展开式.例15. 将函数()ze zf -=11展开为z 的幂级数.§4. 洛朗级数引例 求函数()122-+-=z zz z f 的展开式..0arctan 的幂级数展开式在求=z z定理7 设函数()z f 在环域201R z z R <-<内解析,则()z f 在此环域内一定可以展成()()∑∞-∞=-=n n n z z C z f 0, 其中()()() 2,1,02110±±=-=⎰+n d z f i C C n n ςςςπ.C 为此环域内绕0z 的任意一条简单闭曲线. 称此级数为环域内的解析函数的洛朗级数. 说明:环域201R z z R <-<内的解析函数则()z f 在此环域内一定可以展成惟一的洛朗级数. 例16. 将函数 ()()()211--=z z z f分别在圆环域(1)10<<z ;(2)21<<z ;(3)+∞<<z 2内展开为洛朗级数.例17. 将函数()2z shz z f =在+∞<<z 0内展开为洛朗级数.例18. 试求()211z z f +=以z =i 为中心的洛朗级数.。

第四章-幂级数

第四章-幂级数
2 2
因此 z 2k (k 0, 1,...) 都是 f ( z) sin z 1 的二阶零点
2
解析函数零点的孤立性,唯一性定理
• 定理:设函数 f ( z ) 在 z a R 解析,且不恒 为零,a为其零点,则必有a的一个邻域, 使得 f ( z ) 在其中没有a之外的零点。

的系数
cn
满足
cn 1 l cn
(2)
lim n cn l
n
(3) 则幂级数 c ( z a) 的收敛半径
n
lim n cn l

n
n 0
n
1 l , l 0, l R 0, l , l 0
cos(in)( z 1) 例.
1、幂级数 各项均为幂函数的复变项级数
(*)
其中 ,都是复常数,这样的 级数叫做以 z0 为中心的幂级数。 2、幂级数的收敛性,收敛半径 先看由上级数各项的模所组成的正项级数
应用正项级数的比值判别法可知,如果
则级数收敛,即原级数绝对收敛,可引入记 号
即,如果 果 ,则
则原级数绝对收敛,如
即级数后面的项的模越来越大,不满足级数
eiz eiz 2i
(eiz i)2 0, eiz i

2
2 k
(k 0, 1,...)
这是 f ( z) sin z 1 的全部零点 注意到
(sin z 1) ' z 2 k cos z z 2 k 0
2 2
(sin z 1) '' z 2k sin z z 2k 1
n z 2 z3 z 4 z f 0 ( z ) (ln( z 1))0 z ... (1) n1 ... 2 3 4 n

高等数学第四册第三版数学物理方法答案(完整版)

高等数学第四册第三版数学物理方法答案(完整版)

高等数学 第四册(第三版) 数学物理方法 答案(完整版)第一章 复数与复变函数(1)1.计算)(1)2;i i i i i -=-=-()122(12)(34)(2)5102122.;345(34)(34)591655i i i i i i i i i i i i +-++--+++=+=-=---+-+5551(3).;(1)(2)(3)(13)(3)102i i i i i i i ===------4222(4).(1)[(1)](2)4;i i i -=-=-=-1122())]a bi =+=112224sin )]()(cossin );22i a b i θθθθ=+=++3.设1z=2;z i =试用三角形式表示12z z 及12z z 。

解:121cossin;(cos sin );44266z i z i ππππ=+=+121155[cos()sin()](cos sin );2464621212z z i i ππππππ=+++=+ 122[cos()sin()]2(cos sin );46461212z i i z ππππππ=-+-=+11.设123,,z z z 三点适合条件1230z z z ++=及1231;z z z ===试证明123,,z z z 是一个内接于单位圆z =1的正三角形的顶点。

证明:1230;zz ++=z 123231;312;;z z z z z z z z z ∴=--=--=--122331;z z z z z z ∴-=-=-123,,z z z ∴所组成的三角形为正三角形。

1231z z z ===123,,z z z ∴为以z 为圆心,1为半径的圆上的三点。

即123z ,z ,z 是内接于单位圆的正三角形。

.17.证明:三角形内角和等于π。

证明:有复数的性质得:3213213arg;arg ;arg ;z z z z z z αβγ---=== 21z z z z -•-arg(1)2;k αβγπ∴++=-+0;k ∴=;αβγπ∴++=第一章 复数与复变函数(2)7.试解方程()4400z a a +=>。

复变函数之幂级数

复变函数之幂级数

a z3 r3
x
+∞
+∞
∑ ∑ 定理4(P76)若J = an xn 的收敛半径为= R, 令I an(z − a)n,则
n=0
n=0
(3)若R = 0, 则I 在全平面内除z = a 外处处发散.
(3)的证明用反证法.证明过程与(1)(ii) 的证明过程类似.
若R = 0,假设存在一点z4 ≠ a, 使得I在点 z4 收敛.
第四章 解析函数的级数表示
级数是研究解析函数的又一重要工具, 两种:1. 幂级数 2. 洛朗级数
4.1 幂级数
定义
设有复数列{zn
=
xn
+
i
yn , n
=
1, 2,},其中xn ,
yn

,
+∞
称 ∑ zk = z1 + z2 + z3 + + zk + 为复数项无穷级数. k =1
n
∑ (1)若{zn}部分和复数列Sn = zk = z1 + z2 + + zn , n = 1, 2,有极限 k =1

ak
=
f
(
k)( k!
a
)
,
k ≥ 0.
定理5(P 78)
2)在收敛圆内曲线C上,可以逐项积分:
2n
是否绝对收敛?
∑ ∑ ∑ +∞ (−1)n +∞ 1
解.因为
=
+∞ (−1)n
发散,故
不是绝对收敛.
n=1 n n=1 n
n=1 n
∑ 从而由定理2(P75)知
+∞ (−1)n

4.4洛朗级数

4.4洛朗级数

n ( z z0 ) n 及 n ( z z0 ) n ,
都收敛时,我们说原级数收敛,并且它的和等 于上式中两个级数的和函数相加。 设上式中第一个级数在 | z z0 | R2 内绝 对收敛并且内闭一致收敛;
n 0 n 1

解析函数的洛朗展式:
第二个级数在 | 内闭一致收敛。
f ( z)
n


n
( z z0 ) ,
n
其中,定理的证明:
1 f ( ) n 2' ( z0 )n1 d , (n 0,1,2,...) 2i 1 f ( ) n 1' ( z0 )n1 d , (n 1,2,...) 2i
小结
第四章 级 数
4.3 洛朗级数
解析函数的洛朗展式:
我们称级数
n


n
( z z0 )
n
பைடு நூலகம்
为洛朗级数。 收敛?和函数?收敛域?解析部分?主要部分? 洛朗级数的和函数是圆环D内的解析函数, 反之,圆环内的解析函数必可展开为洛朗级数 即有
洛朗定理:
洛朗定理 设函数f(z)在圆环: D : R1 | z z0 | R2 (0 R1 R2 ) 内解析,那么在D内
:| z z0 | ( R1 R2 )
然后沿 求积分。由于所讨论的级数在 上一 致收敛,在求积分时,对有关级数可以逐项积 分,于是我们有
1 g ( z) 1 n k 1 ( z z0 )k 1 dz k 2i ( z z0 ) dz k 2i
1 z
1 1 1 1 1 e 1 ... ... 2 n z 2! z n! z

[复变函数与积分变换][课件][第4章][级数]

[复变函数与积分变换][课件][第4章][级数]



∑f
n =1
+∞
n
( z ) = f1 ( z ) + f 2 ( z ) + f 3 ( z ) +
+ f n ( z) +
为复
= f1 ( z ) + f 2 ( z ) +
+ f n ( z) = ∑ f k ( z) .
k =1
n
sn ( z0 ) 若 z 0 ∈ D ,极限 nlim → +∞
敛点;
= s ( z0 )
存在,称
∑f
n =1
+∞
n
( z ) 在 z0 处收敛,和
∑f
n =1
+∞
n
( z0 ) = s ( z0 ) , z0 为收
若 z 0 ∈ D , {sn ( z 0 )} 发散,称
∑f
n =1
+∞
n
( z ) 在 z 0 处发散, z 0 为发散点.
D1 收敛域
D2 发散域
∑αn = s
n =1
+∞
Δ
收敛; 若 {s n }
∑α
n =1
+∞
n
收敛

∑a
n =1
+∞
n

∑b
n =1
+∞
n
均收敛.
⎛ n ⎞ ⎛ n ⎞ 证: s n = ∑ α k = ⎜ ∑ ak ⎟ + i ⎜ ∑ bk ⎟ . k =1 ⎝ k =1 ⎠ ⎝ k =1 ⎠
此定理将复级数的审敛问题转化为实级数的审敛问题. 级数收敛之必要条件:

解析函数的级数展开

解析函数的级数展开
n →∞
定理 4.1.2 (比较判别法) 假设存在自然数N, 使得当 j > N 时
若(实正项)级数
∑M
j =0

| c j |≤ M j .
j
收敛, 则复级数
∑ c 也收敛.
j =0 j

1 + 2i 例 4.1.1 证明级数 ∑ j 收敛. j = 0 ( j + 1)

证明:
1 + 2i 1 + 2i 1 + 2i 1 + 2i ∑ ( j + 1) j = (1 + 2i) + 2 + 9 + 64 + L j =0
称为 f (z ) 在点 z0 处的泰勒级数. 当 z0 = 0 时称其为 f (z ) 的 马克劳林 (Maclaurin) 级数. 由高阶导数的柯西积分公式, 泰勒级数的系数可表示为 z0 点 的邻域内某一简单闭曲线 Γ 上的积分表示. f ( j ) ( z0 ) f (ς ) 1 = ∫Γ (ς − z0 ) j +1 dς j! 2πi
为 S n , 即 S n = ∑ c j . 若部分和序列 {S n }∞=1有极限S, 则称级 n 数收敛于S, 记为 S = ∑ c j . 一个级数若不收敛则称为发散.
j =1
∞ ∞ ∞
n∑ c = ∑ (a源自j =1 j j =1j
+ ib j ) = S = a + ib ⇔ ∑ a j = a, ∑ b j = b.
z → z0
lim ∑ f n ( z ) = f ( z0 ) = ∑ f n ( z0 ) = ∑ ( lim f n ( z )).
n =1 n =1 n =1 z → z0

复变函数第四章

复变函数第四章

使级数对一 切Mzn∈收E敛,有,则|f复n(z函)|≤数M项n (级n=数1,2,…fn)(,z而)在且点正集项E上
n1
绝对收敛且一致收敛.
n1
这样的正项级数
M
称为函数项级数
n
fn
(z)
的优级数.
n 1
n1
定理4.6 设级数 fn(z)的各项在点集E上连续,并
ቤተ መጻሕፍቲ ባይዱ
且一致收敛于f(z)n,则1 和函数 f (z) fn(z)也在E
上连续.
n1
定理4.7 设级数 fn(z)的各项在曲线C上连续,并 n1
且在C上一致收敛于f(z),则沿C可以逐项积分:
C f (z)dz C fn(z)dz n1
定义4.5 设函数fn(z)(n=1,2,…)定义于区域D内,若 级数(4.2)在D内任一有界闭集上一致收敛,则称此 级数在D内内闭一致收敛.
由定理4.7得 c f (z)dz c fn (z)dz 0 n1
于是,由摩勒拉定理知,f(z)在 K 内解析,即
在 z0 D 解析。由于 z0 D 的任意性,
故f(z)在区域 D 内解析。
(2)设z0的某邻域U的边界圆K也在D内,对于z K ,
n1
(z
fn(z) 一致收敛于
f(z),对于E上的每一点z,级数(4.2)均收敛于f(z),则称
f(z)为级数(4.2)的和函数,记为: f (z) fn(z) n1
定义4.4 对于级数(4.2),如果在点集E上有一个函数
f(z),使对任给的ε>0,存在正整数N=N(ε),当n>N时,对
一致切收的 敛于z∈f(Ez均),有记|作f(z:)-sn(z)|<fεn ,则zz称E 级f z数 (4.,2)在E上其一
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 解析函数的级数表示4.1.下列序列是否有极限?如果有极限,求出其极限。

(1)1nn z i n =+;(2)!n n n n z i n =(3)nn z z z ⎛⎫= ⎪⎝⎭;解:(1)当n →∞时,n i 不存在极限,故n z 的极限不存在。

(2) ()!||0n nn z n n =→→∞,故lim 0n n z →∞=。

(3)nn z z z ⎛⎫= ⎪⎝⎭=22||n n z z (令i z re θ=)=222n i n nr e r θ=cos2sin 2n i n θθ+,n →∞时,cos 2,sin 2n n θθ的极限都不存在,故nn z z z ⎛⎫= ⎪⎝⎭无极限。

4.2.下列级数是否收敛?是否绝对收敛?(1)112n n i n ∞=⎛⎫+ ⎪⎝⎭∑;(2)1!n n i n ∞=∑;(3)()01n n i ∞=+∑。

解:(1)因1111n n n n ∞∞===∑∑发散。

故112n n i n ∞=⎛⎫+ ⎪⎝⎭∑发散。

(2)111||!!n n n i n n ∞∞===∑∑收敛;故(2)绝对收敛。

(3)()4lim 1lim0n ni nn n i eπ→∞→∞+=→不成立,故发散。

4.3.试证级数()12nn z ∞=∑当1||2z <时绝对收敛。

证明: 当1||2z <时,令1||2z r =<, ()|2|2||1nn n z z =<,且()()|2|21nnz r =<。

()12nn r ∞=∑收敛,故()12nn z ∞=∑绝对收敛。

4.4.试确定下列幂级数的收敛半径。

(1)11n n nz ∞-=∑;(2)2111n n n z n ∞=⎛⎫+ ⎪⎝⎭∑;(3)()11!nn n z n ∞=-∑。

解: (1)11lim ||lim 1n n n n c n c n+→∞→∞+==,故1R =。

(2)1lim 1,nn n n e n →∞⎛⎫==+= ⎪⎝⎭故1R e =。

(3)()1!1lim ||lim lim 01!1n n n n n c n c n n +→∞→∞→∞===++,故R =∞。

4.5.将下列各函数展开为z 的幂级数,并指出其收敛区域。

(1)311z +;(2)1(0,0)()()a b z a z b ≠≠--;(3)()2211z +;(4)chz ;(5)2sin z ;(6)1zz e -。

解:(1)311z +=()311z --=()()33001nn n n n z z ∞∞==-=-∑∑,原点到所有奇点的距离最小值为1,故||1z <. (2)1111()()z a z b a b z a z b ⎛⎫=- ⎪-----⎝⎭()a b ≠=111b a a z b z ⎛⎫- ⎪---⎝⎭=11111z z b a a b a b ⎛⎫⎪ ⎪--⎛⎫⎛⎫ ⎪-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=11001n n n n n n z z b a a b ∞∞++==⎛⎫- ⎪-⎝⎭∑∑,||1z a <,且||1z b <, 即||min{||,||}z a b <。

若a b =则1()()z a z b --()2111z a a z z a ''⎛⎫⎛⎫==-= ⎪ ⎪--⎝⎭⎝⎭-=()111111/n n n n n n z z a z a a a ∞∞++=='''⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭∑∑=111,||||.n n n nz z a a-∞+=<∑(3)()2211z +()220111212n n z z z z ∞=''⎛⎫⎛⎫=-=-- ⎪ ⎪+⎝⎭⎝⎭∑()2111122n n n nz z ∞-==--∑()12211,|| 1.n n n nz z ∞--==-<∑ (4)101()22!!z z n n n n e e z z chz n n -∞∞==⎛⎫+-==+ ⎪⎝⎭∑∑()21,||.2!n n z z n ∞==<∞∑ (5)()()()20211cos 211sin 2222!nnn z z z n ∞=--==-∑()()1121,||22!nn nn zz n ∞=-=-<∞∑ (6) 令()1,(0)1,zz f z ef -==()11211(1)z z z z z f z ee z z --'⎛⎫⎛⎫'==- ⎪ ⎪--⎝⎭⎝⎭()()()21,011f z f z '=-=-- ()()()()()()342,011f z f z f z f z z '''''=-=--- 1 ()()()()()()()43246111f z f z f z f z z z z '''-'''=+----,()01f '''=M()231.2!3!z z f z z =----L1为()f z 的唯一奇点,原点到1的距离为1,故收敛半径 1.R < 4.6.证明对任意的z ,有|||||1|1||.z z z e e z e -≤-≤证明: 因为0,||!n zn z e z n ∞==<+∞∑所以||011|||1||1|||1!!!n n n zz n n n z z z e e n n n ∞∞∞===-=-=≤=-∑∑∑又因为:||111||||||2!!z n e z z z n -=++++L L =111||1||||2!!n z z z n -⎛⎫++++ ⎪⎝⎭L L21||1||||2!z z z ⎛⎫≤+++ ⎪⎝⎭L=||||.z z e所以|||||1|1||z z z e e z e -≤-≤4.7 求下列函数在指定点处的泰勒展式。

解: (1)21Z , 01Z =211()Z Z'=- 1()11Z '=-+-()()0[11]n nn z ∞='=---∑()()1111n n n n z ∞-==--⋅-∑=()()()0111nnn n z ∞=-⋅+-∑, |1|1Z -<(2)sin z ,01z =; sin sin(11)z z =-+cos1sin(1)sin1cos(1)z z =-+-()()()()()()21201111cos1sin121!2!n nn nn n z z n n +∞∞==----=++∑∑,|1|Z -<∞.(3)143z-,01z i =+;143z -=00143()3z z z ---=01133()i z z --- =113i -.()013113z zi--- =113i-()00313nn z z i ∞=⎡⎤-⎢⎥-⎣⎦∑=()013(13)n n n n z z i ∞+=--∑|(1)|3z i -+<(4)tan z , 04z π=()tan f z z =, 00()tan 1f z z ==;22022sin cos sin 1()(tan )(),()2cos cos cos z z z f z z f z z z z+''''===== ''232122tan ()()(sin )cos cos cos ,z f z z z z z -'==-= ''()44f π='''2()()()cos zf z f z z '=='242()cos 2()2cos (sin )cos f z z f z z z z ⋅-- '''()164f π=238tan 12()24434z z z z πππ⎛⎫⎛⎫=+-+-+-+ ⎪ ⎪⎝⎭⎝⎭L4.8 将下列各函数在指定圆环内展为洛朗级数。

解:(1)()21,1z z z +- 0||1,1||z z <<<<∞; 0||1z <<,(),2222011212111n n z z z z z z z z ∞=+⎛⎫=-=- ⎪--⎝⎭∑1||z <<∞,10||1z<<()2221121211(1)1111/z z z z z z z z+⎛⎫=+=+⋅ ⎪---⎝⎭ =23230012112nn n n z z z z z ∞∞+==⎛⎫+=+ ⎪⎝⎭∑∑(2) 12,z z e0||z <<∞;=22001/!!nnn n z z n z n -∞∞==⎛⎫= ⎪⎝⎭∑∑(3)()()2225,21z z z z-+-+1||2z <<;=21221z z --+ 2212121112z z z=-⋅-⋅-+1122,002(1)2n n n n n n z z ∞∞+++===-+-∑∑, 1||2z <<,(4)cos1iz-, 0|1|z <-<∞ =11112zzee ---+=1/20011111/2!!n nn n z z n n ∞∞==⎛⎫⎛⎫- ⎪ ⎪--⎝⎭⎝⎭+∑∑ =()()()()2200112!2!1nnn n z n n z -∞∞==-=-∑∑4.9 解:将2132z z -+在1z =处展开洛朗级数 ()()111()2121f z z z z z ==----- 的奇点为21,2z z ==。

()f z 在0|1|1z <-<与|1|1z ->解析当0|1|1z <-<,时, 1111()2111(1)f z z z z z =-=------- ()0111nn z z ∞==----∑()11n n z -∞==--∑,当|1|1z ->时, 10||11z <<-,11111()1211111f z z z z z z =-=-+⋅------101111n n z z +∞=⎛⎫=-+ ⎪--⎝⎭∑=21(1)n n z ∞+=-∑4.10 将221()(1)f z z =+在z i =的去心邻域内展开成洛朗级数。

解:()f z 的孤立奇点为i ±。

()f z 在最大的去心邻域02z i <-<内解析。

当02z i <-<时,()()()'2222211111()(1)f z z z i z i z i z i ⎛⎫===- ⎪++⎝⎭-+-g g ()()()'22011111122212nn n z i z i i i i z i z i i ∞=⎛⎫⎡⎤⎪-⎛⎫=-=--⎢⎥ ⎪ ⎪-⎝⎭--⎢⎥ ⎪⎣⎦+⎝⎭∑g g g g ()()()131211111()()112(2)(2)n n nn n n n n z i z i n ni i i z i --∞∞++==--=--=--∑∑g g g g g()()22()11(2)n nn n z i n i -∞+=-=-+∑g 。

相关文档
最新文档