初中数学三角形的证明精选试题
(必考题)初中数学八年级数学下册第一单元《三角形的证明》测试题(含答案解析)
一、选择题1.如图,在ABC 中,BO 平分ABC ∠,CO 平分ACB ∠,EF 经过点O 且//EF BC ,若7AB =,8AC =,9BC =,则AEF 的周长是( )A .15B .16C .17D .242.如图,在Rt △ABC 中,∠BAC=90°,∠C=45°,AD ⊥BC 于点D ,∠ABC 的平分线分别交 AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交 BC 于点N ,连接EN ,下列结论:①△AFE 为等腰三角形;②DF= DN ;③AN = BF ;④EN ⊥NC .其中正确的结论有( )A .1个B .2个C .3个D .4个3.如图,在ABC 中,4AB AC ==,ABC ∠和ACB ∠的平分线交于点E ,过点E 作//MN BC 分别交AB 、AC 于M 、N ,则AMN 的周长为( )A .12B .4C .8D .不确定 4.如图,在等腰三角形ABC 中,AB AC =,DE 垂直平分AB ,已知40ADE ∠=︒,则DBC ∠度数为( )A .5︒B .15︒C .20︒D .25︒5.下列命题中,假命题是( )A .直角三角形的两个锐角互余B .等腰三角形的两底角相等C .面积相等的两个三角形全等D .有一个角是60︒的等腰三角形是等边三角形6.如图,30MON ∠=︒点1A ,2A ,3A ,…在射线ON 上,点1B ,2B ,3B ,…在射线OM 上,112A B A ,223A B A ,334A B A ,…均为等边三角形,若11OA =,则边67B B 的长为( )A .63B .123C .323D .6437.如图,在△ABC 中,∠ACB =90°,BE 平分∠ABC ,DE ⊥AB 于点D .若∠A =30°,AE =10,则CE 的长为( )A .5B .4C .3D .28.如图,△ABC 中,DC =2BD =2,连接AD ,∠ADC =60°.E 为AD 上一点,若△BDE 和△BEC 都是等腰三角形,且AD =31+,则∠ACB =( )A .60°B .70°C .55°D .75°9.如图,在ABD ∆中,AD AB =,90DAB ︒∠=,在ACE ∆中,AC AE =,90EAC ︒∠=,CD ,BE 相交于点F ,有下列四个结论: ①BDC BEC ∠=∠;②FA 平分DFE ∠;③DC BE ⊥;④DC BE =.其中,正确的结论有( )A .①②③④B .①③④C .②③D .②③④ 10.如图,ACB △和DCE 均为等腰直角三角形,且90ACB DCE ∠=∠=︒,点A 、D 、E 在同一条直线上,CM 平分DCE ∠,连接BE .以下结论:①AD CE =;②CM AE ⊥;③2AE BE CM =+;④//CM BE ,正确的有( )A .1个B .2个C .3个D .4个11.如图,在ABC 中,30C ∠=︒,点D 是AC 的中点,DE AC ⊥交BC 于E ;点O 在DE 上,OA OB =,2OD =,4OE =,则BE 的长为( )A .12B .10C .8D .612.如图,一棵高5米的树AB 被强台风吹斜,与地面BC 形成60︒夹角,之后又被超强台风在点D 处吹断,点A 恰好落在BC 边上的点E 处,若2BE =,则BD 的长是( )A .2B .3C .218D .247二、填空题13.如图.在ABC 中,2AB AC ==,40B C ∠=∠=︒,点D 在线段BC 上运动(点D 不与点B 、C 重合),连接AD ,作40ADE ∠=︒,DE 交线段AC 于点E .(1)点D 从B 向C 的运动过程中,BDA ∠逐渐变____(填“大”或“小”);(2)在点D 的运动过程中,ADE 的形状可以是等腰三角形吗?若可以,请直接写出BDA ∠的度数,若不可以,请说明理由._____.14.如图,已知ABC ∆中,90,C AC BC ∠=︒=,点D 在BC 上,DE AB ⊥,点E 为垂足,且DC DE =,联结AD ,则ADB ∠的大小为___________.15.如图,ABC 中,45ABC ∠=︒,高AD 和BE 相交于点,30H CAD ∠=︒,若4AC =,则点H 到BC 的距离是_____________.16.在ABC ∆中,45A ∠=︒,60B ∠=︒,4AB =,点P 、M 、N 分别在边AB 、BC 、CA 上,连接PM 、MN 、NP ,则PMN ∆周长的最小值为__________17.等腰三角形一腰上的高与另一腰的夹角为40︒,则这个等腰三角形的底角度数为____________.18.已知,在等腰ABC ∆中,AD BC ⊥于点D ,且2BC AD =,则等腰ABC ∆底角的度数为_________.19.如图,在ABC 中,,AB AC AD =是BC 边上的中线,50B ∠=︒,则DAC ∠=___________20.在第1个△ABA 1中,∠B =30°,AB =A 1B ,在A 1B 上取一点C ,延长AA 1到A 2,使得A 1A 2=A 1C ;在A 2C 上取一点D ,延长A 1A 2到A 3,使得A 2A 3=A 2D ;…,按此做法进行下去,第1个三角形的以A 1为顶点的内角的度数为__________;第n 个三角形的以A n 为顶点的内角的度数为__________.三、解答题21.如图,ABC ,其中AC BC >.(1)尺规作图:作AB 的垂直平分线交AC 于点P (要求:不写作法,保留作图痕迹); (2)若8,AB PBC =的周长为13,求ABC 的周长;(3)在(2)的条件下,若ABC 是等腰三角形,直接写出ABC 的三条边的长度. 22.已知:如图,ABC 是等腰三角形,AB AC =,36A ∠=︒(1)利用尺规作B平分线BD,交AC于点D;(保留作图痕迹,不写作法)△是否为等腰三角形,并说明理由.(2)判断ABD中,AD是BC边上的高线,AD的垂直平分线分别交AB,AC于点E,23.如图,在ABCF.(1)若∠DAC=30°,求∠FDC的度数;(2)试判断∠B与∠AED的数量关系并说明理由.24.如图,在△ABC中,AC=BC,∠ACB=90°,延长CA至点D,延长CB至点E,使AD=BE,连接AE,BD,交点为O.(1)求证:OB=OA;(2)连接OC,若AC=OC,则∠D的度数是度.25.如图.在△ABC中,∠C=90 °,∠A=30°.(1)用直尺和圆规作AB的垂直平分线,分别交AB、AC于D、E,交BC的延长线于F,连接EB.(不写作法,保留作图痕迹)(2)求证:EB平分∠ABC.(3)求证:AE=EF.26.已知:如图,,,C D Rt AC BD AD ∠=∠=∠=与BC 相交于点P .求证:(1)Rt ABC Rt BAD ≌.(2)PAB △是等腰三角形.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先根据平行线的性质、角平分线的定义、等边对等角得到BE =OE ,OF =CF ,再进行线段的代换即可求出AEF 的周长.【详解】解:∵EF ∥BC ,∴∠EOB =∠OBC ,∵BO 平分ABC ∠,∴∠EBO =∠OBC ,∴∠EOB =∠EBO ,∴BE =OE ,同理可得:OF =CF ,∴AEF 的周长为AE +AF +EF =AE +OE +OF +AF = AE +BE +CF +AF =AB +AC =7+8=15.故答案为:A【点睛】 本题考查了等腰三角形的判定“等边对等角”,熟知平行线的性质,角平分线的定义和等腰三角形的判定定理是解题关键.2.D解析:D利用等腰三角形的性质,直角三角形的性质,线段垂直平分线的性质,三角形的全等,角平分线的定义,逐一判断即可.【详解】∵∠BAC=90°,AD⊥BC,BE平分∠ABC ,∴∠DBF+∠DFB=90°,∠ABE+∠AEF=90°,∠ABE=∠DBF,∴∠AEF=∠DFB=∠AFE,∴△AFE为等腰三角形,∴结论①正确;∵△AFE为等腰三角形,M为EF 的中点,∴∠AMF=90°,∴∠DBF=∠DAN,∵∠BAC=90°,∠C=45°,AD⊥BC于点D,∴AD=BD,∴△DBF≌△DAN,∴DF= DN,AN=BF,∴结论②③正确;∵∠ABM=∠NBM,∴∠BMA=∠BMN= 90°,BM=BM,∴△BMA≌△BMN,∴AM=MN,∴BE是线段AN的垂直平分线,∴EA=EN,∴∠EAN=∠ENA=∠DAN,∴AD∥EN,∵AD⊥BC∴EN⊥NC,∴结论④正确;故选D.【点睛】本题考查了等腰三角形的判定和性质,三角形的全等,线段的垂直平分线的定义和性质,平行线的判定和性质,直角三角形的性质,角平分线的定义,熟练掌握知识,灵活运用知识是解题的关键.3.C【分析】由角平分线的定义和平行线性质易证△BME和△CNE是等腰三角形,即BM=ME,CN=NE,由此可得△AMN的周长=AB+AC.【详解】解:∵∠ABC和∠ACB的平分线交于点E,∴∠ABE=∠CBE,∠ACE=∠BCE,∵MN//BC,∴∠CBE=∠BEM,∠BCE=∠CEN,∴∠ABE=∠BEM,∠ACE=∠CEN,∴BM=ME,CN=NE,∴△AMN的周长=AM+ME+AN+NE=AB+AC,∵AB=AC=4,∴△AMN的周长=4+4=8.故选C.【点睛】本题考查了等腰三角形的判定与性质,平行线的性质,熟记各性质是解题的关键.4.B解析:B【分析】根据线段垂直平分线求出AD=BD,推出∠A=∠ABD=50°,根据三角形内角和定理和等腰三角形性质求出∠ABC,即可得出答案.【详解】解:∵DE垂直平分AB,∴AD=BD,∠AED=90°,∴∠A=∠ABD,∵∠ADE=40°,∴∠A=90°-40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C=1(180°-∠A)=65°,2∴∠DBC=∠ABC-∠ABD=65°-50°=15°,故选:B.【点睛】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形内角和定理的应用,能正确运用定理求出各个角的度数是解此题的关键.5.C解析:C根据直角三角形的性质、等腰三角形的性质、全等三角形的概念、等边三角形的判定定理判断即可.【详解】解:A、直角三角形的两个锐角互余,本选项说法是真命题;B、等腰三角形的两底角相等,本选项说法是真命题;C、面积相等的两个三角形不一定全等,本选项说法是假命题;D、有一个角是60°的等腰三角形是等边三角形,本选项说法是真命题;故选:C.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.C解析:C【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出B1B2B2B3,B3B4B n B n+1的长为 2,进而得出答案.【详解】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2=2,∴B1B2∵B3A3=2B2A3,∴A3B3=4B1A2=4,∴B2B3∵A4B4=8B1A2=8,∴B3B4=43,以此类推,B n B n+1的长为2n-13,∴B6B7的长为323,故选:C.【点睛】本题考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题的关键.7.A解析:A【分析】先根据含30°角的直角三角形的性质求出DE=5,再根据角平分线的性质求出CE=DE=5即可.【详解】解:∵DE⊥AB,∴∠ADE=90°,在Rt△ADE中,∠A=30°,AE=10,∴DE=1AE=5,2∵BE平分∠ABC,DE⊥AB,∠ACB=90°,∴CE=DE=5,故选:A.【点睛】本题考查的是角平分线的性质、含30°角的直角三角形的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.8.D解析:D【分析】根据等腰三角形的性质求解即可;【详解】∵60EDC ∠=︒,∴60EBD BED ∠+∠=︒,∵△BDE 是等腰三角形,∴30EBD BED ∠=∠=︒,1BD DE ==,∵△BEC 是等腰三角形,∴30EBD ECD ∠=∠=︒,∵60EDC ∠=︒,∴90DEC ∠=︒,在Rt △DEC 中,∵30ECD ∠=︒,1DE =,∴tan 30DEEC ==︒又∵AD1,∴AE AD DE EC =-==,∴△AEC 为等腰三角形,又∵90DEC AEC ∠=∠=︒,∴45ECA EAC ∠=∠=︒,∴453075ACB ACE ECD ∠=∠+∠=︒+︒=︒;故答案选D .【点睛】本题主要考查了等腰三角形的性质应用,准确计算是解题的关键.9.D解析:D【分析】由△ABD 和△ACE 都是等腰直角三角形得出AB=AD ,AE=AC ,∠BAD=∠CAE=90°,再进一步得出∠DAC=∠BAE 证得△ABE ≌△ADC ,可以判断①③④;作AP ⊥CD 于P ,AQ ⊥BE 于Q ,利用面积相等证得AP= AQ ,再利用角平分线的判定定理即可判断②.【详解】∵△ABD 和△ACE 都是等腰直角三角形,∴AB=AD ,AE=AC ,∠BDA=∠ECA=45︒,又∵∠BAD=∠CAE=90°,∴∠BAD+∠BAC=∠CAE+∠BAC ,即:∠DAC=∠BAE ,在△ABE 和△ADC 中,AB AD BAE DAC AE AC =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ADC (SAS ),∴BE=DC ,故④正确;∠ADF=∠ABF ,∴∠BDC=45︒-∠ADF ,∠BEC=45︒-∠AEF ,而∠ADF=∠ABF ≠∠AEF ,∴∠BDC ≠∠BEC ,故①错误;∵∠ADF+∠FDB+∠DBA=90°,∴∠FDB+∠DBA+∠ABF=90°,∴∠DFB=90°,∴CD ⊥BE ,故③正确;作AP ⊥CD 于P ,AQ ⊥BE 于Q ,∵△ABE ≌△ADC ,∴ABE ADC S S =,∵BE=DC ,∴AP= AQ ,∵AP ⊥CD ,AQ ⊥BE ,∴FA 平分∠DFE ,故②正确;综上,②③④正确;故选:D .【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,角平分线的判定,熟练掌握全等三角形的判定与性质是解本题的关键.10.C解析:C【分析】由“SAS ”可证ACD BCE ≅∆∆,可得AD BE =,ADC BEC ∠∠=,可判断①,由等腰直角三角形的性质可得45CDE CED ∠=∠=︒.CM AE ⊥,可判断②,由全等三角形的性质可求90AEB CME ,可判断④,由线段和差关系可判断③,即可求解. 【详解】解:ACB ∆和DCE ∆均为等腰直角三角形,CA CB ∴=,CD CE =,90ACB DCE ∠=∠=︒,∵∠ACD+∠DCB=90°,∠DCB+∠BCE=90°,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,AD BE ∴=,ADC BEC ∠∠=,故①错误,DCE ∆为等腰直角三角形,CM 平分DCE ∠,45CDE CED ∴∠=∠=︒,CM AE ⊥,故②正确,点A ,D ,E 在同一直线上,135ADC .135BEC ∴∠=︒.90AEB BEC CED ∴∠=∠-∠=︒,90AEB CME ,//CM BE ∴,故④正确,CD CE =,CM DE ⊥,DM ME ∴=.90DCE ∠=︒,1=2DM ME CM DE ∴==. 2AE AD DE BE CM ∴=+=+.故③正确,故选择:C .【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,证明ACD BCE ≅∆∆是本题的关键.11.C解析:C【分析】连接OC ,过点O 作OF BC ⊥于F ,求得212CE DE ==,60CED ∠=︒,再根据条件得出9030EOF OEF ∠=︒-∠=︒,得到122EF OE ==,即可得解;【详解】连接OC ,过点O 作OF BC ⊥于F ,如图,∵2OD =,4OE =,∴6DE OD OE =+=, 在Rt △CDE 中,30C ∠=︒,∴212CE DE ==,9060CED C ∠=︒-∠=︒, ∵D 为AC 的中点,DE AC ⊥,∴OA OC =,∵OA OB =,∴OB OC =,∵OF BC ⊥, ∴12CF BF BC ==, 在Rt △OEF 中,∵60OEF ∠=︒, ∴9030EOF OEF ∠=︒-∠=︒, ∴122EF OE ==, ∴10CF CE EF =-=,∴8BE BC CE =-=;故答案选C .【点睛】本题主要考查了等腰三角形的判定与性质,准确分析计算是解题的关键.12.C解析:C【分析】过点D 作DM ⊥BC ,设BD=x ,然后根据题意和含30°的直角三角形性质分别表示出BM ,EM ,DE 的长,结合勾股定理列方程求解.【详解】解:过点D 作DM ⊥BC ,设BD=x ,由题意可得:AB=5,AD=DE=5-x∵∠ABC=60°,DM ⊥BC ,∴在Rt △BDM 中,∠BDM=30° ∴1122BM BD x ==,则122ME BE BM x =-=- ∴2222BD BM DE ME -=-,222211()(5)(2)22x x x x -=---解得:218x =,即BD=218米 故选:C .【点睛】本题考查含30°的直角三角形性质和勾股定理解直角三角形,正确理解题意掌握相关性质定理列方程求解是关键.二、填空题13.小80°或110°【分析】(1)由题意易得由点D 从B 项C 的运动过程中逐渐变大可求解问题;(2)由题意可分①若AD=DE 时②若时③若时则点D 与点B 重合点E 与点C 重合与题意矛盾故不符合题意;然后根据等腰解析:小 80°或110°【分析】(1)由题意易得140BDA BAD ∠=︒-∠,由点D 从B 项C 的运动过程中,BAD ∠逐渐变大可求解问题;(2)由题意可分①若AD =DE 时,②若AE DE =时,③若AE AD =时,则点D 与点B 重合,点E 与点C 重合,与题意矛盾,故不符合题意;然后根据等腰三角形的性质及角的等量关系可进行求解.【详解】解:(1)∵180BDA B BAD ∠+∠+∠=︒,∴140BDA BAD ∠=︒-∠,∵点D 从B 项C 的运动过程中,BAD ∠逐渐变大,∴BDA ∠逐渐变小;故答案为小;(2)若AD =DE 时,∵,40AD DE ADE =∠=︒,∴70DEA DAE ∠=∠=︒,∵DEA C EDC ∠=∠+∠,40B C ∠=∠=︒,∴30EDC ∠=︒,∴180110BDA ADE EDC ∠=︒-∠-∠=︒;若AE DE =时,∵,40AE DE ADE =∠=︒,∴40EDA DAE ∠=∠=︒,∴100DEA ∠=︒,∵DEA C EDC ∠=∠+∠,∴60EDC ∠=︒,∴18080BDA ADE EDC ∠=︒-∠-∠=︒;若AE AD =时,则点D 与点B 重合,点E 与点C 重合,与题意矛盾,故不符合题意; 综上所述:当80BDA ∠=︒或110°时,△ADE 的形状可以是等腰三角形;故答案为80°或110°.【点睛】本题主要考查等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键. 14.5°【分析】首先根据角平分线的判定方法判定AD 是∠BAC 的平分线然后利用外角性质求∠ADB 的度数即可【详解】解:∵∠C =90°DE ⊥AB ∴∠C=∠AED=90°在Rt∆ACD 和Rt∆AED 中∴Rt∆解析:5°【分析】首先根据角平分线的判定方法判定AD 是∠BAC 的平分线,然后利用外角性质求∠ADB 的度数即可.【详解】解:∵∠C =90°,DE ⊥AB∴∠C=∠AED=90°,在Rt∆ACD 和Rt∆AED 中DE DC AD AD =⎧⎨=⎩, ∴Rt∆ACD ≌Rt∆AED ,∴∠CAD=∠EAD ,∴AD 平分∠BAC ,∴∠CAD =12∠BAC , ∵∠C =90°,AC =BC ,∴∠B =∠CAB =45°,∴∠CAD =22.5°,∴∠ADB=∠CAD +∠C =112.5°.故答案为:112.5°.【点睛】本题考查了角平分线的判定方法以及三角形外角的性质,角平分线的判定方法是:到角的两边距离相等的点在这个角的平分线上.15.2【分析】根据含30°角的直角三角形的性质可求解CD 的长然后利用AAS 证明△BDH ≌△ADC 可得HD=CD 进而求解【详解】解:∵AD ⊥BC ∴∠ADB=∠ADC=90°∴∠HBD+∠BHD=90°∵∠解析:2【分析】根据含30°角的直角三角形的性质可求解CD 的长,然后利用AAS 证明△BDH ≌△ADC ,可得HD =CD ,进而求解.【详解】解:∵AD ⊥BC ,∴∠ADB =∠ADC =90°,∴∠HBD +∠BHD =90°,∵∠CAD =30°,AC =4, ∴122CD AC ==, ∵BE ⊥AC ,∴∠HBD +∠C =90°,∴∠BHD =∠C ,∵∠ABD =45°,∴∠BAD =45°,∴BD =AD , 在△BDH 和△ADC 中,BHD C BDH ADC BD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDH ≌△ADC (AAS ),∴HD =CD =2,故点H 到BC 的距离是2.故答案为:2.【点睛】本题主要考查全等三角形的性质与判定,含30°角的直角三角形的性质,等腰直角三角形的性质和判定,证明△BDH ≌△ADC 是解题的关键.16.2【分析】作点M 关于AC 的对称点M′作点M 关于AB 的对称点M′′连接AMM′M′′M′M′′交AB 于点P′交AC 于点N′作AH ⊥BC 于点H 由对称性可知:当点M 固定时周长的最小值=M′M′′再推出M′解析:26 【分析】 作点M 关于AC 的对称点M′,作点M 关于AB 的对称点M′′,连接AM ,M′M′′,M′M′′交AB 于点P′,交AC 于点N′,作AH ⊥BC 于点H ,由对称性可知:当点M 固定时,PMN ∆周长的最小值= M′M′′,再推出M′M′′=2AM ,进而即可求解.【详解】如图,作点M 关于AC 的对称点M′,作点M 关于AB 的对称点M′′,连接AM ,M′M′′,M′M′′交AB 于点P′,交AC 于点N′,作AH ⊥BC 于点H ,由对称性可知:MN′=M′N′,MP′=M′′P′,AM=AM′=AM′′,∴当点M 固定时,PMN ∆周长的最小值=MN′+MP′+N′P′= M′N′+M′′P′+N′P′= M′M′′, ∵45A ∠=︒,∠M′AC=∠MAC ,∠M′′AB=∠MAB ,∴∠M′A M′′=90°,即∆ M′A M′′是等腰直角三角形,∴M′M′′=2=2AM AM ′,∴当AM 最小时,M′M′′的值最小,即AM 与AH 重合时,M′M′′的值最小,∵60B ∠=︒,4AB =,AH ⊥BC ,∴∠BAH=30°,∴AH=3AB =23,此时,M′M′′的值最小=2AH =26, ∴PMN ∆周长的最小值=26.故答案是:26.【点睛】本题主要考查轴对称—线段和的最小值,直角三角形的性质,作点M 关于AB ,AC 的对称点,把PMN ∆周长化为两点间的线段长,是解题的关键.17.65°或25°【分析】在等腰△ABC 中AB =ACBD 为腰AC 上的高∠ABD =40°讨论:当BD 在△ABC 内部时如图1先计算出∠BAD =50°再根据等腰三角形的性质和三角形内角和计算;当BD 在△ABC解析:65°或25°【分析】在等腰△ABC中,AB=AC,BD为腰AC上的高,∠ABD=40°,讨论:当BD在△ABC内部时,如图1,先计算出∠BAD=50°,再根据等腰三角形的性质和三角形内角和计算;当BD 在△ABC外部时,如图2,先计算出∠BAD=50°,再根据等腰三角形的性质和三角形外角性质计算.【详解】解:在等腰△ABC中,AB=AC,BD为腰AC上的高,∠ABD=40°,当BD在△ABC内部时,如图1,∵BD为高,∴∠ADB=90°,∴∠BAD=90°﹣40°=50°,∵AB=AC,∴∠ABC=∠ACB=1(180°﹣50°)=65°;2当BD在△ABC外部时,如图2,∵BD为高,∴∠ADB=90°,∴∠BAD=90°﹣40°=50°,∵AB=AC,∴∠ABC=∠ACB,而∠BAD=∠ABC+∠ACB,∴∠ACB=1∠BAD=25°,2综上所述,这个等腰三角形底角的度数为65°或25°.故答案为:65°或25°.【点睛】本题考查了等腰三角形的性质、三角形的内角和定理以及三角形的外角性质,正确分类、熟练掌握上述知识是解题的关键.18.45°或15°或75°【分析】分三种情况讨论先根据题意分别画出图形当AB=AC 时根据已知条件得出AD=BD=CD从而得出△ABC底角的度数;当AB=BC时先求出∠ABD的度数再根据AB=BC求出底角解析:45°或15°或75°【分析】分三种情况讨论,先根据题意分别画出图形,当AB=AC时,根据已知条件得出AD=BD=CD,从而得出△ABC底角的度数;当AB=BC时,先求出∠ABD的度数,再根据AB=BC,求出底角的度数;当AB=BC时,根据AD=12BC,AB=BC,得出∠DBA=30°,从而得出底角的度数.【详解】①如图1,当AB=AC时,∵AD⊥BC,∴BD=CD,∵AD=12BC,∴AD=BD=CD,∴底角为45°;②如图2,当AB=BC时,∵AD=12BC,∴AD=12AB,∴∠ABD=30°,∴∠BAC=∠BCA=75°,∴底角为75°.③如图3,当AB=BC时,∵AD=12BC,AB=BC,∴AD=12AB,∴∠DBA=30°,∴∠BAC=∠BCA=15°;∴△ABC底角的度数为45°或75°或15°.故答案为:45°或15°或75°.【点睛】本题考查了含30度角的直角三角形和等腰三角形的性质,关键是根据题意画出图形,注意不要漏解.19.40【分析】首先根据等腰三角形的三线合一的性质得到AD⊥BC然后根据直角三角形的两锐角互余得到答案即可【详解】解:∵AB=ACAD是BC边上的中线∴AD⊥BC∠BAD=∠CAD∴∠B+∠BAD=90解析:40【分析】首先根据等腰三角形的三线合一的性质得到AD ⊥BC ,然后根据直角三角形的两锐角互余得到答案即可.【详解】解:∵AB =AC ,AD 是BC 边上的中线,∴AD ⊥BC ,∠BAD =∠CAD ,∴∠B +∠BAD =90°,∵∠B =50°,∴∠BAD =40°,∴∠CAD =40°,故答案为:40.【点睛】考查了等腰三角形的性质,理解等腰三角形底边的高、底边的中线及顶角的平分线互相重合是解答本题的关键,难度不大.20.75°【分析】先根据等腰三角形的性质求出∠BA1A 的度数再根据三角形外角及等腰三角形的性质分别求出∠CA2A1∠DA3A2及∠EA4A3的度数找出规律即可得出∠An 的度数【详解】解:∵在△ABA1中解析:75° 1752n ︒- . 【分析】先根据等腰三角形的性质求出∠BA 1A 的度数,再根据三角形外角及等腰三角形的性质分别求出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律即可得出∠A n 的度数.【详解】解:∵在△ABA 1中,∠B =30°,AB =A 1B ,∴∠BA 1A =1802B ︒-∠=75°, ∵A 1A 2=A 1C ,∠BA 1A 是△A 1A 2C 的外角, ∴∠CA 2A 1=17522BA A ∠︒==37.5︒, 同理可得∠DA 3A 2=2752,∠EA 4A 3=3752︒, ,∴∠A n =1752n , 故答案为:75°;1752n . 【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,找出规律是解答此题的关键.三、解答题21.(1)画图见解析;(2)△ABC的周长=21;(3)AB=8,AC=8,BC=5.【分析】(1)根据垂直平分线的作法作出图形即可;(2)根据垂直平分线的性质可得AP=BP,从而得出AC+BC的值,再根据AB=8,即可求得△ABC的周长;(3)分两种情况进行讨论即可.【详解】解:(1)如图所示:即PQ为所求;;(2)如图所示:∵AB的垂直平分线交AC于点P,∴PA=PB,∵△PBC的周长为13,∴PB+PC+BC=13,∴PA+PC+BC=13,即AC+BC=13,∴△ABC的周长=AB+AC+BC=8+13=21;(3)∵AC>BC,∴分两种情况,①AC=AB=8时,BC=21-AC-BC=21-8-8=5;②BC=AB=8时,AC=21-AB-BC=21-8-8=5,∵AC>BC,∴不合题意舍去;综上所述,若△ABC是等腰三角形,△ABC的三条边的长度为AB=8,AC=8,BC=5.【点睛】本题是三角形综合题目,考查了线段垂直平分线的性质、等腰三角形的性质、尺规作图、三角形周长等知识.本题综合性强,熟练掌握等腰三角形的性质和线段垂直平分线的性质是解题的关键.22.(1)见详解;(2)是等腰三角形,证明见详解.【分析】(1)以B为圆心,以任意长为半径画弧交AB、AC于两点,再以这两点为圆心,以大于这两点的距离的一半为半径画弧,交于一点,过点B和这点作射线交AC与点D即可;(2)由∠A=36°,求出∠ABC=72°,进而求出∠ABD,根据等角对等边即可证明结论.【详解】解:(1)如图所示:BD即为所求;△是等腰三角形.(2)ABD∵AB=AC,∴∠ABC=∠C,∵∠A=36°,∴∠ABC=∠ACB=(180°﹣36°)÷2=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠ABD=∠A,∴AD=BD,△是等腰三角形.∴ABD【点睛】本题主要考查了等腰三角形的性质和判定,三角形的内角和定理,角平分线的性质,尺规作图-作已知角的平分线等知识点,解此题的关键是能正确画图和求出∠ABD的度数.23.(1)∠FDC=60°(2)∠AED=2∠B,理由见解析【分析】(1)根据垂直平分线及高线的性质即可求解.(2)根据高的定义和、线段垂直平分线的性质和等腰三角形的性质可得EF//BC,∠AED=2∠AEF,再根据平行线的性质得∠AEF=∠B,故可得∠AED=2∠B.【详解】解:(1)∵AD 是BC 边上的高线,EF 是AD 的垂直平分线,∠DAC=30°∴AF=FD ,∠ADC=90°∴∠FDA=30°,∴∠FDC=90°-30°=60°.(2)∵AD 是BC 边上的高线,EF 是AD 的垂直平分线,∴EF //BC ,EA=ED ,∴∠AED=2∠AEF ,∴∠AEF=∠B ,∴∠AED=2∠B .【点睛】本题考查了垂直平分线及高线的性质,平行线的判定及性质,解题的关键是熟练掌握垂直平分线、高线、平行线性质.24.(1)见解析;(2)22.5【分析】(1)根据全等三角形的判定和性质得出△ABD ≌△BAE ,进而得出OB=OA ;(2)根据全等三角形的判定和性质以及三角形内角和解答.【详解】证明:(1)∵AC=BC ,∠ACB=90°,∴∠ABC=∠BAC=45°.∴∠EBA=∠DAB=135°.在△ABD 与△BAE 中,135BE AD EBA DAB AB AB =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABD ≌△BAE (SAS ),∴∠DBA=∠EAB ,∴OB=OA ;(2)由(1)得:OB=OA ,在△OBC 与△OAC 中,OB OA OC OC BC AC =⎧⎪=⎨⎪=⎩,∴△OBC ≌△OAC (SSS ),∴∠OCB=∠OCA=12∠ACB=12×90°=45°, ∵AC=BC ,AC=OC ,∴OC=BC , ∴∠CBO=∠COB 1801804567.522OCB ︒︒︒︒-∠-===, 在Rt △BCD 中,∠D=180°-90°-∠CBO=22.5°.故答案为:22.5.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,关键是根据全等三角形的判定和性质解答.25.见解析【分析】(1)先作线段AB 的垂直平分线DE ,再延长BC 即可;(2)先利用直角三角形的性质求∠ABC= 60︒,再垂直平分线的性质得到∠ABE=∠A=30︒,再求出∠EBC=∠ABC-∠ABE=30︒,即可得到∠EBC=∠ABE ,得到答案; (3)证明:先利用直角三角形的性质求∠DEB=90︒-∠ABE =60︒再利用三角形外角的性质求∠EFB=∠DEB-∠EBC=60︒-30︒=30︒,进而得∠EFB=∠EBC ,证得BE=EF ,又因为AE= BE ,利用等量代换即可求得答案.【详解】(1)如图,即为所求;(2)证明:∵DE 是AB 的垂直平分线∴DE ⊥AB∴AE=BE∵∠A=30︒,∠ACB=90︒∴∠ABE=∠A=30︒,∠ABC=90︒-∠A=60︒∴∠EBC=∠ABC-∠ABE=60︒-30︒=30︒∴∠EBC=∠ABE∴EB平分∠ABC.(3)证明:∵DE是AB的垂直平分线∴DE⊥AB∴∠DEB=90︒-∠ABE =60︒∴∠EFB=∠DEB-∠EBC=60︒-30︒=30︒∴∠EFB=∠EBC∴BE=EF又∵AE= BE∴AE=EF【点睛】本题考查了尺规作图和垂直平分线性质得应用,解决此题的关键利用尺规作图,画出图形.26.(1)见解析;(2)见解析【分析】(1)利用HL即可证明;(2)根据全等三角形的性质可得∠ABP=∠BAP,从而得到PA=PB,即可得证.【详解】解:(1)∵∠C=∠D=Rt∠,AC=BD,AB=BA,∴Rt△ABC≌Rt△BAD(HL);(2)∵Rt△ABC≌Rt△BAD,∴∠ABP=∠BAP,∴PA=PB,∴△PAB是等腰三角形.【点睛】本题主要考查了全等三角形的判定及性质,证明Rt△ABC≌Rt△BAD是解题的关键.。
(典型题)初中数学八年级数学下册第一单元《三角形的证明》测试题(含答案解析)
一、选择题1.如图,P 为ABC 的边BC 上一点,且2PC PB =,已知45ABC ∠=︒,60APC ∠=︒,则ACB ∠的度数为( )A .75︒B .80︒C .85︒D .88︒2.如图,点A 为MON ∠的角平分线上一点,过A 点作一条直线分别与MON ∠的边OM ON 、交于,B C 两点,点P 为BC 的中点,过P 作BC 的垂线交OA 的延长线于点D ,连接DB DC 、,若130MON ∠=︒,则BDC ∠=( )A .70︒B .60︒C .50︒D .40︒3.如图,在ABC 中,AB AC =,BD 平分ABC ∠,将BCD △连续翻折两次,C 点的对应点E 点落在边AB 上,B 点的对应点F 点恰好落在边AC 上,则下列结论正确的是( )A .18,2A AD BD ∠=︒=B .18,A AD BC BD ∠=︒=+ C .20,2A AD BD ∠=︒= D .20,A AD BC BD ∠=︒=+4.如图,30MON ∠=︒点1A ,2A ,3A ,…在射线ON 上,点1B ,2B ,3B ,…在射线OM 上,112A B A ,223A B A ,334A B A ,…均为等边三角形,若11OA =,则边67B B 的长为( )A .63B .123C .323D .643 5.等腰三角形的底边长为6,腰长为5,则此三角形的面积为( )A .18B .20C .12D .15 6.如图,在平面直角坐标系中,点A 1在x 轴的正半轴上,B 1在第一象限,且△OA 1B 1是等边三角形.在射线OB 1上取点B 2,B 3,…,分别以B 1B 2,B 2B 3,…为边作等边三角形△B 1A 2B 2,△B 2A 3B 3,…使得A 1,A 2,A 3,…在同一直线上,该直线交y 轴于点C .若OA 1=1,∠OA 1C =30°,则点B 9的横坐标是( )A .2552B .5112C .256D .51327.如图,D 在BC 边上,ABC ADE △△≌,50EAC ∠=︒,则ADE ∠的度数为( )A .50°B .55°C .60°D .65°8.如图,在ABC 中,AB AC =,以点C 为圆心,CB 长为半径 画弧,交AB 于点B 和点D ,再分别以点,B D 为圆心,大于12BD 长为半径画弧,两弧相交于点M ,作射线CM 交AB 于点E .若4,1AE BE ==,则EC 的长度是( )A .3B .5C .5D .7 9.如图,ABC 为等边三角形,BO 为中线,延长BA 至D ,使AD AO =,则DOB ∠的度数为( )A .105︒B .120︒C .135︒D .150︒ 10.等腰三角形一腰上的高与另一腰的夹角为25°,则顶角的度数为( ) A .65° B .105° C .55°或105° D .65°或115° 11.如图,在ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列结论不正确的是( )A .AD 平分∠BACB .∠ADC =60° C .点D 在AB 的垂直平分线上D .:DAC ABC S S =1:2 12.如图,每个小正方形的边长都相等,A ,B ,C 是小正方形的顶点,则ABC ∠的度数为( )A .45︒B .50︒C .55︒D .60︒二、填空题13.如图,已知ABC ∆中,90,C AC BC ∠=︒=,点D 在BC 上,DE AB ⊥,点E 为垂足,且DC DE =,联结AD ,则ADB ∠的大小为___________.14.如图,在等边ABC 中,点D 在AC 边上,点E 在ABC 外部,若ACE ABD ∠=∠,CE BD =,连接AE ,DE ,则ADE 的形状是______.15.如图,在三角形ABC 中,∠C =90°,BD 平分∠ABC 交AC 于点D ,且AD =2CD ,AC =6,点E 是AB 上一点,连接DE ,则DE 的最小值为____.16.如图,在△ABC 中,∠ACB =90°,AC =6,AB =10,点O 是AB 边的中点,点P 是射线AC 上的一个动点,BQ ∥CA 交PO 的延长线于点Q ,OM ⊥PQ 交BC 边于点M .当CP =1时,BM 的长为_____.17.如图,D 是等边三角形ABC 外一点,3AD =,2CD =,则BD 的最大值是________________.18.已知:如图,在ABC 中,AB AC =,30C ∠=︒,AB AD ⊥,4cm AD =,则BC 的长为__________cm .19.如图,在ABC 中,90,,,ACB AC BC CE BE CE ∠=︒=⊥与AB 相交于点F ,且CD BE =,则ACD CBA DAF ∠∠∠、、之间的数量关系是_____________.20.如图,AD 平分BAC ∠,DE AC ⊥,垂足为E ,//BF AC 交ED 的延长线于点F ,若BC 恰好平分ABF ∠.则下列结论中:①AD 是ABC ∆的高;②ABC ∆是等边三角形;③ED FD =;④AB AE BF =+.其中正确的是______________(填写序号)三、解答题21.如图,等腰直角ACB △中,90ACB ∠=︒,E 为线段BC 上一动点(不含B 、C 端点),连接AE ,作AF AE ⊥且AF AE =.(1)如图1,过F 点作FG AC 交AC 于G 点,求证:≌AGF ECA ;(2)如图2,连接BF 交AC 于D 点,若3AD CD =,求证:E 点为BC 的中点. 22.在平面直角坐标系中,已知()30A -,,()0,3B ,点C 为x 轴正半轴上一动点,过点A 作AD BC ⊥交y 轴于点E .(1)如图①,若点C 的坐标为()2,0,试求点E 的坐标;(2)如图②,若点C 在x 正半轴上运动,且3OC <,其它条件不变,连接OD ,求证:OD 平分ADC ∠;(3)若点C 在x 轴正半轴上运动,当AD CD OC -=时,求OCD ∠的度数.23.已知,如图在等边ABC 中,点D 为AB 边上一点,点E 为BC 边上一点,连接DE 并延长DE 交AC 延长线于点,F DE FE =,过点E 作EG BC ⊥交AC 于点G .(1)求证:BD CF =;(2)当DF AB ⊥时,试判断以D E G 、、为顶点的三角形的形状,并说明理由; (3)当点D 在线段AB 上运动时,试探究AD 与CG 的数量关系,并证明你的结论. 24.如图1,将三角形纸片ABC ,沿AE 折叠,使点B 落在BC 上的F 点处;展开后,再沿BD 折叠,使点A 恰好仍落在BC 上的F 点处(如图2),连接DF .(1)求∠ABC的度数;(2)若△CDF为直角三角形,且∠CFD=90°,求∠C的度数;(3)若△CDF为等腰三角形,求∠C的度数.25.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(3)若Q以(2)中的速度从C点出发,同时P以原来的速度从B点出发,在△ABC的三边上逆时针运动,问:经过多少时间P、Q两点第一次相遇?在何处相遇?26.如图,∠BAC=∠DAE=90°,AB=AC,AD=AE,BE、CD交于F.(1)求证:BE=CD;(2)连接CE,若BE=CE,求证:从“①DE⊥AC”、“②DE∥AB”中选择一个填入(2)中,并完成证明【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据三角形内角和定理求出∠DCP=30°,求证PB=PD;再根据三角形外角性质求证BD=AD,再利用△BPD是等腰三角形,然后可得AD=DC,∠ACD=45°从而求出∠ACB的度数.【详解】解:过C作AP的垂线CD,垂足为点D.连接BD;∵△PCD中,∠APC=60°,∴∠DCP=30°,PC=2PD,∵PC=2PB,∴BP=PD,∴△BPD是等腰三角形,∠BDP=∠DBP=30°,∵∠ABP=45°,∴∠ABD=15°,∵∠BAP=∠APC-∠ABC=60°-45°=15°,∴∠ABD=∠BAD=15°,∴BD=AD,∵∠DBP=45°-15°=30°,∠DCP=30°,∴BD=DC,∴△BDC是等腰三角形,∵BD=AD,∴AD=DC,∵∠CDA=90°,∴∠ACD=45°,∴∠ACB=∠DCP+∠ACD=75°,故选A.【点睛】此题主要考查学生三角形内角和定理,等腰三角形的判定与性质,三角形外角的性质等知识点,综合性较强,有一定的拔高难度,属于难题.2.C解析:C【分析】过D作DE⊥OM于E,DF⊥ON于F,求出∠EDF,根据角平分线性质求出DE=DF,根据线段垂直平分线性质求出BD=CD,证Rt△DEB≌Rt△DFC,求出∠EDB=∠CDF,推出∠BDC=∠EDF,即可得出答案.【详解】解:如图:过D作DE⊥OM于E,DF⊥ON于F,则∠DEB=∠DFC=∠DFO=90°,∵∠MON=130°,∴∠EDF=360°-90°-90°-130°=50°,∵DE⊥OM,DF⊥ON,OD平分∠MON,∴DE=DF,∵P为BC中点,DP⊥BC,∴BD=CD,在Rt△DEB和Rt△DFC中,DB DC DE DF=⎧⎨=⎩,∴Rt△DEB≌Rt△DFC(HL),∴∠EDB=∠CDF,∴∠BDC=∠BDF+CDF=∠BDF+∠EDB=∠EDF=50°.故选:C.【点睛】本题考查了全等三角形的性质和判定,角平分线性质,线段垂直平分线性质的应用,能正确作出辅助线是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等,角平分线上的点到角的两边的距离相等.3.D解析:D【分析】设∠ABC=∠C=2x,根据折叠的性质得到∠BDE=∠BDC=∠FDE=60°BD=DF,BC=BE=EF,在△BDC中利用内角和定理列出方程,求出x值,可得∠A,再证明AF=EF,从而可得AD =BC+BD.【详解】解:∵AB=AC,BD平分∠ABC,设∠ABC=∠C=2x,则∠A=180°-4x,∴∠ABD=∠CBD=x,第一次折叠,可得:∠BED=∠C=2x,∠BDE=∠BDC,第二次折叠,可得:∠BDE=∠FDE,∠EFD=∠ABD=x,∠BED=∠FED=∠C=2x,∵∠BDE+∠BDC+∠FDE=180°,∴∠BDE=∠BDC=∠FDE=60°,∴x+2x+60°=180°,∴x=40°,即∠ABC=∠ACB=80°,∴∠A=20°,∴∠EFD=∠EDB=40°,∴∠AEF=∠EFD-∠A=20°,∴AF=EF=BE=BC,∴AD=AF+FD=BC+BD,故选D.【点睛】本题考查了翻折的性质,等腰三角形的判定和性质,三角形内角和,熟练掌握折叠的性质是解题的关键.4.C解析:C【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出B1B2B2B3,B3B4B n B n+1的长为 2,进而得出答案.【详解】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2=2,∴B1B2∵B3A3=2B2A3,∴A 3B 3=4B 1A 2=4,∴B 2B 3=23, ∵A 4B 4=8B 1A 2=8,∴B 3B 4=43,以此类推,B n B n+1的长为2n-13,∴B 6B 7的长为323,故选:C .【点睛】本题考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A 3B 3=4B 1A 2,A 4B 4=8B 1A 2,A 5B 5=16B 1A 2进而发现规律是解题的关键.5.C解析:C【分析】作底边上的高,根据等腰三角形三线合一和勾股定理求出高,再代入面积公式求解即可.【详解】解:如图,作底边BC 上的高AD ,则AB=5,BD=12×6=3, ∴AD=22AB BD -=2253-=4,∴三角形的面积为:12×6×4=12. 故选C .【点睛】本题考查了勾股定理和等腰三角形的性质,利用等腰三角形“三线合一”作出底边上的高,再根据勾股定理求出高的长度,作高构造直角三角形是解题的关键.6.B【分析】利用待定系数法求得两条直线的解析式,根据等边三角形的性质,点的坐标规律,即可求解.【详解】解:∵OA 1=1,∠OA 1C=30︒,∴∴点C 的坐标为(0,-,∵A 1、A 2、A 3所在直线过点A 1(1,0),C (0,3-,设直线A 1A 2的解析式为y kx =-∴0k =,∴k =∴直线A 1A 2的解析式为y x =, ∵△OA 1B 1为等边三角形,∴点B 1的坐标为(12,2),∵B 1、B 2、B 3所在直线过点O(0,0),B 1 (12,同理可求得直线O B 1的解析式为y =,∵△OA 1B 1和△B 1A 2B 2为等边三角形,∴∠B 1OA 1=∠B 2 B 1A 2=60︒,∴B 1A 2∥OA 1,∵B 1 (12,2),∴A 2x = 解得:52x =,∴点A 2的坐标为(52,2),同理点B 2的坐标为(32,点B 3的坐标为(72,点B 4的坐标为(152, ,总结规律: B 1的横坐标为12, B 2的横坐标为13122+=, B 3的横坐标为171222++=, B 4的横坐标为11512422+++=, ,∴B 9的横坐标为1511124816326422+++++++=, 故选:B【点睛】本题考查了待定系数法求一次函数的解析式,点的坐标规律,等边三角形的性质,解决本题的关键是寻找点的坐标规律.7.D解析:D【分析】由全等可得,AB=AD ,∠BAC=∠DAE ,可得∠BAD=EAC=50°,再根据等腰三角形性质求∠B 即可.【详解】解:∵ABC ADE △△≌,∴AB=AD ,∠BAC=∠DAE ,∠B=∠ADE ,∠BAD=∠BAC-∠DAC ,∠EAC=∠DAE-∠DAC ,∠BAD=∠EAC=50°,∵AB=AD ,∴∠B=180652BAD ︒-∠=︒, ∴∠ADE=∠B=65º,【点睛】本题考查了全等三角形的性质和等腰三角形的性质,解题关键是根据全等三角形得出等腰三角形和角的度数,依据等腰三角形的性质进行计算.8.A解析:A【分析】利用基本作图得到CE AB ⊥,再根据等腰三角形的性质得到5AC =,然后利用勾股定理计算即可;【详解】由做法得CE AB ⊥,则90AEC ∠=︒,145AC AB BE AE ==+=+=,在Rt △ACE 中,3CE ===; 故答案选A .【点睛】 本题主要考查了等腰三角形的性质,准确计算是解题的关键.9.B解析:B【分析】 由△ABC 为等边三角形,可求出∠BOA =90°,由△ADO 是等腰三角形求出∠ADO =∠AOD =30°,即可求出∠BOD 的度数.【详解】解:∵△ABC 为等边三角形,BO 为中线,∴∠BOA =90°,∠BAC =60°∴∠CAD =180°﹣∠BAC =180°﹣60°=120°,∵AD =AO ,∴∠ADO =∠AOD =30°,∴∠BOD =∠BOA +∠AOD =90°+30°=120°,故选:B .【点睛】本题主要考查了等边三角形的性质及等腰三角形的性质,解题的关键是熟记等边三角形的性质及等腰三角形的性质.10.D解析:D【分析】分两种情况:等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角,分别进行求解即可.解:①如图1,当等腰三角形的顶角是钝角时,腰上的高在外部,根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+25°=115°;②如图2,当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°−25°=65°.综上所述,顶角的度数为:65°或115°.故选D .【点睛】本题主要考查了等腰三角形的性质,注意此类题的两种情况.同时考查了:直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和.11.D解析:D【分析】由作图可得:AD 平分,BAC ∠ 可判断A ,再求解1302DAC DAB BAC ∠=∠=∠=︒, 可得60,ADC ∠=︒ 可判断B ,再证明,DA DB = 可判断C ,过D 作DF AB ⊥于,F 再证明,DC DF = 再利用 ACD ACD ABC ACD ABD S S S S S =+ ,可判断,D 从而可得答案. 【详解】解:90,30,C B ∠=︒∠=︒903060,BAC ∴∠=︒-︒=︒由作图可得:AD 平分,BAC ∠ 故A 不符合题意;1302DAC DAB BAC ∴∠=∠=∠=︒, 903060,ADC ∴∠=︒-︒=︒ 故B 不符合题意;30,DAB B ∠=∠=︒,DA DB ∴=D ∴在AB 的垂直平分线上,故C 不符合题意;过D 作DF AB ⊥于,F90,C AD ∠=︒平分,BAC ∠,DC DF ∴=30B ∠=︒,2,AB AC ∴= 11,,22ACD ABD S AC CDS AB DF ∴== 121122ACDACD ABC ACD ABD AC CD SS S S S AC CD AB DF ∴==++ 1.233AC AC AC AC AB AC AC AC ====++ 故D 符合题意; 故选:.D【点睛】 本题考查的是三角形的内角和定理,角平分线的作图,角平分线的性质,线段垂直平分线的判定,等腰三角形的判定,掌握以上知识是解题的关键.12.A解析:A【分析】由勾股定理及其逆定理可得三角形ABC 是等腰直角三角形,从而得到∠ABC 的度数 .【详解】解:如图,连结AC ,由题意可得:2222221310,125,125,AB AC BC +==+==+=∴AC=BC ,222AB AC BC =+,∴△ABC 是等腰直角三角形,∴∠ABC=∠BAC=45°,故选A .本题考查勾股定理的应用,熟练掌握勾股定理及其逆定理、等腰直角三角形的性质是解题关键.二、填空题13.5°【分析】首先根据角平分线的判定方法判定AD 是∠BAC 的平分线然后利用外角性质求∠ADB 的度数即可【详解】解:∵∠C =90°DE ⊥AB ∴∠C=∠AED=90°在Rt∆ACD 和Rt∆AED 中∴Rt∆解析:5°【分析】首先根据角平分线的判定方法判定AD 是∠BAC 的平分线,然后利用外角性质求∠ADB 的度数即可.【详解】解:∵∠C =90°,DE ⊥AB∴∠C=∠AED=90°,在Rt∆ACD 和Rt∆AED 中DE DC AD AD =⎧⎨=⎩, ∴Rt∆ACD ≌Rt∆AED ,∴∠CAD=∠EAD ,∴AD 平分∠BAC ,∴∠CAD =12∠BAC , ∵∠C =90°,AC =BC ,∴∠B =∠CAB =45°,∴∠CAD =22.5°,∴∠ADB=∠CAD +∠C =112.5°.故答案为:112.5°.【点睛】本题考查了角平分线的判定方法以及三角形外角的性质,角平分线的判定方法是:到角的两边距离相等的点在这个角的平分线上.14.等边三角形【分析】由等边三角形的性质可以得出AB=AC ∠BAD=60°由条件证明△ABD ≌△ACE 就可以得出∠CAE=∠BAD=60°AD=AE 就可以得出△ADE 为等边三角形【详解】解:的形状是等边解析:等边三角形【分析】由等边三角形的性质可以得出AB=AC , ∠BAD=60°,由条件证明△ABD ≌△ACE 就可以得出∠CAE=∠BAD=60°,AD=AE ,就可以得出△ADE 为等边三角形.解:ADE 的形状是等边三角形,理由:∵ABC 为等边三角形,∴AB=AC , ∠BAD=60°,在∆ABD 和∆CAE 中 AB AC ACE ABD CE BD =⎧⎪∠=∠⎨⎪=⎩, ∴∆ABD ≌∆ACE ,∴∠CAE=∠BAD=60°,AD=AE ,∴∆ADE 为等边三角形,故答案为:等边三角形.【点睛】本题考查了全等三角形的判定与性质及等边三角形的判定与性质,解题的关键是灵活运用相关性质.15.2【分析】根据题意当时DE 的值最小根据已知条件求解即可;【详解】如图所示当时DE 的值最小如图所示∵BD 平分∠ABC ∠C =90°∴∵∴∴∴∵∴即整理得:∴又∵∴即整理得:解得:∴故答案是2【点睛】本题解析:2【分析】根据题意,当DE AB ⊥时,DE 的值最小,根据已知条件求解即可;【详解】如图所示,当DE AB ⊥时,DE 的值最小,如图所示,∵BD 平分∠ABC ,DE AB ⊥,∠C =90°,∴CD DE =,∵2AD CD =,∴2AD DE =,∴30A ∠=︒,∴30CBD ABD ∠=∠=︒,2AB CB =,∵6AC =,∴222AB AC BC =+,即22246CB CB =+,整理得:2336CB =, ∴23CB =,又∵2BD CD =,∴222BD CD BC =+,即22412CD CD =+,整理得:2312CD =,解得:2CD =,∴2DE =.故答案是2.【点睛】本题主要考查了角平分线的性质、直角三角形的性质和勾股定理,准确分析计算是解题的关键.16.5或1【分析】如图设BM=x 首先证明BQ=AP 分两种情形利用勾股定理构建方程求解即可【详解】解:如图设BM =x 在Rt △ABC 中AB =10AC =6∴BC ===8∵QB ∥AP ∴∠A =∠OBQ ∵O 是AB 的解析:5或1【分析】如图,设BM=x ,首先证明BQ=AP ,分两种情形,利用勾股定理,构建方程求解即可.【详解】解:如图,设BM =x ,在Rt △ABC 中,AB =10,AC =6,∴BC 22AB AC -22106-8,∵QB ∥AP ,∴∠A =∠OBQ ,∵O 是AB 的中点,∴OA =OB ,在△OAP 和△OBQ 中,A OBQ OA OBAOP BOQ ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△OAP ≌△OBQ (ASA ),∴PA=BQ=6﹣1=5,OQ=OP,∵OM⊥PQ,∴MQ=MP,∴52+x2=12+(8﹣x)2,解得x=2.5.当点P在AC的延长线上时,同法可得72+x2=12+(8﹣x)2,解得x=1,综上所述,满足条件的BM的值为2.5或1.故答案为:2.5或1.【点睛】本题考查勾股定理,全等三角形的判定和性质,线段的垂直平分线的性质等知识,解题的关键是学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题.17.5【分析】将AD顺时针旋转60°得连结可得AD=DD′=AD′可证△ABD′≌△ACD(SAS)可得BD′=CD由BD′+DD′≥BD当BD′D三点在一线时BD最大BD最大=BD′+DD′=5【详解解析:5【分析】将AD顺时针旋转60°,得AD',连结BD',可得AD=DD′=AD′,可证△ABD′≌△ACD (SAS),可得BD′=CD,由BD′+DD′≥BD,当B、D′、D三点在一线时,BD最大,BD最大=BD′+DD′=5.【详解】解:∵将AD顺时针旋转60°,得AD',连结BD',则AD=DD′=AD′,∴△ADD′是等边三角形,又∵等边三角形ABC,∴∠BAC=∠D AD',∴∠BAD′+∠D′AC=∠CAD+∠D′AC=60°,∴AB=AC,AD′=AD,∴△ABD′≌△ACD(SAS),∴BD′=CD,∴BD′+DD′≥BD,当B、D′、D三点在一线时,BD最大,BD最大=BD′+DD′=CD+AD=2+3=5.故答案为:5..【点睛】本题考查三角形旋转变换,等边三角形判定与性质,掌握三角形旋转变换的性质,等边三角形判定与性质,用三角形三边关系确定B 、D′、D 共线是解题关键.18.【分析】已知AB=AC 根据等腰三角形的性质可得∠B 的度数再求出∠DAC 的度数然后根据30°角直角三角形的性质求得BD 的长再根据等角对等边可得到CD 的长即可求得BC 的长【详解】∵AB=AC ∠C=30°解析:12【分析】已知AB=AC ,根据等腰三角形的性质可得∠B 的度数,再求出∠DAC 的度数,然后根据30°角直角三角形的性质求得BD 的长,再根据等角对等边可得到CD 的长,即可求得BC 的长.【详解】∵AB=AC ,∠C=30°,∴∠B=∠C=30°,∴∠BAC=120°,∵AB ⊥AD ,AD=4,∴∠BAD=90°,BD=2AD=8,∴∠DAC=120°-90°=30°,∴∠DAC =∠C=30°,∴AD=CD=4,∴CB=DB+CD=12故答案为:12【点睛】本题考查了等腰三角形的判定与性质及30°角直角三角形的性质,熟练运用等腰三角形的性质及30°角直角三角形的性质是解决问题的关键.19.【分析】先利用同角的余角相等得到=再通过证得到即再利用三角形内角和得可得最后利用角的和差即可得到答案=【详解】证明:∵∴∴=又∵∴∴即∵∴即∴=故答案为:【点睛】本题考查了直角三角形的性质内角和定理 解析:=ACD CBA DAF ∠∠∠+【分析】先利用同角的余角相等得到ACD ∠=CBE ∠,再通过证ACD CBE ≌,得到==90ADC CEB ∠︒∠即==90ADF CEB ∠︒∠,再 利用三角形内角和得=AFD ADF EFB FEB ︒--︒-∠-180∠∠180∠可得=DAF EBF ∠∠,最后利用角的和差即可得到答案,ACD ∠==++CBE CBA EFB CBA DAF ∠∠∠=∠∠.【详解】证明:∵90ACB ∠=︒,CE BE ⊥∴+90ACD ECB ∠=︒∠,+90CBE ECB ∠=︒∠∴ACD ∠=CBE ∠又∵AC BC =,CD BE =∴ACD CBE ≌∴==90ADC CEB ∠︒∠即==90ADF CEB ∠︒∠∵=AFD EFB ∠∠∴=AFD ADF EFB FEB ︒--︒-∠-180∠∠180∠即=DAF EBF ∠∠∴ACD ∠==++CBE CBA EFB CBA DAF ∠∠∠=∠∠故答案为:=ACD CBA DAF ∠∠∠+.【点睛】 本题考查了直角三角形的性质、内角和定理以及全等三角形的判定和性质,能通过性质找到角与角之间的关系是解答此题的关键.20.①③④【分析】利用平行线的性质∠C=∠FBD 则可证明∠C=∠ABC 于是可根据等腰三角形的性质对①②进行判断;过D 点作DH ⊥AB 如图利用角平分线的性质得到DE=DHDH=DF 则可对③进行判断;证明△A解析:①③④【分析】利用平行线的性质∠C=∠FBD ,则可证明∠C=∠ABC ,于是可根据等腰三角形的性质对①②进行判断;过D 点作DH ⊥AB ,如图,利用角平分线的性质得到DE=DH ,DH=DF ,则可对③进行判断;证明△ADE ≌△ADH 得到AH=AE ,同理可得BH=BF ,则可对④进行判断.【详解】解:∵BC 恰好平分∠ABF ,∴∠ABC=∠FBD ,∵AC ∥BF ,∴∠C=∠FBD ,∴∠C=∠ABC ,∴△ABC 为等腰三角形,∵AD 平分∠BAC ,∴AD ⊥BC ,CD=BD ,∴AD 是ABC ∆的高;ABC ∆是等腰三角形;所以①正确;②错误;过D 点作DH ⊥AB 于H ,如图,∵AD 平分∠BAC ,DE ⊥AC ,DH ⊥AB ,∴DE=DH ,∵AC ∥BF ,DE ⊥AC ,∴DF ⊥BF ,∵BD 平分∠ABF ,DH ⊥AB ,∴DH=DF ,∴DE=DF ,所以③正确;在△ADE 和△ADH 中,AD AD DE DH =⎧⎨=⎩, ∴△ADE ≌△ADH (HL ),∴AH=AE ,同理可得BH=BF ,∴AB=AH+BH=AE+BF ,所以④正确.故答案为:①③④.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了平行线的性质和等腰三角形的性质.三、解答题21.(1)见解析;(2)见解析【分析】(1)由余角的性质可得F EAC ∠=∠,从而运用“角角边”证明即可;(2)作FM AC ⊥,同(1)证明过程可得FM AC BC ==,AM CE =,从而证明CD MD =,则可得M 为AC 的中点,最终可得E 点为BC 的中点.【详解】(1)∵AF AE ⊥,∴90FAG EAC ∠+∠=︒,∵FG AC ,∴90AGF ∠=︒,90FAG F ∠+∠=︒,∴F EAC ∠=∠,在AGF 与ECA △中,AGF C F EAC AF AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AGF ECA AAS ≌;(2)如图所示,作FM AC ⊥,由(1)可知AMF ECA △≌△,则FM AC BC ==,AM CE =,在DFM 和DBC △中,MDF CDB DMF DCB FM BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()DFM DBC AAS △≌△, ∴CD MD =,∵3AD CD =,∴AM CM =,∴CM CE =,∵AC BC =,∴BE CE =,即:E 点为BC 的中点.【点睛】本题考查全等三角形的判定与性质,以及等腰直角三角形的性质,掌握等腰直角三角形中常考的证明模型是解题关键.22.(1)点E 的坐标为(0,2);(2)见解析;(3)60OCD ∠=︒【分析】(1)先根据ASA 判定△AOE ≌△BOC ,得出OE=OC ,再根据点C 的坐标为(2,0),得到OC=2=OE ,进而得到点E 的坐标;(2)先过点O 作OM ⊥AD 于点M ,作ON ⊥BC 于点N ,根据△AOE ≌△BOC ,得到S △AOE =S △BOC ,且AE=BC ,再根据OM ⊥AE ,ON ⊥BC ,得出OM=ON ,进而得到OD 平分∠ADC ;(3)在DA 上截取DP=DC ,连接OP ,根据SAS 判定△OPD ≌△OCD ,再根据三角形外角性质以及三角形内角和定理,求得∠PAO=30°,进而得到∠OCB=60°.【详解】解:(1)如图①,∵AD ⊥BC ,BO ⊥AO ,∴∠AOE=∠BDE=90︒,又∵∠AEO=∠BED ,∴∠OAE=∠OBC ,∵A (-3,0),B (0,3),∴OA=OB=3,在△AOE 和△BOC 中,90AOE BOC OA OB OAE OBC ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ∴△AOE ≌△BOC(ASA),∴OE=OC ,又∵点C 的坐标为(2,0),∴OC=2=OE ,∴点E 的坐标为(0,2);(2)如图②,过点O 作OM ⊥AD 于点M ,作ON ⊥BC 于点N ,∵△AOE ≌△BOC ,∴S △AOE =S △BOC ,且AE=BC ,∵OM ⊥AE ,ON ⊥BC ,∴OM=ON ,∴OD 平分∠ADC ;(3)如图所示,在DA 上截取DP=DC ,连接OP ,∵∠PDO=∠CDO ,OD=OD ,在△OPD 和△OCD 中,DP DC PDO CDO OD OD =⎧⎪∠=∠⎨⎪=⎩,∴△OPD ≌△OCD(SAS),∴OC=OP ,∠OPD=∠OCD ,∵AD-CD=OC ,∴AD-DP=OP ,即AP=OP ,∴∠PAO=∠POA ,∴∠OPD=∠PAO+∠POA=2∠PAO=∠OCB ,又∵∠PAO+∠OCD=90°,∴3∠PAO=90°,∴∠PAO=30°,∴∠OCB=60°.【点睛】本题主要考查了全等三角形的判定与性质,角平分线的判定定理以及等腰直角三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行求解.23.(1)证明见详解;(2)以D E G 、、为顶点的三角形的形状是等边三角形,证明见详解(3)AD =CG .证明见详解.【分析】(1)过点D 作DH ∥AC 交BC 于H ,则∠DHB=∠ACB ,由ABC 是等边三角形,可得AB=AC ,∠B=∠ACB=60°,可证△DEH ≌△FEC (AAS ),DH=FC 即可;(2)以D E G 、、为顶点的三角形的形状是等边三角形,连结DG ,由ED ⊥AB 于D ,可求∠DEB=90°-∠B=30°,由EG BC ⊥,∠ACB=60°,可得∠GED=90°-∠DEB=60°,∠EGC=90°-∠GCE=30°可证△BHD 为等边三角形,∠BDH=60°,再证∠F=∠EGC=30°,GE=EF=DE ,结合∠GED=60°即可;(3)AD =CG 由ABC ,△BHD 为等边三角形,可得AD=HC ,可证△DEH ≌△FEC (AAS ),可得HE=CE ,由EG BC ⊥,∠ACB=60°,可得∠EGC=90°-∠GCE=30°利用含30°直角三角形性质GC=2EC=CH=AD 即可.【详解】证明:(1)过点D作DH∥AC交BC于H,则∠DHB=∠ACB,∵ABC是等边三角形,所以AB=AC,∠B=∠ACB=60°,∴∠B=∠DHB=60°,∴DB=DH,∵作法DH∥AC,∴∠HBE=∠F,∠DHE=∠FCE,∵DE FE=,∴△DEH≌△FEC(AAS),∴DH=FC,∴BD=CF;、、为顶点的三角形的形状是等边三角形,(2)以D E G连结DG,∵ED⊥AB于D,∴∠B+∠DEB=90°,∠B=60°,∴∠DEB=90°-∠B=30°,⊥,∠ACB=60°,又∵EG BC∴∠DEB+∠GED=90°,∠EGC+∠GCE=90°,∴∠GED=90°-∠DEB=60°,∠EGC=90°-∠GCE=30°,由(1)知DH=BD,∠B=60°,∴△BHD为等边三角形,∴∠BDH=60°,∴∠HDE=90°-∠BDH=30°,∠F=∠HDE=30°,∴∠F=∠EGC=30°,∴GE=EF=DE,∴△DEG为等边三角形;(3)AD=CG.∵ABC,△BHD为等边三角形,∴AB=BC,DB=BH,∴AB-BD=BC-BH,∴AD=HC,∵作法DH∥AC,∴∠HBE=∠F,∠DHE=∠FCE,∵DE FE=,∴△DEH≌△FEC(AAS),∴HE=CE,⊥,∠ACB=60°,∵EG BC∴∠EGC+∠GCE=90°,∴∠EGC=90°-∠GCE=30°,∴GC=2EC=CH=AD,∴GC=AD.【点睛】本题考查等边三角形的判定与性质,平行线的性质,三角形全等的判定与性质,直角三角形性质,等腰三角形判定,掌握等边三角形的判定与性质,平行线的性质,三角形全等的判定与性质,直角三角形性质,等腰三角形判定是解题关键.24.(1)60°;(2)30°;(3)20°或40°.【分析】(1)由折叠的性质可知△ABF是等边三角形,即可得出结论;(2)根据折叠的性质及三角形内角和定理即可得出结论;(3)根据折叠的性质、三角形外角的性质及等腰三角形的性质表示出∠AFD,根据平角的定义表示出∠DFC,然后分三种情况讨论即可得出结论.【详解】解:(1)由折叠的性质可知:AB=AF,BA=BF,∴AB=BF=AF,∴△ABF是等边三角形,∴∠ABC=∠AFB=60°;(2)∵∠CFD=90°,∴∠BFD =90°.由折叠的性质可知:∠BAD =∠BFD ,∴∠BAC =∠BAD =90°,∴∠C =180°-∠BAC -∠ABC =180°-90°-60°=30°;(3)设∠C =x °.由折叠的性质可知,AD =DF ,∴∠FAD =∠AFD .∵∠AFB =∠FAD +∠C ,∴∠FAD =∠AFB -∠C =60°-x ,∴∠AFD =60°-x ,∴∠DFC =180°-∠AFB -∠AFD =180°-60°-(60°-x )=60°+x .∵△CDF 为等腰三角形,∴分三种情况讨论:①若CF =CD ,则∠CFD =∠CDF ,∴60°+x +60°+x +x =180°,解得:x =20°;②若DF =DC ,则∠DFC =∠C ,∴60°+x =x ,无解,∴此种情况不成立;③若DF =FC ,则∠FDC =∠C =x ,∴60°+x +x +x =180°,解得:x =40°.综上所述:∠C 的度数为20°或40°.【点睛】本题考查了等边三角形的判定与性质,等腰三角形的判定与性质,折叠的性质.分三种情况讨论是解答本题的关键.25.(1)全等,见解析;(2)Q 的运动速度为154cm /s ;(3)803s 在AB 边上,距离A 点6cm 处【分析】(1)由SAS 证明即可;(2)根据全等三角形的性质得出4BP PC cm ==,5CQ BD cm ==,则可得出答案; (3)由题意列出方程1532104x x =+⨯,解方程即可得解; 【详解】(1)∵1t s =,点Q 的运动速度与点P 的运动速度相等,∴313BP CQ cm ==⨯=,∵10AB cm =,点D 为AB 的中点,∴5BD cm =,又∵PC BC BP =-,8BC cm =,∴835PC cm =-=,∴PC BD =,又∵AB AC =,∴B C ∠=∠,在△BPD 和△CQP 中,PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩,∴()△△BPD CQP SAS ≅;(2)∵点Q 的运动速度与点P 的运动速度不相等,∴BP 与CQ 不是对应边,即BP CQ ≠,∴若BPD CPQ ≅,且B C ∠=∠,则4BP PC cm ==,5CQ BD cm ==,∴点P 、点Q 的运动时间4()33BPt s ==, ∴515443Q CQ t υ=== cm /s ;(3)设经过x 秒后点P 与点Q 第一次相遇, 由题意可得:1532104x x =+⨯, 解得:803x =, 803803⨯=cm , △ABC 的周长为1010828cm ++=,运动三圈:28384cm ⨯=>80cm ,84804cm -=,1046cm -=,∴经过803后点P 与点Q 第一次相遇,在AB 边上,距离A 点6cm 处. 【点睛】本题主要考查了全等三角形的判定和性质,等腰三角形的性质,特别是利用方程的思想解决几何问题,培养学生综合解题的能力.26.(1)见解析;(2)见解析【分析】(1)根据“SAS”证明△BAE ≌△CAD ,然后根据全等三角形的性质解答即可;(2)根据线段垂直平分线的判定可知CA 垂直平分DE ,进而可证明结论成立.【详解】证明:(1)∵∠BAC =∠DAE =90°,∴∠DAE +∠DAB =∠BAC +∠DAB ,即∠BAE =∠CAD ,在△BAE 与△CAD 中,AD AE CAD BAE AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△BAE ≌△CAD (SAS ),∴BE =CD ;(2)∵BE =CD ,BE =CE ,∴CE =CD ,又∵AD =AE ,∴CA 垂直平分DE ,∴DE ⊥AC (可得①),又∵∠BAC =90°,∴DE//AB (可得②).【点睛】本题主要考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.也考查了线段垂直平分线的判定、平行线的判定等知识.。
(完整版)初中数学三角形证明题练习及答案
三角形证明题练习1.如图,在△ABC中,∠C=90°,AB的垂直平分线交AB与D,交BC于E,连接AE,若CE=5,AC=12,则BE的长是()A.13 B.10 C.12 D.52.如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD的角平分线,则图中的等腰三角形有()A.5个B.4个C.3个D.2个3.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则 S△ABD:S△ACD=()A.4:3 B.3:4 C.16:9 D.9:164.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A.70°B.80°C.40°D.30°5.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30°B.36°C.40°D.45°6.如图,点O在直线AB上,射线OC平分∠AOD,若∠AOC=35°,则∠BOD等于()A.145°B.110°C.70°D.35°7.如图,在△ABC中,∠ACB=90°,BA的垂直平分线交BC边于D,若AB=10,AC=5,则图中等于60°的角的个数是()A.2B.3C.4D.58.如图,已知BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是()A.2B.3C.6D.不能确定9.在Rt△ABC中,如图所示,∠C=90°,∠CAB=60°,AD平分∠CAB,点D到AB的距离DE=3.8cm,则BC等于()10.△ABC 中,点O 是△ABC 内一点,且点O 到△ABC 三边的距离相等;∠A=40°,则∠BOC=( )11.如图,已知点P 在∠AOB 的平分线OC 上,PF ⊥OA ,PE ⊥OB ,若PE=6,则PF 的长为( )12.如图,△ABC 中,DE 是AB 的垂直平分线,交BC 于点D ,交AB 于点E ,已知AE=1cm ,△ACD 的周长为12cm ,则△ABC 的周长是( )13.如图,∠BAC=130°,若MP 和QN 分别垂直平分AB 和AC ,则∠PAQ 等于( )14.如图,要用“HL ”判定Rt △ABC 和Rt △A ′B ′C ′全等的条件是( )15.如图,MN 是线段AB 的垂直平分线,C 在MN 外,且与A 点在MN 的同一侧,BC 交MN 于P 点,则( )16.如图,已知在△ABC 中,AB=AC ,D 为BC 上一点,BF=CD ,CE=BD ,那么∠EDF 等于( )17.如图,在△ABC 中,AB=AC ,AD 平分∠BAC ,那么下列结论不一定成立的是( )A . 110°B . 120°C . 130°D . 140° A . 2 B . 4 C . 6 D . 8A . 13cmB . 14cmC . 15cmD . 16cmA . 50°B . 75°C . 80°D . 105°A . AC=A ′C ′,BC=B ′C ′ B . ∠A=∠A ′,AB=A ′B ′ C . AC=A ′C ′,AB=A ′B ′D . ∠B=∠B ′,BC=B ′C ′ A . B C >PC+AP B . B C <PC+AP C . B C=PC+AP D . B C ≥PC+APA . 90°﹣∠AB .90°﹣∠AC . 180°﹣∠AD .45°﹣∠AA . △ABD ≌△ACDB . AD 是△ABC 的高线 C . AD 是△ABC 的角平分线 D . △ABC 是等边三角形三角形证明中经典题21.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.2.如图,点D是△ABC中BC边上的一点,且AB=AC=CD,AD=BD,求∠BAC的度数.3.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.求证:(1)∠B=∠C.(2)△ABC是等腰三角形.4如图,AB=AC,∠C=67°,AB的垂直平分线EF交AC于点D,求∠DBC的度数.5.如图,△ABC中,AB=AD=AE,DE=EC,∠DAB=30°,求∠C的度数.6.阅读理解:“在一个三角形中,如果角相等,那么它们所对的边也相等.”简称“等角对等边”,如图,在△ABC 中,已知∠ABC和∠ACB的平分线上交于点F,过点F作BC的平行线分别交AB、AC于点D、E,请你用“等角对等边”的知识说明DE=BD+CE.7.如图,AD是△ABC的平分线,DE,DF分别垂直AB、AC于E、F,连接EF,求证:△AEF是等腰三角形.2015年05月03日初中数学三角形证明组卷参考答案与试题解析一.选择题(共20小题)1.(2015•涉县模拟)如图,在△ABC中,∠C=90°,AB的垂直平分线交AB与D,交BC于E,连接AE,若CE=5,AC=12,则BE的长是()A .13 B.10 C.12 D.5考点:线段垂直平分线的性质.分析:先根据勾股定理求出AE=13,再由DE是线段AB的垂直平分线,得出BE=AE=13.解答:解:∵∠C=90°,∴AE=,∵DE是线段AB的垂直平分线,∴BE=AE=13;故选:A.点评:本题考查了勾股定理和线段垂直平分线的性质;利用勾股定理求出AE是解题的关键.2.(2015•淄博模拟)如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD的角平分线,则图中的等腰三角形有()A .5个B.4个C.3个D.2个考点:等腰三角形的判定;三角形内角和定理.专题:证明题.分根据已知条件和等腰三角形的判定定理,对图中的三角形进行分析,即可得出答案.解答:解:共有5个.(1)∵AB=AC∴△ABC是等腰三角形;(2)∵BD、CE分别是∠ABC、∠BCD的角平分线∴∠EBC=∠ABC,∠ECB=∠BCD,∵△ABC是等腰三角形,∴∠EBC=∠ECB,∴△BCE是等腰三角形;(3)∵∠A=36°,AB=AC,∴∠ABC=∠ACB=(180°﹣36°)=72°,又BD是∠ABC的角平分线,∴∠ABD=∠ABC=36°=∠A,∴△ABD是等腰三角形;同理可证△CDE和△BCD是等腰三角形.故选:A.点评:此题主要考查学生对等腰三角形判定和三角形内角和定理的理解和掌握,属于中档题.3.(2014秋•西城区校级期中)如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则 S△ABD:S△ACD=()A .4:3 B.3:4 C.16:9 D.9:16考点:角平分线的性质;三角形的面积.专题:计算题.分析:首先过点D作DE⊥AB,DF⊥AC,由AD是它的角平分线,根据角平分线的性质,即可求得DE=DF,由△ABD的面积为12,可求得DE与DF的长,又由AC=6,则可求得△ACD的面积.解答:解:过点D作DE⊥AB,DF⊥AC,垂足分别为E、F…(1分)∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,…(3分)∴S△ABD=•DE•AB=12,∴DE=DF=3…(5分)∴S△ADC=•DF•AC=×3×6=9…(6分)故选A.点评:此题考查了角平分线的性质.此题难度不大,解题的关键是熟记角平分线的性质定理的应用,注意数形结合思想的应用,注意辅助线的作法.4.(2014•丹东)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A .70°B.80°C.40°D.30°考点:线段垂直平分线的性质;等腰三角形的性质.专题:几何图形问题.分析:由等腰△ABC中,AB=AC,∠A=40°,即可求得∠ABC的度数,又由线段AB的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.解答:解:∵等腰△ABC中,AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵线段AB的垂直平分线交AB于D,交AC于E,∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=∠ABC﹣∠ABE=30°.故选:D.点评:此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.5.(2014•南充)如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A .30°B.36°C.40°D.45°考点:等腰三角形的性质.分析:求出∠BAD=2∠CAD=2∠B=2∠C的关系,利用三角形的内角和是180°,求∠B,解答:解:∵AB=AC,∴∠B=∠C,∵AB=BD,∴∠BAD=∠BDA,∵CD=AD,∴∠C=∠CAD,∵∠BAD+∠CAD+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°故选:B.点评:本题主要考查等腰三角形的性质,解题的关键是运用等腰三角形的性质得出∠BAD=2∠CAD=2∠B=2∠C关系.6.(2014•山西模拟)如图,点O在直线AB上,射线OC平分∠AOD,若∠AOC=35°,则∠BOD等于()A .145°B.110°C.70°D.35°考点:角平分线的定义.分析:首先根据角平分线定义可得∠AOD=2∠AOC=70°,再根据邻补角的性质可得∠BOD 的度数.解答:解:∵射线OC平分∠DOA.∴∠AOD=2∠AOC,∵∠COA=35°,∴∠DOA=70°,∴∠BOD=180°﹣70°=110°,故选:B.点评:此题主要考查了角平分线定义,关键是掌握角平分线把角分成相等的两部分.7.(2014•雁塔区校级模拟)如图,在△ABC中,∠ACB=90°,BA的垂直平分线交BC边于D,若AB=10,AC=5,则图中等于60°的角的个数是()....考点:线段垂直平分线的性质.分析:根据已知条件易得∠B=30°,∠BAC=60°.根据线段垂直平分线的性质进一步求解.解答:解:∵∠ACB=90°,AB=10,AC=5,∴∠B=30°.∴∠BAC=90°﹣30°=60°∵DE垂直平分BC,∴∠BAC=∠ADE=∠BDE=∠CDA=90°﹣30°=60°.∴∠BDE对顶角=60°,∴图中等于60°的角的个数是4.故选C.点评:此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.由易到难逐个寻找,做到不重不漏.8.(2014秋•腾冲县校级期末)如图,已知BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是()A .2 B.3 C.6 D.不能确定考点:三角形的角平分线、中线和高.专题:计算题.分析:根据三角形的中线得出AD=CD,根据三角形的周长求出即可.解答:解:∵BD是△ABC的中线,∴AD=CD,∴△ABD和△BCD的周长的差是:(AB+BD+AD)﹣(BC+BD+CD)=AB﹣BC=5﹣3=2.故选A.点评:本题主要考查对三角形的中线的理解和掌握,能正确地进行计算是解此题的关键.9.(2014春•栖霞市期末)在Rt△ABC中,如图所示,∠C=90°,∠CAB=60°,AD平分∠CAB,点D到AB的距离DE=3.8cm,则BC等于()A .3.8cm B.7.6cm C.11.4cm D.11.2cm考点:角平分线的性质.分析:由∠C=90°,∠CAB=60°,可得∠B的度数,故BD=2DE=7.6,又AD平分∠CAB,故DC=DE=3.8,由BC=BD+DC求解.解答:解:∵∠C=90°,∠CAB=60°,∴∠B=30°,在Rt△BDE中,BD=2DE=7.6,又∵AD平分∠CAB,∴DC=DE=3.8,∴BC=BD+DC=7.6+3.8=11.4.故选C.点评:本题主要考查平分线的性质,由已知能够注意到D到AB的距离DE即为CD长,是解题的关键.10.(2014秋•博野县期末)△ABC中,点O是△ABC内一点,且点O到△ABC三边的距离相等;∠A=40°,则∠BOC=()A .110°B.120°C.130°D.140°考点:角平分线的性质;三角形内角和定理;三角形的外角性质.专题:计算题.分析:由已知,O到三角形三边距离相等,得O是内心,再利用三角形内角和定理即可求出∠BOC的度数.解答:解:由已知,O到三角形三边距离相等,所以O是内心,即三条角平分线交点,AO,BO,CO都是角平分线,所以有∠CBO=∠ABO=∠ABC,∠BCO=∠ACO=∠ACB,∠ABC+∠ACB=180﹣40=140∠OBC+∠OCB=70∠BOC=180﹣70=110°故选A.点评:此题主要考查学生对角平分线性质,三角形内角和定理,三角形的外角性质等知识点的理解和掌握,难度不大,是一道基础题.11.(2013秋•潮阳区期末)如图,已知点P在∠AOB的平分线OC上,PF⊥OA,PE⊥OB,若PE=6,则PF的长为()A .2 B.4 C.6 D.8考点:角平分线的性质;全等三角形的判定与性质.专题:计算题.分析:利用角平分线性质得出∠POF=∠POE,然后利用AAS定理求证△POE≌△POF,即可求出PF的长.解答:解:∵OC平分∠AOB,∴∠POF=∠POE,∵PF⊥OA,PE⊥OB,∴∠PFO=∠PEO,PO为公共边,∴△POE≌△POF,∴PF=PE=6.故选C.点评:此题考查学生对角平分线性质和全等三角形的判定与性质的理解和掌握,解答此题的关键是求证△POE≌△POF.12.(2013秋•马尾区校级期末)如图,△ABC中,DE是AB的垂直平分线,交BC于点D,交AB于点E,已知AE=1cm,△ACD的周长为12cm,则△ABC的周长是()A .13cm B.14cm C.15cm D.16cm考点:线段垂直平分线的性质.分析:要求△ABC的周长,先有AE可求出AB,只要求出AC+BC即可,根据线段垂直平分线的性质可知,AD=BD,于是AC+BC=AC+CD+AD等于△ACD的周长,答案可得.解答:解:∵DE是AB的垂直平分线,∴AD=BD,AB=2AE=2又∵△ACD的周长=AC+AD+CD=AC+BD+CD=AC+BC=12 ∴△ABC的周长是12+2=14cm.故选B点评:此题主要考查线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等;进行线段的等效转移,把已知与未知联系起来是正确解答本题的关键.13.(2013秋•西城区期末)如图,∠BAC=130°,若MP和QN分别垂直平分AB和AC,则∠PAQ等于()A .50°B.75°C.80°D.105°考点:线段垂直平分线的性质.分析:根据线段垂直平分线性质得出BP=AP,CQ=AQ,推出∠B=∠BAP,∠C=∠QAC,求出∠B+∠C,即可求出∠BAP+∠QAC,即可求出答案.解答:解:∵MP和QN分别垂直平分AB和AC,∴BP=AP,CQ=AQ,∴∠B=∠PAB,∠C=∠QAC,∵∠BAC=130°,∴∠B+∠C=180°﹣∠BAC=50°,∴∠BAP+∠CAQ=50°,∴∠PAQ=∠BAC﹣(∠PAB+∠QAC)=130°﹣50°=80°,故选:C.点评:本题考查了等腰三角形的性质,线段垂直平分线性质,三角形的内角和定理,注意:线段垂直平分线上的点到线段两个端点的距离相等,等边对等角.14.(2014秋•东莞市校级期中)如图,要用“HL”判定Rt△ABC和Rt△A′B′C′全等的条件是()A .AC=A′C′,BC=B′C′B.∠A=∠A′,AB=A′B′C .AC=A′C′,AB=A′B′D.∠B=∠B′,BC=B′C′考点:直角三角形全等的判定.分析:根据直角三角形全等的判定方法(HL)即可直接得出答案.解答:解:∵在Rt△ABC和Rt△A′B′C′中,如果AC=A′C′,AB=A′B′,那么BC一定等于B′C′,Rt△ABC和Rt△A′B′C′一定全等,故选C.点评:此题主要考查学生对直角三角形全等的判定的理解和掌握,难度不大,是一道基础题.15.(2014秋•淄川区校级期中)如图,MN是线段AB的垂直平分线,C在MN外,且与A点在MN的同一侧,BC交MN 于P点,则()A .BC>PC+AP B.BC<PC+AP C.BC=PC+AP D.BC≥PC+AP考点:线段垂直平分线的性质.分析:从已知条件进行思考,根据垂直平分线的性质可得PA=PB,结合图形知BC=PB+PC,通过等量代换得到答案.解答:解:∵点P在线段AB的垂直平分线上,∴PA=PB.∵BC=PC+BP,∴BC=PC+AP.故选C.点评:本题考查了垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等;结合图形,进行线段的等量代换是正确解答本题的关键.16.(2014秋•万州区校级期中)如图,已知在△ABC中,AB=AC,D为BC上一点,BF=CD,CE=BD,那么∠EDF等于()A .90°﹣∠A B.90°﹣∠AC.180°﹣∠A D.45°﹣∠A考点:等腰三角形的性质.分析:由AB=AC,利用等边对等角得到一对角相等,再由BF=CD,BD=CE,利用SAS得到三角形FBD与三角形DEC全等,利用全等三角形对应角相等得到一对角相等,即可表示出∠EDF.解答:解:∵AB=AC,∴∠B=∠C°,在△BDF和△CED中,,∴△BDF≌△CED(SAS),∴∠BFD=∠CDE,∴∠FDB+∠EDC=∠FDB+∠BFD=180°﹣∠B=180°﹣=90°+∠A,则∠EDF=180°﹣(∠FDB+∠EDC)=90°﹣∠A.故选B.点评:此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.17.(2014秋•泰山区校级期中)如图,在△ABC中,AB=AC,AD平分∠BAC,那么下列结论不一定成立的是()A .△ABD≌△ACDB.AD是△ABC的高线C .AD是△ABC的角平分线D.△ABC是等边三角形考点:等腰三角形的性质.分析:利用等腰三角形的性质逐项判断即可.解答:解:A、在△ABD和△ACD 中,,所以△ABD≌△ACD,所以A正确;B、因为AB=AC,AD平分∠BAC,所以AD是BC边上的高,所以B正确;C、由条件可知AD为△ABC的角平分线;D、由条件无法得出AB=AC=BC,所以△ABC不一定是等边三角形,所以D不正确;故选D.点评:本题主要考查等腰三角形的性质,掌握等腰三角形“三线合一”的性质是解题的关键.18.(2014秋•晋江市校级月考)如图,点P是△ABC内的一点,若PB=PC,则()A .点P在∠ABC的平分线上B.点P在∠ACB的平分线上C .点P在边AB的垂直平分线上D.点P在边BC的垂直平分线上考点:线段垂直平分线的性质.分析:根据到线段两端点的距离相等的点在这条线段的垂直平分线上由PC=PB即可得出P在线段BC的垂直平分线上.解答:解:∵PB=PC,∴P在线段BC的垂直平分线上,故选D.点评:本题考查了角平分线的性质和线段垂直平分线定理,注意:到线段两端点的距离相等的点在这条线段的垂直平分线上,角平分线上的点到角的两边的距离相等.19.(2013•河西区二模)如图,在∠ECF的两边上有点B,A,D,BC=BD=DA,且∠ADF=75°,则∠ECF的度数为()A .15°B.20°C.25°D.30°考等腰三角形的性质.点:分析:根据等腰三角形的性质以及三角形外角和内角的关系,逐步推出∠ECF的度数.解答:解:∵BC=BD=DA,∴∠C=∠BDC,∠ABD=∠BAD,∵∠ABD=∠C+∠BDC,∠ADF=75°,∴3∠ECF=75°,∴∠ECF=25°.故选:C.点评:考查了等腰三角形的性质:等腰三角形的两个底角相等,三角形外角和内角的运用.20.(2013秋•盱眙县校级期中)如图,P为∠AOB的平分线OC上任意一点,PM⊥OA于M,PN⊥OB于N,连接MN交OP于点D.则①PM=PN,②MO=NO,③OP⊥MN,④MD=ND.其中正确的有()A .1个B.2个C.3个D.4个考点:角平分线的性质.分析:由已知很易得到△OPM≌△OPN,从而得角相等,边相等,进而得△OMP≌△ONP,△PMD≌△PND,可得MD=ND,∠ODN=∠ODM=9O°,答案可得.解答:解:P为∠AOB的平分线OC上任意一点,PM⊥OA于M,PN⊥OB于N 连接MN交OP于点D,∴∠MOP=∠NOP,∠OMP=∠ONP,OP=OP,∴△OPM≌△OPN,∴MP=NP,OM=ON,又OD=OD∴△OMD≌△OND,∴MD=ND,∠ODN=∠ODM=9O°,∴OP⊥MN∴①PM=PN,②MO=NO,③OP⊥MN,④MD=ND都正确.故选D.点评:本题主要考查了角平分线的性质,即角平分线上的一点到两边的距离相等;发现并利用△OMD≌△OND是解决本题的关键,证明两线垂直时常常通过证两角相等且互补来解决.二.解答题(共10小题)21.(2014秋•黄浦区期末)如图,已知ON是∠AOB的平分线,OM、OC是∠AOB外的射线.(1)如果∠AOC=α,∠BOC=β,请用含有α,β的式子表示∠NOC.(2)如果∠BOC=90°,OM平分∠AOC,那么∠MON的度数是多少?考点:角平分线的定义.分析:(1)先求出∠AOB=α﹣β,再利用角平分线求出∠AON,即可得出∠NOC;(2)先利用角平分线求出∠AOM=∠AOC,∠AON=∠AOB,即可得出∠MON=∠BOC.解答:解:(1)∵∠AOC=α,∠BOC=β,∴∠AOB=α﹣β,∵ON是∠AOB的平分线,∴∠AON=(α﹣β),∠NOC=α﹣(α﹣β)=(α+β);(2)∵OM平分∠AOC,ON平分∠AOB,∴∠AOM=∠AOC,∠AON=∠AOB,∴∠MON=∠AOM﹣∠AON=(∠AOC﹣∠AOB)=∠BOC=×90°=45°.点评:本题考查了角平分线的定义和角的计算;弄清各个角之间的数量关系是解决问题的关键.22.(2014秋•阿坝州期末)如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.考点:线段垂直平分线的性质.专题:探究型.分析:(1)先根据E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA得出△ODE≌△OCE,可得出OD=OC,DE=CE,OE=OE,可得出△DOC是等腰三角形,由等腰三角形的性质即可得出OE是CD的垂直平分线;(2)先根据E是∠AOB的平分线,∠AOB=60°可得出∠AOE=∠BOE=30°,由直角三角形的性质可得出OE=2DE,同理可得出DE=2EF即可得出结论.解答:解:(1)∵E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,∴DE=CE,OE=OE,∴Rt△ODE≌Rt△OCE,∴OD=OC,∴△DOC是等腰三角形,∵OE是∠AOB的平分线,∴OE是CD的垂直平分线;(2)∵OE是∠AOB的平分线,∠AOB=60°,∴∠AOE=∠BOE=30°,∵EC⊥OB,ED⊥OA,∴OE=2DE,∠ODF=∠OED=60°,∴∠EDF=30°,∴DE=2EF,∴OE=4EF.点评:本题考查的是角平分线的性质及直角三角形的性质、等腰三角形的判定与性质,熟知以上知识是解答此题的关键.23.(2014秋•花垣县期末)如图,在△ABC中,∠ABC=2∠C,BD平分∠ABC,DE⊥AB(E在AB之间),DF⊥BC,已知BD=5,DE=3,CF=4,试求△DFC的周长.考点:角平分线的性质.分析:根据角平分线的性质可证∠ABD=∠CBD,即可求得∠CBD=∠C,即BD=CD,再根据角平分线上的点到角两边距离相等即可求得DE=DF,即可解题.解答:解:∵∠ABC=2∠C,BD平分∠ABC,∴∠CBD=∠C,∴BD=CD,∵BD平分∠ABC,∴DE=DF,∴△DFC的周长=DF+CD+CF=DE+BD+CF=3+5+4=12.点评:本题考查了角平分线上点到角两边距离相等的性质,考查了角平分线平分角的性质,考查了三角形周长的计算,本题中求证DE=DF是解题的关键.24.(2014秋•大石桥市期末)如图,点D是△ABC中BC边上的一点,且AB=AC=CD,AD=BD,求∠BAC的度数.考点:等腰三角形的性质.分析:由AD=BD得∠BAD=∠DBA,由AB=AC=CD得∠CAD=∠CDA=2∠DBA,∠DBA=∠C,从而可推出∠BAC=3∠DBA,根据三角形的内角和定理即可求得∠DBA的度数,从而不难求得∠BAC的度数.解答:解:∵AD=BD∴设∠BAD=∠DBA=x°,∵AB=AC=CD∴∠CAD=∠CDA=∠BAD+∠DBA=2x°,∠DBA=∠C=x°,∴∠BAC=3∠DBA=3x°,∵∠ABC+∠BAC+∠C=180°∴5x=180°,∴∠DBA=36°∴∠BAC=3∠DBA=108°.点评:此题主要考查学生对等腰三角形的性质及三角形内角和定理的综合运用能力;求得角之间的关系利用内角和求解是正确解答本题的关键.25.(2014秋•安溪县期末)如图,在△ABC中,AB=AC,∠A=α.(1)直接写出∠ABC的大小(用含α的式子表示);(2)以点B为圆心、BC长为半径画弧,分别交AC、AB于D、E两点,并连接BD、DE.若=30°,求∠BDE的度数.考点:等腰三角形的性质.分析:(1)根据三角形内角和定理和等腰三角形两底角相等的性质即可求得∠ABC的大小;(2)根据等腰三角形两底角相等求出∠BCD=∠BDC,再求出∠CBD,然后根据∠ABD=∠ABC﹣∠CBD,求得∠ABD,再根据三角形内角和定理和等腰三角形两底角相等的性质计算即可得解.解答:解:(1)∠ABC的大小为×(180°﹣α)=90°﹣α;(2)∵AB=AC,∴∠ABC=∠C=90°﹣α=90°﹣×30°=75°,由题意得:BC=BD=BE,由BC=BD得∠BDC=∠C=75°,∴∠CBD=180°﹣75°﹣75°=30°,∴∠ABD=∠ABC﹣∠CBD=75°﹣30°=45°,由BD=BE得.故∠BDE的度数是 67.5°.点评:本题考查了三角形内角和定理、等腰三角形的性质,主要利用了等腰三角形两底角相等,熟记性质是解题的关键.26.(2014秋•静宁县校级期中)如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.求证:(1)∠B=∠C.(2)△ABC是等腰三角形.考点:等腰三角形的判定.分析:由条件可得出DE=DF,可证明△BDE≌△CDF,可得出∠B=∠C,再由等腰三角形的判定可得出结论.解答:证明:(1)∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HF),∴∠B=∠C;(2)由(1)可得∠B=∠C,∴△ABC为等腰三角形.点评:本题主要考查等腰三角形的判定及全等三角形的判定和性质,利用角平分线的性质得出DE=DF是解题的关键.27.(2012秋•天津期末)如图,AB=AC,∠C=67°,AB的垂直平分线EF交AC于点D,求∠DBC的度数.考点:线段垂直平分线的性质;等腰三角形的性质.分析:求出∠ABC,根据三角形内角和定理求出∠A,根据线段垂直平分线得出AD=BD,求出∠ABD,即可求出答案.解答:解:∵AB=AC,∠C=67°,∴∠ABC=∠C=67°,∴∠A=180°﹣67°﹣67°=46°,∵EF是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD=46°,∴∠DBC=67°﹣46°=21°.点评:本题考查了线段垂直平分线,三角形的能或定理,等腰三角形的性质和判定等知识点,关键是求出∠ABC和∠ABD的度数,题目比较好.28.(2013秋•高坪区校级期中)如图,△ABC中,AB=AD=AE,DE=EC,∠DAB=30°,求∠C的度数.考点:等腰三角形的性质.分析:首先根据AB=AD=AE,DE=EC,得到∠B=∠ADB,∠ADE=∠AED,∠C=∠EDC,从而得到∠ADE=∠AED=∠C+∠EDC=2∠C,根据∠DAB=30°,求得∠B=∠ADB=75°,利用∠ADC=∠ADE+∠EDC=3∠C=105°,求得∠C即可.解答:解:∵AB=AD=AE,DE=EC,∴∠B=∠ADB,∠ADE=∠AED,∠C=∠EDC,∴∠ADE=∠AED=∠C+∠EDC=2∠C,∵∠DAB=30°,∴∠B=∠ADB=75°,∴∠ADC=∠ADE+∠EDC=3∠C=105°,∴∠C=35°.点评:本题考查了等腰三角形的性质,解题的关键是利用等腰三角形的性质求得有关角的度数.29.(2012春•扶沟县校级期中)阅读理解:“在一个三角形中,如果角相等,那么它们所对的边也相等.”简称“等角对等边”,如图,在△ABC中,已知∠ABC和∠ACB的平分线上交于点F,过点F作BC的平行线分别交AB、AC于点D、E,请你用“等角对等边”的知识说明DE=BD+CE.等腰三角形的性质.考点:专证明题.题:由DE∥BC,BF平分∠ABC,CF平分∠ACB可知,DB=DF,CE=EF.便可得出结论.分析:解答:证明:∵BF平分∠ABC(已知),CF平分∠ACB(已知),∴∠ABF=∠CBF,∠ACF=∠FCB;又∵DE平行BC(已知)∴∠DFB=∠FBC(两直线平行,内错角相等),∠EFC=∠FCB(两直线平行,内错角相等),∴∠DBF=∠DFB,∠EFC=∠ECF(等量代换)∴DF=DB,EF=EC(等角对等边)∴DE=BD+CE.点评:此题考查学生对等腰三角形的判定与性质和平行线的性质的理解和掌握,主要利用等腰三角形两边相等.稍微有点难度是一道中档题.30.(2011•龙岩质检)如图,AD是△ABC的平分线,DE,DF分别垂直AB、AC于E、F,连接EF,求证:△AEF是等腰三角形.考点:等腰三角形的判定;全等三角形的判定与性质.专题:证明题.分析:根据角平分线的性质知∠BAD=∠CAD;然后根据已知条件“DE,DF分别垂直AB、AC于E、F”得到∠DEA=∠DFA=90°;再加上公共边AD=AD,从而证明,△ADE≌△ADF;最后根据全等三角形的对应边相等证明△AEF的两边相等,所以△AEF是等腰三角形.解答:证明:∵AD是△ABC的平分线,∴∠BAD=∠CAD,(3分)又∵DE,DF分别垂直AB、AC于E,F∴∠DEA=∠DFA=90°(6分)又∵AD=AD,∴△ADE≌△ADF.(8分)∴AE=AF,即△AEF是等腰三角形(10分)点评:本题综合考查了等腰三角形的判定、全等三角形的判定与性质.解答此题时,根据全等三角形的判定定理ASA判定△ADE≌△ADF.。
(典型题)初中数学八年级数学下册第一单元《三角形的证明》测试题(有答案解析)
一、选择题1.如图的网格中,每个小正方形的边长为1,A ,B ,C 三点均在格点上,结论错误的是( )A .AB=25B .∠BAC=90°C .ABC S 10=D .点A 到直线BC 的距离是22.如图,在ABC 中,AB AC =,BD 平分ABC ∠,将BCD △连续翻折两次,C 点的对应点E 点落在边AB 上,B 点的对应点F 点恰好落在边AC 上,则下列结论正确的是( )A .18,2A AD BD ∠=︒=B .18,A AD BC BD ∠=︒=+ C .20,2A AD BD ∠=︒= D .20,A AD BC BD ∠=︒=+ 3.如图,在ABC 中,AB =AC =6,且15ABC S =△,AD ,BE 是ABC 的两条高线,P 是AD 上一动点,则PC PE +的最小值是( )A .4B .5C .6D .84.如图,已知△ABC 中,AB =AC ,∠BAC =90°,直角∠EPF 的顶点P 是BC 中点,当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合)两边PE 、PF 分别交AB 、AC 于点E 、F ,给出以下四个结论:①AE =CF ;②△EPF 是等腰直角三角形;③S 四边形AEPF =12S △ABC ;④BE +CF =EF .上述结论始终正确的个数是( )A .1个B .2个C .3个D .4个5.如图,在ABC ∆中,AB AC =,120BAC ∠=︒,AD 是ABC ∆的中线,且6AD =,AE 是BAD ∠的角平分线,//DF AB 交AE 的延长线于点F ,则DF 的长为( )A .3B .4C .5D .6 6.如图,CD 是ABC 的角平分线,2,7,4B A AC BC ∠=∠==,则BD 的长为( )A .2B .3C .23D .327.如图,△ABC 中,DC =2BD =2,连接AD ,∠ADC =60°.E 为AD 上一点,若△BDE 和△BEC 都是等腰三角形,且AD =31+,则∠ACB =( )A .60°B .70°C .55°D .75°8.如图,在ABD ∆中,AD AB =,90DAB ︒∠=,在ACE ∆中,AC AE =,90EAC ︒∠=,CD ,BE 相交于点F ,有下列四个结论: ①BDC BEC ∠=∠;②FA 平分DFE ∠;③DC BE ⊥;④DC BE =.其中,正确的结论有( )A .①②③④B .①③④C .②③D .②③④ 9.在下列命题中,真命题是( )A .同位角相等B .到线段距离相等的点在线段垂直平分线上C .三角形的外角和是360°D .角平分线上的点到角的两边相等10.下列四组线段中,可以构成直角三角形的是( )A .1,2,3B .2,3,4C .4,5,6D .()5,12,130a a a a >11.如图,在锐角ABC 中,AB AC =,D ,E 是ABC 内的两点,AD 平分BAC ∠,60EBC E ∠=∠=,若6BE cm =,2DE cm =,则BC 的长度是( )A .6cmB .6.5cmC .7cmD .8cm 12.等腰三角形一腰的垂直平分线与另一腰所在直线的夹角是40°,则这一等腰三角形的底角为( )A .65°B .25°C .50°D .65°或25°二、填空题13.如图,OA ,OB 分别是线段MC 、MD 的垂直平分线,MD =5cm ,MC =7cm ,CD =10cm ,一只小蚂蚁从点M 出发,爬到OA 边上任意一点E ,再爬到OB 边上任意一点F ,然后爬回M 点,则小蚂蚁爬行的最短路径的长度为_____.14.如图,已知△ABC 的周长是18,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =1,△ABC 的面积是_____.15.已知C ,D 两点在线段AB 的垂直平分线上,且∠ACB =50°,∠ADB =86°,则∠CAD 的度数是_____.16.如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90∘,AB = AC =8,O 为AC 中点,点D 在直线BC 上运动,连接OE ,则在点D 运动过程中,线段OE 的最小值是 _____ .17.如图,∠MON =33°,点P 在∠MON 的边ON 上,以点P 为圆心,PO 为半径画弧,角OM 于点A ,连接AP ,则∠APN =____.18.如图,在ABC 中,6,,BC AD DC =分别平分,BAC ACB ∠∠,点E 为BC 上一点,若105ADC ︒∠=,则CD DE +的最小值为________.19.如图,在等腰直角三角形ABC 中,90,A AC AB ∠=︒=.BD 为ABC ∠的平分线,交AC 于点D ,若BCD △的面积为2,则ABD △的面积为____________.20.如图,在ABC 中,AB AC =,38A ∠=︒,AB 的垂直平分线交AC 点E ,垂足为点D ,连接BE ,则EBC ∠的度数为________.三、解答题21.如图,等腰直角ACB △中,90ACB ∠=︒,E 为线段BC 上一动点(不含B 、C 端点),连接AE ,作AF AE ⊥且AF AE =.(1)如图1,过F 点作FG AC 交AC 于G 点,求证:≌AGF ECA ;(2)如图2,连接BF 交AC 于D 点,若3AD CD =,求证:E 点为BC 的中点. 22.如图,在ABC ∆中,80ABC ACB ∠=∠=︒,D 是AB 上一点,且AD BC =,//DE BC 且DE AC =.连接AE ,CE ,CD .(1)求AED ∠的度数;(2)证明:ACE ∆是等边三角形;(3)求ECD ∠的度数.23.如图,已知:AD 是∠BAC 的平分线,AB =BD ,过点B 作BE ⊥AC ,与AD 交于点F . (1)求证:AC ∥BD ;(2)若AE =2,AB =3,BF =355,求△ABF 中AB 边上的高.24.如图,在△ABC 中,AC=BC ,∠ACB=90°,延长CA 至点D ,延长CB 至点E ,使AD=BE ,连接AE ,BD ,交点为O .(1)求证:OB=OA ;(2)连接OC ,若AC=OC ,则∠D 的度数是 度.25.在△DEF 中,DE =DF ,点B 在EF 边上,且∠EBD =60°,C 是射线BD 上的一个动点(不与点B 重合,且BC≠BE ),在射线BE 上截取BA =BC ,连接AC .(1)当点C 在线段BD 上时,①若点C 与点D 重合,请根据题意补全图1,并直接写出线段AE 与BF 的数量关系为 ;②如图2,若点C 不与点D 重合,请证明AE =BF +CD ;(2)当点C 在线段BD 的延长线上时,用等式表示线段AE ,BF ,CD 之间的数量关系(直接写出结果,不需要证明).26.如图,在等腰ABC 和等腰ADE 中,AB AC =,AD AE =,BAC DAE ∠=∠且C E D 、、三点共线,作AM CD ⊥于M ,求证:BD DM CM +=.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据勾股定理以及其逆定理和三角形的面积公式逐项分析即可得到问题答案.【详解】解:=A 正确,不符合题意;∵AC=BC 5===,∴22252025AC AB BC +=+==,∴△ACB 是直角三角形,∴∠CAB=90°,故选项B 正确,不符合题意;S △ABC 111442421345222=⨯-⨯⨯-⨯⨯-⨯⨯=,故选项C 错误,符合题意; 点A 到直线BC 的距离2552AC AB BC ===,故选项D 正确,不符合题意; 故选:C .【点睛】本题考查了勾股定理以及逆定理的运用,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么 222+=a b c .熟记勾股定理的内容是解题得关键.2.D解析:D【分析】设∠ABC=∠C=2x ,根据折叠的性质得到∠BDE=∠BDC=∠FDE=60°BD=DF ,BC=BE=EF ,在△BDC 中利用内角和定理列出方程,求出x 值,可得∠A ,再证明AF=EF ,从而可得AD =BC+BD .【详解】解:∵AB=AC ,BD 平分∠ABC ,设∠ABC=∠C=2x ,则∠A=180°-4x ,∴∠ABD=∠CBD=x ,第一次折叠,可得:∠BED=∠C=2x ,∠BDE=∠BDC ,第二次折叠,可得:∠BDE=∠FDE ,∠EFD=∠ABD=x ,∠BED=∠FED=∠C=2x ,∵∠BDE+∠BDC+∠FDE=180°,∴∠BDE=∠BDC=∠FDE=60°,∴x+2x+60°=180°,∴x=40°,即∠ABC=∠ACB=80°,∴∠A=20°,∴∠EFD=∠EDB=40°,∴∠AEF=∠EFD-∠A=20°,∴AF=EF=BE=BC ,∴AD=AF+FD=BC+BD ,故选D .【点睛】本题考查了翻折的性质,等腰三角形的判定和性质,三角形内角和,熟练掌握折叠的性质是解题的关键.3.B解析:B【分析】连接PB ,根据等腰三角形的性质和垂直平分线的性质计算即可;【详解】连接PB ,∵AB AC =,BD CD =,∴AD 是等腰△ABC 底边BC 边的中垂线,∴PB PC =,∴PC PE PB PE +=+,又PB PE BE +≥,∴B ,P ,E 三点共线时,PB PE +最小,即等于BE 的长,又∵△1152ABC S AC BE ==,6AC =, ∴5BE =;故答案选B .【点睛】本题主要考查了等腰三角形的性质、垂直平分线的性质,结合轴对称的性质计算是解题的关键. 4.C解析:C【分析】连接AP 根据等腰直角三角形的性质得出∠B =∠C =∠BAP =∠CAP =45°,AP =PC =PB ,∠APC =∠EPF =90°,求出∠APE =∠CPF ,证△APE ≌△CPF ,推出AE =CF ,EP =PF ,推出S APE =S △CPF ,求出S 四边形AEPF =S △APC=12S △ABC ,求出BE +CF =AE +AF >EF ,即可得出答案. 【详解】解:连接AP ,∵△ABC 中,AB =AC ,∠BAC =90°,P 是BC 中点,∴∠B =∠C =∠BAP =∠CAP =45°,AP =PC =PB ,∠APC =∠EPF =90°,∴∠EPF ﹣∠APF =∠APC ﹣∠APF ,∴∠APE =∠CPF ,在△APE 和△CPF 中45EAP C AP CP APE CPF ︒⎧∠=∠=⎪=⎨⎪∠=∠⎩, ∴△APE ≌△CPF (ASA ),∴AE =CF ,EP =PF ,∴△EPF 是等腰直角三角形,∴①正确;②正确;∵△APE ≌△CPF∴S △APE =S △CPF ,∴S 四边形AEPF =S △AEP +S △APF =S △CPF +S △APF =S △APC =12S △ABC ,∴③正确; ∵AB =AC ,AE =CF ,∴AF =BE ,∴BE +CF =AE +AF >EF ,∴④错误;即正确的有3个,故选:C .【点睛】本题考查了等腰直角三角形的判定与性质,全等三角形的判定与性质,三角形三条边的关系,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键. 5.D解析:D【分析】根据等腰三角形三线合一的性质可得AD ⊥BC ,∠BAD=∠CAD ,求出∠DAE=∠EAB=30°,根据平行线的性质求出∠F=∠BAE=30°,从而得到∠DAE=∠F ,根据等角对等边求出AD=DF ,即可求解.【详解】∵AB= AC ,AD 是△ABC 的中线,∴AD ⊥BC ,∠BAD=∠CAD=12∠BAC=12×120°= 60°, ∵AE 是∠BAD 的角平分线, ∴∠DAE=∠EAB=12∠BAD=12⨯60°= 30°, ∵DF// AB∴∠F=∠BAE= 30°,∴∠DAE=∠F= 30°,∴AD= DF=6;故答案为:D.【点睛】本题考查的是直角三角形的性质,等腰三角形的性质,平行线的性质,掌握等腰三角形的性质是解题的关键. 6.B解析:B【分析】延长CB 至点F ,使CF=CA ,连接DF ,证明△FCD ≌△ACD ,得到∠F=∠A ,结合已知得到线段的关系,从而计算BD .【详解】解:延长CB 至点F ,使CF=CA ,连接DF ,∵CD 是△ABC 的角平分线,∴∠ACD=∠FCD ,在△FCD 和△ACD 中,CF CA FCD ACD CD CD =⎧⎪∠=∠⎨⎪=⎩,∴△FCD ≌△ACD (SAS ),∴∠F=∠A ,∴∠ABC=2∠A 且∠ABC=∠F+∠FDB ,∴∠F=∠FDB ,∴BF=BD ,∴CF=BC+BF=BC+BD ,∴AC=BD+BC ,∴BD=AC-BC=7-4=3,故选B .【点睛】本题考查了全等三角形的判定和性质,解题的关键是合理作出辅助线,构造全等三角形. 7.D解析:D【分析】根据等腰三角形的性质求解即可;【详解】∵60EDC ∠=︒,∴60EBD BED ∠+∠=︒,∵△BDE 是等腰三角形,∴30EBD BED ∠=∠=︒,1BD DE ==,∵△BEC 是等腰三角形,∴30EBD ECD ∠=∠=︒,∵60EDC ∠=︒,∴90DEC ∠=︒,在Rt △DEC 中,∵30ECD ∠=︒,1DE =, ∴3tan 30DEEC ==︒又∵AD 31, ∴3AE AD DE EC =-==,∴△AEC 为等腰三角形,又∵90DEC AEC ∠=∠=︒,∴45ECA EAC ∠=∠=︒,∴453075ACB ACE ECD ∠=∠+∠=︒+︒=︒;故答案选D .【点睛】本题主要考查了等腰三角形的性质应用,准确计算是解题的关键.8.D解析:D【分析】由△ABD 和△ACE 都是等腰直角三角形得出AB=AD ,AE=AC ,∠BAD=∠CAE=90°,再进一步得出∠DAC=∠BAE 证得△ABE ≌△ADC ,可以判断①③④;作AP ⊥CD 于P ,AQ ⊥BE 于Q ,利用面积相等证得AP= AQ ,再利用角平分线的判定定理即可判断②.【详解】∵△ABD 和△ACE 都是等腰直角三角形,∴AB=AD ,AE=AC ,∠BDA=∠ECA=45︒,又∵∠BAD=∠CAE=90°,∴∠BAD+∠BAC=∠CAE+∠BAC ,即:∠DAC=∠BAE ,在△ABE 和△ADC 中,AB AD BAE DAC AE AC =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ADC (SAS ),∴BE=DC ,故④正确;∠ADF=∠ABF ,∴∠BDC=45︒-∠ADF ,∠BEC=45︒-∠AEF ,而∠ADF=∠ABF ≠∠AEF ,∴∠BDC ≠∠BEC ,故①错误;∵∠ADF+∠FDB+∠DBA=90°,∴∠FDB+∠DBA+∠ABF=90°,∴∠DFB=90°,∴CD ⊥BE ,故③正确;作AP ⊥CD 于P ,AQ ⊥BE 于Q ,∵△ABE ≌△ADC ,∴ABE ADC S S =,∵BE=DC ,∴AP= AQ ,∵AP ⊥CD ,AQ ⊥BE ,∴FA 平分∠DFE ,故②正确;综上,②③④正确;故选:D .【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,角平分线的判定,熟练掌握全等三角形的判定与性质是解本题的关键.9.C解析:C【分析】直接利用同位角的定义及线段垂直平分线的判定、多边形的外角和、角平分线的性质等知识分别判断得出答案.【详解】解:A.同位角相等,错误,是假命题;B.不是到线段距离相等的点在线段垂直平分线上,而是到线段两端点距离相等的点在这条线段的垂直平分线上,是假命题;C.三角形的外角和是360°,是真命题;D.角平分线上的点到角的两边的距离相等,不是角平分线上的点到角的两边相等,是假命题.故选:C .【点睛】本题主要考查了命题与定理,正确掌握相关定义是解题关键.10.D解析:D【分析】根据勾股定理逆定理判断即可;【详解】≠A 不正确;≠B 不正确;≠C 不正确;=,故D 正确;故答案选D .【点睛】本题主要考查了勾股定理逆定理,准确计算是解题的关键.11.D解析:D【分析】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,根据等腰三角形的性质得出AN BC ⊥,BN CN =,根据60EBC E ∠=∠=,得出EBM △是等边三角形,进而得到6EB EM BM cm ===,通过//DF BC ,证明EFD △是等边三角形,进而得到2EF FD ED cm ===,所以求出4DM cm =,根据直角三角形的性质得到MN 的长度,从而得出BN 的长度,最后求出BC 的长度.【详解】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,如图,AB AC =,AD 平分BAC ∠,∴AN BC ⊥,BN CN =,∴90ANB ANC ∠=∠=,60EBC E ∠=∠=,∴EBM △是等边三角形,6BE cm =,∴6EB EM BM cm ===,//DF BC ,∴60EFD EBM ∠=∠=,∴EFD △是等边三角形,2DE cm =,∴2EF FD ED cm ===,∴4DM cm =,EBM △是等边三角形,∴60EMB ∠=,∴30NDM ∠=,∴2NM cm =,∴4BN BM NM cm =-=,∴28BC BN cm ==.故选:D .【点睛】本题考查了等腰三角形的性质和等边三角形的性质,直角三角形中30角所对的直角边是斜边长的一半,求出MN 的长度是解决问题的关键.12.D解析:D【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【详解】解:①当为锐角等腰三角形时,如图:∵∠ADE =40°,∠AED =90°,∴∠A =50°,∴∠B=∠C=180502︒-︒ =65°; ②当为钝角等腰三角形时,如图:∵∠ADE =40°,∠AED =90°,∴∠BAC =∠ADE+∠AED =40°+90°=130°,∴∠B=∠C=1801302︒-︒ =25°. 故选:D .【点睛】本题考查了等腰三角形的性质、三角形内角和定理以及三角形外角性质,分类讨论是正确解答本题的关键. 二、填空题13.10cm 【分析】根据轴对称的性质和线段的垂直平分线的性质即可得到结论【详解】解:设CD 与OA 的交点为E 与OB 的交点为F ∵OAOB 分别是线段MCMD 的垂直平分线∴ME =CEMF =DF ∴小蚂蚁爬行的路径解析:10cm【分析】根据轴对称的性质和线段的垂直平分线的性质即可得到结论.【详解】解:设CD 与OA 的交点为E ,与OB 的交点为F ,∵OA 、OB 分别是线段MC 、MD 的垂直平分线,∴ME =CE ,MF =DF ,∴小蚂蚁爬行的路径最短=CE+EF+DF=CD =10cm ,故答案为:10cm.【点睛】本题考查了轴对称的性质-最短路径的问题,线段的垂直平分线的性质,解题的关键是熟练掌握知识点.14.9【分析】过点O作OE⊥AB于EOF⊥AC与F连接OA根据角平分线的性质求出OEOF根据三角形面积公式计算得到答案【详解】解:过点O作OE⊥AB 于EOF⊥AC于F连接OA∵OB平分∠ABCOD⊥BC解析:9【分析】过点O作OE⊥AB于E,OF⊥AC与F,连接OA,根据角平分线的性质求出OE、OF,根据三角形面积公式计算,得到答案.【详解】解:过点O作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB平分∠ABC,OD⊥BC,OE⊥AB,∴OE=OD=1,同理可知,OF=OD=1,∴△ABC的面积=△OAB的面积+△OAC的面积+△OBC的面积,=12×AB×OE+12×AC×OF+12×BC×OD,=12×18×1,=9,故答案为:9.【点睛】本题主要考查了角平分线的性质,准确计算是解题的关键.15.18°或112°【分析】分点C与点D在线段AB两侧点C与点D在线段AB同侧两种情况根据线段垂直平分线的性质等腰三角形的性质解答【详解】解:如图∵CD两点在线段AB的中垂线上∴CA=CBDA=DB∵C解析:18°或112°【分析】分点C与点D在线段AB两侧、点C与点D在线段AB同侧两种情况,根据线段垂直平分线的性质、等腰三角形的性质解答.【详解】解:如图,∵C 、D 两点在线段AB 的中垂线上,∴CA =CB ,DA =DB ,∵CD ⊥AB ,∴∠ACD =12∠ACB =12×50°=25°,∠ADC =12∠ADB =12×86°=43°, 当点C 与点D 在线段AB 两侧时,∠CAD =180°﹣∠ACD ﹣∠ADC =180°﹣25°﹣43°=112°, 当点C 与点D ′在线段AB 同侧时,∠CAD ′=∠AD ′C ﹣∠ACD ′=43°﹣25°=18°, 故答案为:18°或112°.【点睛】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.16.【分析】取的中点为点连接先证得得出根据点到直线的距离可知当时最小然后根据等腰直角三角形的性质求得时的的值即可求得线段的最小值【详解】解:取的中点为点连接即为中点在和中点在直线上运动当时最小是等腰直角 解析:22【分析】取AB 的中点为点Q ,连接DQ ,先证得AQD AOE ∆≅∆,得出 QD OE =,根据点到直线的距离可知当QD BC ⊥时,QD 最小,然后根据等腰直角三角形的性质求得QD BC ⊥时的 QD 的值,即可求得线段OE 的最小值.【详解】解:取AB 的中点为点Q ,连接DQ ,90BAC DAE ∠=∠=︒,BAC DAC DAE DAC ∴∠-∠=∠-∠,即BAD CAE ∠=∠,8AB AC ==,O 为AC 中点,4AQ AO ∴==,在ΔAQD 和AOE ∆中,AQ AO QAD OAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()AQD AOE SAS ∴∆≅∆,QD OE ∴=,点D 在直线BC 上运动,∴当QD BC ⊥时,QD 最小,ABC ∆是等腰直角三角形,45B ∴∠=︒,QD BC ⊥,QBD ∴∆是等腰直角三角形, 22QD QB∴=, 142QB AB ==, 22QD ∴=,∴线段OE 的最小值是为22.故答案为:22.【点睛】本题考查了等腰直角三角形的性质、三角形全等的判定和性质、垂线段最短等知识,解题的关键是学会添加辅助线构建全等三角形,学会利用垂线段最短解决最值问题. 17.66°【分析】根据等腰三角形的性质可知∠MON=∠PAO 再用外角的性质求解即可【详解】解:由作图可知PO=PA ∴∠MON=∠PAO=33°∠APN=∠MON+∠PAO=66°故答案为:66°【点睛】 解析:66°【分析】根据等腰三角形的性质可知∠MON=∠PAO ,再用外角的性质求解即可.【详解】解:由作图可知,PO=PA ,∴∠MON=∠PAO=33°,∠APN =∠MON+∠PAO=66°,故答案为:66°.【点睛】本题考查了等腰三角形的性质和外角的性质,解题关键是通过作图得到等腰三角形,依据等腰三角形的性质熟练计算.18.3【分析】如图过作于连接先说明平分当时可得可得所以当三点共线时此时最短再求解结合从而可得答案【详解】解:如图过作于连接分别平分平分当时则所以当三点共线时此时最短分别平分即的最小值是故答案为:【点睛】 解析:3【分析】如图,过D 作DP AB ⊥于,P 连接,BD 先说明BD 平分,ABC ∠ 当DE BC ⊥时,可得,DP DE = 可得,CD DE CD DP +=+ 所以当,,C D P 三点共线时,,CD DP CP += 此时最短,再求解30ABC ∠=︒,结合,CP AB ⊥ 从而可得答案. 【详解】解:如图,过D 作DP AB ⊥于,P 连接,BD,AD DC 分别平分,BAC ACB ∠∠,BD ∴平分,ABC ∠当DE BC ⊥时,则,DP DE =,CD DE CD DP ∴+=+所以当,,C D P 三点共线时,,CD DP CP += 此时最短,105ADC ∠=︒,18010575DAC DCA ∴∠+∠=︒-︒=︒,,AD DC 分别平分,BAC ACB ∠∠,()2150,BAC BCA DAC DCA ∴∠+∠=∠+∠=︒18015030ABC ∴∠=︒-︒=︒,,CP AB ⊥116322CP BC ∴==⨯=, 即CD DE +的最小值是3,故答案为:3.【点睛】本题考查的是三角形的内角和定理,三角形的角平分线的性质,含30的直角三角形的性质,垂线段最短,掌握以上知识是解题的关键.19.【分析】由等腰直角三角形的性质得到然后利用三角形的面积公式即可求出答案【详解】解:作DE ⊥BC 垂足为E 如图:∵为的平分线∴∵∴△ABC 是等腰直角三角形∴∵的面积为2∴∴∴∴的面积为:;故答案为:【点 解析:2【分析】由等腰直角三角形的性质,得到2BCAB ,然后利用三角形的面积公式,即可求出答案.【详解】解:作DE ⊥BC ,垂足为E ,如图:∵BD 为ABC ∠的平分线,∴AD DE =,∵90,A AC AB ∠=︒=,∴△ABC 是等腰直角三角形, ∴2BC AB ,∵BCD △的面积为2, ∴122BC DE •=, ∴1222DE •=, ∴122AB DE •= ∴ABD △的面积为:122AB DE •= 2【点睛】本题考查了角平分线的性质,等腰直角三角形的性质,以及三角形的面积公式,解题的关键是熟练掌握角平分线的性质定理和等腰直角三角形的性质,正确得到2BC AB . 20.33°【分析】先根据等腰三角形的性质求出再根据垂直平分线的性质求解即可;【详解】∵在中∴∵的垂直平分线交点垂足为点∴AE=BE ∴∴;故答案是【点睛】本题主要考查了等腰三角形的判定与性质垂直平分线的性解析:33°【分析】先根据等腰三角形的性质求出71ABC C ∠=∠=︒,再根据垂直平分线的性质求解即可;【详解】∵在ABC 中,AB AC =,38A ∠=︒,∴71ABC C ∠=∠=︒,∵AB 的垂直平分线交AC 点E ,垂足为点D ,∴AE=BE ,∴38A ABE ∠=∠=︒,∴713833EBC ∠=︒-︒=︒;故答案是33︒.【点睛】本题主要考查了等腰三角形的判定与性质、垂直平分线的性质,准确计算是解题的关键.三、解答题21.(1)见解析;(2)见解析【分析】(1)由余角的性质可得F EAC ∠=∠,从而运用“角角边”证明即可;(2)作FM AC ⊥,同(1)证明过程可得FM AC BC ==,AM CE =,从而证明CD MD =,则可得M 为AC 的中点,最终可得E 点为BC 的中点.【详解】(1)∵AF AE ⊥,∴90FAG EAC ∠+∠=︒,∵FG AC ,∴90AGF ∠=︒,90FAG F ∠+∠=︒,∴F EAC ∠=∠,在AGF 与ECA △中,AGF C F EAC AF AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AGF ECA AAS ≌;(2)如图所示,作FM AC ⊥,由(1)可知AMF ECA △≌△,则FM AC BC ==,AM CE =,在DFM 和DBC △中,MDF CDB DMF DCB FM BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()DFM DBC AAS △≌△, ∴CD MD =,∵3AD CD =,∴AM CM =,∴CM CE =,∵AC BC =,∴BE CE =,即:E 点为BC 的中点.【点睛】本题考查全等三角形的判定与性质,以及等腰直角三角形的性质,掌握等腰直角三角形中常考的证明模型是解题关键.22.(1)20AED ∠=︒;(2)见解析;(3)70ECD ∠=︒.【分析】(1)根据三角形内角和定理可得∠BAC=20°,根据平行线得性质可得∠ADE=∠ABC ,利用SAS 可证明△ABC ≌△EAD ,根据全等三角形得性质可得∠AED=∠BAC=20°;(2)根据全等三角形得性质可得AE=AB ,由等角对等边可得AB=AC ,即可证明AE=AC ,根据等腰三角形得性质可得∠ADE=∠EAD=80°,可得∠CAE=60°,即可证明△ACE 是等边三角形;(3)由(2)可知∠AEC=60°,即可得出∠DEC 的度数,根据等腰三角形得性质即可得答案.【详解】(1)∵80ABC ACB ∠=∠=︒,∴∠BAC=180°-2∠ACB=20°,∵//DE BC ,∴ADE ABC =∠∠,ABC ACB ∴∠=∠,ADE ACB ∴∠=∠∴在ABC ∆和EAD ∆中BC AD ADE ACB AC DE =⎧⎪∠=∠⎨⎪=⎩,ABC EAD ∴∆≅∆,20AED BAC ∴∠=∠=︒.(2)由(1)知:ABC EAD ∆≅∆,AE AB ∴=,80EAD ABC ∠=∠=︒∵80ABC ACB ∠=∠=︒∴AB AC =,AE AC ∴=,∵∠BAC=20°,802060CAE ∴∠=︒-︒=︒,ACE ∴∆是等边三角形.(3)ACE ∆是等边三角形,60CEA ∴∠=︒,∵∠AED=20°,602040CED ∴∠=︒-︒=︒,ED AC EC ==,EDC ∴∆为等腰三角形,18040702ECD ︒-︒∴∠==︒. 【点睛】本题考查全等三角形的判定与性质、平行线的性质及等边三角形的判定与性质,熟练掌握相关性质及定理是解题关键.23.(1)见解析;(2)△ABF 中AB【分析】(1)根据角平分线的定义、等腰三角形的性质得到∠CAD =∠BDA ,根据平行线的判定定理证明即可;(2)作FG ⊥AB 于G ,根据勾股定理求出BE ,进而求出FE ,根据角平分线的性质定理解答即可.【详解】(1)证明:∵AD 是∠BAC 的平分线,∴∠CAD =∠BAD ,∵AB =BD ,∴∠BDA =∠BAD ,∴∠CAD =∠BDA ,∴AC ∥BD ;(2)解:作FG ⊥AB 于G ,在Rt △ABE 中,AE =2,AB =3,∴BE 2222325ABAE =-=-=,∴FE =BE ﹣BF 3255555=-=, ∵AD 是∠BAC 的平分线,BE ⊥AC ,FG ⊥AB ,∴FG =FE 255=,即△ABF 中AB 边上的高为255.【点睛】本题考查的是角平分线的性质、等腰三角形的性质,勾股定理,掌握角的平分线上的点到角的两边的距离相等是解题的关键.24.(1)见解析;(2)22.5【分析】(1)根据全等三角形的判定和性质得出△ABD ≌△BAE ,进而得出OB=OA ;(2)根据全等三角形的判定和性质以及三角形内角和解答.【详解】证明:(1)∵AC=BC ,∠ACB=90°,∴∠ABC=∠BAC=45°.∴∠EBA=∠DAB=135°.在△ABD 与△BAE 中,135BE AD EBA DAB AB AB =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABD ≌△BAE (SAS ),∴∠DBA=∠EAB ,∴OB=OA ;(2)由(1)得:OB=OA ,在△OBC 与△OAC 中,OB OA OC OC BC AC =⎧⎪=⎨⎪=⎩,∴△OBC ≌△OAC (SSS ),∴∠OCB=∠OCA=12∠ACB=12×90°=45°, ∵AC=BC ,AC=OC ,∴OC=BC , ∴∠CBO=∠COB 1801804567.522OCB ︒︒︒︒-∠-===, 在Rt △BCD 中,∠D=180°-90°-∠CBO=22.5°.故答案为:22.5.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,关键是根据全等三角形的判定和性质解答.25.(1)①AE =BF ;②见解析;(2)AE =BF ﹣CD 或AE =CD ﹣BF【分析】(1)①如图1,根据已知条件得到△ABC 是等边三角形,由等边三角形的性质得到AD =AB =BC ,∠DAB =∠ABC =60°,由邻补角的性质得到∠EAD =∠FBD =120°,推出△ADE ≌△BDF ,根据全等三角形的性质即可得到结论;②证明:在BE 上截取BG =BD ,连接DG ,得到△GBD 是等边三角形.同理,△ABC 也是等边三角形.求得AG =CD ,通过△DGE ≌△DBF ,得到GE =BF ,根据线段的和差即可得到结论;(2)如图3,连接DG ,由(1)知,GE =BF ,AG =CD ,根据线段的和差和等量代换即可得到结论;如图4,连接DG ,由(1)知,GE =BF ,AG =CD ,根据线段的和差和等量代换即可得到结论.【详解】解:(1)①如图1,∵BA =BC ,∠EBD =60°,∴△ABC 是等边三角形,∴AD =AB =BC ,∠DAB =∠ABC =60°,∴∠EAD =∠FBD =120°,∵DE =DF ,∴∠E =∠F ,在△AEC 与△BCF 中,E F EAD FBD AD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BDF (AAS ),∴AE =BF ;故答案为:AE =BF ;②证明:在BE上截取BG=BD,连接DG,∵∠EBD=60°,BG=BD,∴△GBD是等边三角形.同理,△ABC也是等边三角形.∴AG=CD,∵DE=DF,∴∠E=∠F.又∵∠DGB=∠DBG=60°,∴∠DGE=∠DBF=120°,在△DGE与△DBF中,E FEGD FBDDG BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DGE≌△DBF(AAS),∴GE=BF,∴AE=BF+CD;(2)如图3,在BE上截取BG=BD,连接DG,由(1)知,GE=BF,AG=CD,∴AE=EG﹣AG;∴AE=BF﹣CD,如图4,在BE上截取BG=BD,连接DG,由(1)知,GE=BF,AG=CD,∴AE=AG﹣EG;∴AE=CD﹣BF,故AE=BF﹣CD或AE=CD﹣BF.【点睛】本题考查等腰三角形的性质、等边三角形的判定与性质、全等三角形的判定与性质,解答的关键是熟练掌握相关知识的运用,利用截长补短的方法做辅助线构造全等三角形和等边三角形,运用类比的方法解决问题.26.见解析【分析】由“SAS”可证△AEC ≌△ADB ,可得BD=CE ,由等腰三角形的性质可得DM=EM ,可得结论.【详解】证明:BAC DAE ∠=∠CAE BAD ∴∠=∠在△AEC 和△ADB 中AC AB CAE BAD AE AD =⎧⎪∠=∠⎨⎪=⎩∴△AEC ≌△ADBBD CE ∴=在等腰ADE 中,AM DE ⊥DM EM ∴=BD DM CE EM CM ∴+=+=.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,掌握全等三角形的判定定理是本题的关键.。
八年级上册数学全等三角形证明题
八年级上册数学全等三角形证明题一、全等三角形证明题1 20题及解析。
(一)题目1。
1. 题目。
已知:如图,在△ABC中,AD是BC边上的中线,E是AD上一点,且BE = AC,延长BE交AC于F。
求证:AF = EF。
2. 解析。
证明:延长AD到G,使DG = AD,连接BG。
因为AD是BC边上的中线,所以BD = CD。
在△BDG和△CDA中,BD = CD,∠BDG = ∠CDA(对顶角相等),DG = DA。
根据SAS(边角边)全等判定定理,可得△BDG≌△CDA。
所以BG = AC,∠G = ∠CAD。
又因为BE = AC,所以BG = BE。
所以∠G = ∠BEG。
因为∠BEG = ∠AEF(对顶角相等),所以∠AEF = ∠CAD。
所以AF = EF。
(二)题目2。
1. 题目。
如图,在△ABC和△DEF中,AB = DE,BE = CF,∠B = ∠DEF。
求证:AC = DF。
2. 解析。
因为BE = CF,所以BE + EC = CF+EC,即BC = EF。
在△ABC和△DEF中,AB = DE,∠B = ∠DEF,BC = EF。
根据SAS全等判定定理,可得△ABC≌△DEF。
所以AC = DF。
(三)题目3。
1. 题目。
已知:如图,AB = CD,AE = DF,CE = FB。
求证:AF = DE。
2. 解析。
因为CE = FB,所以CE + EF = FB + EF,即CF = BE。
在△AEB和△DFC中,AB = CD,AE = DF,BE = CF。
根据SSS(边边边)全等判定定理,可得△AEB≌△DFC。
所以∠B = ∠C。
在△ABF和△DCE中,AB = CD,∠B = ∠C,BF = CE。
根据SAS全等判定定理,可得△ABF≌△DCE。
所以AF = DE。
(四)题目4。
1. 题目。
如图,在Rt△ABC中,∠ACB = 90°,CA = CB,D是AC上一点,E在BC的延长线上,且AE = BD,BD的延长线与AE交于点F。
八年级三角形的证明题
八年级三角形的证明题一、等腰三角形性质相关证明题(8题)1. 已知:在△ABC中,AB = AC,AD是BC边上的中线。
求证:AD⊥BC。
- 证明:- 因为AB = AC,AD是BC边上的中线,所以BD = DC(中线的定义)。
- 在△ABD和△ACD中,AB = AC(已知),BD = CD(已证),AD = AD(公共边)。
- 所以△ABD≌△ACD(SSS)。
- 则∠ADB=∠ADC(全等三角形对应角相等)。
- 又因为∠ADB + ∠ADC = 180°(平角的定义),所以∠ADB = ∠ADC = 90°,即AD⊥BC。
2. 已知:在等腰△ABC中,AB = AC,∠A = 36°,求证:∠B = 72°。
- 证明:- 因为AB = AC,所以∠B = ∠C(等腰三角形两底角相等)。
- 又因为∠A+∠B + ∠C = 180°(三角形内角和定理),∠A = 36°。
- 设∠B = x,则∠C = x,可得方程36°+x + x = 180°。
- 2x=180° - 36°,2x = 144°,解得x = 72°,即∠B = 72°。
3. 已知:在△ABC中,AB = AC,D是AC上一点,且AD = BD = BC。
求∠A的度数。
- 证明:- 设∠A=x,因为AD = BD,所以∠ABD = ∠A=x(等边对等角)。
- 则∠BDC=∠A + ∠ABD = 2x(三角形外角性质)。
- 因为BD = BC,所以∠C = ∠BDC = 2x。
- 又因为AB = AC,所以∠ABC = ∠C = 2x。
- 根据三角形内角和定理,∠A+∠ABC+∠C = 180°,即x + 2x+2x = 180°。
- 5x = 180°,解得x = 36°,所以∠A = 36°。
初中数学-三角形的证明单元测试题(有答案)
初中数学•三角形的证明单元测试一、精心选一选,慧眼识金(每小题2分,共20分)1.如图1,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()去配.A.①B.②C.③D.①和②图 12.下列说法中,正确的是().A.两腰对应相等的两个等腰三角形全等B.两角及其夹边对应相等的两个三角形全等C.两锐角对应相等的两个直角三角形全等D.面积相等的两个三角形全等3.如图2ABLCD^ABD.△BCE都是等腰三角形,如果CD=8cm.BE=3cm,那么AC长为().A. 4cmB. 5cmC. 8cmD. V34 cm4.如图3,在等边/XABC中,分别是BC,AC±.的点,且BD = CE.AD与BE相交于点P,则Z1 + Z2的度数是().A. 45°B. 55°C. 60°D. 75°5.如图4,在AABC中.AB=AC,匕4 = 36°,BD和CE分别是ZABC和匕4C8的平分线,且相交于点P.在图4中,等腰三角形(不再添加线段和字母)的个数为().A. 9个B. 8个C. 7个D. 6个6.如图表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有().7.如图6.A、C、E三点在同一条直线上,ADAC和AEBC都是等边三角形.AE、BD分别与CD、CE交于点M、N,有如下结论:①左ACE竺△DCB;②CM=CN:③AC = DN・其中,正确结论的个数是()・A. 3个B. 2个C. 1个D. 0个8.要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C.D,使CD=BC,再作出BF的垂线DE,使A.C.E在同一条直线上(如图7),可以证明^ABC^NEDC,得ED=AB.因此,测得DE的长就是AB的长,在这里判定4ABC # AEDC的条件是().C. SSSD. HLA. ASAB. SAS9.如图8,将长方形ABCD沿对角线BD翻折,点C落在点E的位置,BE交AD于点F.求证:重叠部分(即ABDF )是等腰三角形.证明:.••四边形ABCD是长方形,.••AD〃BC又油DE与NBDC关于BD对称,AZ2 = Z3. :.^BDF是等腰三角形.请思考:以上证明过程中,涂黑部分正确的应该依次是以下四项中的哪两项?().®Z1 = Z2:®Z1 = Z3: @Z3 = Z4;®ABDC = ABDEA. ®®B. ®@C. ®®D.③④® 810.如图9,己知线段/?作等腰zMBC,使AB=AC,且BC=u, BC边上的高AD=h.张红的作法是:(1)作线段BC=m (2)作线段8C的垂直平分线MN, MN与BC相交于点。
八年级全等三角形简单证明题及答案(15道)
∴BC=ED.
全等三角形的判定与性 质.
01
如图,在△ABC中, ∠C=90°,点D是AB边上的 一点,DM⊥AB,且 DM=AC,过点M作 ME∥BC交AB于点E.求证: △ABC≌△MED。
02
证明:∵MD⊥AB,
∴∠MDE=∠C=90°,
∵ME∥BC,
∴∠B=∠MED,
在△ABC与△MED中, ∠B=∠MED ∠C=∠EDM DM=AC ,
∠D=∠B , ∴△ADF≌△CBE(ASA), ∴AF=CE, ∴AF+EF=CE+EF,即
AE=CF.
全等三角形的判定与性 质.
11.在△ABC中,AB=CB,∠ABC=90°,F为AB延 长线上一点,点E在BC上,且AE=CF.求证: Rt△ABE≌Rt△CBF;
证明:∵∠ABC=90°,
角平分线的性质;全等三角形的判定与性质.
全等三角形的判定.
如图,在△ABC中, AB=AC,AD平分 ∠BAC.求证: ∠DBC=∠DCB.
解:∵AD平分∠BAC, ∴∠BAD=∠CAD. ∴在△ACD和△ABD中 AB=AC ∠BAD=∠CAD
AD=AD , ∴△ACD≌△ABD, ∴BD=CD, ∴∠DBC=∠DCB.
:∵AC平分∠BAD,
∴∠BAC=∠DAC,
在△ABC和△ADC中, AB=AD ∠BAC=∠DAC AC=AC ,
∴△ABC≌△ADC.
全等三角形的判定.
9.如图,已知 点E,C在线段
BF上, BE=CF, AB∥DE, ∠ACB=∠F.
求证: △ABC≌△DEF
.
证明:∵AB∥DE,
∴∠B=∠DEF.
全等三角形的判定与性质.
全等三角形证明经典40题(含答案)
1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 的长.解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=22. 已知:BC=ED ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠ 2证明:连接BF 和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边)∴ BF=EF,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在三角形ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 和三角形AEF 全等。
∴ ∠BAF=∠EAF (∠1=∠2)。
AD B C3. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGDDE =DC∠FDE =∠GDC (对顶角)∴△EFD ≌△CGDEF =CG∠CGD =∠EFD又,EF ∥AB∴,∠EFD =∠1∠1=∠2∴∠CGD =∠2∴△AGC 为等腰三角形,AC =CG又 EF =CG∴EF =AC4. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠ C证明:延长AB 取点E ,使AE =AC ,连接DE∵AD 平分∠BAC∴∠EAD =∠CAD∵AE =AC ,AD =AD∴△AED ≌△ACD (SAS )∴∠E =∠C∵AC =AB+BD∴AE =AB+BD∵AE =AB+BE∴BD =BE∴∠BDE =∠EB ACDF21 E A∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C5.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF(SAS)∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE6. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD 上。
(完整版)初中数学三角形证明题经典题型训练汇总
2015年 05月 03日初中数学三角形证明组卷.选择题(共 20 小题)1.( 2015? 涉县模拟)如图,在△ ABC 中,∠ C=90°, AB 的垂直平分线交 AB 与 D ,交 BC 于 E ,连接 AE ,若 CE=5, AC=12,则 BE 的长是( )2 .( 2015? 淄博模拟)如图,在△ ABC 中,AB=AC ,∠A=36°, BD 、CE 分别是∠ ABC 、∠BCD的角平分线,则图中的等腰三角形有( )4.( 2014?丹东)如图,在△ ABC 中, AB=AC ,∠ A=40°, AB 的垂直平分线交 AB 于点 D ,交AC 于点 E ,连接 BE ,则∠ CBE 的度数为( )C 12D53.( 2014 秋? 西城区校级期中)如图,在△ ABC 中, AD 是它的角平分线, A B=8cm ,AC=6cm ,C 16 : 9D 9: 163:4WORD格式可编辑A 70°B 80°C 40°D 30°度数为( )6.(2014? 山西模拟)如图,点 O 在直线 AB 上,射线 OC 平分∠ AOD ,若∠ AOC=3°5 , 则∠BOD7 .(2014? 雁塔区校级模拟)如图,在△ ABC 中,∠ ACB=90°, BA 的垂直平分线交 BC 边于8.(2014 秋? 腾冲县校级期末) 如图,已知 BD 是△ABC 的中线, AB=5,BC=3,△ABD 和△BCD 的周长的差是()5.( 2014? 南充)如图,在△ ABC 中, AB=AC ,且 D 为 BC 上一点,CD=AD , AB=BD ,则∠ B 的C 40D 45A 145°B 110C 70°D 35°60°的角的个数是(C4D5等于( )D ,若 AB=10, AC=5,则图中等于9.(2014春? 栖霞市期末) 在 Rt △ABC 中,如图所示,∠C=90°,∠CAB=60°,AD 平分∠CAB ,点 D 到 AB 的距离 DE=3.8cm ,则 BC 等于(10 .( 2014秋? 博野县期末)△ ABC 中,点 O 是△ABC 内一点,且点 O 到△ABC 三边的距离 相等;∠ A=40°,则∠ BOC (= )A 110°B 120°C 130°D 140°B3 C6D 不能确定B 7.6cm 11.4cmD 11.2cm11 .(2013秋? 潮阳区期末)如图,已知点 P 在∠ AOB 的平分线 OC 上,PF ⊥OA ,PE ⊥OB ,A 3.8cm若 PE=6,则 PF 的长为(12 .( 2013秋? 马尾区校级期末)如图,△ ABC 中, DE 是 AB 的垂直平分线,交 BC 于点 D , 交 AB 于点 E ,已知 AE=1cm ,△ACD 的周长为 12cm ,则△ ABC 的周长是( )16.(2014 秋? 万州区校级期中)如图,已知在△ ABC 中, AB=AC , D 为 BC 上一点, BF=CD ,C 15cmD 16cm13.(2013秋? 西城区期末) 如图,∠BAC=13°0 等于( )14.(2014 秋? 东莞市校级期中)如图,要用条件是( ), 若 MP 和 QN 分别垂直平分 AB 和 AC ,则∠ PAQ80°D 105°HL ”判定 Rt △ABC 和 Rt △A ′B ′C ′全等的B .∠A=∠A ′, AB=A ′B ′ D .∠B=∠B ′, BC=B ′C ′15.(2014 秋 ? 淄川区校级期中)如图, M N 是线段 AB 的垂直平分线, C 在 MN 外,且与 A 点在 MN 的同一侧, BC 交 MN 于 P 点,则( )A BC > PC+APB BC <PC+APC BC=PC+APD BC ≥ PC+APCE=BD,那么∠ EDF等于()不一定成立的是( )B . 90°﹣ ∠AC . 180°﹣∠AD45°∠A17.( 2014 秋 ? 泰山区校级期中)如图,在△ ABC 中, AB=AC ,AD 平分∠BAC ,那么下列结论A . △ABD ≌△ ACDC . AD 是△ ABC 的角平分线B . AD 是△ ABC 的高线D .△ABC 是等边三角18.(2014 秋? 晋江市校级月考)如图,点 P 是△ ABC 内的一点,若 PB=PC ,则(A .点 P 在∠ABC 的平分线上 C .点 P 在边 AB 的垂直平分线上 B . 点 P 在∠ ACB 的平分线上 D .点 P 在边 BC 的垂直平分线上19.( 2013? 河西区二模) 如图, 在∠ECF 的两边上有点 B ,A ,D ,BC=BD=D ,A 且∠ADF=75°, C 25° D 30°A 90°﹣∠A20 .(2013 秋? 盱眙县校级期中)如图, P 为∠ AOB 的平分线 OC 上任意一点, PM ⊥OA 于 M , PN ⊥OB 于 N ,连接 MN 交 OP 于点 D .则① PM=P ,N ②MO=N ,O ③OP ⊥MN ,④MD=N .D 其中正确 的有( ).解答题(共 10 小题)21 .(2014 秋? 黄浦区期末)如图,已知 ON 是∠AOB 的平分线, OM 、OC 是∠ AOB 外的射线.1)如果∠ AOC α= ,∠ BOC β= ,请用含有 α, 的式子表示∠ NOC . 那么∠ MON 的度数是多少?A 1 个2)如果∠ BOC=9°0 , OM 平分∠ AOC ,22.(2014 秋? 阿坝州期末)如图,已知: E 是∠AOB 的平分线上一点, EC ⊥OB ,ED ⊥OA , C 、 D 是垂足,连接 CD ,且交 OE 于点 F .(1)求证: OE 是 CD 的垂直平分线.23.(2014 秋? 花垣县期末)如图,在△ ABC 中,∠ ABC=2∠C , BD 平分∠ ABC ,DE ⊥AB( E 在 AB 之间),DF ⊥BC ,已知 BD=5,DE=3,CF=4,试求△ DFC 的周长.24 .( 2014 秋? 大石桥市期末) 如图, 点 D 是△ ABC 中 BC 边上的一点, 且 AB=AC=C ,DAD=BD , 求∠BAC 的度数.EF 之间有什么数量关系?并证明你的结论.25.(2014 秋? 安溪县期末)如图,在△ ABC 中,AB=AC,∠A=α.(1)直接写出∠ ABC的大小(用含α 的式子表示);分别交AC、AB于D、E两点,并连接BD、DE.若26.(2014 秋? 静宁县校级期中)如图,在△ABC中,AD平分∠ BAC,点D是BC的中点,DE⊥AB 于点E,DF⊥AC 于点F.求证:(1)∠B=∠C.27.(2012 秋? 天津期末)如图,AB=AC,∠ C=67°,AB的垂直平分线EF交AC于点D,求∠DBC的度数.28 .(2013秋? 高坪区校级期中)如图,△ ABC 中,AB=AD=A,E DE=EC,∠DAB=30°,求∠C 的度数.29.(2012 春? 扶沟县校级期中)阅读理解:“在一个三角形中,如果角相等,那么它们所对的边也相等.”简称“等角对等边”,如图,在△ ABC 中,已知∠ ABC 和∠ACB的平分线上交于点F,过点F作BC的平行线分别交AB、AC于点D、E,请你用“等角对等边”的知识说明DE=BD+C.E30.(2011? 龙岩质检)如图,AD是△ ABC的平分线,DE,DF分别垂直AB、AC于E、F,连接EF,求证:△ AEF 是等腰三角形.2015年 05 月 03 日初中数学三角形证明组卷参考答案与试题解析一.选择题(共 20 小题)1.( 2015? 涉县模拟)如图,在△ ABC 中,∠ C=90°, AB 的垂直平分线交 AB 与 D ,交 BC 于 E ,连接 AE ,若 CE=5, AC=12,则 BE 的长是( )考 线段垂直平分线的性质. 点:分 先根据勾股定理求出 AE=13,再由 DE 是线段 AB 的垂直平分线,得出BE=AE=13. 析:解解:∵∠ C=90°,答:∴A E=,∵DE 是线段 AB 的垂直平分线, ∴BE=AE=1;3 故选: A .点 本题考查了勾股定理和线段垂直平分线的性质;利用勾股定理求出 AE 是解题的关评: 键.2.( 2015? 淄博模拟)如图,在△ ABC 中, AB=AC ,∠ A=36°, BD 、CE 分别是∠ ABC 、∠BCD 的角平分线,则图中的等腰三角形有( )考 等腰三角形的判定;三角形内角和定理.C 12D5点:专证明题.题:分根据已知条件和等腰三角形的判定定理,对图中的三角形进行分析,析:解解:共有 5 个.答:(1)∵ AB=AC ∴△ABC是等腰三角形;(2)∵BD、CE分别是∠ ABC、∠BCD 的角平分线∴∠ EBC= ∠ABC,∠ECB= ∠BCD,∵△ABC是等腰三角形,∴∠ EBC=∠ ECB,∴△BCE是等腰三角形;(3)∵∠ A=36°,AB=AC,∴∠ ABC=∠ACB= (180°﹣36°)=72°,又BD是∠ ABC的角平分线,∴∠ ABD= ∠ABC=36°=∠A,∴△ABD是等腰三角形;同理可证△ CDE 和△ BCD是等腰三角形.故选:A.点此题主要考查学生对等腰三角形判定和三角形内角和定理的理解和掌握,评:题.3.(2014秋? 西城区校级期中)如图,在△ ABC 中,AD是它的角平分线,考角平分线的性质;三角形的面积.点:专计算题.题:C 16 :9 D 9:16即可得出答案.属于中档AB=8cm,AC=6cm,则S △ABD:S△ACD=()3:4分 首先过点 D 作 DE ⊥AB ,DF ⊥AC ,由 AD 是它的角平分线,根据角平分线的性质, 析: 即可求得 DE=DF ,由△ ABD 的面积为 12,可求得 DE 与 DF 的长,又由 AC=6,则 可求得△ ACD 的面积.解 解:过点 D 作 DE ⊥AB ,DF ⊥AC ,垂足分别为 E 、F ⋯( 1 分) 答: ∵AD 是∠ BAC 的平分线, DE ⊥AB ,DF ⊥AC ,∴DE=D ,F ⋯( 3 分) ∴S △ABD= ? DE? AB=12, ∴DE=DF=⋯3 ( 5 分)∴S △ADC= ? DF? AC= ×3×6=9⋯( 6 分)∴S △ABD : S △ACD =12: 9=4: 3.点 此题考查了角平分线的性质.此题难度不大,解题的关键是熟记角平分线的性 评: 质定理的应用,注意数形结合思想的应用,注意辅助线的作法.4.( 2014? 丹东)如图,在△ ABC 中, AB=AC ,∠A=40°, AB 的垂直平分线交 AB 于点 D ,交 AC 于点 E ,连接 BE ,则∠ CBE 的度数为( )考点:线段垂直平分线的性质;等腰三角形的性质. 专题: 几何图形问题.分析: 由等腰△ABC 中,AB=AC ,∠A=40°,即可求得∠ ABC 的度数,又由线段 AB 的垂直 平分线交 AB 于 D ,交 AC 于 E ,可得 AE=BE ,继而求得∠ ABE 的度数,则可求得答 案.解答: 解:∵等腰△ ABC 中, AB=AC ,∠ A=40°,∴∠ ABC=∠C==70°,∵线段 AB 的垂直平分线交 AB 于 D ,交 AC 于 E ,A 70°B 80°C 40D 30°故选 A .∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=∠ABC﹣∠ABE=30°.故选:D.点评:此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.5.(2014? 南充)如图,在△ ABC 中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A 30°B 36°C 40°D 45考等腰三角形的性质.点:分求出∠ BAD=2∠ CAD=∠2 B=2∠C 的关系,利用三角形的内角和是180°,求∠ B,析:解解:∵ AB=AC,答:∴∠ B=∠C,∵AB=BD,∴∠BAD=∠BDA,∵CD=A,D∴∠C=∠CAD,∵∠BAD+∠CAD+∠B+∠C=180°,∴5∠B=180°,∴∠B=36° 故选:B.点本题主要考查等腰三角形的性质,解题的关键是运用等腰三角形的性质得出评:∠BAD=2∠CAD=∠2 B=2∠C 关系.6.(2014? 山西模拟)如图,点O在直线AB上,射线OC平分∠ AOD,若∠ AOC=3°5 ,则∠BOD 等于()A 145°B 110C 70°D 35°考 角平分线的定义. 点:分 首先根据角平分线定义可得∠ AOD=∠2 AOC=7°0 ,再根据邻补角的性质可得∠ BOD 析: 的度数.解 解:∵射线 OC 平分∠ DOA . 答: ∴∠ AOD=∠2 AOC ,∵∠ COA=3°5 , ∴∠ DOA=7°0 ,∴∠ BOD=18°0 ﹣70°=110°, 故选: B .点 此题主要考查了角平分线定义,关键是掌握角平分线把角分成相等的两部分. 评:7.( 2014? 雁塔区校级模拟)如图,在△ ABC 中,∠ ACB=90°, BA 的垂直平分线交 D ,若 AB=10, AC=5,则图中等于 60°的角的个数是( )考点: 线段垂直平分线的性质. 分析: 根据已知条件易得∠ B=30°, ∠ BAC=60°.根据线段垂直平分线的性质进一步求解.解答: 解:∵∠ ACB=90°, AB=10, AC=5,∴∠ B=30°.∴∠BAC=90°﹣30°=60° ∵DE 垂直平分 BC ,∴∠ BAC=∠ADE=∠BDE=∠CDA=9°0 ﹣30°=60°. ∴∠BDE 对顶角 =60°,∴图中等于 60°的角的个数是 4. 故选 C .点评: 此题主要考查线段的垂直平分线的性质等几何知识. 线段的垂直平分线上的点到 线段的两个端点的距离相等.由易到难逐个寻找,做到不重不漏.8.(2014 秋? 腾冲县校级期末) 如图,已知 BD 是△ABC 的中线, AB=5,BC=3,△ABD 和△BCD 的周长的差是( )BC 边于C4 D5考点:三角形的角平分线、中线和高.专题:计算题.分析:根据三角形的中线得出AD=CD,根据三角形的周长求出即可.解答:解:∵BD 是△ABC的中线,∴AD=C,D∴△ABD和△BCD的周长的差是:(AB+BD+A)D ﹣(BC+BD+C)D=AB﹣BC=5﹣3=2.故选A.点评:本题主要考查对三角形的中线的理解和掌握,能正确地进行计算是解此题的关键.9.(2014春? 栖霞市期末)在Rt△ABC中,如图所示,∠C=90°,∠CAB=60°,AD平分∠CAB,点 D 到AB的距离DE=3.8cm,则BC等于(考点:角平分线的性质.分析:由∠ C=90°,∠ CAB=60°,可得∠B 的度数,故BD=2DE=7.6,又AD平分∠ CAB,故DC=DE=3.8,由BC=BD+DC求解.解答:解:∵∠ C=90°,∠ CAB=60°,∴∠B=30°,在Rt△BDE中,BD=2DE=7.6,又∵AD平分∠ CAB,∴DC=DE=3.,8 ∴BC=BD+DC=7.6+3.8=11..4 故选C.点评:本题主要考查平分线的性质,由已知能够注意到D到AB 的距离DE即为CD长,是解题的关键.B3 C6 D 不能确定B 7.6cm 11.4cm D 11.2cmA 3.8cm10.(2014 秋? 博野县期末)△ ABC 中,点 O 是△ABC 内一点,且点 O 到△ABC 三边的距离相 等;∠ A=40°,则∠ BOC (= )A 110°B 120°C 130°D 140°角平分线的性质;三角形内角和定理;三角形的外角性质. 计算题.由已知, O 到三角形三边距离相等,得 O 是内心,再利用三角形内角和定理即可求 出∠BOC 的度数.解 解:由已知, O 到三角形三边距离相等,所以 O 是内心, 答: 即三条角平分线交点,AO , BO ,CO 都是角平分线,所以有∠ CBO ∠= ABO= ∠ABC ,∠ BCO ∠= ACO= ∠ACB , ∠ABC+∠ACB=18﹣0 40=140 ∠OBC ∠+ OCB=70 ∠BOC=18﹣0 70=110° 故选 A .点 此题主要考查学生对角平分线性质,三角形内角和定理,三角形的外角性质等知识 评: 点的理解和掌握,难度不大,是一道基础题.11.(2013 秋? 潮阳区期末)如图,已知点 P 在∠ AOB 的平分线 OC 上,PF ⊥OA ,PE ⊥OB ,若考点 : 角平分线的性质;全等三角形的判定与性质. 专题 : 计算题.分析: 利用角平分线性质得出∠ POF=∠POE ,然后利用 AAS 定理求证△ POE ≌△ POF ,即可 求出 PF 的长.考点专题分)4解答: 解:∵ OC 平分∠ AOB ,∴∠ POF=∠POE , ∵PF ⊥OA ,PE ⊥OB ,∴∠PFO=∠PEO , PO 为公共边,∴△ POE ≌△ POF , ∴PF=PE=6. 故选 C .点评: 此题考查学生对角平分线性质和全等三角形的判定与性质的理解和掌握,解答此 题的关键是求证△ POE ≌△ POF .12.(2013 秋? 马尾区校级期末)如图,△ ABC 中, DE 是 AB 的垂直平分线,交 BC 于点 D , 交 AB 于点 E ,已知 AE=1cm ,△ACD 的周长为 12cm ,则△ ABC 的周长是( )考 线段垂直平分线的性质. 点: 分 要求△ ABC 的周长,先有 AE 可求出 AB ,只要求出 AC+BC 即可,根据线段垂直平分线析: 的性质可知, AD=BD ,于是 AC+BC=AC+CD+A 等D 于△ ACD 的周长,答案可得. 解解:∵ DE 是 AB 的垂直平分线,答: ∴AD=BD , AB=2AE=2又∵△ ACD 的周长 =AC+AD+CD=AC+BD+CD=AC+BC=12 ∴△ ABC 的周长是 12+2=14cm . 故选 B点 此题主要考查线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端 评: 点的距离相等;进行线段的等效转移,把已知与未知联系起来是正确解答本题的关 键.13.(2013秋? 西城区期末)如图,∠BAC=13°0 ,若 MP 和 QN 分别垂直平分 AB 和 AC ,则∠PAQ 等于( )考点:线段垂直平分线的性质. 点:分析:根据线段垂直平分线性质得出 BP=AP ,CQ=AQ ,推出∠ B=∠BAP ,∠C=∠QAC ,求出 ∠B+∠C ,即可求出∠ BAP+∠QAC ,即可求出答案.C 15cmD 16cmC 80°D 105°A 13cmB 14cm A 50° B 75解 解:∵ MP 和 QN 分别垂直平分 AB 和 AC , 答: ∴BP=AP , CQ=AQ ,∴∠B=∠PAB ,∠C=∠QAC ,∵∠ BAC=13°0 , ∴∠B+∠C=180°﹣∠ BAC=50°,∴∠ BAP+∠CAQ=5°0 , ∴∠PAQ=∠BAC ﹣(∠ PAB+∠QAC )=130°﹣50°=80°, 故选: C .点 本题考查了等腰三角形的性质,线段垂直平分线性质,三角形的内角和定理,注 评: 意:线段垂直平分线上的点到线段两个端点的距离相等,等边对等角.14.(2014 秋? 东莞市校级期中)如图,要用“ HL ”判定AB=A ′B ′ . BC=B ′C ′考 直角三角形全等的判定. 点:分 根据直角三角形全等的判定方法( HL )即可直接得出答案. 析: 解 解:∵在 Rt △ ABC 和 Rt △A ′B ′C ′中,答: 如果 AC=A ′C ′, AB=A ′B ′,那么 BC 一定等于 B ′C ′,Rt △ ABC 和 Rt △A ′B ′C ′一定全等, 故选 C .点 此题主要考查学生对直角三角形全等的判定的理解和掌握,难度不大,是一道基 评: 础题.15.(2014 秋 ? 淄川区校级期中)如图, 在 MN 的同一侧, BC 交 MN 于 P 点,则(考点: 线段垂直平分线的性Rt △ABC 和 Rt △A ′B ′C ′全等的MN 是线段 AB 的垂直平分线,)C 在 MN 外,且与 A 点C BC=PC+APD BC ≥ PC+APC AC=A ′ C ′,D ∠ B=∠B ′,B BC < PC+AP分析: 从已知条件进行思考,根据垂直平分线的性质可得PA=PB ,结合图形知 BC=PB+P ,C通过等量代换得到答案.解答: 解:∵点 P 在线段 AB 的垂直平分线上, ∴PA=PB .∵BC=PC+B ,P ∴BC=PC+A .P 故选 C .点评: 本题考查了垂直平分线的性质: 线段的垂直平分线上的点到线段的两个端点的距离 相等;结合图形,进行线段的等量代换是正确解答本题的关键.16.(2014 秋? 万州区校级期中)如图,已知在△ ABC 中, AB=AC , D 为 BC 上一点, BF=CD , CE=BD ,那么∠ EDF 等于( )考点: 等腰三角形的性质.分析: 由 AB=AC ,利用等边对等角得到一对角相等,再由 BF=CD , BD=CE ,利用 SAS 得到三角形 FBD 与三角形 DEC 全等,利用全等三角形对应角相等得到一对角相等,即可表示出解答: 解:∵ AB=AC , ∴∠B=∠C °, 在△BDF 和△CED 中,,∴△ BDF ≌△CED ( SAS ), ∴∠ BFD=∠CDE ,∴∠FDB+∠EDC=∠FDB+∠BFD=180°﹣∠ B=180°﹣ 则∠ EDF=180°﹣(∠ FDB+∠EDC )=90°﹣ ∠A . 故选 B .点评: 此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的 关键.90° ﹣ ∠A∠A ,=90°BC 180°﹣∠A17.(2014 秋? 泰山区校级期中)如图,在△ ABC 中, AB=AC ,AD 平分∠BAC ,那么下列结论B AD 是△ ABC 的 . 高线D △ ABC 是等边 . 三角形考点 : 等腰三角形的性质.分析: 利用等腰三角形的性质逐项判断即可. 解答: 解:A 、在△ ABD 和△ ACD 中,,所以△ ABD ≌△ACD ,所以 A 正确;B 、因为 AB=AC , AD 平分∠ BAC ,所以 AD 是 BC 边上的高,所以 B 正确; C 、由条件可知 AD 为△ ABC 的角平分线;D 、由条件无法得出 AB=AC=B ,C 所以△ ABC 不一定是等边三角形,所以 D 不正确;故选 D .点评: 本题主要考查等腰三角形的性质,掌握等腰三角形“三线合一”的性质是解题的关键.18.(2014 秋? 晋江市校级月考)如图,点 P 是△ ABC 内的一点,若 PB=PC ,则(考点: 线段垂直平分线的性质.分析:根据到线段两端点的距离相等的点在这条线段的垂直平分线上由 线段 BC 的垂直平分线上. PC=PB 即可得出 P 在解答:解:∵ PB=PC ,∴P 在线段 BC 的垂直平分线上,.DC AD 是△ ABC的 . 角平分线A 点 P 在∠ ABC . 的平分线上C 点 P 在边AB . 的垂直平分 B 点 P 在∠ ACB . 的平分线上D 点 P 在边BC . 的垂直平不一定成立的是(故选 D .点评: 本题考查了角平分线的性质和线段垂直平分线定理,注意:到线段两端点的距离相等的点在这条线段的垂直平分线上,角平分线上的点到角的两边的距离相等.19.( 2013? 河西区二模) 如图, 在∠ECF 的两边上有点考 等腰三角形的性质. 点:分 根据等腰三角形的性质以及三角形外角和内角的关系,逐步推出∠ ECF 的度数. 析: 解解:∵ BC=BD=D ,A 答: ∴∠ C=∠BDC ,∠ ABD=∠BAD , ∵∠ABD=∠C+∠BDC ,∠ADF=75°,∴3∠ECF=75°,∴∠ECF=25°. 故选: C .点 考查了等腰三角形的性质:等腰三角形的两个底角相等,三角形外角和内角的运 评: 用.20.(2013 秋? 盱眙县校级期中)如图, P 为∠ AOB 的平分线 OC 上任意一点, PM ⊥OA 于 M ,PN ⊥OB 于 N ,连接 MN 交 OP 于点 D .则① PM=P ,N ②M O=NO ,③OP ⊥MN ,④MD=N .D其中正确考 角平分线的性质. 点:B ,A ,D ,BC=BD=D ,A 且∠ADF=75°,C 25°D 30°的有( )A 1 个分由已知很易得到△ OPM≌△ OPN,从而得角相等,边相等,进而得△ OM≌P △ ONP,析:△PMD≌△PND,可得MD=N,D ∠ ODN∠= ODM=9°O,答案可得.解解:P为∠AOB的平分线OC上任意一点,PM⊥OA 于M,PN⊥OB 于N答:连接MN交OP于点D,∴∠ MOP∠= NOP,∠OMP∠= ONP,OP=OP,∴△OPM≌△OPN,∴MP=N,POM=O,N 又OD=OD∴△OMD≌△OND,∴MD=N,D∠ ODN∠= ODM=9°O,∴OP⊥MN∴① PM=P,N ②MO=N,O③OP⊥MN,④MD=ND 都正确.故选D.点本题主要考查了角平分线的性质,即角平分线上的一点到两边的距离相等;发现并评:利用△ OM≌D △OND是解决本题的关键,证明两线垂直时常常通过证两角相等且互补来解决.二.解答题(共10 小题)21.(2014 秋? 黄浦区期末)如图,已知ON是∠AOB的平分线,OM、OC是∠AOB外的射线.(1)如果∠ AOCα= ,∠ BOCβ= ,请用含有α,β 的式子表示∠ NOC.(2)如果∠ BOC=9°0 ,OM平分∠ AOC,那么∠ MON的度数是多少?考点:角平分线的定义.分析:(1)先求出∠ AOB=α﹣β,再利用角平分线求出∠ AON,即可得出∠ NOC;(2)先利用角平分线求出∠ AOM= ∠AOC,∠ AON= ∠AOB,即可得出解答:解:(1)∵∠ AOCα= ,∠ BOCβ= ,∴∠AOB=α﹣β,∵ON是∠ AOB的平分线,∴∠AON= (α﹣β),∠NOCα= ﹣(α﹣β)= (α +β);(2)∵OM平分∠ AOC,ON平分∠ AOB,∴∠AOM= ∠AOC ,∠AON= ∠AOB , ∴∠MON ∠= AOM ﹣∠AON= (∠AOC ﹣∠AOB )点评: 本题考查了角平分线的定义和角的计算;弄清各个角之间的数量关系是解决问题的关键.22.(2014 秋? 阿坝州期末)如图,已知: E 是∠AOB 的平分线上一点, EC ⊥OB ,ED ⊥OA , C 、D 是垂足,连接 CD ,且交 OE 于点F .考点 : 线段垂直平分线的性质. 专题 : 探究型.分析: ( 1)先根据 E 是∠ AOB 的平分线上一点, EC ⊥OB ,ED ⊥OA 得出△ODE ≌△OCE , 可得出 OD=OC , DE=CE , OE=OE ,可得出△ DOC 是等腰三角形,由等腰三角形的性 质即可得出 OE 是 CD 的垂直平分线;( 2)先根据 E 是∠ AOB 的平分线,∠ AOB=6°0 可得出∠ AOE=∠BOE=3°0 ,由直 角三角形的性质可得出 OE=2DE ,同理可得出 DE=2EF 即可得出结论.解答: 解:( 1)∵E 是∠AOB 的平分线上一点, EC ⊥OB ,ED ⊥OA , ∴DE=C ,EOE=O ,E∴Rt △ODE ≌Rt △OCE , ∴OD=O ,C∴△DOC 是等腰三角形, ∵OE 是∠AOB 的平分线, ∴OE 是 CD 的垂直平分线; ( 2)∵ OE 是∠ AOB 的平分线,∠ AOB=6°0 , ∴∠ AOE=∠BOE=3°0 , ∵EC ⊥OB ,ED ⊥OA ,∴OE=2D ,E ∠ ODF=∠OED=6°0 , ∴∠EDF=30°, ∴DE=2EF , ∴OE=4E .F= ∠BOC= × 90° =45°EF 之间有什么数量关系?并证明你的结论.1)求证: OE 是 CD 的垂直平分线.点评:本题考查的是角平分线的性质及直角三角形的性质、等腰三角形的判定与性质,熟知以上知识是解答此题的关键.23.(2014 秋? 花垣县期末)如图,在△ ABC 中,∠ ABC=2∠C,BD平分∠ ABC,DE⊥AB ( E 在AB之间),DF⊥BC,已知BD=5,DE=3,CF=4,试求△ DFC的周长.考点:角平分线的性质.分析:根据角平分线的性质可证∠ ABD=∠CBD,即可求得∠ CBD=∠C,即BD=CD,再根据角平分线上的点到角两边距离相等即可求得DE=DF,即可解题.解答:解:∵∠ ABC=2∠C,BD平分∠ ABC,∴∠CBD=∠C,∴BD=C,D∵BD平分∠ ABC,∴DE=D,F∴△ DFC的周长=DF+CD+CF=DE+BD+CF=3+5+4=.12点评:本题考查了角平分线上点到角两边距离相等的性质,考查了角平分线平分角的性质,考查了三角形周长的计算,本题中求证DE=DF是解题的关键.24.(2014秋? 大石桥市期末)如图,点D是△ABC中BC边上的一点,且AB=AC=C,DAD=BD,求∠BAC的度数.考点:等腰三角形的性质.分析:由AD=BD得∠BAD=∠DBA,由AB=AC=CD得∠ CAD=∠CDA=∠2 DBA,∠DBA=∠C,从而可推出∠ BAC=3∠DBA,根据三角形的内角和定理即可求得∠DBA 的度数,从而不难求得∠BAC的度数.解答:解:∵ AD=BD∴设∠ BAD=∠DBA=x°,∵AB=AC=CD ∴∠CAD=∠CDA=∠BAD+∠DBA=2x°,∠ DBA=∠C=x°,∴∠BAC=3∠DBA=3x°,∵∠ABC+∠BAC+∠C=180°∴5x=180°,∴∠ DBA=36°∴∠ BAC=3∠DBA=10°8 .点评:此题主要考查学生对等腰三角形的性质及三角形内角和定理的综合运用能力;求得角之间的关系利用内角和求解是正确解答本题的关键.25.(2014 秋? 安溪县期末)如图,在△ ABC 中,AB=AC,∠A=α.(1)直接写出∠ ABC 的大小(用含α 的式子表示);(2)以点 B 为圆心、BC长为半径画弧,分别交AC、AB于D、E两点,并连接BD、DE.若=30°,求∠ BDE 的度数.考点:等腰三角形的性质.分析:(1)根据三角形内角和定理和等腰三角形两底角相等的性质即可求得∠ABC 的大小;(2)根据等腰三角形两底角相等求出∠ BCD=∠BDC,再求出∠ CBD,然后根据∠ABD=∠ABC﹣∠CBD,求得∠ ABD,再根据三角形内角和定理和等腰三角形两底角相等的性质计算即可得解.解答:解:(1)∠ABC的大小为×(180°﹣α)=90°﹣α;(2)∵AB=AC,∴∠ABC=∠C=90°﹣α=90°﹣ ×30°=75°,由题意得:BC=BD=B,E由BC=BD得∠ BDC=∠C=75°,∴∠CBD=18°0 ﹣75°﹣75°=30°,∴∠ABD=∠ABC﹣∠CBD=7°5 ﹣30°=45°,由BD=BE得故∠BDE的度数是67.5 °.点评:本题考查了三角形内角和定理、等腰三角形的性质,主要利用了等腰三角形两底角相等,熟记性质是解题的关键.26.(2014 秋? 静宁县校级期中)如图,在△ABC中,AD平分∠ BAC,点D是BC的中点,DE⊥AB 于点E,DF⊥AC 于点F.求证:(1)∠B=∠C.考等腰三角形的判定.点:分由条件可得出DE=DF,可证明△ BDE≌△ CDF,可得出∠ B=∠C,再由等腰三角形的析:判定可得出结论.解证明:(1)∵AD平分∠ BAC,DE⊥AB 于点E,DF⊥AC 于点F,答:∴DE=D,F在Rt △BDE和Rt △CDF中,,,∴Rt △BDE≌Rt △CDF(HF),∴∠ B=∠C;(2)由(1)可得∠ B=∠C,∴△ABC为等腰三角形.点本题主要考查等腰三角形的判定及全等三角形的判定和性质,利用角平分线的性质评:得出DE=DF是解题的关键.27.(2012 秋? 天津期末)如图,AB=AC,∠ C=67°,AB的垂直平分线EF交AC于点D,求∠DBC的度数.考点:线段垂直平分线的性质;等腰三角形的性质.分析:求出∠ ABC,根据三角形内角和定理求出∠ A,根据线段垂直平分线得出AD=BD,求出∠ ABD,即可求出答案.解答:解:∵ AB=AC,∠C=67°,∴∠ABC=∠C=67°,∴∠A=180°﹣67°﹣67°=46°,∵EF 是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD=46°,∴∠DBC=6°7 ﹣46°=21°.点评:本题考查了线段垂直平分线,三角形的能或定理,等腰三角形的性质和判定等知识点,关键是求出∠ ABC 和∠ ABD的度数,题目比较好.28.(2013 秋? 高坪区校级期中)如图,△ ABC 中,AB=AD=A,E DE=EC,∠DAB=30°,求∠C 的度数.考点:等腰三角形的性质.分析:首先根据AB=AD=A,E DE=EC,得到∠ B=∠ADB,∠ADE=∠AED,∠ C=∠EDC,从而得到∠ADE=∠AED=∠C+∠EDC=∠2 C,根据∠ DAB=30°,求得∠B=∠ADB=75°,利用∠ADC=∠ADE+∠EDC=∠3 C=105°,求得∠C 即可.解答:解:∵ AB=AD=A,E DE=EC,∴∠B=∠ADB,∠ADE=∠AED,∠C=∠EDC,∴∠ ADE=∠AED=∠C+∠EDC=∠2 C,∵∠DAB=30°,∴∠B=∠ADB=75°,∴∠ ADC=∠ADE+∠EDC=∠3 C=105°,∴∠C=35°.点评:本题考查了等腰三角形的性质,解题的关键是利用等腰三角形的性质求得有关角的度数.29.(2012 春? 扶沟县校级期中)阅读理解:“在一个三角形中,如果角相等,那么它们所对的边也相等.”简称“等角对等边”,如图,在△ ABC 中,已知∠ ABC 和∠ACB的平分线上交于点F,过点F作BC的平行线分别交AB、AC于点D、E,请你用“等角对等边”的知识说明DE=BD+C.E考 等腰三角形的性质.点:专 证明题.题:分由 DE ∥BC , BF 平分∠ ABC , CF 平分∠ ACB 可知, DB=DF , CE=EF .便可得出结论.析:解 证明:∵ BF 平分∠ ABC (已知) , CF 平分∠ ACB (已知) ,答: ∴∠ ABF=∠CBF ,∠ ACF=∠FCB ;又∵ DE 平行 BC (已知)∴∠ DFB=∠FBC (两直线平行,内错角相等) ,∠ EFC=∠FCB (两直线平行,内错角 相等),∴∠DBF=∠DFB ,∠EFC=∠E CF (等量代换)∴DF=DB , EF=EC (等角对等边)∴DE=BD+C .E点 此题考查学生对等腰三角形的判定与性质和平行线的性质的理解和掌握,主要利 评: 用等腰三角形两边相等.稍微有点难度是一道中档题.DE , DF 分别垂直 AB 、 AC 于 E 、F ,连 考点:等腰三角形的判定;全等三角形的判定与性质. 专题:证明题. 分析: 根据角平分线的性质知∠ BAD=∠CAD ;然后根据已知条件“ DE , DF 分别垂直 AB 、 AC 于 E 、F ”得到∠ DEA=∠DFA=90°;再加上公共边 AD=AD ,从而证明,△ADE ≌△ ADF ;最后根据全等三角形的对应边相等证明△ AEF 的两边相等,所解答: 证明:∵ AD 是△ ABC 的平分线,∴∠ BAD=∠CAD ,( 3 分) 又∵DE , DF 分别垂直 AB 、AC 于 E ,F∴∠ DEA=∠ DFA=90°( 6 分)又∵ AD=AD ,∴△ ADE ≌△ ADF . (8分) ∴AE=AF ,即△ AEF 是等腰三角形( 10分)30.( 2011? 龙岩质检)如图, AD 是△ ABC 的平分线,点本题综合考查了等腰三角形的判定、全等三角形的判定与性质.解答此题时,根评:据全等三角形的判定定理ASA判定△ ADE≌△ADF.。
初中数学证明三角形全等添加辅助线的6道精选经典考题
初中数学证明三角形全等添加辅助线的6道精选经典考题!第1题,连接AC和AD,构造两个全等三角形,对应边相等得到一个等
腰三角形。
根据等腰三角形的三线合一的性质,证明出结论。
第2题,
等腰直角三角形,斜边上的中点,一般连接斜边的中线,得到三条边相等,得几个45°角相等。
这是这一类题型的辅助线添加的方法。
第3题,这个辅助线的作法和倍长法有点类似,但若只是倍长,就找不到角相等。
那么做平行线,就有内错角相等,再根据题意的其他条件,得出两个三角形全等。
第4题,要求证明BD平分∠ABC,第一想到的是角平分线的性质的逆定理。
过点D做角两边的垂线,构造两个三角形全等,得到点到角两边的距离相等。
第5题,这类证明一条线段等于几条线段之和的题型,就是想办法添加辅助线,进行相等的线段进行代换,把几条线段放到一条线段上。
那么线段相等,一般就是需要构造三角形全等。
第6题,就是我们最常见的倍长中线法,构造三角形全等。
这个倍长中线的辅助线添加方法,在很多的题型中,都用得到。
三角形全等证明题60题(有规范标准答案)
全等三角形证明题专项练习60题(有答案)1.已知如图,△ABC≌△ADE,∠B=30°,∠E=20°,∠BAE=105°,求∠BAC的度数.∠BAC=_________.2.已知:如图,四边形ABCD中,AB∥CD,AD∥BC.求证:△ABD≌△CDB.3.如图,点E在△ABC外部,点D在边BC上,DE交AC于F.若∠1=∠2=∠3,AC=AE,请说明△ABC≌△ADE 的道理.4.如图,△ABC的两条高AD,BE相交于H,且AD=BD.试说明下列结论成立的理由.(1)∠DBH=∠DAC;(2)△BDH≌△ADC.5.如图,在△ABC中,D是BC边的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,且DE=DF,则AB=AC,并说明理由.6.如图,AE是∠BAC的平分线,AB=AC,D是AE反向延长线的一点,则△ABD与△ACD全等吗?为什么?7.如图所示,A、D、F、B在同一直线上,AF=BD,AE=BC,且AE∥BC.求证:△AEF≌△BCD.8.如图,已知AB=AC,AD=AE,BE与CD相交于O,△ABE与△ACD全等吗?说明你的理由.9.如图,在△ABC中,AB=AC,D是BC的中点,点E在AD上,找出图中全等的三角形,并说明它们为什么是全等的.10.如图所示,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.11.已知AC=FE,BC=DE,点A、D、B、F在一条直线上,要使△ABC≌△FDE,应增加什么条件?并根据你所12.如图,已知AB=AC,BD=CE,请说明△ABE≌△ACD.13.如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C逆时针旋转角α(0°<α<90°)得到△A1B1C,连接BB1.设CB1交AB于D,A1B1分别交AB,AC于E,F,在图中不再添加其他任何线段的情况下,请你找出一对全等的三角形,并加以证明.(△ABC与△A1B1C1全等除外)14.如图,AB∥DE,AC∥DF,BE=CF.求证:△ABC≌△DEF.15.如图,AB=AC,AD=AE,AB,DC相交于点M,AC,BE相交于点N,∠DAB=∠EAC.求证:△ADM≌△AEN.16.将两个大小不同的含45°角的直角三角板如图1所示放置在同一平面内.从图1中抽象出一个几何图形(如图2),B、C、E三点在同一条直线上,连接DC.求证:△ABE≌△ACD.17.如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.请在图中找出所有全等的三角形,用符号“≌”表示,并选择一对加以证明.18.如图,已知∠1=∠2,∠3=∠4,EC=AD.(1)求证:△ABD≌△EBC.(2)你可以从中得出哪些结论?请写出两个.19.等边△ABC边长为8,D为AB边上一动点,过点D作DE⊥BC于点E,过点E作EF⊥AC于点F.(1)若AD=2,求AF的长;(2)求当AD取何值时,DE=EF.20.巳知:如图,AB=AC,D、E分别是AB、AC上的点,AD=AE,BE与CD相交于G.(Ⅰ)问图中有多少对全等三角形?并将它们写出来.(Ⅱ)请你选出一对三角形,说明它们全等的理由(根椐所选三角形说理难易不同给分,即难的说对给分高,易的说对给分低)21.已知:如图,AB=DC,AC=BD,AC、BD相交于点E,过E点作EF∥BC,交CD于F,(1)根据给出的条件,可以直接证明哪两个三角形全等?并加以证明.(2)EF平分∠DEC吗?为什么?22.如图,己知∠1=∠2,∠ABC=∠DCB,那么△ABC与△DCB全等吗?为什么?23.如图,B,F,E,D在一条直线上,AB=CD,∠B=∠D,BF=DE.试证明:(1)△DFC≌△BEA;(2)△AFE≌△CEF.24.如图,AC=AE,∠BAF=∠BGD=∠EAC,图中是否存在与△ABE全等的三角形?并证明.25.如图,D是△ABC的边BC的中点,CE∥AB,E在AD的延长线上.试证明:△ABD≌△ECD.26.如图,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC;(2)求∠AEO的度数.27.如图,已知AB∥DE,AB=DE,AF=DC.(1)求证:△ABF≌△DEC;(2)请你找出图中还有的其他几对全等三角形.(只要直接写出结果,不要证明)28.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:△ABD≌△GCA;(2)请你确定△ADG的形状,并证明你的结论.29.如图,点D、F、E分别在△ABC的三边上,∠1=∠2=∠3,DE=DF,请你说明△ADE≌△CFD的理由.30.如图,在△ABC中,∠ABC=90°,BE⊥AC于点E,点F在线段BE上,∠1=∠2,点D在线段EC上,给出31.如图,在△ABC中,点D在AB上,点E在BC上,AB=BC,BD=BE,EA=DC,求证:△BEA≌△BDC.32.阅读并填空:如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.请说明△ADC≌△CEB的理由.解:∵BE⊥CE于点E(已知),∴∠E=90°_________,同理∠ADC=90°,∴∠E=∠ADC(等量代换).在△ADC中,∵∠1+∠2+∠ADC=180°_________,∴∠1+∠2=90°_________.∵∠ACB=90°(已知),∴∠3+∠2=90°,∴_________.在△ADC和△CEB中,.∴△ADC≌△CEB (A.A.S)33.已知:如图所示,AB∥DE,AB=DE,AF=DC.(1)写出图中你认为全等的三角形(不再添加辅助线);(2)选择你在(1)中写出的全等三角形中的任意一对进行证明.34.如图,点E在△ABC外部,点D在BC边上,DE交AC于点F,若∠1=∠2=∠3,AC=AE.试说明下列结论正确的理由:(1)∠C=∠E;(2)△ABC≌△ADE.35.如图,在Rt△ABC中,∠ACB=90°,AC=BC,D是斜边AB上的一点,AE⊥CD于E,BF⊥CD交CD的延长线于F.求证:△ACE≌△CBF.36.如图,在△ABC中,D是BC的中点,DE∥CA交AB于E,点P是线段AC上的一动点,连接PE.探究:当动点P运动到AC边上什么位置时,△APE≌△EDB?请你画出图形并证明△APE≌△EDB.37.已知:如图,AD∥BC,AD=BC,E为BC上一点,且AE=AB.求证:(1)∠DAE=∠B;(2)△ABC≌△EAD.38.如图,D为AB边上一点,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,CA=CB,CD=CE,图中有全等三角形吗?指出来并说明理由.39.如图,AB=AC,AD=AE,∠BAC=∠DAE.求证:△ABD≌△ACE.40.如图,已知D是△ABC的边BC的中点,过D作两条互相垂直的射线,分别交AB于E,交AC于F,求证:BE+CF>EF.41.如图所示,在△MNP中,H是高MQ与NE的交点,且QN=QM,猜想PM与HN有什么关系?试说明理由.42.如图,在△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥GF,交AB于点E,连接EG.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并证明你的结论.43.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的长.44.如图,小明在完成数学作业时,遇到了这样一个问题,AB=CD,BC=AD,请说明:∠A=∠C的道理,小明动手测量了一下,发现∠A确实与∠C相等,但他不能说明其中的道理,你能帮助他说明这个道理吗?试试看.45.如图,AD是△ABC的中线,CE⊥AD于E,BF⊥AD,交AD的延长线于F.求证:CE=BF.46.如图,已知AB∥CD,AD∥BC,F在DC的延长线上,AM=CF,FM交DA的延长线上于E.交BC于N,试说明:AE=CN.47.已知:如图,△ABC中,∠C=90°,CM⊥AB于M,AT平分∠BAC交CM于D,交BC于T,过D作DE∥AB 交BC于E,求证:CT=BE.48.如图,已知AB=AD,AC=AE,∠BAE=∠DAC.∠B与∠D相等吗?请你说明理由.49.D是AB上一点,DF交AC于点E,DE=EF,AE=CE,求证:AB∥CF.50.如图,M是△ABC的边BC上一点,BE∥CF,且BE=CF,求证:AM是△ABC的中线.51.如图,在△ABC中,AC⊥BC,AC=BC,D为AB上一点,AF⊥CD交于CD的延长线于点F,BE⊥CD于点E,求证:EF=CF﹣AF.52.如图,在△ABC中,∠BAC=90°,AB=AC,若MN是经过点A的直线,BD⊥MN于D,EC⊥MN于E.(1)求证:BD=AE;(2)若将MN绕点A旋转,使MN与BC相交于点O,其他条件都不变,BD与AE边相等吗?为什么?(3)BD、CE与DE有何关系?53.已知:如图,△ABC中,AB=AC,BD和CE为△ABC的高,BD和CE相交于点O.求证:OB=OC.54.在△ABC中,∠ACB=90°,D是AB边的中点,点F在AC边上,DE与CF平行且相等.试说明AE=DF的理由.55.如图,在△ABC中,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连接DE,已知DE=2cm,BD=3cm,求线段BC的长.56.如图:已知∠B=∠C,AD=AE,则AB=AC,请说明理由.57.如图△ABC中,点D在AC上,E在AB上,且AB=AC,BC=CD,AD=DE=BE.(1)求证△BCE≌△DCE;(2)求∠EDC的度数.58.已知:∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD,垂足为E.求证:BD=2CE.59.如图,已知:AB=CD,AD=BC,过BD上一点O的直线分别交DA、BC的延长线于E、F.(1)求证:∠E=∠F;(2)OE与OF相等吗?若相等请证明,若不相等,需添加什么条件就能证得它们相等?请写出并证明你的想法.60.如下图,AD是∠BAC的平分线,DE垂直AB于点E,DF垂直AC于点F,且BD=DC.求证:BE=CF.全等三角形证明题专项练习60题参考答案:1.∵△ABC≌△ADE 且∠B≠∠E,∴∠C=∠E,∠B=∠D;∴∠BAC=180°﹣∠B﹣∠C=180°﹣30°﹣20°=130°.2.∵AB∥CD,AD∥BC,∴∠ABD=∠CDB、∠ADB=∠CBD.又BD=DB,∴△ABD≌△CDB(ASA).3.△ADF与△AEF中,∵∠2=∠3,∠AFE=∠CFD,∴∠E=∠C.∵∠1=∠2,∴∠BAC=∠DAE.∵AC=AE,∴△ABC≌△ADE.4.(1)∵∠BHD=∠AHE,∠BDH=∠AEH=90°∴∠DBH+∠BHD=∠HAE+∠AHE=90°∴∠DBH=∠HAE∵∠HAE=∠DAC∴∠DBH=∠DAC;(2)∵AD⊥BC∴∠ADB=∠ADC在△BDH与△ADC中,∴△BDH≌△ADC.5.∵DE⊥AB,DF⊥AC,∴△DBE与△DCF是直角三角形,∵BD=CD,DE=DF,∴Rt△DBE≌Rt△DCF(HL),∴∠B=∠C,∴AB=AC.6.∵AE是∠BAC的平分线,∴∠BAE=∠CAE;∴180°﹣∠BAE=180°﹣∠CAE,即∠DAB=∠DAC;又∵AB=AC,AD=AD,∴在△ABD和△ACD中,∴△ABD≌△ACD(SAS)7.∵AE∥BC,∴∠B=∠C.∵AF=BD,AE=BC,∴△AEF≌△BCD(SAS).8.△ABE与△ACD全等.理由:∵AB=AC,∠A=∠A(公共角),AE=AD,∴△ABE≌△ACD.9.图中的全等三角形有:△ABD≌△ACD,△ABE≌△ACE,△BDE≌△CDE.理由:∵D是BC的中点,∴BD=DC,AB=AC,AD=AD∴△ABD≌△ACD(SSS);∵AE=AE,∠BAE=∠CAE,AB=AC,∴△ABE≌△ACE(SAS);∵BE=CE,BD=DC,DE=DE,∴△BDE≌△CDE(SSS).10.:∵∠1=∠2,∴∠ACB=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS)11. 增加AB=DF.在△ABC和△FDE 中,∴△ABC≌△FDE(SSS).12.∵AB=AC,BD=CE,∴AD=AE.又∵∠A=∠A,∴△ABE≌△ACD(SAS).13.△CBD≌△CA1F证明如下:∵AC=BC,∴∠A=∠ABC.∵△ABC绕点C逆时针旋转角α(0°<α<90°)得到△A1B1C1,∴∠A1=∠A,A1C=AC,∠ACA1=∠BCB1=α.∴∠A1=∠ABC(1分),A1C=BC.∴△CBD≌△CA1F(ASA)14.∵AB∥DE,AC∥DF,∴∠B=∠DEF,∠F=∠ACB.∵BE=CF,∴BE+CE=CF+EC.∴BC=EF.∴△ABC≌△DEF (ASA).15.∵AB=AC,AD=AE,∠DAB=∠EAC,∴∠DAC=∠AEB,∴△ACD≌△ABE,∴∠D=∠E,又AD=AE,∠DAB=∠EAC,∴△ADM≌△AEN16.∵△ABC和△ADE均为等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90,即∠BAC+∠CAE=∠DAE+∠CAE,∴∠BAE=∠CAD,在△ABE和△ACD中,,∴△ABE≌△ACD17.答:△BDE≌△FEC,△BCE≌△FDC,△ABE≌△ACF;证明:(以△BDE≌△FEC为例)∵△ABC是等边三角形,∴BC=AC,∠ACB=60°,∵CD=CE,∴△EDC是等边三角形,∴∠EDC=∠DEC=60°,∴∠BDE=∠FEC=120°,∵CD=CE,∴BC﹣CD=AC﹣CE,∴BD=AE,又∵EF=AE,∴BD=FE,在△BDE与△FEC中,∵,∴△BDE≌△FEC(SAS).18.(1)证明如下:∵∠ABD=∠1+∠EBC,∠CBE=∠2+∠EBC,∠1=∠2.∴∠ABD=∠CBE.在△ABD和△EBC中∴△ABD≌△EBC(AAS);(2)从中还可得到AB=BC,∠BAD=∠BEC19.(1)∵AB=8,AD=2∴BD=AB﹣AD=6在Rt△BDE中∠BDE=90°﹣∠B=30°∴BE=BD=3∴CE=BC﹣BE=5在Rt△CFE中∠CEF=90°﹣∠C=30°∴CF=CE=∴AF=AC﹣FC=;(2)在△BDE和△EFC中,∴△BDE≌△CFE(AAS)∴BE=CF∴BE=CF=EC∴BE=BC=∴BD=2BE=∴AD=AB﹣BD=∴AD=时,DE=EF20.(1)图中全等的三角形有四对,分别为:①△DBG≌△EGC,②△ADG≌△AEG,③△ABG≌△ACG,④△ABE≌△ACD;(4分)(Ⅱ)∵AB=AC,AD=AE,∠A是公共角,∴△ABE≌△ACD(SAS)④;∵AB=AC,AD=AE,∴AB﹣AD=AC﹣AE,即BD=CE;由④得∠B=∠C,又∵∠DGB=∠EGC(对顶角相等),BD=CE(已证),∴△DBG≌△EGC(AAS)①;由①得BG=CG,由④得∠B=∠C,又∵AB=AC,∴△ABG≌△ACG(SAS)③;由①得BG=CG,且AD=AE,AG为公共边,∴△ADG≌△AEG(SSS)②;21.(1)△ABC≌△DCB.证明:∵AB=CD,AC=BD,BC=CB,∴△ABC≌△DCB.(SSS)(2)EF平分∠DEC.理由:∵EF∥BC,∴∠DEF=∠EBC,∠FEC=∠ECB;由(1)知:∠EBC=∠ECB;∴∠DEF=∠FEC;∴FE平分∠DEC22.△ABC≌△DCB.理由如下:∵∠ABC=∠DCB,∠1=∠2,∴∠DBC=∠ACB.∵BC=CB,∴△ABC≌△DCB23.(1)∵BF=DE,∴BF+EF=DE+EF.即BE=DF.在△DFC和△BEA中,∵,∴△DFC≌△BEA(SAS).(2)∵△DFC≌△BEA,∴CF=AE,∠CFD=∠AEB.∵在△AFE与△CEF中,∵,∴△AFE≌△CEF(SAS)24.△ABF与△DFG中,∠BAF=∠BGD,∠BFA=∠DFG,∴∠B=∠D,∵∠BAF=∠EAC,∴∠BAE=∠DAC,∵AC=AE,∠BAE=∠DAC,∠B=∠D,∴△BAE≌△DAC.答案:有.△BAE≌△DAC25.∵CE∥AB,∴∠ABD=∠ECD.在△ABD和△ECD中,,∴△ABD≌△ECD(ASA)26.(1)证明:在△AOB和△COD中∵∴△AOB≌△COD(AAS)(2)解:∵△AOB≌△COD,∴AO=DO∵E是AD的中点∴OE⊥AD∴∠AEO=90°27.1)证明:∵AB∥DE,∴∠A=∠D.∵AB=DE,AF=DC,∴△ABF≌△DEC.(2)解:全等三角形有:△ABC和△DEF;△CBF和△FEC28.证明:(1)∵BE、CF分别是AC、AB两边上的高,∴∠AFC=∠AEB=90°(垂直定义),∴∠ACG=∠DBA(同角的余角相等),又∵BD=CA,AB=GC,∴△ABD≌△GCA;(2)连接DG,则△ADG是等腰三角形.证明如下:∵△ABD≌△GCA,∴AG=AD,∴△ADG是等腰三角形.29.解:∵∠4+∠6=180°﹣∠3,∠5+∠6=180°﹣∠2,∠3=∠2,∴∠4+∠6=∠5+∠6,∴∠4=∠5,∵在△ADE和△CFD中,,∴△ADE≌△CFD(AAS).30.①DF∥BC.证明:∵BE⊥AC,∴∠BEC=90°,∴∠C+∠CBE=90°,∵∠ABC=90°,∴∠ABF+∠CBE=90°,∴∠C=∠ABF,∵DF∥BC,∴∠C=∠ADF,∴∠ABF=∠ADF,在△AFD和△AFB中∴△AFD≌△AFB(AAS).31.在△BEA和△BDC中:,故△BEA≌△BDC(SSS).32.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.请说明△ADC≌△CEB的理由.解:∵BE⊥CE于点E(已知),∴∠E=90°(垂直的意义),同理∠ADC=90°,∴∠E=∠ADC(等量代换).在△ADC中,∵∠1+∠2+∠ADC=180°(三角形的内角和等于180°),∴∠1+∠2=90°(等式的性质).∵∠ACB=90°(已知),∴∠3+∠2=90°,∴∠1=∠3(同角的余角相等).在△ADC和△CEB中,.∴△ADC≌△CEB (A.A.S)33.(1)△ABF≌△DEC,△ABC≌△DEF,△BCF≌△EFC;(2分)(2)△ABF≌△DEC,证明:∵AB∥DE,∴∠A=∠D,(3分)在△ABF和△DEC中,(4分)∴△ABF≌△DEC.(5分)34.(1)△ADF与△AEF中,∵∠2=∠3,∠AFE=∠CFD,∴∠C=∠E;(2)∵∠1=∠2,∴∠BAC=∠DAE.∵AC=AE,又∠C=∠E,∴△ABC≌△ADE.35.∵AE⊥CD,∴∠AEC=90°,∴∠ACE+∠CAE=90°,(直角三角形两个锐角互余)∵∠ACE+∠BCF=90°,∴∠CAE=∠BCF,(等角的余角相等)∵AE⊥CD,BF⊥CD,∴∠AEC=∠BFC=90°,在△ACE与△CBF中,∠CAE=∠BCF,∠AEC=∠BFC,AC=BC,36.当动点P运动到AC边上中点位置时,△APE≌△EDB,∵DE∥CA,∴△BED∽△BAC,∴=,∵D是BC的中点,∴=,∴=,∴E是AB中点,∴DE=AC,BE=AE,∵DE∥AC,∴∠A=∠BED,要使△APE≌△EDB,还缺少一个条件DE=AP,又有DE=AC,∴P必须是AC中点.37.(1)∵AE=AB,∴∠B=∠AEB,又∵AD∥BC,∴∠AEB=∠DAE,∴∠DAE=∠B;(2)∵∠DAE=∠B,AD=BC,AE=AB,∴△ABC≌△EAD.38.△ACE≌△BCD.∵△ABC和△ECD都是等腰直角三角形,∴∠ECD=∠ACB=90°,∴∠ACE=∠BCD(都是∠ACD的余角),在△ACE和△BCD中,∵,∴△ACE≌△BCD.39.∵∠BAC=∠DAE,即∠BAD=∠EAC,在△ABD和△ACE中,∴△ABD≌△ACE.40.证明:延长FD到M使MD=DF,连接BM,EM.∵D为BC中点,∴BD=DC.∵∠FDC=∠BDM,∴△BDM≌△CDF.∴BM=FC.∵ED⊥DF,∴EM=EF.∵BE+BM>EM,∴BE+FC>EF.41.PM=HN.理由:∵在△MNP中,H是高MQ与NE的交点,∴∠MEH=∠NQH=90°,∠MQP=∠NQH=90°∵∠MHE=∠NHQ(对顶角相等),∴∠EMH=∠QNH(等角的余角相等)在△MPQ和△NHQ中,,∴△MPQ≌△NHQ(ASA),∴MP=NH.42.(1)∵BG∥AC,∴∠DBG=∠DCF.∵D为BC的中点,∴BD=CD又∵∠BDG=∠CDF,在△BGD与△CFD中,∵∴△BGD≌△CFD(ASA).∴BG=CF.(2)BE+CF>EF.∵△BGD≌△CFD,∴GD=FD,BG=CF.又∵DE⊥FG,∴EG=EF(垂直平分线到线段端点的距离相等).∴在△EBG中,BE+BG>EG,即BE+CF>EF.43.∵BE⊥CE于E,AD⊥CE于D∴∠E=∠ADC=90°∵∠BCE+∠ACE=∠DAC+∠ACE=90°∴∠BCE=∠DAC∵AC=BC∴△ACD≌△CBE∴CE=AD,BE=CD=2.5﹣1.7=0.8(cm)44.∵AB=CD,BC=AD,又∵BD=DB,在△ABD和△CDB中,∴△ABD≌△CDB,∴∠A=∠C.45.∵AD是△ABC中BC边上的中线,∴BD=CD.∵CE⊥AD于E,BF⊥AD,∴∠BFD=∠CED.在△BFD和△CED中,∴△BFD≌△CED(AAS).∴CE=BF46.∵AD∥BC,∴∠E=∠ENB,∵∠ENB=∠CNF,∴∠E=∠CNF,∵AB∥CD,∴∠A=∠B,∵∠C=∠B,∴∠EAB=∠DCB,∵AM=CF,∴AE=CN.47.证明:过T作TF⊥AB于F,∵AT平分∠BAC,∠ACB=90°,∴CT=TF(角平分线上的点到角两边的距离相等),∵∠ACB=90°,CM⊥AB,∴∠ADM+∠DAM=90°,∠A TC+∠CA T=90°,∵AT平分∠BAC,∴∠DAM=∠CA T,∴∠ADM=∠ATC,∴∠CDT=∠CTD,∴CD=CT,又∵CT=TF(已证),∴CD=TF,∵CM⊥AB,DE∥AB,∴∠CDE=90°,∠B=∠DEC,在△CDE和△TFB中,,∴△CDE≌△TFB(AAS),∴CE=TB,∴CE﹣TE=TB﹣TE,即CT=BE.48.∵∠BAE=∠DAC∴∠BAE+∠CAE=∠DAC+∠CAE即∠BAC=∠DAE又∵AB=AD,AC=AE,∴△ABC≌△ADE(SAS)∴∠B=∠D(全等三角形的对应角相等)49.∵DE=EF,AE=CE,∠AED=∠FEC,∴△AED≌△FEC.∴∠ADE=∠CFE.∴AD∥FC.∵D是AB上一点,∴AB∥CF50.∵BE∥CF,∴∠CMF=∠BME,∠FCM=∠EBM.∴△CFM≌△BEM.∴CM=BM.即AM是△ABC的中线51.∵AC⊥BC,BE⊥CD,∴∠ACF+∠FCB=∠FCB+∠CBE=90°.∴∠FCA=∠EBC.∵∠BEC=∠CFA=90°,AC=BC,∴△BEC≌△CFA.∴CE=AF.∴EF=CF﹣CE=CF﹣AF52.解:(1)证明:由题意可知,BD⊥MN与D,EC⊥MN与E,∠BAC=90°,则△ABD与△CEA是直角三角形,∠DAB=∠ECA,在△ABD与△CEA中,∵,∴△ABD≌△CEA,∴BD=AE;(2)若将MN绕点A旋转,与BC相交于点O,则BD,CE与MN垂直,∴△ABD与△CEA仍是直角三角形,两个三角形仍全等,∴BD与AE边仍相等;(3)∵△ABD≌△CEA,∴BD=AE,AD=EC,∴DE=BD+EC或DE=CE﹣BD或DE=BD﹣CE.53.∵AB=AC,∴∠ABC=∠ACB,∵BD、CE分别为△ABC的高,∴∠BEC=∠BDC=90°,∴在△BEC和△CDB中,∴△BEC≌△CDB,∴∠1=∠2,∴OB=OC解:连接CD,∵∠ACB=90°,D是AB边的中点∴CD=AD,∠DAC=∠DCF∵DE与CF平行且相等∴∠EDA=∠DAC∴∠EDA=∠DCF在△AED和△CFD中CD=AD,∠EDA=∠DCF,DE=CF∴△AED≌△CFD∴AE=DF.55.∵AD平分∠BAC∴∠BAD=∠CAD在△ADE和△ADC中∵∴△ADE≌△ADC(SAS)∴DE=DC∴BC=BD+DC=BD+DE=2+3=5(cm)56.在△AEB与△ADC中,.∴△AEB≌△ADC(AAS).∴AB=AC(全等三角形,对应边相等)57.(1)证明:在△BCE和△DCE中∴△BCE≌△DCE(SSS).(2)解:∵AD=DE,∴∠A=∠AED;∴∠EDC=∠A+∠AED=2∠A,设∠A=x,根据题意得,5x=180°,解得x=36°∴∠EDC=2∠A=72°证明:延长CE、BA交于点F.∵CE⊥BD于E,∠BAC=90°,∴∠ABD=∠ACF.又AB=AC,∠BAD=∠CAF=90°,∴△ABD≌△ACF,∴BD=CF.∵BD平分∠ABC,∴∠CBE=∠FBE.有BE=BE,∴△BCE≌△BFE,∴CE=EF,∴CE=BD,∴BD=2CE.59.(1)证明:在△ABD和△CDB中∵AB=CD,AD=BC,BD=DB,∴△ABD≌△CDB(SSS),∴∠ADB=∠DBC,∴DE∥BF.∴∠E=∠F.(2)答:当O是BD中点时,OE=OF.证明如下:∵O是BD中点,∴OB=OD.又∵∠ADB=∠DBC,∠E=∠F,∴△ODE≌△OBF(AAS).∴OE=OF.(当AE=CF时也可证得60.∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°.∵AD平分∠EAC,∴DE=DF.在Rt△DBE和Rt△DCF中,∴Rt△DBE≌Rt△CDF(HL).∴BE=CF.。
人教版苏科版初中数学—三角形的证明(经典例题)
班级小组姓名成绩满分(120)一、等腰三角形(一)全等三角形的性质及判定(共4小题,每题3分,题组共计12分)例1.如图,下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=ACB.∠ADB=∠ADC,∠B=∠CC.∠B=∠C,∠BAD=∠CADD.∠B=∠C,BD=DC例1.变式1.如图,已知点A,D,C,F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠FB.∠B=∠EC.BC∥EFD.∠A=∠EDF例1.变式2.已知△ABC与△DEF全等,∠A=∠D=90°,∠B=37°,则∠E的度数是()A.37°B.53°C.37°或63°D.37°或53°例1.变式3.如图,点A,F,C,D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.(二)等腰三角形的性质和判定(共4小题,每题3分,题组共计12分)例2.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16B.18C.20D.16或20例2.变式1.如图,在△ABC中,AB=AC,BC=6,AD⊥BC于D,则BD=.例2.变式2.如图,在△ABC中,AB=AC,∠ABC,∠ACB的平分线BD,CE相交于O点,且BD交AC 于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE;上述结论一定正确的是()A.①②③B.②③④C.①③⑤D.①③④例2.变式3.已知,如图,在△ABC中,AB=AC,D在AB上,DE∥AC,求证:DB=DE.(三)等边三角形的性质和判定(共4小题,每题3分,题组共计12分)例3.如图,点B,C,E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCDB.△BGC≌△AFCC.△DCG≌△ECFD.△ADB≌△CEA例3.变式1.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③B.①②④C.①③D.①②③④例3.变式2.如图是一个等边三角形木框,甲虫P在边框AC上爬行(A,C端点除外),设甲虫P到另外两边的距离之和为d,等边三角形ABC的高为h,则d与h的大小关系是()A.d>hB.d<hC.d=hD.无法确定例3.变式3.如图,在△ABC中,已知AB=BC=CA,AE=CD,AD与BE交于点P,BQ⊥AD于点Q,求证:BP=2PQ.(四)有一个锐角等于30°的直角三角形的性质定理(共4小题,每题3分,题组共计12分)例4.已知直角三角形中30°角所对的直角边长是2厘米,则斜边的长是()A.2厘米B.4厘米C.6厘米D.8厘米例4.变式1.如图,在△ABC中,∠C=90°,∠A=30°,若AB=6cm,则BC=.例4.变式2.如下图,△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC于点D.求证:BC=3AD.例4.变式3.如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了5003米到达B点,然后再沿北偏西30°方向走了500米到达目的地C点.(1)判断△ABC的形状;(2)求A,C两点之间的距离.(五)反证法(共4小题,每题3分,题组共计12分)例5.用反证法证明命题“如果AB⊥CD,AB⊥EF,那么CD∥EF”,证明的第一个步骤是()A.假设CD∥EFB.假设AB∥EFC.假设CD和EF不平行D.假设AB和EF不平行例5.变式1.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中()A.有一个内角大于60°B.有一个内角小于60°C.每一个内角都大于60°D.每一个内角都小于60°例5.变式2.用反证法证明命题“一个三角形中,如果两条边不相等,那么这两条边所对的角也不相等”时,只需假设“”.例5.变式3.用反证法证明:等腰三角形的两底角必为锐角.二、直角三角形(一)直角三角形的性质(共4小题,每题3分,题组共计12分)例6.将一副直角三角板,按如图所示叠放在一起,则图中∠α度数是()A.45°B.60°C.75°D.90°例6.变式1.如图,在等腰直角三角形ABC 中,∠ABC=90°,D 为AC 边上中点,过D 点作DE⊥DF,交AB 于点E,交BC 于点F.若AE=4,FC=3,求EF 长.例6.变式2.若△ABC 的三边长分别为,,a b c ,且满足()()2220a b a b c -+-=,则△ABC 是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形例6.变式3.如右图,公路MN 和公路PQ 在点P 处交汇,且∠QPN=30°,点A 处有一所中学,AP=160米,假设汽车行驶时,周围100米以内会受到噪声的影响,那么汽车在公路MN 上沿PN 方向行驶时,学校是否会受到噪声的影响?如果受影响,已知汽车的速度为18千米/时,那么学校受影响的时间为多少秒?(二)互逆命题与互逆定理(共4小题,每题3分,题组共计12分)例7.以下命题的逆命题为真命题的是()A.同旁内角互补,两直线平行B.对顶角相等C.直角三角形没有钝角D.若a b =,则22a b =例7.变式1.下列定理中,没有逆定理的是()A.内错角相等,两直线平行B.直角三角形的两锐角互余C.相反数的绝对值相等D.同位角相等,两直线平行例7.变式2.“等腰直角三角形三个内角之比为1:1:2”,它的逆命题是.例7.变式3.已知命题:等腰三角形底边上的中线与高重合.(1)写出这个命题的逆命题;(2)判断(1)中的命题是否为真命题,写出你的理由.(三)“HL”定理的应用(共4小题,每题3分,题组共计12分)例8.如图,O是∠BAC内一点,且点O到AB、AC的距离OE=OF,则△AEO≌△AFO的依据是()A.HL B.AAS C.SSS D.ASA例8.变式1.如图,CD⊥AD,CB⊥AB,AB=AD,求证:CD=CB.例8.变式2.如下图,M为△ABC的边BC的中点,ME⊥AB于点E,MF⊥AC于点F.(1)当AB=AC时,求证:ME=MF;(2)若ME=MF,试判断AB与AC的大小关系,并证明你的结论.例8.变式3.如图,已知Rt△ABC中,∠ACB=90°,CA=CB,D是AC上一点,E在BC的延长线上,且AE=BD,BD的延长线与AE交于点F.试通过观察、测量、猜想等方法来探索BF与AE有何特殊的位置关系,并说明你猜想的正确性.三、线段的垂直平分线(共4小题,每题3分,题组共计12分)例9.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于点D,交AB于点E,下述结论错误的是()A.BD平分∠ABCB.△BCD的周长等于AB+BCC.AD=BD=BCD.点D是线段AC的中点例9.变式1.如图,AB=AD,∠ABC=∠ADC.求证:AC垂直平分BD.例9.变式2.下列命题中正确的命题有()①线段垂直平分线上任一点到线段两端点的距离相等;②线段上任一点到垂直平分线两端的距离相等;③经过线段中点的直线只有一条;④点P在线段AB外且PA=PB,过P作直线MN,则MN是线段AB的垂直平分线;⑤过线段上任一点可以作这条线段的垂直平分线.A.1个B.2个C.3个D.4个例9.变式3.如图,在△ABC中,∠BAC的平分线AD交BC于点D,过点D作AC的平行线交AB于E,过E作AD的垂线交BC的延长线于点F.求证:∠B=∠CAF.四、角平分线(共4小题,每题3分,题组共计12分)例10.如图,点P 在∠AOB 的平分线上,PE⊥OA 于E,PF⊥OB 于F,若PE=7,则PF=.例10.变式1.下列说法中错误的是()A.到已知角两边距离相等的点在同一条直线上B.一条直线上有一点到已知角两边距离相等,这条直线平分已知角C.到角两边距离相等的点与角的顶点的连线平分这个角D.角内有两点各自到角的两边的距离相等,则过这两点的直线平分这个角例10.变式2.如图,以∠AOB 的顶点O 为圆心,适当长为半径画弧,交OA 于点C,交OB 于点D.再分别以点C,D 为圆心,大于12CD 的长为半径画弧,两弧在∠AOB 内部交于点E,过点E 作射线OE,连接CD.则下列说法错误的是()A.射线OE 是∠AOB 的平分线B.△COD 是等腰三角形C.C,D 两点关于OE 所在直线对称D.O,E 两点关于CD 所在直线对称例10.变式3.如图,在∠AOB 的两边OA,OB 上分别取OM=ON,OD=OE,DN 和EM 相交于点C.求证:点C 在∠AOB 的平分线上.。
(典型题)初中数学八年级数学下册第一单元《三角形的证明》测试题(答案解析)
一、选择题1.如图,在ABC 中,BO 平分ABC ∠,CO 平分ACB ∠,EF 经过点O 且//EF BC ,若7AB =,8AC =,9BC =,则AEF 的周长是( )A .15B .16C .17D .242.如图,在Rt △ABC 中,∠BAC=90°,∠C=45°,AD ⊥BC 于点D ,∠ABC 的平分线分别交 AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交 BC 于点N ,连接EN ,下列结论:①△AFE 为等腰三角形;②DF= DN ;③AN = BF ;④EN ⊥NC .其中正确的结论有( )A .1个B .2个C .3个D .4个3.如图,等腰直角ABC 中,90BAC ∠=︒,AD BC ⊥于点D ,ABC ∠的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,延长AM 交BC 于点N ,连接NE .下列结论:①AE AF =;②AM EF ⊥;③DF DN =;④//AD NE .正确的有( )A .①②B .①②③C .①②④D .①②③④ 4.如图,在ABC 中,4AB AC ==,ABC ∠和ACB ∠的平分线交于点E ,过点E 作//MN BC 分别交AB 、AC 于M 、N ,则AMN 的周长为( )A .12B .4C .8D .不确定 5.如图,平面直角坐标系中,O 是坐标原点,点A (3,2),点P (m ,0),若△POA 是等腰三角形,则m 可取的值最多有( )A .2个B .3个C .4个D .5个6.如图,在△ABC 中,AB =AC ,∠BAC =64°,∠BAC 的平分线与AB 的垂直平分线交于点O ,点E 、F 分别在BC 、AC 上,点C 沿EF 折叠后与点O 重合,则∠BEO 的度数是( )A .26°B .32°C .52°D .58° 7.下列各组数分别为一个三角形三边的长,其中不能构成直角三角形的一组是( ) A .8,10,12B .3,4,5C .5,12,13D .7,24,25 8.下列几组数能作为直角三角形三边长的是( ) A .3,4,6 B .1,1,3 C .5,12,14 D .5,25,5 9.如图,ABC 中,D 、E 为线段BE 上两点,且AC DC =,BA BE =,若52DAE BAC ∠=∠,则DAE ∠的度数为( )A .40︒B .45︒C .50︒D .60︒10.如图所示,O 为直线AB 上一点,OC 平分∠AOE ,∠DOE =90°,则①∠AOD 与∠BOE 互为余角;②OD 平分∠COA ;③若∠BOE =56°40',则∠COE =61°40';④∠BOE =2∠COD .结论正确的个数为( )A .4B .3C .2D .1 11.等腰三角形一腰的垂直平分线与另一腰所在直线的夹角是40°,则这一等腰三角形的底角为( )A .65°B .25°C .50°D .65°或25° 12.已知,如图在ABC 中,AB AC =,AD 是三角形的高,若20CAD ∠=︒,则B 的度数是( )A .55︒B .60︒C .65︒D .70︒二、填空题13.如图.在ABC 中,2AB AC ==,40B C ∠=∠=︒,点D 在线段BC 上运动(点D 不与点B 、C 重合),连接AD ,作40ADE ∠=︒,DE 交线段AC 于点E .(1)点D 从B 向C 的运动过程中,BDA ∠逐渐变____(填“大”或“小”);(2)在点D 的运动过程中,ADE 的形状可以是等腰三角形吗?若可以,请直接写出BDA ∠的度数,若不可以,请说明理由._____.14.如图,△ACD 是等边三角形,若AB =DE ,BC =AE ,∠E =115°,则∠BAE =_____°.15.如图,己知等边△ABC 的边长为8cm ,∠A =∠B =60°,点D 为边BC 上一点,且BD =3cm .若点M 在线段CA 上以2cm/s 的速度由点C 向点A 运动,同时,点N 在线段AB 上由点A 向点B 运动,△CDM 与△AMN 全等,则点N 的运动速度是______16.如图在第一个△A1BC 中,∠B =40°,A 1B =BC ,在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第二个△A 1A 2D ,再在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E……如此类推,可得到第n 个等腰三角形.则第n 个等腰三角形中,以An 为顶点的内角的度数为_____________.17.如图,在平面直角坐标系xOy 中,点A 的坐标为(0,6),点B 为x 轴上一动点,以AB 为边在直线AB 的右侧作等边三角形ABC .若点P 为OA 的中点,连接PC ,则PC 的长的最小值为_____.18.如图,AD 是△ABC 的平分线,DF ⊥AB 于点F ,DE =DG ,AG =16,AE =8,若S △ADG =64,则△DEF 的面积为 ________.19.如图,D 是等边三角形ABC 外一点,3AD =,2CD =,则BD 的最大值是________________.20.如图,在ABC 中,90ACB ∠=︒,AD 是它的角平分线,若:3:2AB AC =,且2BD =,则点D 到直线AB 的距离为______.三、解答题21.如图,ABE △是等腰三角形,AB AE =,45BAE ∠=︒,过点B 作BC AE ⊥于点C ,在BC 上截取CD CE =,连接AD 、DE 并延长AD 交BE 于点P(1)求证:AD BE =;(2)试说明AD 平分BAE ∠.22.如图,已知平行四边形ABCD .(1)用直尺和圆规作出ABC ∠的平分线BE ,交AD 的延长线于点E ,交DC 于点F (保留作图痕迹,不写作法);(2)在第(1)题的条件下,求证:ABE △是等腰三角形.23.用圆规、直尺作图,不写作法,但要保留作图痕迹,并写出结论.如图,现要在ABC 内建一中心医院,使医院到,A B 两个居民小区的距离相等,并且到公路AB 和AC 的距离也相等,请确定这个中心医院的位置.24.已知,如图,线段BC.(1)作线段BC的垂直平分线l,交BC于点D.(用不带刻度的直尺和圆规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,在l上取点A(点D除外),连接AC,AB,过点D分别作DM⊥AC于点M,DN⊥AB于点N.求证:DM=DN.25.如图,在平面直角坐标系中,直线AB经过点A(﹣2,3),B(4,0),交y轴于点C;(1)求直线AB的关系式;(2)求△OBC的面积;(3)做等腰直角三角形PBC,使PC=BC,求出点P的坐标.26.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(3)若Q以(2)中的速度从C点出发,同时P以原来的速度从B点出发,在△ABC的三边上逆时针运动,问:经过多少时间P、Q两点第一次相遇?在何处相遇?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先根据平行线的性质、角平分线的定义、等边对等角得到BE=OE,OF=CF,再进行线段的代换即可求出AEF的周长.【详解】解:∵EF∥BC,∴∠EOB=∠OBC,,∵BO平分ABC∴∠EBO=∠OBC,∴∠EOB=∠EBO,∴BE=OE,同理可得:OF=CF,∴AEF的周长为AE+AF+EF=AE+OE+OF+AF= AE+BE+CF+AF=AB+AC=7+8=15.故答案为:A【点睛】本题考查了等腰三角形的判定“等边对等角”,熟知平行线的性质,角平分线的定义和等腰三角形的判定定理是解题关键.2.D解析:D【分析】利用等腰三角形的性质,直角三角形的性质,线段垂直平分线的性质,三角形的全等,角平分线的定义,逐一判断即可.【详解】∵∠BAC=90°,AD⊥BC,BE平分∠ABC ,∴∠DBF+∠DFB=90°,∠ABE+∠AEF=90°,∠ABE=∠DBF,∴∠AEF=∠DFB=∠AFE,∴△AFE为等腰三角形,∴结论①正确;∵△AFE为等腰三角形,M为EF 的中点,∴∠AMF=90°,∴∠DBF=∠DAN,∵∠BAC=90°,∠C=45°,AD⊥BC于点D,∴AD=BD,∴△DBF≌△DAN,∴DF= DN,AN=BF,∴结论②③正确;∵∠ABM=∠NBM,∴∠BMA=∠BMN= 90°,BM=BM,∴△BMA≌△BMN,∴AM=MN,∴BE是线段AN的垂直平分线,∴EA=EN,∴∠EAN=∠ENA=∠DAN,∴AD∥EN,∵AD⊥BC∴EN⊥NC,∴结论④正确;故选D.【点睛】本题考查了等腰三角形的判定和性质,三角形的全等,线段的垂直平分线的定义和性质,平行线的判定和性质,直角三角形的性质,角平分线的定义,熟练掌握知识,灵活运用知识是解题的关键.3.D解析:D【分析】根据等腰直角三角形的性质及角平分线的定义求得∠ABE=∠CBE=12∠ABC=22.5°,继而可得∠BFD=∠AEB=90°-22.5°=67.5°,即可判断①;由M为EF的中点且AE=AF可判断②;作FH⊥AB,证△FBD≌△NAD可判断③,证明△EBA≌△EBN(SAS),推出∠BNE=∠BAM=90°,即可判断④.【详解】解:∵∠BAC=90°,AC=AB ,AD ⊥BC ,∴∠ABC=∠C=45°,AD=BD=CD ,∠ADN=∠ADB=90°,∴∠BAD=45°=∠CAD ,∵BE 平分∠ABC ,∴∠ABE=∠CBE=12∠ABC=22.5°, ∴∠BFD=∠AEB=90°-22.5°=67.5° ∴∠AFE=∠BFD=∠AEB=67.5°,∴AF=AE ,故①正确;∵M 为EF 的中点,∴AM ⊥EF ,故②正确;∵AM ⊥EF ,∴∠AMF=∠AME=90°,∴∠DAN=90°-67.5°=22.5°=∠MBN ,在△FBD 和△NAD 中,FBD DAN BD ADBDF ADN ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△FBD ≌△NAD (ASA ),∴DF=DN ,故③正确;∵∠BAM=∠BNM=67.5°,∴BA=BN ,∵∠EBA=∠EBN ,BE=BE ,∴△EBA ≌△EBN (SAS ),∴∠BNE=∠BAE=90°,∴∠ENC=∠ADC=90°,∴AD ∥EN .故④正确,综上,正确的结论有:①②③④故选:D .【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质,三角形内角和定理的应用,能正确证明推出两个三角形全等是解此题的关键.4.C解析:C【分析】由角平分线的定义和平行线性质易证△BME 和△CNE 是等腰三角形,即BM =ME ,CN =NE ,由此可得△AMN 的周长=AB +AC .【详解】解:∵∠ABC 和∠ACB 的平分线交于点E ,∴∠ABE =∠CBE ,∠ACE =∠BCE ,∵MN //BC ,∴∠CBE =∠BEM ,∠BCE =∠CEN ,∴∠ABE =∠BEM ,∠ACE =∠CEN ,∴BM =ME ,CN =NE ,∴△AMN 的周长=AM +ME +AN +NE =AB +AC ,∵AB =AC =4,∴△AMN 的周长=4+4=8.故选C .【点睛】本题考查了等腰三角形的判定与性质,平行线的性质,熟记各性质是解题的关键. 5.C解析:C【分析】分两种情况分析:①以点OP 为底,②OP 为腰,讨论点P 的个数,再求出m 的值即可.【详解】解:由点P (m ,0)知点P 在x 轴上,分两种情况:当OP 为底时,以A 点为圆心OA 为半径画圆,交x 轴于点P ,以OA=AP 为腰,点P 的坐标为m=2×3=6,当OP 为腰时,以O 为圆心,OA 长为半径,画圆交x 轴于两点P ,点P 在y 轴左侧或右侧,OP=OA=222313+=,∴m=13±,点P 在y 轴右侧,以OA 为底,作AO 的垂直平分线交x 轴与P ,过A 作AB ⊥x 轴,OP=AP=()2223m +-,则m=()2223m +-,解得m=136,综上,共有4个点P ,即m 有4个值,故选择:C.【点睛】本题考察等腰三角形的性质,解题时分两种情况进行讨论,注意以点A、O为顶角顶点时应以点为圆心画弧线,避免有遗漏.6.C解析:C【分析】连结OB,根据角平分线定义得到∠OAB=32°,再根据等腰三角形的性质得到∠ABC=∠ACB,再根据线段垂直平分线的性质得到OA=OB,则∠OBA=∠OAB,所以得出∠1,由于AB=AC,OA平分∠BAC,根据等腰三角形的性质得OA垂直平分BC,则BO=OC,所以得出∠1=∠2,然后根据折叠的性质得到EO=EC,于是∠2=∠3,再根据三角形内角和定理计算∠OEC,解答即可.【详解】解:连结OB、OC,∵∠BAC=64°,∠BAC的平分线与AB的中垂线交于点O,∴∠OAB=32°,∵AB=AC,∠BAC=64°,∴∠ABC=∠ACB=58°,∵OD垂直平分AB,∴OA=OB,∴∠OBA=∠OAB=32°,∴∠1=58°-32°=26°,∵AB=AC,OA平分∠BAC,∴OA垂直平分BC,∴BO=OC,∴∠1=∠2=26°,∵点C沿EF折叠后与点O重合,∴EO=EC,∴∠2=∠3=26°,∴∠BEO=∠2+∠3=52°,故选择:C.【点睛】本题考查了线段的垂直平分线的性质和等腰三角形的性质,折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.7.A解析:A【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角来判定即可.【详解】解:A、∵82+102≠122,∴三条线段不能组成直角三角形,故A选项符合题意;B、∵32+42=52,∴三条线段能组成直角三角形,故B选项不符合题意;C、∵52+122=132,∴三条线段能组成直角三角形,故C选项不符合题意;D、∵72+242=252,∴三条线段能组成直角三角形,故D选项不符合题意;故选:A.【点睛】本题考查的是勾股定理逆定理,解题的关键是掌握勾股定理逆定理以及准确计算.8.D解析:D【分析】要能作为直角三角形三边长,需验证两小边的平方和等于最长边的平方.【详解】解:A、32+42≠62,不符合勾股定理的逆定理,不是直角三角形,不符合题意;B、12+12≠32,不符合勾股定理的逆定理,不是直角三角形,不符合题意;C、52+122≠142,不符合勾股定理的逆定理,不是直角三角形,不符合题意;D52+(52=52,符合勾股定理的逆定理,是直角三角形,符合题意;故选:D.【点睛】本题考查了勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.9.A解析:A【分析】根据等腰三角形的性质可得出∠BAE =∠BEA ,∠ADC =∠DAC ,然后分别用外角的知识表示出这个关系,进而结合5∠DAE =2∠BAC 可得出∠DAE 的值.【详解】解:∵AC =DC ,BA =BE ,∴∠DAE +∠EAC =∠ADE =∠B +∠BAD ①,∠EAD +∠BAD =∠AED =∠C +∠EAC ②,①+②可得:∠DAE +∠EAC +∠EAD +∠BAD =∠B +∠BAD +∠C +∠EAC ,整理,得∠DAE +∠BAC =180°﹣∠DAE ,又5∠DAE =2∠BAC ,设∠DAE =2x ,则∠BAC =5x ,上式即为2x +5x =180°-2x ,解得:x =20°,即∠DAE =40°.故选:A .【点睛】本题考查等腰三角形的性质及三角形的内角和定理,有一定的难度,解答本题需用到等腰三角形的两底角相等、三角形的内角和等于180°.10.B解析:B【分析】由平角的定义与90DOE ∠=︒,即可求得AOD ∠与∠BOE 互为余角;又由角平分线的定义,可得22AOE COE AOC ∠=∠=∠,即可求得2BOE COD ∠=∠,若5640BOE ∠=︒',则6140COE ∠=︒'.【详解】解:90DOE ∠=︒,90COD COE ∴∠+∠=︒,90EOB DOA ∴∠+∠=︒,故①正确; OC 平分AOE ∠,22AOE COE AOC ∴∠=∠=∠;1801802BOE AOE COE ∴∠=︒-∠=︒-∠,90COD COE ∠=︒-∠,2BOE COD ∴∠=∠,90AOD BOE ∠=︒-∠,故②不正确,④正确;若5640BOE ∠=︒',180AOE BOE ∠+∠=︒,11(180)(1805640)614022COE BOE ∴∠=︒-∠=︒-︒'=︒'. 故③正确;∴①③④正确.故答案为:B .【点睛】此题考查了平角的定义与角平分线的定义.题目中要注意各角之间的关系,解题时要仔细识图.11.D解析:D【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【详解】解:①当为锐角等腰三角形时,如图:∵∠ADE =40°,∠AED =90°,∴∠A =50°,∴∠B=∠C=180502︒-︒ =65°; ②当为钝角等腰三角形时,如图:∵∠ADE =40°,∠AED =90°,∴∠BAC =∠ADE+∠AED =40°+90°=130°,∴∠B=∠C=1801302︒-︒ =25°. 故选:D .【点睛】本题考查了等腰三角形的性质、三角形内角和定理以及三角形外角性质,分类讨论是正确解答本题的关键. 12.D解析:D【分析】根据等腰三角形的性质得到∠BAD =∠CAD =20°,∠ABC =∠ACB ,根据三角形内角和定理求出∠B 的度数即可.【详解】∵AB =AC ,AD 是△ABC 的高,∴∠BAD =∠CAD =20°,∠B =∠C ,∴∠B =180402︒-︒=70°, 故选:D .【点睛】 本题考查的是等腰三角形的性质,三角形的高线和角平分线以及三角形内角和定理,掌握等腰三角形的三线合一是解题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.小80°或110°【分析】(1)由题意易得由点D 从B 项C 的运动过程中逐渐变大可求解问题;(2)由题意可分①若AD=DE 时②若时③若时则点D 与点B 重合点E 与点C 重合与题意矛盾故不符合题意;然后根据等腰解析:小 80°或110°【分析】(1)由题意易得140BDA BAD ∠=︒-∠,由点D 从B 项C 的运动过程中,BAD ∠逐渐变大可求解问题;(2)由题意可分①若AD =DE 时,②若AE DE =时,③若AE AD =时,则点D 与点B 重合,点E 与点C 重合,与题意矛盾,故不符合题意;然后根据等腰三角形的性质及角的等量关系可进行求解.【详解】解:(1)∵180BDA B BAD ∠+∠+∠=︒,∴140BDA BAD ∠=︒-∠,∵点D 从B 项C 的运动过程中,BAD ∠逐渐变大,∴BDA ∠逐渐变小;故答案为小;(2)若AD =DE 时,∵,40AD DE ADE =∠=︒,∴70DEA DAE ∠=∠=︒,∵DEA C EDC ∠=∠+∠,40B C ∠=∠=︒,∴30EDC ∠=︒,∴180110BDA ADE EDC ∠=︒-∠-∠=︒;若AE DE =时,∵,40AE DE ADE =∠=︒,∴40EDA DAE ∠=∠=︒,∴100DEA ∠=︒,∵DEA C EDC ∠=∠+∠,∴60EDC ∠=︒,∴18080BDA ADE EDC ∠=︒-∠-∠=︒;若AE AD =时,则点D 与点B 重合,点E 与点C 重合,与题意矛盾,故不符合题意; 综上所述:当80BDA ∠=︒或110°时,△ADE 的形状可以是等腰三角形;故答案为80°或110°.【点睛】本题主要考查等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.14.125【分析】先证明得到再根据三角形内角和得到所求角中两角的和最后与等边三角形内角相加就得到结果【详解】解:是等边三角形在与中故答案为125【点睛】这道题考察的是等边三角形的性质全等三角形的判定和性 解析:125【分析】先证明ABC DEA ≌,得到BAC ADE ∠∠=,再根据三角形内角和得到所求角中两角的和BAC DAE ∠+∠,最后与等边三角形内角CAD ∠相加就得到结果.【详解】解:ACD 是等边三角形,AC AD ∴=,60CAD ∠︒=在ABC 与DEA 中, =⎧⎪=⎨⎪=⎩AB DE BC AE AC AD ABC DEA SSS ∴≌()BAC ADE ∴∠∠=18011565BAC DAE ADE DAE ∴∠+∠∠+∠︒-︒︒===6560125BAE BAC DAE CAD ∴∠∠+∠+∠︒+︒︒===故答案为125.【点睛】这道题考察的是等边三角形的性质,全等三角形的判定和性质,三角形内角和的概念.解题的关键在于熟练掌握这些相关知识点.15.cm/s 或cm/s 【分析】由于∠C=∠A 所以当△CDM 与△AMN 全等时分两种情况:①△CDM ≌△AMN ;②△CDM ≌△ANM 根据全等三角形的对应边相等求出AN 再根据速度=路程÷时间求解即可【详解】解解析:cm/s 或52cm/s 【分析】 由于∠C=∠A ,所以当△CDM 与△AMN 全等时,分两种情况:①△CDM ≌△AMN ;②△CDM ≌△ANM .根据全等三角形的对应边相等求出AN ,再根据速度=路程÷时间求解即可.【详解】解:设点M 、N 的运动时间为ts ,则CM=2tcm .∵三角形ABC 是等边三角形,∴∠C=∠A=60°,∴当△CDM 与△AMN 全等时,分两种情况:①如果△CDM ≌△AMN ,那么AN=CM=2tcm ,∴点N 的运动速度是2t t=2(cm/s ); ②如果△CDM ≌△ANM ,那么CM=AM=12AC=4cm ,AN=CD=BC-BD=5cm , ∴点M 的运动时间为:42=2(s ), ∴点N 的运动速度是52cm/s . 综上可知,点N 的运动速度是2或52cm/s . 故答案为:2 cm/s 或52cm/s . 【点睛】 本题考查了全等三角形的对应边相等的性质,等边三角形的性质,路程、速度与时间之间的关系,进行分类讨论是解题的关键.16.【分析】根据等腰三角形的性质可求出△CBA1的底角的度数再根据三角形外角的性质及等腰三角形的性质可求出△DA1A2的底角的度数同理可求出△EA2A3△FA3A4…底角的度数再找出其规律即可得出第n 个 解析:11702n -︒⨯【分析】根据等腰三角形的性质,可求出 △CBA 1 的底角的度数,再根据三角形外角的性质及等腰三角形的性质,可求出 △DA 1A 2 的底角的度数.同理可求出 △EA 2A 3 、 △FA 3A 4 …底角的度数.再找出其规律即可得出第n 个三角形中以 An 为顶点的底角度数.【详解】在 △CBA 1 中, ∠B=40° , A 1B=CB ,∴ ∠BA 1C=∠BCA 1=(180°−40°)÷2=70° ,又∵ A 1A 2=A 1D , ∠BA 1C 是 △A 1A 2D 的外角.∴ ∠DA 2A 1=∠A 2DA 1=12∠BA 1C=12×70° . 同理可得:∠EA 3A 2=∠A 3EA 2=12∠DA 2A 1=12×12×70°=(12)2×70° , ∠FA 4A 3=∠A 4FA 3=12∠EA 3A 2=(12)3×70°, 综上可知规律:第n 个三角形中以 An 为顶点的底角度数是:112n -×70° , 故答案为 70° ×112n -. 【点睛】本题考查等腰三角形和三角形外角的性质,求出 ∠DA 2A 1 、 ∠EA 3A 2 、 ∠FA 4A 3 的度数,找出其规律是解答本题的关键. 17.【分析】以AP 为边作等边三角形APE 连接BE 过点E 作EF ⊥AP 于F 由SAS 可证△ABE ≌△ACP 可得BE =PC 则当BE 有最小值时PC 有最小值即可求解【详解】解:如图以AP 为边作等边三角形APE 连接B解析:92【分析】以AP 为边作等边三角形APE ,连接BE ,过点E 作EF ⊥AP 于F ,由“SAS”可证△ABE ≌△ACP ,可得BE =PC ,则当BE 有最小值时,PC 有最小值,即可求解.【详解】解:如图,以AP 为边作等边三角形APE ,连接BE ,过点E 作EF ⊥AP 于F ,∵点A 的坐标为(0,6),∴OA =6,∵点P 为OA 的中点,∴AP =3,∵△AEP 是等边三角形,EF ⊥AP ,∴AF =PF =32,AE=AP ,∠EAP =∠BAC =60°, ∴∠BAE =∠CAP ,在△ABE 和△ACP 中, AE AP BAE CAP AB AC =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△ACP (SAS ),∴BE =PC ,∴当BE 有最小值时,PC 有最小值,即BE ⊥x 轴时,BE 有最小值,∴BE 的最小值为OF =OP +PF =3+32=92, ∴PC 的最小值为92, 故答案为92. 【点睛】 本题考查了轴对称−最短路线问题,全等三角形的判定和性质,等边三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.18.16【分析】过点D 作于H 先利用三角形的面积公式计算出DH=8再利用角平分线的性质得到DF=DH=8接着证明得到证明得到利用等线段代换得到于是求出EF 的长然后根据三角形的面积公式计算即可【详解】过点D解析:16【分析】过点D 作DH AC ⊥于H ,先利用三角形的面积公式计算出DH=8,再利用角平分线的性质得到DF=DH=8,接着证明Rt DEF DGH △≌Rt △得到EF HG =,证明Rt ADF △≌Rt △ADH 得到AF AH =,利用等线段代换得到EF AG HG AE =--,于是求出EF 的长,然后根据三角形的面积公式计算即可【详解】过点D 作DH AC ⊥于H ,64S =△ADG ,16AG =1642AG DH ∴⨯⨯= 8DH ∴= AD 是ABC 的平分线,,DF AB DH AC ⊥⊥8DF DH ==∴在Rt DEF △和Rt DGH △中DE DG DF DH=⎧⎨=⎩\ ∴Rt DEF △≌Rt DGH △EF HG ∴=同理可得Rt ADF △≌Rt △ADHAF AH ∴=168EF AF AE AH AE AG HG AE EF =-=-=--=--4EF ∴=11481622DEF S EF DF ∴=⨯⨯=⨯⨯=△ 【点睛】本题考查了角平分线的性质,全等三角形的判定和性质,熟练掌握角平分线的性质,全等三角形的判定定理是解题关键.19.5【分析】将AD 顺时针旋转60°得连结可得AD=DD′=AD′可证△ABD′≌△ACD (SAS )可得BD′=CD 由BD′+DD′≥BD 当BD′D 三点在一线时BD 最大BD 最大=BD′+DD′=5【详解解析:5【分析】将AD 顺时针旋转60°,得AD ',连结BD ',可得AD=DD′=AD′,可证△ABD′≌△ACD (SAS ),可得BD′=CD ,由BD′+DD′≥BD ,当B 、D′、D 三点在一线时,BD 最大,BD 最大=BD′+DD′=5.【详解】解:∵将AD 顺时针旋转60°,得AD ',连结BD ',则AD=DD′=AD′,∴△ADD′是等边三角形,又∵等边三角形ABC ,∴∠BAC=∠D AD ',∴∠BAD′+∠D′AC=∠CAD+∠D′AC=60°,∴AB=AC ,AD′=AD ,∴△ABD′≌△ACD (SAS ),∴BD′=CD ,∴BD′+DD′≥BD ,当B 、D′、D 三点在一线时,BD 最大,BD 最大=BD′+DD′=CD+AD=2+3=5.故答案为:5..【点睛】本题考查三角形旋转变换,等边三角形判定与性质,掌握三角形旋转变换的性质,等边三角形判定与性质,用三角形三边关系确定B 、D′、D 共线是解题关键.20.【分析】根据角平分线的性质利用面积比求出BD:DC=3:2代入求值即可【详解】解:∵平分∠BACDC ⊥ACDE ⊥AB ∴DC=DE ∵∴即点到直线的距离为故答案为:【点睛】本题考查了角平分线的性质解题关 解析:43【分析】根据角平分线的性质,利用面积比求出BD:DC=3:2,代入2BD =求值即可.【详解】解:∵AD 平分∠BAC ,DC ⊥AC ,DE ⊥AB ,∴DC=DE ,12ABD S AB DE =⨯⨯,12ACD S AC CD =⨯⨯, 132122ABD ACD AB DE S S AC CD ⨯⨯==⨯⨯, 12ABD S DB AC =⨯⨯, 1212ABD ACD DB AC S S AC CD ⨯⨯=⨯⨯, 32BD CD =, ∵2BD =,∴43CD =, 43ED = 即点D 到直线AB 的距离为43, 故答案为:43. 【点睛】 本题考查了角平分线的性质,解题关键是利用面积公式,通过角平分线的性质得出面积比,再根据面积比求出边长比.三、解答题21.(1)见解析;(2)见解析【分析】(1)利用SAS 证明△BCE ≌△ACD ,根据全等三角形的对应边相等得到AD=BE .(2)根据△BCE ≌△ACD ,得到∠EBC=∠DAC ,由∠BDP=∠ADC ,得到∠BPD=∠DCA=90°,利用等腰三角形的三线合一,即可得到AD 平分∠BAE .【详解】证明:(1)∵BC ⊥AE ,∠BAE=45°,∴∠CBA=∠CAB ,∴BC=CA ,在△BCE 和△ACD 中,90BC AC BCE ACD CE CD ︒=⎧⎪∠=∠=⎨⎪=⎩,∴△BCE ≌△ACD (SAS ),∴AD=BE .(2)∵△BCE ≌△ACD ,∴∠EBC=∠DAC ,∵∠BDP=∠ADC ,∴∠BPD=∠DCA=90°,∵AB=AE ,∴AD 平分∠BAE .【点睛】本题考查了全等三角形的性质定理与判定定理,解决本题的关键是证明△BCE ≌△ACD .也考查了等腰三角形三线合一的性质.22.(1)见解析;(2)见解析【分析】(1)以B为圆心,小于AB长为半径画弧,交AB,BC于点M、N,分别以点M、N为圆心,大于MN的一半为半径画弧,两弧交于点G,作射线BG,交AD的延长线于点E,交DC于点F;(2)根据角平分线的性质和平行线性质可得等腰三角形中有2个角相等,即可得到所求三角形是等腰三角形.【详解】解:(1)如图:(2)根据作图可知12CBE ABE ABC ∠=∠=∠,又四边形ABCD是平行四边形//AE BC∴即AEB CBE∠=∠∴在ABE△中,AEB ABE∠=∠∴AE=AB,即ABE△是等腰三角形【点睛】考查角平分线的画法及等腰三角形的判定;用到的知识点为:等角对等边.23.见解析【分析】根据线段垂直平分线性质作出AB的垂直平分线,根据角平分线性质作出∠BAC的角平分线,即可得出答案.【详解】解:作AB的垂直平分线EF,作∠BAC的角平分线AM,两线交于P,则P为这个中心医院的位置.【点睛】本题考查了线段垂直平分线性质,角平分线性质的应用,主要考查学生的理解能力和动手操作能力.24.(1)见解析;(2)见解析(1)根据垂直平分线的尺规作图方法即可作出直线l;(2)根据垂直平分线的性质可AB=AC,BD=DC,再根据等腰三角形的三线合一得到∠DAB=∠DAC,然后根据角平分线的性质即可证得DM=DN.【详解】解:(1)如图直线l即为所求;(2)证明:∵直线l是线段BC的垂直平分线,点A是直线l上一点,∴AB=AC,BD=DC,∴∠DAB=∠DAC∵ DM⊥AC,DN⊥AB∴ DM=DN【点睛】本题考查了基本尺规作图-线段垂直平分线、线段垂直平分线的性质、等腰三角形的三线合一性质、角平分线的性质,熟练掌握这些知识的灵活运用是解答的关键.25.(1)122y x=-+;(2)4OBCS=;(3)P为(2,6)或(-2,-2)【分析】(1)设直线AB的解析式为:y kx b=+,把点A(-2,3),B(4,0)即可得到结论;(2)由(1)知点C的坐标为(0,2),利用三角形面积直接求解即可;(3)分①当点P在直线BC上方,②当点P在直线BC下方两种情况讨论,利用全等三角形的判定和性质求解即可.(1)设直线AB的解析式为:y kx b=+,把点A(-2,3),B(4,0)代入得,23 40k bk b-+=⎧⎨+=⎩,解得:122 kb⎧=-⎪⎨⎪=⎩,∴直线AB的关系式为:122y x=-+;(2)由(1)知:点C的坐标为(0,2),∴OB=4,OC=2,∴△OBC的面积为:11OB OC42422OBCS=⨯=⨯⨯=;(3)①当点P在直线BC上方时,过P作PE⊥y轴于E,如图:∵△OBC是等腰直角三角形,且PC=BC,∴∠PCB=90︒,∴∠PCE+∠EPC =90︒,∠PCE+∠OCB =90︒,∴∠EPC =∠OCB,在△EPC和△OCB中,90PEC COBEPC OCBPC BC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△EPC≅△OCB,∴EC=OB=4,EP=OC=2,∴点P的坐标为(2,6),②当点P在直线BC下方时,过P1作P1F⊥y轴于F,如图:同理可证1FPC OCB≅,∴FC=OB=4,P1F=OC=2,∴点P1的坐标为(-2,2),综上,点P的坐标为(2,6)或(-2,2).本题考查了待定系数法求一次函数的解析式,等腰直角三角形的性质,正确的作出图形,利用数形结合是解题的关键.26.(1)全等,见解析;(2)Q 的运动速度为154cm /s ;(3)803s 在AB 边上,距离A 点6cm 处【分析】(1)由SAS 证明即可;(2)根据全等三角形的性质得出4BP PC cm ==,5CQ BD cm ==,则可得出答案; (3)由题意列出方程1532104x x =+⨯,解方程即可得解; 【详解】(1)∵1t s =,点Q 的运动速度与点P 的运动速度相等,∴313BP CQ cm ==⨯=,∵10AB cm =,点D 为AB 的中点,∴5BD cm =,又∵PC BC BP =-,8BC cm =,∴835PC cm =-=,∴PC BD =,又∵AB AC =,∴B C ∠=∠,在△BPD 和△CQP 中,PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩,∴()△△BPD CQP SAS ≅;(2)∵点Q 的运动速度与点P 的运动速度不相等,∴BP 与CQ 不是对应边,即BP CQ ≠,∴若BPD CPQ ≅,且B C ∠=∠,则4BP PC cm ==,5CQ BD cm ==,∴点P 、点Q 的运动时间4()33BPt s ==, ∴515443Q CQ t υ=== cm /s ;(3)设经过x 秒后点P 与点Q 第一次相遇, 由题意可得:1532104x x =+⨯,解得:803x=,803803⨯=cm,△ABC的周长为1010828cm++=,运动三圈:28384cm⨯=>80cm,84804cm-=,1046cm-=,∴经过803后点P与点Q第一次相遇,在AB边上,距离A点6cm处.【点睛】本题主要考查了全等三角形的判定和性质,等腰三角形的性质,特别是利用方程的思想解决几何问题,培养学生综合解题的能力.。
初中数学九年级中考复习三角形部分证明练习题精选
1.已知:如图点C 是AB 的中点,CD ∥BE ,且CD=BE.求证:∠D=∠E.2.已知:E 、F 是AB 上的两点,AE=BF ,又AC ∥DB ,且AC=DB.求证:CF=DE 。
3 如图,已知△ABC 和△DEC 都是等边三角形,∠ACB=∠DCE=60°,B 、C 、E 在同一直线上,连结BD 和AE.求证:BD=AE.4.如图,D 、E 、F 、B 在一条直线上,AB=CD ,∠B=∠D ,BF=DE 。
求证:⑴AE=CF ;⑵AE ∥CF ;⑶∠AFE=∠CEF 。
AC B ED A BC DE F A B C D E FA B CDE5.如图,D 是△ABC 的边BC 上一点,且CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线。
求证:AC=2AE 。
6.已知:如图∠B=∠E=90°AC=DF FB=EC ,则AB=DE.请说明理由。
7.如图,AD ∥BC ,∠A=90°,E 是AB 上一点,∠1=∠2,AE=BC 。
请你说明∠DEC=90°的理由。
AB E DC8.如图,已知:在等边三角形ABC 中,D 、E 分别在AB 和AC 上,且AD=CE ,BE 和CD 相交于点P 。
(1)说明△AD ≌△CEB(2)求:∠BPC 的度数.1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD证明: 延长AD 到E,使DE=AD,则三角形ADC 全等于三角形EBD 即BE=AC=2在三角形ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6又AD 是整数,则AD=52.如图,在△ABC 中,AB=AC ,M 为BC 的中点,点D 、E 分别在AB 、AC 上,且AD=AE .求证:MD=ME . 证明: (法一) ∵AB=AC , ∴∠B=∠C .∵M 为BC 的中点, ∴BM=CM .∵AB=AC ,AD=AE ,∴BD=CE .在△DBM 和△ECM 中,∴BD=CE ,∠B=∠C ,BM=CM .ADBC∴△DBM ≌△ECM . ∴MD=ME .(法二)连接AM ,(1分)∵AB=AC ,M 为BC 的中点, ∴AM 平分∠BAC , ∴∠BAM=∠CAM . 在△ADM 和△AEM 中,∵AD=AE ,∠DAM=∠EAM ,AM=AM , ∴△ADM ≌△AEM . ∴MD=ME .4.如图所示,已知AE ⊥AB ,AF ⊥AC ,AE=AB ,AF=AC 。
八年级全等三角形简单证明题及解答(5道)
汇报人:XX
目 录
• 题目一:基本的全等三角形证明 • 题目二:利用角平分线性质证明 • 题目三:通过边边边条件证明 • 题目四:结合中线性质进行证明 • 题目五:综合应用多种性质证明 • 总结与拓展
01
题目一:基本的全等三角形证明
题目描述
• 已知三角形$ABC$和三角形$DEF$,其中$AB = DE$,$AC = DF$,$\angle BAC = \angle EDF$。求证:$\triangle ABC \cong \triangle DEF$。
由第二步可知,△BDE∽△CFD。
详细解答
4. 第四步,根据相似三角形的性质,对应边成比例,所以BD/CF=DE/DF。
5. 第五步,因为BD=AD(已知),所以AD/CF=DE/DF。又因为AE/EC=DE/EF(已知), 所以AD/CF=AE/EC。
6. 第六步,交叉相乘得AD*EC=AE*CF,即AE/AD=EC/CF。又因为∠A=∠ACF(对顶角相 等),所以△ADE∽△ACF。
第三步,根据相似三 角形的性质,有 AB/AC = BD/DC。
综上,我们证明了 AB/AC = BD/DC。
03
题目三:通过边边边条件证明
题目描述
已知
△ABC和△DEF中,AB = DE,BC = EF,AC = DF。
求证
△ABC ≌ △DEF。
题目描述
【分析】
本题主要考察全等三角形的判定方法——边边边条件。根据已知条件,我们可以 直接应用边边边定理来证明两个三角形全等。
题目描述
01
【解答】
02
证明
03
04
∵ 在△ABC和△DEF中,AB = DE,BC = EF,AC = DF(已
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形的证明
1.在△ABC 中,AC 垂直于BC ,点P 是∠A ,∠B 和∠C 的角平分线,从点P 分别向AC ,BC 和AB 作垂线,分别交AC ,BC 和AB 于点D ,E ,F 。
已知AC=8,BC=6,AB=10。
求PD =____
2.如图,EA ⊥AB ,BC ⊥AB ,EA=AB=2BC ,D 为AB 中点,有以下结论: (1)DE=AC ;(2)DE ⊥AC ;(3)∠CAB=30°;(4)∠EAF=∠ADE 。
其中结论正确的是( ) A 、(1),(3) B 、(2),(3) C 、(3),(4) D 、(1),(2),(4)
1题
4、如图,在等边ABC ∆中,,D E 分别是,BC AC 上的点,且BD CE =,AD 与BE 相交于点P ,则12∠+∠的度数是( ).
A .0
45 B .0
55 C .0
60 D .0
75
3题 4题
5、如图,123,,l l l 表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有( ).
A .1处
B .2处
C .3处
D .4处
6、如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下五个结论:
① AD =BE ; ② PQ ∥AE ;
③ AP =BQ ;
④ DE =DP ;
⑤ ∠AOB =60°.
恒成立的结论有______________(把你认为正确的序号都填上).
7、如图,已知ABC △中,45ABC ∠=,4AC =,H 是高AD 和BE 的交点,则线段BH 的长度为( ) A
B .4
C
.
D .5
8、如图,将长方形ABCD 沿对角线BD 翻折,点C 落在点E 的 位置,BE 交AD 于点F.
求证:重叠部分(即BDF ∆)是等腰三角形. 证明:∵四边形ABCD 是长方形,∴AD ∥
BC
第7题
A
B
C
E D
O P Q
D
C
B
A
E H
又∵BDE ∆与BDC ∆关于BD 对称,
∴ 23∠=∠. ∴BDF ∆是等腰三角形.
请思考:以上证明过程中,涂黑部分正确的应该依次是以下四项中的哪两项?( ). ①12∠=∠;②13∠=∠;③34∠=∠;④BDC BDE ∠=∠ A .①③ B .②③ C .②① D .③④ 9、如图,已知线段a ,h 作等腰△ABC ,使AB =AC ,且 BC =a ,BC 边上的高AD =h . 张红的作法是:(1)作线段 BC =a ;(2)作线段BC 的垂直平分线MN ,MN 与BC 相 交于点D ;(3)在直线MN 上截取线段h ;(4)连结AB , AC ,则△ABC 为所求的等腰三角形.
上述作法的四个步骤中,有错误的一步你认为是( ). A. (1) B. (2) C. (3) D. (4)
10、如图,在等腰直角三角形ABC 中,AC=BC ,以斜边AB 为一边作等边三角形ABD ,使得C 、D 在AB 的同侧,再以CD 为一边作等边三角形CDE ,使得C 、E 在AD 的异侧,若AE=1,则CD 的长为( ) A
1 B
、12 C
D
、2
(第11题图) (第12题图)
11、如图、在等边三角形ABC 中,AC=9,点O 在AC 上且AO=3,点P 是AB 上一动点,连接OP ,将线段OP 绕点
O 逆时针旋转0
60得到线段OD ,要使得点D 恰好落在BC 上,则AP 的长为( )
A 、4
B 、5
C 、6
D 、7 12、如图,△ABC 中,∠C=Rt ∠,AD 平分∠BAC 交BC 于点D ,BD ∶DC=2∶1,BC=7.8cm ,则D 到AB 的距离为 cm.
13、如图,在四边形ABCD 中,对角线AC 与BD 相交于点E ,若AC 平分∠DAB ,且AB=AC ,AC=AD ,有如下四个结论:①AC ⊥BD ;②BC=DE ;③∠DBC=
2
1
∠DAB ;④△ABC 是正三角形。
请写出正确结论的序号 (把你认为正确结论的序号都填上) 。
14、在《证明二》一章中,我们学习了很多定理,例如:①直角三角形两条直角边的平方和等于斜边的平方;②全等三角形的对应角相等;③等腰三角形的两个底角相等;④线段垂直平分线上的点到这条线段两个端点的距离相等;⑤角平分线上的点到这个角两边的距离相等.在上述定理中,存在逆定理的是______ __.(填序号)
15、如图14,有一张直角三角形纸片,两直角边AC=5cm ,BC=10cm ,将△ABC 折叠,点B 与点A 重合,折痕为DE ,则CD 的长为________.
16、如图15,在ABC ∆中,AB=AC ,0
120A ∠=,D 是BC 上任意一点,分别做DE ⊥AB 于E ,DF ⊥AC 于F ,如果BC=20cm ,那么DE+DF= _______cm.
B (第10题图)
17、如图16,在Rt △ABC 中,∠C =90°,∠B =15°,DE 是AB 的中垂线,垂足为D ,交BC 于点E ,若4BE =,则AC =_______ .
18、如图,是由9个等边三角形拼成的六边形,•若已知中间的小等边三角形的边长是a ,则六边形的周长是_______.
(第17题图) (第18题图)
22、两个全等的含300, 600角的三角板ADE 和三角板ABC 如图所示放置,E,A,C 三点在一条直线上,连结BD ,取BD 的中点M ,连结ME ,MC .试判断△EMC 的形状,并说明理由.
26、如图,在∆ABC 中,0
22.5B ∠=,边AB 的垂直平分线交BC 于点D ,DF AC ⊥于F 点,并交BC 边上的 高AE 于点G 。
求证:EG=EC 。
27、如图,在∆ABC 中,AB=AC ,AB 的垂直平分线交AB 于点N ,交BC 的延长线于点M ,若0
40A ∠=
.
(1)求NMB ∠的度数;证明之;
(4)若将(1)中的A ∠改为钝角,你对这个规律性的认识是否需要加以修改?
(2)如果将(1)中A ∠的度数改为0
70,其余条件不变,再求NMB ∠的度数; (3)你发现有什么样的规律性,试
28、已知:如图,在Rt △ABC 中,∠ACB=90°,AC=BC ,点D 是BC 的中点,CE ⊥AD ,垂足为点E ,BF//AC 交CE 的延长线于点F .求证:(1)AC=2BF .(2)AB 垂直平分DF 。
29、已知如图△ABC 是边长为a 的等边三角形,△BCD 的顶角∠BDC =120°,DB =DC 以D 为顶点作一个60°的角,角的两边DM 、DN 分别交AB 于M ,交AC 于N ,连结MN ,求△AMN 的周长。
31、如图,P 是等边三角形ABC 内的一点,连结P A 、PB 、PC ,•以BP 为边作∠PBQ =60°,且BQ =BP ,连结CQ .
(1)观察并猜想AP 与CQ 之间的大小关系,并证明你的结论.
(2)若P A :PB :PC =3:4:5,连结PQ ,试判断△PQC 的形状,并说明理
由.
B A O D C
E 32、(1)如图,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD , 连结AC 和BD ,相交于点E ,连结BC .求∠AEB 的大小;
(2)如图8,ΔOAB 固定不动,保持ΔOCD 的形状和大小不变,将ΔOCD 绕着点O 旋转(ΔOAB 和ΔOCD 不能重
叠),求∠AEB 的大小.
C B
O D
A E。