热力学第二定律.ppt

合集下载

《物理化学》第三章 热力学第二定律PPT课件

《物理化学》第三章 热力学第二定律PPT课件

例一:理想气体自由膨胀
原过程:Q=0,W=0,U=0, H=0
p2,V2
体系从T1,p1,V1 T2, 气体
真空
复原过程:
复原体系,恒温可逆压缩
WR
RT1
ln
V2 ,m V1,m
环境对体系做功
保持U=0,体系给环境放热,而且 QR=-WR
表明当体系复原时,在环境中有W的功变为Q的热,因 此环境能否复原,即理想气体自由膨胀能否成为可逆 过程,取决于热能否全部转化为功,而不引起任何其 他变化。
它们的逆过程都不能自动进行。当借助外力,系统 恢复原状后,会给环境留下不可磨灭的影响。
•化学反应 Zn+H2SO4等?
如图是一个典型的自发过程
小球
小球能量的变化:
热能
重力势能转变为动能,动能转化为热能,热传递给地面和小球。
最后,小球失去势能, 静止地停留在地面。此过程是不可逆转的。 或逆转的几率几乎为零。
能量转化守恒定律(热力学第一定律)的提出,根本上宣布 第一类永动机是不能造出的,它只说明了能量的守恒与转化及 在转化过程中各种能量之间的相互关系, 但不违背热力学第一 定律的过程是否就能发生呢?(同学们可以举很多实例)
热力学第一定律(热化学)告诉我们,在一定温度 下,化学反应H2和O2变成H2O的过程的能量变化可用U(或H) 来表示。
热力学第二定律(the second law of thermodynamics)将解答:
化学变化及自然界发生的一切过程进行 的方向及其限度
第二定律是决定自然界发展方向的根本 规律
学习思路
基本路线与讨论热力学第一定律相似, 先从人们在大量实验中的经验得出热力学第 二定律,建立几个热力学函数S、G、A,再 用其改变量判断过程的方向与限度。

(完整版)热力学第二定律.ppt

(完整版)热力学第二定律.ppt

热力学第二定律的微观实质
从微观上看,任何热力学过程都伴随着大量分子的无序运 动的变化。热力学第二定律就是说明大量分子运动的无序程度 变化的规律。 •功转换为热:大量分子的有序运动向无序运动转化, 是可 能的;而相反的过程,是不可能的。
•热传导:大量分子运动的无序性由于热传导而增大了。 •自由膨胀:大量分子向体积大的空间扩散,无序性增大。
不可能从单一热源吸收热量,使它
Q
完全转变为功而不引起其它变化。
热源
A. 从单一热源吸收热量,使它完全转变为功,一定要引起 其它变化。
特例:等温过程从单一热源吸收热量,并完全用来做功, 必导致系统体积变化。
B. 第二类永动机不可能制成。
η 100% 2.克劳修斯表述
热量不能自动地从低温物体传向高温物体。
讨论: A.没有外界做功,不可能从低温热源将
热量传输到高温热源。 B.第二类永动机不可能制成。
高温热源 Q1 A
Q2 低温热源
热力学第二定律是研究热机效率和制冷系数时提 出的。对热机,不可能吸收的热量全部用来对外 作功;对制冷机,若无外界作功,热量不可能从 低温物体传到高温物体。热力学第二定律的两种 表述形式,解决了物理过程进行的方向问题。
S 0
(孤立系, 自然过程)ห้องสมุดไป่ตู้
§8-6 热力学过程的不可逆性
广义定义:假设所考虑的系统由一个状态出发
经过某一过程达到另一状态,如果存在另一个 过程,它能使系统和外界完全复原(即系统回 到原来状态,同时原过程对外界引起的一切影 响)则原来的过程称为可逆过程;反之,如果 用任何曲折复杂的方法都不能使系统和外界完 全复员,则称为不可逆过程。
各种宏观态不是等几率的。那种宏观态包含的微观态 数多,这种宏观态出现的可能性就大。

热力学第二定律-PPT课件

热力学第二定律-PPT课件

答案 C
18
典例精析 二、热力学第一定律和热力学第二定律
返回
【例3】 关于热力学第一定律和热力学第二定律,下列论述正 确的是( ) A.热力学第一定律指出内能可以与其他形式的能相互转化,
而热力学第二定律则指出内能不可能完全转化为其他形式 的能,故这两条定律是相互矛盾的 B.内能可以全部转化为其他形式的能,只是会产生其他影响, 故两条定律并不矛盾
答案 B
15
典例精析 一、热力学第二定律的基本考查 返回
【例2】 如图1中汽缸内盛有一定质量的理想气体,汽缸壁是 导热的,缸外环境保持恒温,活塞与汽缸壁的接触是光滑的, 但不漏气,现将活塞杆缓慢向右移动,这样气体将等温膨胀并 通过活塞对外做功.若已知理想气体的内能只与温度有关,则 下列说法正确的是( )
的是( D )
A.随着低温技术的发展,我们可以使温度逐渐降低,并最终达 到绝对零度
B.热量是不可能从低温物体传递给高温物体的 C.第二类永动机遵从能量守恒定律,故能制成 D.用活塞压缩汽缸里的空气,对空气做功2.0×105 J,同时空
气向外界放出热量1.5×105 J,则空气的内能增加了0.5×105 J
解析 由于汽缸壁是导热的,外界温度不变,活塞杆与外界连 接并使其缓慢地向右移动过程中,有足够时间进行热交换,所 以汽缸内的气体温度也不变,要保持其内能不变,该过程气体 是从单一热源即外部环境吸收热量,即全部用来对外做功才能 保证内能不变,但此过程不违反热力学第二定律.此过程由外 力对活塞做功来维持,如果没有外力对活塞做功,此过程不可 能发生.
程都具有
,都是不可逆的.
方向性
7
一、热力学第二定律 返回 延伸思考
热传导的方向性能否简单理解为“热量不会从低温物体传给高温物 体”? 答案 不能.

热力学第二定律课件

热力学第二定律课件

●【点拨】 虽然第二类永动机不违反能量守恒定律 ,大量 的事实证明,在任何情况下热机都不可能只有一个热源, 热机要不断地把吸取的热量变为有用的功,就不可避免地 将一部分热量传给低温热源.
若热机从高温热源吸收热量Q1,其中一部分转化为对外所
做的机械功W,另一部分热量Q2随废气排放到冷凝器中.根据
能量转化和守恒定律,应有Q1=W+Q2,热机效率η=
●解析: 热力学第一定律是热现象中内能与其他形式能的 转化规律,是能的转化和守恒定律的具体表现,适用于所 有的热学过程,故C正确,D错误;再根据热力学第二定律, 热量不能自发地从低温物体传到高温物体,必须借助于其 他系统做功.A错误,B正确,故选B、C.
●答案: BC
●2.热力学第二定律的一种表述 ●热量不能 自发 地从低温物体传到高温物体.这是热力学
第二定律的克劳修斯表述,阐述的是 传热 的方向性.
●二、热力学第二定律的另一种表述
●1.热机
●(1)热机工作的两个阶段
●第一个阶段是 燃烧燃料 ,把燃料中的 化学能 变成工作物质的
内能.
●第 二个 阶段是 工作 物质对 外
中制冷剂汽化吸收箱体内的热量,经过冷凝器时制冷剂液
化,放出热量到箱体外,下列说法正确的是( )
●A.热量可以自发地从冰箱内传到冰箱外 ●B . 电 冰 箱 的 制 冷 系 统 能 够 不 断 地 把 冰 箱 内 的 热 量 传 到 外 界 ,
是因为其消耗了电能 ●C.电冰箱的工作原理不违反热力学第一定律 ●D.电冰箱的工作原理违反热力学第一定律
地球上海水的总质量达1.4×1021 kg.如果把这些海水的温度 降低1 ℃,放出的热量就达9×1018 kW·h,足够全世界使用4 000年.这个设想不违背能量守恒定律,但是不能实现,所 以叫做第二类永动机.前面学到的,违背能量守恒定律的永 动机,叫做第一类永动机.

第六章-热力学第二定律PPT课件

第六章-热力学第二定律PPT课件

力学中称为方向性问题。
.
2
3,第二类永动机是不可能实现的
4,热力学第二定律与第一定律 相互独立互相补充
二,热力学第二定律的克劳修斯表述
克劳修斯(Rudolf Clausius,1822-1888),德国物理学家,对热力
学理论有杰出的贡献,曾提出热力学第二定律的克劳修斯表述和熵
的概念,并得出孤立系统的熵增加原理。他还是气体动理论和热力
.
4
3,更简单的克劳修斯表述:热量不可能自发地从低温热源传向高温热源。
通过以上内容,我们来判断以下说法正确与否:
① 功可变成热,热不能变成功。(若 对,举一例说明)
② 功可完全变成热,热不能完全变成功。(若不对,举一反例)
③ 功不能完全变成热,热能完全变成功。
④ 功可完全变成热,但要在外界作用下,热能完全变成功。
2,两种表述将的都是热和功的问题,功不仅限于机械功的广义 功,每一种功热转换过程也可以作为热力学第二定律的表述。
热力学第二定律不是若干典型热学事例的堆积仓库,物理定律也 不能停留在具体的表面描述,真正的热力学定律应当是对物理本 质的描述,不同的表述应当有共同的物理本质,热力学第二定律 应该有更好的叙述。
第六章,热力学第二定律
问题的引入:
1,焦耳理论与卡诺热机理论的矛盾:同属能量转换, 有用功变热可以全部实现,为什么反过来就不能全部 实现,能量转换与守恒定律可没有这样的限制。
2,热机效率始终小于1并不全是技术原因
3,大量与热有关的自然过程仅靠热力学第一定律是不 足以解释的:1)热传递是不可逆的;2)电影散场后, 观众自发离开影院走向各方,却不能自发地重新聚集在 原来的电影院; 3)空气自由膨胀不能自发收缩等。
小结:上述三个不可逆过程,在推理过程中,很容易找到使系统 复原的方法,但这种情况并不多见,并且花费很多精力时间去寻 找系统复原的方法,很不经济。所以,我们必须借助其他方法。

第二章 热力学第二定律 物理化学课件

第二章  热力学第二定律  物理化学课件

设始、终态A,B的熵分别为SA 和 SB,则:
SB SA S
B Qr AT
对微小变化
dS Qr
T
上式习惯上称为熵的定义式,即熵的变化值可 用可逆过程的热温商值来衡量。
2 不可逆过程的热温商
• 如果热机进行不可逆循环,则其效率必 然比卡诺循环效率低,即
Q1 Q2 Q1
T1
T 2
T1

1+
T K
2
dT T
J K-1
24.3J K-1
• 此过程热温商为
Q
T
2
373 K 273 K
32.22
22.18 103
T K
373
3.49
106
• 故开动此致冷机所需之功率为
1780
1 60
W
50%=59.3
W
§2.4 熵的概念
• 1 可逆过程的热温商及熵函数的引出
• 在卡诺循环中,两个热源的热温商之和 等于零,即
Q1 Q2 QB 0
T1 T2
TB
• 那么,任意可逆循环过程的多个热源的 热温商之和是否仍然等于零?
§2.4 熵的概念
S Qr Qr TT
• 对理想气体定温可逆过程来说 Qr=-Wr
nRT ln V2
S
V1 nR ln V2 nR ln p1
T
V1
p2
例题3
• (1) 在300K时,5mol的某理想气体由 10dm3定温可逆膨胀到100dm3。计算此过 程中系统的熵变;
• (2)上述气体在300K时由10dm3向真空膨 胀变为100dm3。试计算此时系统的S。 并与热温商作比较。
Q1

第六章 热力学第二定律.ppt

第六章 热力学第二定律.ppt
热一律一切热力学过程都应满足能量守恒。 但满足能量守恒的过程是否一定都能进行?
热二律满足能量守恒的过程不一定都能进行! 过程的进行还有个方向性的问题。
§1.热力学第二定律
热力学第二定律的表述
热力学第二定律以否定的语言说出一条确定的规律.
1.开尔文(Kelvin)表述: 不可能从单一热源吸取热量,使之完全变为有
N
A


1 261023

0



1 2
N
A


1 261023

0
这种宏观状态虽原则上可出现,
但实际上不可能出现.
例.用铅字随机排版出一百万字小说的概率


1

106
106



1 106106


1 23.326106

1 22107
0
自然过程的方向性的定量描述:
T称为热力学温标 或开尔文温标
( ) 为普适函数,所以热力学温标与测温物质的性质无关。
用热力学温标所表示的温度写为xK,这里x为温度数值。
水的三相点的热力学温度规定为273.16 K 。
热力学温度的单位——开尔文(K)就是水三相点的热力
学温度的 1 。 273.16
热力学温标和理想气体温标中水的三相点温度值都定为 273.16K,可见在理想气体温标能确定的范围内,热力学 温标与理想气体温标的测得值相等。
A A
Q1 Q2 A
A A
Q1 Q2 A
若甲做正循环,乙做逆循环,则η不大于η´ 若甲做逆循环,乙做正循环,则η ´不大于η

即:所有工作于相同高温热源和相同的低温热源之间的一切可 逆热机,其效率都相等。

热力学第二定律-耗散结构_图文

热力学第二定律-耗散结构_图文

生物 生命
生物是远离平衡态的开放系统 生命过程是一种耗散结构 物种的产生 偶然性 物种的保护
麦克斯韦分布
麦克斯韦分布
其中 di S > 0:熵产生,由系统内部的不可逆过 程引起。 de S : 熵流,可正可负。由系统与外部的能量和物
质交换引起。
自组织现象的解释
开放系统从外界接收负熵流 de S<0 且 |de S|>di S 系统的熵 d S = di S + de S<0 使系统由无序变到有序
负熵流
贝纳特实验中,流体系统是一个开放系统,随着热 量的流进流出,系统的熵在变化。若流进流出的热 量相等,为dQ 。
热力学第二定律-耗散结构_图文.ppt
第四章 热力学第二定律
*耗散结构介绍
耗散结构理论: 普利高津(I.Prigoging, 比利时)
1967年创立, 1977年获诺贝尔化学奖。
• 自组织现象 • 开放系统的熵变 • 远离平衡态的分叉现象
• 通过涨落达到有序
有序与无序
热力学第二定律说明了孤立系统中 的自然过程有方向性:
流进的熵
流出的熵
因为
所以
即流出的熵大于流进的熵 。
若净流出的熵超过了系统内部的“熵产生”,系统 的熵就减少,系统就从无序有序。
远离平衡态的分叉现象
1.平衡态热力学(经典热力学)
主要研究平衡态的性质.例如,贝纳特实验中 T=0 的情形。
2. 线性非平衡态热力学(近平衡态热力学)
外界的影响较小,外界的作用与系统状态的变化可 以看成简单的线性关系.
激光
激光器出激光,要输入足够的功率(开放系统) 才能造成粒子数反转的状态(远离平衡态)。
当有能量

物理化学-热力学第二定律PPT课件

物理化学-热力学第二定律PPT课件

(2) 当T2-T1=0, (3) 当T1=0K,
=0 =100%
表述
第四节 卡诺定理
1. 所有工作在相同的高温热源与低温热源 之间的任意热机以卡诺热机的效率最大。
2.卡诺热机的效率只与两热源的温度有关, 而与工作物质无关
证明:
卡诺定理的数学表达式 R≧ I
T2–T1 ≧ T2
Q2+Q1 Q2
Q1 + T1
低电位
逆过程称为非自发过程
(2)不可逆性 理想气体真空膨胀 Q=0 W=0 U=0 再等温可逆压缩回去 U=0 Q=W 系统恢复,环境失W,而得Q
环境恢复,Q能否全部转变W
自发过程能否成为可逆过程,可归结为: 在不引起其它任何变化条件下,热能
否全部变为功。 焦尔的热功当量测定实验
一切自发过程都是不可逆过程
二、热力学第二定律数学表达式 ——克劳修斯不等式
U=0
W=Q1+Q2
W=W1+W2+W3+W4
=
nRT2ln(V2/V1)
-∫
T1 T2
CV
dT
+
nRT1ln(V4/V3)
-∫
T2 T1
CV
dT
W= nRT2ln(V2/V1) + nRT1ln(V4/V3) (2) 绝热膨胀
T2V2 -1 = T1V3 -1 (3) 绝热压缩
T2V1 -1 = T1V4 -1
式中, K1, K2, K 3 均为常数, Cp /CV
绝热功的求算
理想气体绝热可逆过程的功
W V2 pdV V1
=
K V2 V V1
dV
=
K
(1

物理化学热力学第二定律完整ppt课件

物理化学热力学第二定律完整ppt课件
of Thermodynamics)
克劳修斯(Clausius)的说法:“不可能把热从低 温物体传到高温物体,而不引起其它变化。”
开尔文(Kelvin)的说法:“不可能从单一热源取出 热使之完全变为功,而不发生其它的变化。” 后来 被奥斯特瓦德(Ostward)表述为:“第二类永动机是 不可能造成的”。
可逆过程) S(相变)TH(相 (相变变))
(3)理想气体(或理想溶液)的等温混合过程,并
符合分体积定律,即
xB
VB V总
m ixSR nBlnxB B
精选ppt课件2021
16
等温过程的熵变
例1:1mol理想气体在等温下通过:(1)可逆膨胀, (2)真空膨胀,体积增加到10倍,分别求其熵变。
解:(1)可逆膨胀
Q R inV ,C m T i T 1 niR lV n V 1 2 T nV ,C m T 1 T i
QRi nRTi lnVV12
结论:
始终态相同,途径不同,过程的热 QRi 亦不同。但是
QRi nRlnV2 对所有的可逆途径均相等。
Ti
V1
精选ppt课件2021
6
2.2.2 熵函数
(1) 焦耳热功当量中功自动转变成热;
(2) 气体向真空膨胀;
(3) 热量从高温物体传入低温物体;
(4) 浓度不等的溶液混合均匀;
(5) 锌片与硫酸铜的置换反应等,
它们的逆过程都不能自动进行。当借助外力,体系恢复
原状后,会给环境留下不可磨灭的影响。
精选ppt课件2021
2
2.2 热力学第二定律(The Second Law
第二类永动机:从单一热源吸热使之完全变为功而不 留下任何影响。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 热力学第二定律
§ 4-1.自发过程的方向性 只满足能量守恒的过程一定能实现吗? 功热转换
m 通过摩擦而使功变热的过程是不可逆的,或热不 能自动转化为功;唯一效果是热全部变成功的过 程是不可能的。 功热转换过程具有方向性。
热传导
热量由高温物体传向低温物体的过程是不可逆的; 或, 热量不能自动地由低温物体传向高温物体。 气体的绝热自由膨胀
狭义定义:系统状态变化过程中,逆过程能重复
正过程的每一个状态,且不引起其他变化的过程。
1.热力学过程的不可逆性
– 理想气体绝热自由膨胀是不可逆的。在隔板 被抽去的瞬间,气体聚集在左半部,这是一 种非平衡态,此后气体将自动膨胀充满整个 容器。最后达到平衡态。其反过程由平衡态 回到非平衡态的过程不可能自动发生。 – 热传导过程是不可逆的。热量总是自动地由 高温物体传向低温物体,从而使两物体温度 相同,达到热平衡。从未发现其反过程,使 两物体温差增大。
热力学第二定律的微观实质
从微观上看,任何热力学过程都伴随着大量分子的无序运 动的变化。热力学第二定律就是说明大量分子运动的无序程度
变化的规律。
•功转换为热:大量分子的有序运动向无序运动转化, 是可 能的;而相反的过程,是不可能的。 •热传导:大量分子运动的无序性由于热传导而增大了。 •自由膨胀:大量分子向体积大的空间扩散,无序性增大。 热力学第二定律的微观实质:在孤立系统内所发生的一切实 际宏观过程,总是沿着分子运动无序性增大的方向进行。
分布 (宏观态)
详细分布 (微观态)

1
4
6
4
1
共有24=16种可能的方式,而且4个分子全部退回到A部 的可能性即几率为1/24=1/16。可认4个分子的自由膨 胀是“可逆的”。 一般来说,若有N个分子,则共2N种可能方式,而N个分 子全部退回到A部的几率1/2N.对于真实理想气体系统 N1023/mol,这些分子全部退回到A部的几率 23 10 为 12 。此数值极小,意味着此事件永远不回 发生。从任何实际操作的意义上说,不可能发生此类 事件,因为在宇宙存在的年限( 1018秒)内谁也不会 看到发生此类事件。 对单个分子或少量分子来说,它们扩散到B部的过程 原则上是可逆的。但对大量分子组成的宏观系统来说, 它们向B部自由膨胀的宏观过程实际上是不可逆的。这 就是宏观过程的不可逆性在微观上的统计解释。
气体向真空中绝热自由膨胀的过程是不可逆的。
非平衡态到平衡态的过程是 不可逆的
一切与热现象有关的实际宏观过程都是不可逆的。
§ 4-2 热力学第二定律
一切与热现象有关的实际宏观过程都是按一定的方向进 行的。说明自然宏观过程进行的方向的规律称为热力学第二 定律,它有两种表述: A Q 热源
1.开尔文表述
S S1 S 2
子系统的微观状态数是独立的, 不相干的.
与热力学第二定律的统计表述相比较
宏观热力学指出:孤立系统内部所发生的过程总是朝 着熵增加的方向进行。
S 0
(孤立系, 自然过程)
§8-6 热力学过程的不可逆性
广义定义:假设所考虑的系统由一个状态出发
经过某一过程达到另一状态,如果存在另一个 过程,它能使系统和外界完全复原(即系统回 到原来状态,同时原过程对外界引起的一切影 响)则原来的过程称为可逆过程;反之,如果 用任何曲折复杂的方法都不能使系统和外界完 全复员,则称为不可逆过程。
各种宏观态不是等几率的。那种宏观态包含的微观态 数多,这种宏观态出现的可能性就大。 定义热力学几率:与同一宏观态相应的微观态数称为 热力学几率。记为 。
在上例中,均匀分布这种宏观态,相应的微观态最多,热力学 几率最大,实际观测到的可能性或几率最大。对于1023个分子 组成的宏观系统来说,均匀分布这种宏观态的热力学几率与各 种可能的宏观态的热力学几率的总和相比,此比值几乎或实际 上为100%。 因此,实际观测到的总是均匀分布这种宏观态。即系统最后所 达到的平衡态。 热力学第二定律的统计表述: 孤立系统内部所发生的过程总是从包含微观态数少的宏观态向 包含微观态数多的宏观态过渡,从热力学几率小的状态向热力 学几率大的状态过渡。
讨论: A.没有外界做功,不可能从低温热源将 高温热源 Q1 A
热量传输到高温热源。
B.第二类永动机不可能制成。
Q2
低温热源
热力学第二定律是研究热机效率和制冷系数时提 出的。对热机,不可能吸收的热量全部用来对外 作功;对制冷机,若无外界作功,热量不可能从 低温物体传到高温物体。热力学第二定律的两种 表述形式,解决了物理过程进行的方向问题。
不可能从单一热源吸收热量,使它 完全转变为功而不引起其它变化。
A. 从单一热源吸收热量,使它完全转变为功,一定要引起
其它变化。 特例:等温过程从单一热源吸收热量,并完全用来做功, 必导致系统体积变化。
B. 第二类永动机不可能制成。
η 100%
2.克劳修斯表述
热量不能自动地从低温物体传向高温物体。
§4-5 玻尔兹曼公式和熵增加原理 玻数)
S----熵 熵与热力学 几率有关
玻尔兹曼建 立了此关系
越大,微观态 数就越多,系统 就越混乱越无序。
熵的微观意义:系统内分子热运动无序性的一种量度。 (也被用到信息中)
熵的可加性: 与微观状态的可乘性相对应. 两个独立系统的熵为二系统熵之和.
§4-4 热力学概率与自然过程方向 1.统计意义 从统计观点探讨过程的不可逆性和熵的微观意义, 由此深入认识第二定律的本质。

不可逆过程的统计性质 (以气体自由膨胀为例) 一个被隔板分为A、B相等两部分的容器,装有4个涂 以不同颜色分子。开始时,4个分子都在A部,抽出隔 板后分子将向B部扩散并在整个容器内无规则运动。 隔板被抽出后,4分子在容器中可能的分布情形 如下图所示:
热力学第二定律的两种表述形式是等效的,若其 中一种说法成立,则另一种说法也成立;反之亦 然。
热力学第二定律不是推出来的,而是从大量客观 实践中总结出来的规律,因此,不能直接验证其 正确性。
3.两种表述是等价的
假设克劳修斯表述不成立, 则开尔文表述也不成立。
假设开尔文表述不成立,则 克劳修斯表述也不成立。
相关文档
最新文档