精品-立方根练习题
(完整版)立方根练习题.doc
练习二二、填空题一、判断题1、如果一个数的立方根等于它本身,那么这个数是1、如果 b 是 a 的三次幂, 那么 b 的立方根是 a (. )________.2、任何正数都有两个立方根, 它们互为相反数 (.)13、负数没有立方根( )2、3 =________ , ( 3 8 )3 =________ 4、如果 a 是 b 的立方根,那么 ab ≥ 0.( )27-3的立方根是-1)3、 364 的平方根是 ________.5、 (- 2).(2、3a 一定是a 的三次算术根. ()4、 64 的立方根是 ________. 67 若一个数的立方根是这个数本身,那么这个数一定是零 . ( )8 3 3 1 > 4 3 1 .( )二、 .选择题1、如果 a 是 (- 3)2 的平方根,那么 3 a 等于( )A. - 3B.- 33C.± 3D. 3 3 或- 332、若 x < 0,则 x 2 3x 3 等于() A. xB.2xC.0D.- 2x3 若 a 2=( - 5)2,b 3=(- 5)3,则 a+b 的值为( ) A.0B.± 10C.0 或 10D.0 或- 104、如图 1:数轴上点 A 表示的数为 x ,则 x 2- 13 的立 方根是( )A. 5 - 13B. - 5 - 13C.2D.- 23 ,则 x 等于5、如果 2(x - 2)3=64( )A. 1B. 7C.1 或 7 D.以上答案都不对2 2226.下列说法中正确的是( )A. - 4 没有立方根B.1 的立方根是± 1C.1的立方根是1D.- 5 的立方根是 353666. 3 64 的平方根是 ______.7.( 3x - 2) 3=0.343, 则 x=______.8.若 x1 + 1 x 有意义,则 3 x =______.8 89.若 x<0,则 x 2 =______, 3 x 3 =______.10.若 x=( 35 )3 ,则x 1 =______.三、解答题1.求下列各数的立方根( 1)729 ( 2)- 417( 3)-125( 4)(- 5) 3272162.求下列各式中的 x. (1)125x 3=8(2)( - 2+x)3=- 216(3) 3 x2 =- 2(4)27(x+1) 3+64=03.已知 a 364 +|b 3- 27|=0,求 (a - b)b 的立方根 .4.已知第一个正方体纸盒的棱长为 6 cm ,第二个正方 体纸盒的体积比第一个纸盒的体积大127 cm 3,求第二个纸盒的棱长 .5.判断下列各式是否正确成立 .1) 3 22=2 3 2777.在下列各式中:3210= 4 3 0.001 =0.1, 30.0133273(2) 33=3·26 3=0.1, - 3 (27) 326=- 27,其中正确的个数是()A.1B.2C.3D.4(3) 344=43463 638.若 m<0,则 m 的立方根是()A. 3 mB.- 3 mC.± 3 mD. 3m(4) 3 5 5 =5 3 59 如果 3 6124 124x 是 6- x 的三次算术根,那么()判断完以后,你有什么体会?你能否得到更一般的结A. x<6B.x=6C.x ≤ 6D. x 是任意数论?若能,请写出你的一般结论 .10、下列说法中,正确的是()A. 一个有理数的平方根有两个,它们互为相反数B.一个有理数的立方根,不是正数就是负数C.负数没有立方根D.如果一个数的立方根是这个数本身,那么这个数一定是- 1,0, 1。
立方根练习题及答案
实用精品文献资料分享立方根练习题及答案八年级上§12.1平方根与立方根立方根作业一、积累•整合 1、判断题 (1)如果b是a的三次幂,那么b的立方根是a.……………………………………() (2)任何正数都有两个立方根,它们互为相反数.……………………………………() (3)负数没有立方根.……………………………………………………………………()(4)如果a是b的立方根,那么ab≥0.…………………………………………………() 2、填空题 (5)如果一个数的立方根等于它本身,那么这个数是________. (6)=________, ( )3=________ (7) 的平方根是________. (8) 的立方根是________. 3、求下列各数的立方根(9)729(10)-(11)-(12)(-5)3 二、拓展•应用 4、解答题(13)若球的半径为R,则球的体积V与R的关系式为V= πR3.已知一个足球的体积为6280 cm3,试计算足球的半径.(π取3.14,精确到0.1) (14)已知第一个正方体纸盒的棱长为6 cm,第二个正方体纸盒的体积比第一个纸盒的体积大127 cm3,求第二个纸盒的棱长. 三、探索•创新 5、阅读理解题(15)判断下列各式是否正确成立. 判断完以后,你有什么体会?你能否得到更一般的结论?若能,请写出你的一般结论. (1) =2 (2) =3• (3) =4 (4) =5八年级上§12.1平方根与立方根立方根作业答案 1、判断题(1)√ (2)× 正数有一个立方根(3)×因为负数有立方根。
(4)√ 2、填空题 (5)0与±1 (6)-,8 (7)±4 (8)2 3、求下列各数的立方根(9)9 因为,所以(10)-(11)-(12)-5 4、解答题(13)由已知6280= π•R3 ∴6280≈ ×3.14R3,∴R3=1500 ∴R≈11.3 cm (14)7cm 设第二个正方体纸盒棱长为xcm,得:x3=63+127,所以x=7cm 5、阅读理解题(15)以上四个式子都正确,一般结论为: =n (其中n为正整数)。
初二下立方根练习题100道
初二下立方根练习题100道1. 计算 $ \sqrt[3]{1} $ 的值。
2. 计算 $ \sqrt[3]{8} $ 的值。
3. 计算 $ \sqrt[3]{27} $ 的值。
4. 计算 $ \sqrt[3]{64} $ 的值。
5. 计算 $ \sqrt[3]{125} $ 的值。
6. 计算 $ \sqrt[3]{216} $ 的值。
7. 计算 $ \sqrt[3]{343} $ 的值。
8. 计算 $ \sqrt[3]{512} $ 的值。
9. 计算 $ \sqrt[3]{729} $ 的值。
10. 计算 $ \sqrt[3]{1000} $ 的值。
11. 计算 $ \sqrt[3]{1331} $ 的值。
12. 计算 $ \sqrt[3]{1728} $ 的值。
13. 计算 $ \sqrt[3]{2197} $ 的值。
14. 计算 $ \sqrt[3]{2744} $ 的值。
15. 计算 $ \sqrt[3]{3375} $ 的值。
16. 计算 $ \sqrt[3]{4096} $ 的值。
18. 计算 $ \sqrt[3]{5832} $ 的值。
19. 计算 $ \sqrt[3]{6859} $ 的值。
20. 计算 $ \sqrt[3]{8000} $ 的值。
21. 计算 $ \sqrt[3]{9261} $ 的值。
22. 计算 $ \sqrt[3]{10648} $ 的值。
23. 计算 $ \sqrt[3]{12167} $ 的值。
24. 计算 $ \sqrt[3]{13824} $ 的值。
25. 计算 $ \sqrt[3]{15625} $ 的值。
26. 计算 $ \sqrt[3]{17576} $ 的值。
27. 计算 $ \sqrt[3]{19683} $ 的值。
28. 计算 $ \sqrt[3]{21952} $ 的值。
29. 计算 $ \sqrt[3]{24389} $ 的值。
30. 计算 $ \sqrt[3]{27000} $ 的值。
(完整版)立方根习题精选及答案(二)
立方根习题精选(二)1.-35是的立方根。
2.当x3.立方根等于本身的数有。
4.若m是a的立方根,则-m是的立方根。
56.若x3=a,则下列说法正确的是()7.-7的立方根用符号表示应为()ABCD.84a=-成立,那么a的取值范围是()A.a≤4B.-a≤4C.a≥4D.任意实数9.下列四种说法中,正确的是()①1的立方根是1;②127的立方根是±13;③-81无立方根;④互为相反数的两个数的立方根互为相反数。
A.①②B .①③C .①④D .②④10.a <0,那么a 的立方根是()AB .CD11.下列各数有立方根的有()①27,②5,③0,④12,⑤-16,⑥-10-6 A .3个B .4个C .5个D .6个12.求下列各数的立方根:(1)21027; (2)-0.008(3)(-4)314)x 3<的立方根是。
15。
16.下列式子中不正确的是()A 235=B 6=±C0.4=D1 5 =17A.正数B.负数C.非正数D.非负数184=的值是()A.-3B.3C.10D.-1019.当a<0得()A.-1B.1C.0D.±120.求下列各式的值:(1(2(3)21.若x 是64。
22.求下列各式中x 的值。
(1)(x-3)3-64=0(2325x 116=-23x y的值。
(一)新型题24是一个整数,那么最大的负整数a 是多少?252a 1=-,求a 的值.(二)课本习题变式题26.(课本P103第4题变式题)一个正方体,它的体积是棱长为3cm 的正方体体积的8倍,求这个正方体的表面积.(三)易错题27.(2)当x(四)难题巧解题28.若a 、b 互为相反数,c 、d 1的值.(五)一题多变题29的平方根是。
的平方根是±3,则a =。
的立方根是2,则a =。
[数学在学校、家庭、社会生活中的应用]30.要用体积是125cm 3的木块做成八个一样的小正方体,那么这八个小正方体的棱长是多少?[数学在生产、经济、科技中的应用]31.要用铁皮焊制正方体水箱,使其容积为1.728m3,问至少需要多大面积的铁皮?[自主探究]32.(1)观察下表,你能得到什么规律?≈(2) 2.22[潜能开发]33.请分别计算下列各式的值:,.从中你能发现什么规律?能用数学符号表示出来吗??[信息处理]34.在一次设计比赛中,两位参赛者每人得到1m3的可塑性原料,甲把它塑造成一个正方体,乙把它塑造成一个球体(损耗不计).比赛规定作品高度不超过1.1m,请你利用所学知识,分析说明哪一个人的作品符合要求?[开放实践]35.如果A a+3b的算术平方根,B=2a-1-a2的立方根,并且a、b满足关系式a-2b+3=2,求A+B的立方根.[中考链接]36.(2004·山东济宁()A.2B.-2D37.(2004·福州)如果x 3=8,那么x =。
2023中考数学立方根练习题及答案
2023中考数学立方根练习题及答案立方根是数学中的一个重要概念,它在数学运算和解题中具有广泛的应用。
为了帮助同学们更好地掌握立方根的计算方法和应用技巧,以下是一些针对2023中考数学立方根的练习题及答案。
练习题一:计算立方根1. 计算∛272. 计算∛5123. 计算∛0.0084. 计算∛1,0005. 计算∛1答案:1. ∛27 = 32. ∛512 = 83. ∛0.008 = 0.24. ∛1,000 = 105. ∛1 = 1练习题二:立方根的运算法则1. 简化表达式:∛(2^3 × 3^2 × 5)2. 简化表达式:∛(64 ÷ 4^2)3. 简化表达式:∛(8^2 × 4)4. 求 2∛(8^2) 的值答案:1. ∛(2^3 × 3^2 × 5) = ∛(8 × 9 × 5) = 6∛52. ∛(64 ÷ 4^2) = ∛(64 ÷ 16) = ∛4 = 23. ∛(8^2 × 4) = ∛(64 × 4) = ∛256 = 84. 2∛(8^2) = 2 ×∛64 = 2 × 4 = 8练习题三:立方根的应用1. 若正方体的边长为 a cm,则它的体积 V (cm³) 可表示为 V = a^3。
已知正方体的体积为 125 cm³,求它的边长。
2. 某球形鱼缸的水容积为4,096 π cm³,求其半径 r (cm)。
3. 已知 x > 0,且 x^3 = 0.001,求 x 的值。
答案:1. V = a^3,已知 V = 125,代入得 125 = a^3,两边开立方根得∛125 = a,即 a = 5。
因此,正方体的边长为 5 cm。
2. 已知V = 4,096 π,根据球体积公式 V = (4/3)πr^3,将公式与已知的 V 对比可得(4/3)πr^3 = 4,096 π。
立方根练习题(含答案)
立方根练习题(含答案)1.正确的说法是:-2是8的立方根,-4是6根,-3是-27的立方根,11没有实数的立方根。
2.正确的说法是:A。
3.正确的答案是:C。
4.立方体的体积为64,所以边长为4,算术平方根为±4,所以选项A和C都正确。
5.正确的说法是:B。
6.3125=5^5.7.这个数是0或1.8.a=-7/3.9.b=3-2a。
10.(1) 2a/3b;(2) -2.11.(1) a=2,b=-7;(2) 3.12.(1) x=-3/2;(2) x=1/4.13.两个正方体纸箱的棱长为25厘米。
14.m=5,所以m-9的立方根为-2.15.2.16.x=0.01,y=51.93.17.A。
18.B。
19.A。
20.B。
3.根据立方根的定义,可以得到23的立方根为2,43的立方根为4,-1的立方根为-1,(-4)3的立方根为-4,因此选B。
4.根据立方体的体积公式,可以得到它的棱长为立方根64,即4,因此它的棱长的算术平方根为2,选D。
7.根据平方根与立方根的定义,可以得到(-)的平方根等于-的立方根,因此答案为-。
8.由于(-7)3=-343,因此a=-343,答案为-343.9.根据方程2a-1+(b+3)2=23,可以解得a=-1,b=-3,因此答案为-1.10.(1)根据立方根的定义,可以得到(27/8)的立方根为3/2,因此答案为3/2;(2)根据立方根的定义,可以得到(-10-2)3=-10-6,因此(-10-6)的立方根为-10-2.11.(1)由4是3a-2的算术平方根得到3a-2=16,解得a=6,再由2-15a-b的立方根为-5得到2-15a-b=-125,解得b=37;(2)代入b=37和a=6,得到2b-a-4=64,因此2b-a-4的平方根为±8.12.(1)由8x3+27=0得到8x3=-27,解得x=-3/2;(2)由64(x+1)3=27得到(x+1)3=27/64,解得x=-3/4.13.设正方体纸箱的棱长为x厘米,则2x3=50×40×30,解得x≈31,因此这两个正方体纸箱的棱长为31厘米。
初中数学立方根练习及答案
初中数学立方根练习及答案一、选择题:1.下列等式成立的是( )=±2.下列语句正确的是( )A.如果一个数的立方根是这个数本身,那么这个数一定是0B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个不为零的数的立方根和这个数同号,0的立方根是0( )A.±4B.4C.-4D.-84.下列各数中,立方根一定是负数的是( )A.-aB.-a 2C.-a 2-1D.-a 2+15.0.27的立方根是( )A. D.±0.36.下列计算或命题中正确的有( )①±4都是64的立方根; =x; 2; =±4A.1个B.2个C.3个D.4个7.一个数的算术平方根与它的立方根的值相同,则这个数是( )A.1B.0或1C.0D.非负数8.若a 是(-3)2的平方根,( )或或-3二、填空:9.125的立方根是________,________的立方根是-5.10.若a 2=(-3)2,则a=_______,若a 3=(-3)3,则a=______.11.若x-1是125的立方根,则x-7的立方根是_______.12.若(4x)3=-216,则x=_____.14.5个同样大小的正方体的体积是135cm3,则每个正方体的棱长为_______.)3=______,________.三、解答题:17.求下列各式中x的值.(1)12x3+32=0 (2)(x-2)3=64; (3)512-27x3=0 (4)(x+3)3+27=018.(1)填表:(2)由上表你发现了什么规律?请用语言叙述这个规律:_________________________________________________________________________________________________.(3)根据你发现的规律填空:=0.07696,三、解答:19.一个正方体的体积是棱长为3厘米的正方体体积的8倍,这个正方体的棱长是多少?20.将一个体积为64cm2的正方体木块,锯为8个同样大小的正方体木块,则每个小正方体木块的棱长是多少厘米?21.某金属冶炼厂,将27个大小相同的立方体钢锭在炉中熔化后浇铸成一个长方体钢锭,量得这个长方体钢锭的长、宽、高分别为160cm、80cm和40cm,•求原来立方体钢锭的边长为多少?22.已知一个小正方体的棱长是6cm,要做一个大正方体,使它的体积是小正方体体积的3倍,求这个大正方体的表面积(精确到0.1cm2).答案:1.C2.D3.B4.C5.C6.B7.B8.C9.5,-125 10.±3,-3 11.-1 •12.-24 13.1414.3cm 15.-8,2 16.±217.(1)-4 (2)6 (3) 38(4)-618.(1)0.01,0.1,1,10,100(2)被开方数扩大1000倍,则立方根扩大10倍(3)①14.42 •0.1442 ②7.69619.6厘米20.2cm21.设立方体的边长为xcm,则27.x3=160•×80×4022.设大正方体的棱长为xcm,则x3=33×63.立方根一、基础过关1.-64的立方根是()A.-8 B.±4 C.-4 D.4 2.-8的立方根与4的算术平方根的和是()A.0 B.4 C.-4 D.0或-4 3.下列说法中正确的是()A.512的立方根是±8 BC.的立方根为4 D4.下列各组数中,互为相反数的一组是()A.-2 B.-2.-2与-12D.|-2|与25.如果一个数的立方根是这个数本身,那么这个数是() A.0 B.1 C.1或-1 D.1,-1或0 6.(-1)64的立方根是()A.1 B.-1 C.-4 D.47.若a的值为()A.78B.-78C.±78D.3435128.一个自然数a的算术平方根为x,则a+1的立方根是()A. C9.求下列各式的值;(1);(2(3);(4)3.10.求下列各式中的x;(1)8x3+125=0;(2)(x+3)3+27=0;(3=5;(4)2x3-6=34.二、综合创新11.已知A=x x+y+3的算术平方根,B=2x-x+2y的立方根,试求B-A的立方根.12.(1)某工厂使用半径为1米的一种球形储气罐储藏气体.现在要建一个新的球形储气罐,如果它的体积(球的体积公式为V=43πr3,r为球的半径)是原来的8倍,那么它的半径是原储气罐半径的多少倍?如果储气罐的体积是原来的27倍呢?n倍呢?(2)一个人每天平均要饮用大约0.0015米3的各种液体,按70岁计算,•他所饮用的液体总量大约为40米3.如果用一圆柱形的容器(底面直径等于高)来装这些液体,这个容器大约有多高(精确到0.1米)?(π=3.14)13.(1)(2005年,黄冈)立方等于-64的数是______.(2)下列说法正确的是()A.-1的倒数是1 B.-1的相反数是-1C.1的算术平方根是1 D.1的立方根是±114.(易错题))A.8 B.4 C.2 D.16三、培优训练15.(探究题)用计算器探索;已知按一定规律排列的一组数;1,.如果从中选出若干个数,使它们的和大于3,那么至少要选几个数?16.(开放题)任意找一个非零数,利用计算器对它不断进行开立方运算,•你发现了什么?数学世界高龄几何清帝乾隆为显示他治国有方,太平盛世,并表示对老年人的关怀与尊敬,•普邀集了全国有声望的老人逾千人,在乾清宫举行隆重而盛大的“千叟宴”.•出席宴会的一位老者,鹤发童颜,精神矍铄,一问竟是与会者中古稀之年的最长者.乾隆心中大喜,不禁吟出一句上联:花甲重逢,又加三七岁月.要求在座的人对答下联,座中一位学识渊博、才智机敏的大臣纪晓岚,即时应对出下联:古稀双庆,更多一度春秋.从这一对句中,你能不能知道这位长寿者当年已有多少高龄?答案:1.C 2.A 3.C 4.A 5.D6.A 点拨;(-1)64=1,1的立方根是1,故选A .7.B 点拨;由题意知a=-78,故选B .8.D 点拨;由题意,知,∴a=x 2,∴a+1=x 2+1,∴a+1,故选D .9.解;(1)=0.1;(275;(3)-=-23;(4)3=16.10.(1)解:8x 3+125=0.x 3=-1258, x=-52. (2)解:(x+3)3+27=0.变形得(x+3)3=-27.∴x+3=-3,∴x=-6.(3)解:=5.x =53,x=125.(4)2x 3-6=34. 变形得x 3=278. ∴x=32. 11.解:2,23 3.x y x y -=⎧⎨-+=⎩ 解得4,2.x y =⎧⎨=⎩B-A=.∴.12.(1)解:设新建储气罐的半径为r 米,依题意,得 43πr 3=8×43π×13解得r=2.所以,新建储气罐的半径是原储气罐半径的2倍.同理,新建储气罐的半径是原来的3倍.(2)解;设这个容器的高为x 米,依题意,得π·(2x )2·x=40. ∴x 3=160π≈50.96 ∴x ≈3.7.答;这个容器大约有3.7米高.13.(1)-4 (2)C14.C 点拨;因为,8的立方根是2,故选C.15.至少要选4个数.16.若找一个正数,利用计算器不断对它进行开立方运算,则结果趋近于1;若找一个负数,利用计算器不断对它进行开立方运算,则结果趋近于-1.数学世界(答案)这位长寿者已有141岁.立方根练习及答案一、选择题1.的平方根是()A.±8 B.±4 C.2 D.±22.下列说法正确的是()A.一个数有立方根,那么它一定有平方根;B.一个数立方根的符号与被开方数的符号相同;C.负数没有平方根,也没有立方根;D.一个数的立方根有两个,它们互为相反数3.若)A.C. .以上都不对4.若,则x与y的关系是()A.x=y=0 B.x=y C.x与y互为相反数 D.x=1 y5.(x-y)3的立方根是()A.x-y B.y-x C.±(x-y) D.以上都不对6.下列语句中,正确的个数有()①0.216的立方根是0.6;③如果a是b的立方根,那么ab≥0; ④若一个数的平方根与立方根相同,则这个数是1A.1个 B.2个 C.3个 D.4个7.计算)A.3 B.7 C.-3 D.-78.如果a是(-3)2)A.-3 B. C.±3 D二、填空题9.计算:-=_______=______.10.-8_____.11.正方体的体积是125cm3,则这个正方体的棱长是_______.12.若x2=-27,则x=_______;若x3=(-4)3,则x=______.13.已知2x+1的平方根是±5,则5x+4的立方根是________.14.已知正方体M的体积是棱长为6cm的正方体N的体积的127,•则正方体M•的棱长为________________cm.15.立方根等于自身的数为______.16.若m<0,化简:│m│.三、简答题17.求下列各式中x的值.①4x3+2716=0 ②(18-12x)3=-0.12518.已知:a2+b2-6a-4b+13=0的值.19.如果3x+16的立方根是4,试求2x+4的平方根.20.已知A=x x+y+3的算术平方根,B=2x-x+2y的立方根,试求B-A的立方根.21.已知(a-3)2+(b-1)2=0的值.22.若互为相反数,求xy的值.23.一个正方体物体,棱长为5cm,若把它的各个棱长加长若干长度之后,•恰好是它原来体积的27倍,求加长的长度为多少cm?24.①已知x、y满足y3,试判断x+y是否存在,有平方根?立方根?答案:一、选择题1.D 解析:=4±2.2.B3.C 解析:举例说明><4.C 解析:由立方根的性质可知,互为相反数的立方根仍为相反数.5.A6.B 解析:①③正确.7.A8.D 解析:(-3)2=9,9的平方根是±3二、填空题9.-4,-3 410.0或-4 2.11.5cm12.-3 -413.4 解析:2x+1=25,x=12,∴5x+4=64.14.2 解析:设棱长为x,则x3=127×63,∴x=215.-1,0,1 解析:记住几个特殊数的立方根.16.-m 解析:根据条件化简得:-m-m+m=-m.三、解答题17.解:①∵4x3+2716=0∴x3=-27 64∴x=3 4②∵(18-12x)3=-0.125∴18-12x=∵18-12x=-0.5∴12x=18.5,∴x=37解析:要把含x的完全立方式放在等号的一边,常数放在等号的另一位,再开立方求得相应的x的值.18.解:由已知条件得:a2-6a+9-b2-4b+4=0∴(a-3)2+(b-2)2=0∴a=3,b=2∴.19.解:∵∴3x+16=64∴x=16∴±±620.解:依题意有x-y=2,x-2y+3=3,得x=4,y=2.代入求得A=3,B=2,故B-A=-1.21.解:因为(a-3)2+(b-1)2=0所以a-3=0,且b-1=0,所以a=3,且b=1.所以=解析:运用偶次方的非负性.22.解:因为互为相反数所以=0所以2y-1=3x-1,即2y=3x,所以xy=2323.解:设加长的长度为xcm,则加长后得到的正方体的棱长为(x+5)cm 依题意得:(x+5)3=27×53解得(x+5)3=153x+5=15x=10答:加长的长度是10cm.24.解:∵x2-9≥0,9-x2≥0∴x2=9∴x=±3又∴x-3≠0∴x=-3∴y3=-1∴y=1∴x+y=-4∴x+y有立方根而没有平方根.。
数学课程立方根运算练习题及答案
数学课程立方根运算练习题及答案一、选择题1. 下列哪个数字的立方根是整数?A. 8B. 27C. 64D. 125答案:B. 272. 若∛x = 4,那么x的值是多少?A. 8B. 16C. 64D. 256答案:D. 2563. ∛(a^3 * b^5)等于下列哪个式子?A. a * bB. a^3 * b^5C. a^2 * b^3D. a^4 * b^8答案:B. a^3 * b^54. 若x=2,则下列哪个等式成立?A. x³ = 8B. x³ = 6C. x³ = 4D. x³ = 2答案:A. x³ = 85. 若a=∛b,哪个式子代表了a的立方根?A. ∛aB. ∛(∛a)C. ∛(a^3)D. ∛(a^2)答案:B. ∛(∛a)二、填空题1. 27的立方根是 3 。
2. ∛(27^4) = 27^1.3 。
3. 若x=8,则∛x = 2 。
4. 若a=3,b=4,则∛(a^3 * b^2)的值为 24 。
5. 若x=∛8,则x的值为 2 。
三、解答题1. 计算∛(64^2)的值。
解:∛(64^2) = ∛4096 = 4。
2. 若x = 2∛3,求x的立方根的值。
解:x的立方根为∛(2∛3) = (∛2)^(1/3) * (∛3)^(1/3) = 2^(1/3) *3^(1/9)。
四、证明题证明:若a、b为正实数,且a > b,则∛a > ∛b。
证明过程:由a > b可推出a³ > b³,再取两边的立方根得到∛a³ > ∛b³,即a > b,所以得证√a > √b。
综上所述,数学课程立方根运算的练习题及答案如上所示。
在解答题和证明题中,我们需要运用立方根的基本定义和运算规则进行计算和推理。
通过练习这些题目,可以提升对立方根的理解和应用能力,进而提高数学水平。
立方根的练习题
立方根的练习题一、选择题1. 立方根的定义是什么?A. 一个数的立方B. 一个数的平方C. 一个数的平方根D. 一个数的立方根2. 立方根的符号是什么?A. √B. ³√C. ²√D. √³3. 以下哪个数的立方根是2?A. 8B. 4C. 6D. 24. 立方根的性质不包括以下哪项?A. 正数的立方根是正数B. 负数的立方根是负数C. 0的立方根是0D. 立方根是唯一的5. 计算立方根:³√-27的值是多少?A. 3B. -3C. 27D. -27二、填空题6. 立方根的定义是______的数。
7. 立方根的符号是______。
8. 一个数的立方根等于它自身,这个数是______。
9. 立方根的计算公式可以表示为______。
10. 如果一个数的立方根是-2,那么这个数是______。
三、计算题11. 计算下列各数的立方根:a. 64b. -64c. 1d. 012. 根据立方根的定义,找出以下数的立方根:a. 8b. -125c. 2713. 判断下列说法是否正确,并给出理由:a. 立方根是正数。
b. 立方根是负数。
c. 立方根是0。
四、解答题14. 解释为什么立方根的计算对于解决实际问题很重要,并给出一个实际应用的例子。
15. 已知一个数的立方根是3,求这个数。
如果这个数的立方根是-3,这个数又是多少?16. 如果一个数的立方根是2,那么这个数的平方是多少?五、应用题17. 某工厂需要制作一个立方体形状的容器,已知容器的体积是27立方米。
求这个容器的边长。
18. 一个正方体的体积是64立方厘米,求这个正方体的棱长。
19. 一个立方体的棱长是3米,求这个立方体的体积。
20. 一个数的立方根是它自身的1/3,求这个数。
六、拓展题21. 立方根在数学中的其他应用有哪些?请列举至少两个例子。
22. 立方根与平方根有何不同?请解释它们的主要区别。
23. 如果一个数的立方根是另一个数的平方根,这个数可能是什么?24. 立方根的概念可以扩展到其他维度吗?如果可以,请简要说明。
(完整版)立方根和几何立方根练习题
(完整版)立方根和几何立方根练习题
前言
本练题旨在帮助学生巩固立方根和几何立方根的概念,并提供相应的练题,以帮助学生熟练运用这些概念。
立方根
立方根是指一个数的立方等于该数的算术根。
常用符号表示立方根为∛。
练题 1
计算以下数的立方根:
1. ∛8
2. ∛27
3. ∛125
4. ∛1000
练题 2
给出一个数 x,找出一个正整数 y,使得 y 的立方等于 x。
计算以下数的结果:
1. x = 64
2. x = 216
3. x = 729
4. x = 1000
几何立方根
几何立方根是指一个体积为一个数的立方体的边长。
常用符号表示几何立方根为³√。
练题 3
计算以下立方体的边长:
1. 一个体积为 8 的立方体
2. 一个体积为 27 的立方体
3. 一个体积为 64 的立方体
4. 一个体积为 125 的立方体
练题 4
给出一个数 x,找出一个边长为 y 的立方体,使得该立方体的体积等于 x。
计算以下数的结果:
1. x = 8
2. x = 27
3. x = 64
4. x = 125
总结
通过本文档提供的练习题,希望能帮助学生掌握立方根和几何立方根的概念,并加强运用能力。
练习题的答案可以自行计算,以检验自己的学习成果。
6.2 立方根100题(含解析)
绝密★启用前一、单选题1)A.2 B.﹣2 C.D.±2【答案】C【解析】【分析】利用立方根定义计算即可求出值.【详解】=2,2的平方根是.故选C.【点睛】本题考查了立方根以及平方根,熟练掌握各自的定义是解答本题的关键.2.有下列说法:①负数没有立方根;②一个数的立方根不是正数就是负数;③一个正数或负数的立方根和这个数同号,0的立方根是0;④如果一个数的立方根是这个数本身,那么这个数必是1或0.其中错误的是()A.①②③B.①②④C.②③④D.①③④【答案】B【解析】【分析】根据立方根的定义和性质解答即可.【详解】解:正数的立方根是正数,负数的立方根是负数,0的立方根是0.立方根等于它本身的数有0,1和−1.所以①②④都是错误的,③正确.故选:B.【点睛】本题考查立方根,熟练掌握立方根的定义和性质是解题的关键.3.立方根等于它本身的有( )A.0,1 B.-1,0,1 C.0, D.1【答案】B【分析】根据立方根性质可知,立方根等于它本身的实数0、1或-1. 【详解】解:∵立方根等于它本身的实数0、1或-1. 故选B . 【点睛】本题考查立方根:如果一个数x 的立方等于a ,那么这个数x 就称为a 的立方根,例如:x 3=a ,x 就是a 的立方根;任意一个数都有立方根,正数的立方根是正数,负数的立方根是负数,0的立方根是0. 4.有理数-8的立方根为( ) A .-2 B .2C .±2D .±4【答案】A 【分析】利用立方根定义计算即可得到结果. 【详解】解:有理数-8 故选A . 【点睛】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.5.比较2 )A .2<<B .2<<C .2<D 2<【答案】C 【分析】先分别求出这三个数的六次方,然后比较它们的六次方的大小,即可比较这三个数的大小. 【详解】解:∵26=64,362125⎡⎤==⎢⎥⎣⎦,26349⎡⎤==⎢⎥⎣⎦,而49<64<125∴6662<<2<< 故选C . 【点睛】此题考查的是无理数的比较大小,根据开方和乘方互为逆运算将无理数化为有理数,然后比较大小是解决此题的关键. 6.下列计算正确的是( )A .3=-B =C 6±D .【答案】D 【分析】直接利用二次根式的性质以及立方根的性质分析得出答案. 【详解】解:3=,故此选项错误;=6=,故此选项错误;D.0.6=-,正确. 故选D . 【点睛】此题主要考查了平方根和算术平方根的性质以及立方根的性质,正确掌握相关性质是解题关键.7的结果是 ( )A .±B .C .±3D .3【答案】D 【解析】∵33=27,3=.故选D . 8.64的立方根是( ) A .4 B .±4 C .8 D .±8【答案】A 【解析】试题分析:∵43=64,∴64的立方根是4, 故选A考点:立方根.9.下列说法中正确的是 ( )A .若0a <0<B .x 是实数,且2x a =,则0a >C .有意义时,0x ≤D .0.1的平方根是0.01±【答案】C 【详解】>0,故A 不正确; 根据一个数的平方为非负数,可知a≥0,故不正确; 根据二次根式的有意义的条件可知-x≥0,求得x≤0,故正确; 根据一个数的平方等于a ,那么这个数就是a 的平方根,故不正确. 故选C10.利用计算器计算时,依次按键下:,则计算器显示的结果与下列各数中最接近的一个是( ) A .2.5 B .2.6 C .2.8 D .2.9【答案】B 【分析】的近似值即可作出判断. 【详解】2.646≈,∴最接近的是2.6, 故选B . 【点睛】本题主要考查了计算器,属于基础知识,解题的关键是掌握计算器上常用按键的功能和使用顺序.11.一个正方体的水晶砖,体积为100 cm 3,它的棱长大约在( ) A .4 cm ~5 cm 之间 B .5 cm ~6 cm 之间 C .6 cm ~7 cm 之间D .7 cm ~8 cm 之间【答案】A【解析】可以利用方程先求正方体的棱长,然后再估算棱长的近似值即可解决问题.解:设正方体的棱长为x,由题意可知x3=100,解得x=,由于43<100<53,所以4<<5.故选A.此题是考查估算无理数的大小在实际生活中的应用,“夹逼法”估算方根的近似值在实际生活中有着广泛的应用,我们应熟练掌握.12.如图为张小亮的答卷,他的得分应是()A.100分B.80分C.60分D.40分【答案】B【详解】解:-1的绝对值是1,2 的倒数是12,-2的相反数是2,1的立方根是1,-1和7的平均数是3,错一个,减去20分,得分是80,故选:B【点睛】本题考查绝对值,倒数,相反数,立方根,平均数.13.下列结论正确的是( )A.64的立方根是4±B.18-没有立方根C.立方根等于本身的的数是0 D=【答案】D【解析】选项A,64的立方根是±4;选项B,18-的立方根是12-;选项C,立方根等于本身的的数是0和±1;选项D,正确,故选D.14.下列说法正确的是()A.-64的立方根是4 B.9的平方根是±3C.4的算术平方根是16 D.0.1的立方根是0.001【答案】B【解析】【分析】依据立方根、平方根和算术平方根的性质求解即可.【详解】A.−64的立方根是−4,故A错误;B.9的平方根是±3,故B正确;C.4的算术平方根是2,故C错误;D.0.1是0.001的立方根,故D错误.故选B.【点睛】考查平方根,算术平方根以及立方根,掌握它们的概念是解题的关键.15.的值是()A.1 B.﹣1 C.3 D.﹣3【答案】B【解析】【分析】直接利用立方根的定义化简得出答案.【详解】因为(-1)3=-1,﹣1.故选:B . 【点睛】此题主要考查了立方根,正确把握立方根的定义是解题关键.,16=0.1738 1.738,则a 的值为( ) A .0.528 B .0.0528 C .0.00528 D .0.000528【答案】C 【分析】根据立方根的变化规律如果被开方数缩小1000倍,它的值就缩小10倍,从而得出答案 【详解】0.528= 1.738= , ∴a=0.00528, 故选C. 【点睛】此题考查了立方根,熟练掌握立方根的变化规律是本题的关键.17.下列语句:① 4 ② 2± ③ 平方根等于本身的数是0和1 ④ )个A .1B .2C .3D .4【答案】A 【解析】试题分析:①4=,的算术平方根为2,故错误;B 2==,故错误;③、平方根等于本身的数只有0,故错误;④22==,=故正确,则本题选A .18.下列计算正确的是( )A ±3B 2C 3D =【答案】B 【分析】根据算术平方根与立方根的定义即可求出答案. 【详解】解:(A )原式=3,故A 错误; (B )原式=﹣2,故B 正确;(C3,故C错误;(D D错误;故选B.【点睛】本题考查算术平方根与立方根,熟练掌握算术平方根与立方根的性质是解题关键. 19.下列各组数中互为相反数的是()A.-2B.-2C.2与()2D.|【答案】A【解析】选项A. -2=2,选项B. -2=-2,选项C. 2与(2=2,选项,故选A.20.(2的平方根是x,64的立方根是y,则x+y的值为()A.3 B.7 C.3或7 D.1或7【答案】D【分析】利用平方根及立方根的定义求出x与y的值,即可确定出x+y的值.【详解】∵(2=9,9的平方根x=±3,y=4,∴x+y=7或1.故答案为7或1.【点睛】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.21.下列说法正确的是( )A.如果一个数的立方根等于这个数本身,那么这个数一定是零B.一个数的立方根和这个数同号,零的立方根是零C.一个数的立方根不是正数就是负数D .负数没有立方根 【答案】B 【解析】A. 如果一个数的立方根等于这个数本身,那么这个数一定是零或±1 ; C. 一个数的立方根不是正数就是负数,还有0;D. 负数有一个负的立方根故选B.22.下列说法中,不正确的是( )A .10B .2-是4的一个平方根C .49的平方根是23D .0.01的算术平方根是0.1 【答案】C 【分析】根据立方根,平方根和算术平方根的定义,即可解答. 【详解】解:A. 10,正确; B. -2是4的一个平方根,正确; C.49的平方根是±23,故错误; D. 0.01的算术平方根是0.1,正确. 故选C . 【点睛】本题考查了平方根和算术平方根,立方根,解决本题的关键是熟记立方根,平方根和算术平方根的定义.23.下列各式正确的是( )A .0.6=±B 3=±C 3=D 2=-【答案】A 【解析】3=,则B 3=-,则C 2=,则D 错,故选A . 24.下列计算中,错误的是( )A .B 34=-C 112=D .25=- 【答案】D 【解析】试题解析:A.正确. B.正确. C.正确.D.22.55⎛⎫=--= ⎪⎝⎭ 故错误. 故选D.25.若一个数的平方根是±8,那么这个数的立方根是( ) A .2 B .±4 C .4 D .±2【答案】C 【解析】 【分析】根据平方根定义,先求这个数,再求这个数的立方根. 【详解】若一个数的平方根是±8,那么这个数是82=64,4=. 故选:C 【点睛】本题考核知识点:平方根和立方根.解题关键点:理解平方根和立方根的意义. 26.下列各组数中互为相反数的一组是( )A .2--B .-4与C .与D .【答案】C 【解析】 【分析】根据只有符号不同的两个数互为相反数,可得答案. 【详解】A、-|-2|=-2,故A错误;B、-4=B错误;C、C正确;D、不是相反数,故D错误;故选C.【点睛】本题考查了相反数,利用了相反数的意义.27.()A.2 B.-2 C.±2 D.不存在【答案】A【解析】【分析】根据立方根的定义求解即可.【详解】∵-2的立方等于-8,∴-8的立方根等于-2,=-.2=--=.∴(2)2故选A.【点睛】此题主要考查了立方根定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.28,则x和y的关系是().A.x=y=0 B.x和y互为相反数C.x和y相等D.不能确定【答案】B【解析】分析:先移项,再两边立方,即可得出x=-y,得出选项即可.详解:,=∴x=-y ,即x 、y 互为相反数, 故选B .点睛:考查了立方根,相反数的应用,解此题的关键是能得出x=-y . 29.下列说法正确的是( )A .4的平方根是±2B .8的立方根是±2C 2=±D 2=-【答案】A 【解析】解:A .4的平方根是±2,故本选项正确; B .8的立方根是2,故本选项错误;C =2,故本选项错误;D =2,故本选项错误; 故选A .点睛:本题考查了对平方根、立方根、算术平方根的定义的应用,主要考查学生的计算能力.30.下列等式正确的是( )A .712=± B .32=-C .3=-D .4=【答案】D 【分析】原式各项利用立方根及算术平方根定义计算即可得到结果. 【详解】A 、原式=712,错误; B 、原式=-(-32)=32,错误;C 、原式没有意义,错误;D、原式=4,正确,故选D.【点睛】此题考查了立方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.31的立方根是( )A.-1 B.0 C.1 D.±1【答案】C【解析】【详解】,=1,故选C.【点睛】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.32.下列说法中正确的有()①负数没有平方根,但负数有立方根;②一个数的立方根等于它本身,则这个数是0或1;5=-⑤一定是负数A.1个B.2个C.3个D.4个【答案】B【分析】根据平方根、立方根的定义进行判断即可得.【详解】①负数没有平方根,但负数有立方根,正确;②一个数的立方根等于它本身,则这个数是0或1或-1,故错误;=,故错误;5,3的平方根是⑤当a=0时,,故错误;综上,正确的有2个,故选B.【点睛】本题考查了平方根、立方根的定义,熟练掌握相关的定义是解题的关键.33)A.2 B.±2 C D.【答案】C【分析】的值,再继续求所求数的算术平方根即可.【详解】,而2,故选C.【点睛】此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.34)A.±2 B.±4 C.4 D.2【答案】D【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.根据算术平方根的定义可知64的算术平方根是8,而8的立方根是2,由此就求出了这个数的立方根.【详解】∵64的算术平方根是8,8的立方根是2,∴这个数的立方根是2.故选D.【点睛】本题考查了立方根与算术平方根的相关知识点,解题的关键是熟练的掌握立方根与算术平方根的定义.35.若a是(﹣3)2( )A.﹣3 B C D.3或﹣3【答案】C【解析】分析:由于a是(﹣3)2的平方根,则根据平方根的定义即可求得a的值,进而求得代数式的值.详解:∵a是(﹣3)2的平方根,∴a=±3,C.点睛:本题主要考查了平方根的定义,容易出现的错误是误认为平方根是﹣3.36.8的相反数的立方根是()A.2 B.12C.﹣2 D.12【答案】C【解析】【分析】根据相反数的定义、立方根的概念计算即可.【详解】8的相反数是﹣8,﹣8的立方根是﹣2,则8的相反数的立方根是﹣2,故选C.【点睛】本题考查了实数的性质,掌握相反数的定义、立方根的概念是解题的关键.37时只能显示1.41421356237十三位(包括小数点),现在想知道7后面的数字是什么,可以在这个计算器中计算下面哪一个值()A.B.10-1)C.D-1【答案】B【解析】由于计算器显示结果的位数有限,要想在原来显示的结果的右端再多显示一位数字,则应该设法去掉左端的数字“1”.对于整数部分不为零的数,计算器不显示位于左端的零. 于是,先将原来显示的结果左端的数字“1”1. 为了使该结果的整数部分不为零,再将该结果的101. 这样,位于原来显示的结果左端的数字消失小数点向右移动一位,即计算)了,空出的一位由原来显示结果右端数字“7”的后一位数字填补,从而实现了题目的要求.101的值.根据以上分析,为了满足要求,应该在这个计算器中计算)故本题应选B.点睛:本题综合考查了计算器的使用以及小数的相关知识. 本题解题的关键在于理解计算器显示数字的特点和规律. 本题的一个难点在于如何构造满足题目要求的算式. 解题过程中要注意,只将原结果的左端数字化为零并不一定会让这个数字消失. 只有当整数部分不为零时,左端的零才不显示. 另外,对于本题而言,将结果的小数点向右移动是为了使该结果的整数部分不为零,要充分理解这一原理.38的立方根是()A.2 B. 2 C.8 D.-8【答案】A【解析】=8,然后根据立方根的意义,求得其立方根为2. 故选A.39的值约为( )A.3.049 B.3.050C.3.051 D.3.052【答案】B【解析】首先根据数的开方的运算方法,然后根据四舍五入法,把结果精确到0.001即可,求出≈3.050.故选B.40.下列命题中正确的是()(1)0.027的立方根是0.3;(2(3)如果a是b的立方根,那么ab≥0;(4)一个数的平方根与其立方根相同,则这个数是1.A .(1)(3)B .(2)(4)C .(1)(4)D .(3)(4)【答案】A 【解析】根据立方根的概念和性质,可知0.027的立方根为0.3,故(1)正确;根据一个负数的立方根为负数,故(2)不正确;如果a 是b 的立方根,那么ab≥0(a 、b 同号),故(3)正确;一个数的平方根与其立方根相同,则这个数是0,故(4)错误. 故选:A.点睛:本题主要考查了平方根和立方根的概念,要掌握其中的几个特殊数字的特殊性质.如果一个数x 的立方等于a ,即x 的三次方等于a (x 3=a ),那么这个数x 就叫做a 的立方根,也叫做三次方根.读作“三次根号a”其中,a 叫做被开方数,3叫做根指数.(a 不等于0)如果x 2=a (a≥0),则x 是a 的平方根.若a >0,则它有两个平方根,我们把正的平方根叫a 的算术平方根:若a=0,则它有一个平方根,即0的平方根是0,0的算术平方根也是0:负数没有平方根. 41.下列计算正确的是( ) A.﹣4 B4C﹣4D﹣4【答案】D 【解析】试题分析:根据二次根式的意义,可知被开方数为非负数,因此A 不正确;根据算术平方根是平方根中带正号的,故B{0aa a ==-(0)(0)(0)a a a =><,故C ,故D 正确. 故选D二、解答题42.已知某正数的两个平方根分别是a ﹣3和2a +15,b 的立方根是﹣2.求﹣2a ﹣b 的算术平方根. 【答案】4【解析】试题分析:根据正数的平方根有两个,且互为相反数,得出a-3+2a+15=0,求出a,再根据b的立方根是-2,求出b,再求-2a-b的算术平方根.解:由题意得a-3+2a+15=0,解得a=-4,由b的立方根是-2,得b=(-2)3=-8.则-2a-b=-2×(-4)-(-8)=16,则-2a-b的算术平方根是4.43.计算下列各题:(1(2.【答案】(1)1 (2)11 4 -【解析】试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可;试题解析:(1)原式=3311-++=;(2)原式=-3-0-12+0.5+14=11 4 -44.已知a+1的算术平方根是1,﹣27的立方根是b﹣12,c﹣3的平方根是±2,求a+b+c 的平方根.【答案】±4.【解析】【分析】根据题意分别求得a,b,c的值,然后代入式子求解即可.【详解】解:∵a+1的算术平方根是1,∴a+1=1,即a=0;∵﹣27的立方根是b﹣12,∴b﹣12=﹣3,即b=9;∵c ﹣3的平方根是±2, ∴c ﹣3=4,即c=7; ∴a+b+c=0+9+7=16, 则a+b+c 的平方根是±4. 【点睛】本题主要考查平方根,算术平方根,立方根,熟练掌握其知识点与区别是解此题的关键. 45.求出下列x 的值: (1)4x 2﹣81=0; (2)8(x+1)3=27.【答案】(1)92x =±.(2)12x =【分析】(1)先整理成x 2=a ,直接开平方法解方程即可; (2)先整理成x 3=a 的形式,再直接开立方解方程即可. 【详解】解:(1)24x 810-=,∴2814x =, 9x 2∴=±;(2)()38x 127+=, ∴327(1)8x +=, ∴312x +=, ∴12x =【点睛】本题考查算术平方根和立方根的相关知识解方程,属于基础题..关键是熟练掌握相关知识点,要灵活运用使计算简便.46.已知x ﹣2的一个平方根是﹣2,2x +y ﹣1的立方根是3,求x +y 的算术平方根.【解析】 【分析】根据x ﹣2的一个平方根是﹣2,可以得到x 的值,根据2x +y ﹣1的立方根是3,可以得到y 的值,从而可以求得x +y 的算术平方根. 【详解】∵x ﹣2的一个平方根是﹣2,∴x ﹣2=4,解得:x =6. ∵2x +y ﹣1的立方根是3,∴2x +y ﹣1=27.∵x =6,∴y =16,∴x +y =22,∴x +y .即x +y 【点睛】本题考查了立方根、平方根、算术平方根,解题的关键是明确立方根、平方根、算术平方根的定义.47.已知某正数的平方根是2a ﹣7和a+4,b ﹣12的立方根为﹣2. (1)求a 、b 的值; (2)求a+b 的平方根.【答案】(1)1a =,4b =;(2)【解析】试题分析:利用正数的平方根有两个,且互为相反数列出方程,求出方程的解即可得到a 的值,根据立方根的定义求出b 的值,根据平方根的定义求出+a b 的平方根.试题解析:(1)由题意得,2a −7+a +4=0, 解得:a =1, b −12=−8, 解得:b =4; (2)a +b =5,a +b 的平方根为48.已知x 的两个不同的平方根分别是a +3和2a -15,且 4=,求x ,y的值.【答案】x=49,y=17 【解析】试题分析:根据平方根的性质,一个正数平方根有两个,它们互为相反数,因此可列方程求出a 的值,然后根据立方根的意义,求出y 的值. 试题解析:∵x 的两个不同的平方根分别是a +3和2a -15 ∴a +3+2a -15=0解之,得a =4∴x =(a +3)2=494=∴49+y -2=64解之,得y =1749.已知 2x-y 的平方根为 ±3, -2是 y 的立方根,求 -4xy 的平方根.【答案】±4 【解析】试题分析:首先根据平方根和立方根的性质列出关于x 和y 的二元一次方程组,从而得出x 和y 的值,然后求出-4xy 的平方根.试题解析:根据题意得:298x y y -=⎧⎨=-⎩ , 解得:128x y ⎧=⎪⎨⎪=-⎩, 则-4xy=16 ,∴4==±.点睛:本题主要考查的是平方根和立方根的性质,属于简答题型.正数的平方根有两个,他们互为相反数;零的平方根为零;负数没有平方根;每个数的立方根只有一个,正数有一个正的立方根,负数有一个负的立方根.立方根等于本身的数有0和±1;平方根等于本身的数只有0;算术平方根等于本身的数为0和1.50.计算:201811--【答案】【解析】分析:收下根据立方根、算术平方根、绝对值、立方根的性质求出各式的值,然后进行求和得出答案.详解:原式15123=-++-=.点睛:本题主要考查的是实数的计算,属于基础问题.解决这个问题的核心就是要明确各种计算法则.51.已知2a -1的平方根是±3,3a -b +2的算术平方根是4,求a +3b 的立方根.【答案】2.【分析】根据平方根与算术平方根的定义得到3a -b +2=16,2a -1=9,则可计算出a =5,b =1,然后计算a +b 后利用立方根的定义求解.【详解】∵2a -1的平方根是±3∴2a -1=9,即a =5∵3a -b +2的算术平方根是4,a=5∴3a -b +2=16,即b =1∴a +3b =8∴a +3b 的立方根是252.已知m M =是m 3+的算术平方根,2m 4n N -=n 2-的立方根,求:M N -的值的平方根.【答案】2【详解】解:因为m M =是m+3的算术平方根,2m 4n N -=n ﹣2的立方根,所以可得:m ﹣4=2,2m ﹣4n+3=3,解得:m=6,n=3,把m=6,n=3代入m+3=9,n ﹣2=1,所以可得M=3,N=1,把M=3,N=1代入M ﹣N=3﹣1=2.53.请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的表面积.【答案】(1)魔方的棱长6cm ;(2)长方体纸盒的长为10cm .【解析】试题分析:(1)由正方体的体积公式,再根据立方根,即可解答;(2)根据长方体的体积公式,再根据平方根,即可解答.试题解析:(1)设魔方的棱长为xcm ,可得:x 3=216,解得:x=6,答:该魔方的棱长6cm ;(2)设该长方体纸盒的长为ycm ,6y 2=600,y 2=100,y=10,答:该长方体纸盒的长为10cm .54.解方程:()2116(2)9x -= ()3227(1)640x +-=.【答案】()11114x =,254x =,()123x =. 【解析】分析:(1)根据平方根的定义进行计算即可;(2)根据立方根的定义进行计算即可.详解:(1)(x ﹣2)2=916,x ﹣2=±34,x =±34+2,x 1=114,x 2=54; (2)(x +1)3=6427 x +1=43 x =43﹣1=13. 点睛:本题考查了立方根和平方根,掌握平方根和立方根的定义是解题的关键.55.已知一个正方体的体积是1 000 cm 3,现在要在它的8个角上分别截去8个大小相同的小正方体,使得截去后余下的体积是488 cm 3,问截得的每个小正方体的棱长是多少?【答案】截得的每个小正方体的棱长是4 cm.【解析】试题分析:于个正方体的体积是1000cm 3,现在要在它的8个角上分别截去8个大小相同的小正方体,使截去后余下的体积是488cm 3,设截得的每个小正方体的棱长xcm ,根据已知条件可以列出方程,解方程即可求解.试题解析:设截去的每个小正方体的棱长是xcm ,则由题意得310008488x -=,解得x =4.答:截去的每个小正方体的棱长是4厘米.点睛:此题主要考查了立方根的应用,其中求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号.56.已知一个正数的平方根是a+3和2a﹣15,b的立方根是﹣2,求﹣b﹣a的平方根.【答案】±2.【解析】由一个数的平方根互为相反数,有a+3+2a﹣15=0,可求出a值,又b的立方根是﹣2,可求出b值,然后代入求出答案.解:∵一个数的平方根互为相反数,∴a+3+2a﹣15=0,解得:a=4,又b的立方根是﹣2,∴b=﹣8,∴﹣b﹣a=4,其平方根为:±2,即﹣b﹣a的平方根为±2.57.已知M2m n+=m+3的算术平方根,N2m=是n﹣2的立方根.求(n﹣m)2008.【答案】1【解析】【分析】由于算术平方根的根指数为2,立方根的根指数为3,由此可以列出关于m、n的方程组,解方程组求出m和n,进而代入所求代数式求解即可.【详解】∵M2m n+=m+3的算术平方根,N2m=n﹣2的立方根,∴2m+n﹣3=2,2m﹣n=3,∴m=2,n=1,∴(n﹣m)2008=1.【点睛】本题考查了算术平方根、立方根的定义.解决本题的关键是利用根的指数知识得到未知字母的值.58.已知a是16的算术平方根,b是9的平方根,c是﹣27的立方根,求a2+b2+c3+a ﹣c+2的值.【答案】7【分析】根据算术平方根的定义,平方根的定义,立方根的定义,求出a、b、c的值,然后代入求解即可.【详解】解:因为a是16的算术平方根,所以a=4,所以a2=16,又因为b是9的平方根,所以b2=9,因为c是﹣27的互方根,所以c3=﹣27,c=﹣3,所以a2+b2+c3+a﹣c+2=16+9﹣27+4+3+2=7.【点睛】此题主要考查了算术平方根,平方根,立方根,熟记概念并列式求出a、b、c的值是解题关键.59.已知5a+2的立方根是3,3a+b-1的算术平方根是4,c(1)求a,b,c的值;(2)求3a-b+c的平方根.【答案】(1)a=5,b=2,c=3;(2)3a-b+c的平方根是±4.【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值;(2)把a、b、c的值代入代数式求出值后,进一步求得平方根即可.【详解】解:(1)∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c的整数部分,∴c=3,(2)由(1)可知a=5,b=2,c=3∴3a-b+c=16,3a-b+c 的平方根是±4.【点睛】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a 、b 、c 的值是解题关键.60.我们知道a +b =0时,a 3+b 3=0也成立,若将a 看成a 3的立方根,b 看成b 3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;(2)若1的值.【答案】(1)成立;(2)-1【解析】【试题分析】举例:8和-8的立方根分别为2和-2. 2和-2互为相反数,则8和-8也互为相反数;(2)根据(1)的结论,1-2x+3x-5=0,解得:x=4,则=1-2=-1.【试题解析】(1)8和-8的立方根分别为2和-2;2和-2互为相反数,则8和-8也互为相反数(举例符合题意即可),成立.(2)根据(1)的结论,1-2x+3x-5=0,解得:x=4,则=1-2=-1.故答案为-1.【方法点睛】本题目是一道关于立方根的拓展题目,根据立方根互为相反数得到这两个数互为相反数;反之也成立.运用了从特殊的到一般的数学思想.61.已知2a 一1的平方根是531a b ±+-,的立方根是4,求210a b ++的平方根.【答案】 ±【解析】试题分析:由平方根的定义和列方程的定义可求得2a-1=25,3a+b-1=64,从而可求得a 、b 的值,然后可求得代数式a+2b+10的值,最后再求其平方根即可.试题解析:∵2a 一1的平方根是±5,3a+b ﹣1的立方根是4,∴2a ﹣1=25,3a+b ﹣1=64.解得:a=13,b=26.∴a+2b+10=13+52+10=75.∴a+2b+10的平方根为(或±)62.正数x的两个平方根分别为3﹣a和2a+7.(1)求a的值;(2)求44﹣x这个数的立方根.【答案】(1) a=﹣10;(2) 4-x的立方根是﹣5【分析】(1)理解一个正数有几个平方根及其两个平方根间关系:一个正数有两个平方根,它们互为相反数,求出a的值;根据a的值得出这个正数的两个平方根,即可得出这个正数,计算出44-x的值,再根据立方根的定义即可解答.【详解】解:(1)由题意得:3﹣a+2a+7=0,∴a=﹣10,(2)由(1)可知x=169,则44-x=﹣125,∴44-x的立方根是-5.【点睛】此题考查了立方根,平方根,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.63.已知2a-1的算术平方根是3,3a+b+4的立方根是2,求a-b的平方根.【答案】a-b的平方根是±4.【解析】分析:根据算术平方根和立方根的定义得出2a-1=9,3a+b+4=8,求出a、b的值,求出3a+b=4,根据平方根定义求出即可.详解:∵2a-1的算术平方根是3,3a+b+4的立方根是2,∴2a-1=9,3a+b+4=8,解得a=5,b=-11,∴a-b=16,∴a-b的平方根是±4.点睛:本题考查了算术平方根和立方根的定义、平方根定义等知识点,能理解平方根、立方根、算术平方根定义是解此题的关键.64.某地气象资料表明:当地雷雨持续的时间t(h)可以用下面的公式来估计:t2=3 900d,其中d(km)是雷雨区域的直径.(1)如果雷雨区域的直径为9km,那么这场雷雨大约能持续多长时间?(2)如果一场雷雨持续了1h,那么这场雷雨区域的直径大约是多少(结果精确到0.1km)?【答案】(1)0.9h (2)9.7km【解析】【分析】(1)根据t 2=3900d ,其中d=9(km )是雷雨区域的直径,开立方,可得答案; (2)根据t 2=3900d ,其中t=1h 是雷雨的时间,开立方,可得答案. 【详解】(1)当d =9时,则t 2=3900d ,因此t 0.9. 答:如果雷雨区域的直径为9km ,那么这场雷雨大约能持续0.9h.(2)当t =1时,则3900d =12,因此d 答:如果一场雷雨持续了1h ,那么这场雷雨区域的直径大约是9.7km.【点睛】本题考查了立方根,注意任何数都有立方根.65.已知x+12平方根是2x+y ﹣6的立方根是2,求3xy 的算术平方根.【答案】6.【分析】由题意可知:x+12=13,2x+y ﹣6=8,分别求出x ,y 的值即可求出3xy 的值.【详解】由题意可知:x+12=13,2x+y ﹣6=8,∴x=1,y=12,∴3xy=3×1×12=36,∴36的算术平方根为6【点睛】本题考查了平方根和立方根的综合.66.已知5a ﹣1的算术平方根是3,3a+b ﹣1的立方根为2.(1)求a 与b 的值;(2)求2a+4b 的平方根.【答案】(1)a=2,b=3(2)±4 【分析】(1)根据算术平方根与立方根定义得出5a ﹣1=32,3a+b ﹣1=23,解之求得a 、b 的值;。
初二上册数学立方根练习题
初二上册数学立方根练习题题1:求下列各数的立方根:1)82)273)644)1255)512解答:1)8的立方根为2,因为2 x 2 x 2 = 8。
2)27的立方根为3,因为3 x 3 x 3 = 27。
3)64的立方根为4,因为4 x 4 x 4 = 64。
4)125的立方根为5,因为5 x 5 x 5 = 125。
5)512的立方根为8,因为8 x 8 x 8 = 512。
题2:求下列各数的立方根,并将结果化简为最简形式:1)272)643)1254)2165)343解答:1)27的立方根 = 3。
2)64的立方根 = 4。
3)125的立方根 = 5。
4)216的立方根 = 6。
5)343的立方根 = 7。
题3:给定一个数,判断它的立方根属于哪个整数区间:1)72)283)724)1405)215解答:1)7的立方根介于2和3之间。
2)28的立方根介于3和4之间。
3)72的立方根介于4和5之间。
4)140的立方根介于5和6之间。
5)215的立方根介于6和7之间。
题4:求下列各数的立方根,并保留两位小数:1)982)5923)7294)10005)1331解答:1)98的立方根≈ 4.62。
2)592的立方根≈ 8.91。
3)729的立方根≈ 9。
4)1000的立方根≈ 10。
5)1331的立方根≈ 11。
题5:判断下列各数是否为完全立方数(即是否存在一个整数的立方等于该数):1)162)273)494)645)125解答:1)16是完全立方数,因为2 x 2 x 2 = 8。
2)27是完全立方数,因为3 x 3 x 3 = 27。
3)49不是完全立方数,因为不存在一个整数的立方等于49。
4)64是完全立方数,因为4 x 4 x 4 = 64。
5)125是完全立方数,因为5 x 5 x 5 = 125。
总结:本文介绍了数学立方根的相关练习题,包括求立方根、化简结果、判断所在区间以及判断完全立方数。
立方根练习题及答案
A.1
B.−1
C.4
D.−4
8. 一个数的立方根是4,这个数的平方根是( )
A.8
B.−8
C.8或−8
D.4或−4
9. 下列说法中正确的是( )
A.−0.064的立方根是0.4
B.−9的平方根是±3
C.0.001的立方根是0.000001
D.16的立方根是3√16
10. 下列说法错误的是( )
A.−9没有平方根
3√19 − 1 − (−1)2017
27
;
(2)求满足条件的������值:(������ − 1)2 = 9.
第1页共8页 ◎ 第2页共8页
27. 已知2������ − 1的平方根是±3,3������ + ������ − 9的立方根是2,������是√57的整数部分,求������ + 2������ + ������的算术平方根.
B.3√−1 = −1
C.3√64 = 8
D.±√9 = −3
13. 下列命题中:
①立方根等于它本身的数有−1,0,1;
②负数没有立方根; ③3√6 = 2;
④任何正数都有两个立方根,且它们互为相反数; ⑤平方根等于它本身的数有0和1.
正确的有( ) A.1个
B.2个
C.3个
D.4个
14. 下列说法中,不正确的有( )个
③3√6 = 2,错误;④任何正数都有两个立方根,且它们互为相反数,错误;
⑤平方根等于它本身的数有0,故错误,
14.【答案】A【解答】解:①−64的立方根是−4,正确,不合题意; ②49的算术平方根是7,故此选项错误,
符合题意;③217的立方根为13,正确,不合题意; ④14是116的平方根,正确,不合题意.
平方根立方根计算题50道
平方根立方根计算题50道一、平方根计算题(25道)1. 计算√(4)- 解析:因为2^2 = 4,所以√(4)=2。
2. 计算√(9)- 解析:由于3^2 = 9,所以√(9)=3。
3. 计算√(16)- 解析:因为4^2 = 16,所以√(16)=4。
4. 计算√(25)- 解析:由于5^2 = 25,所以√(25)=5。
5. 计算√(36)- 解析:因为6^2 = 36,所以√(36)=6。
6. 计算√(49)- 解析:由于7^2 = 49,所以√(49)=7。
7. 计算√(64)- 解析:因为8^2 = 64,所以√(64)=8。
8. 计算√(81)- 解析:由于9^2 = 81,所以√(81)=9。
9. 计算√(100)- 解析:因为10^2 = 100,所以√(100)=10。
10. 计算√(121)- 解析:由于11^2 = 121,所以√(121)=11。
11. 计算√(144)- 解析:因为12^2 = 144,所以√(144)=12。
12. 计算√(169)- 解析:由于13^2 = 169,所以√(169)=13。
13. 计算√(196)- 解析:因为14^2 = 196,所以√(196)=14。
14. 计算√(225)- 解析:由于15^2 = 225,所以√(225)=15。
15. 计算√(0.04)- 解析:因为0.2^2 = 0.04,所以√(0.04)=0.2。
16. 计算√(0.09)- 解析:由于0.3^2 = 0.09,所以√(0.09)=0.3。
17. 计算√(0.16)- 解析:因为0.4^2 = 0.16,所以√(0.16)=0.4。
18. 计算√(0.25)- 解析:由于0.5^2 = 0.25,所以√(0.25)=0.5。
19. 计算√(1frac{9){16}}- 解析:先将带分数化为假分数,1(9)/(16)=(25)/(16),因为((5)/(4))^2=(25)/(16),所以√(1frac{9){16}}=(5)/(4)。
《立方根》典型例题
《立方根》典型例题例1 求下列各数的立方根:(1)27,(2)-125,(3)0.064,(4)0,(5).3438 解:(1)2733= ,∴27的立方根是3,记作.3273=(2)125)5(3-=- ,∴-125的立方根是-5,记作.51253-=-(3)064.04.03= ,∴0.064的立方根是0.4,记作4.0064.03=.(4)003= ,∴0的立方根是0,记作.003=(5)3438)72(3= ,∴3438的立方根是72,记作.7234383= 例2 求下列各式中的x :(1)012583=+x (2)()343143=-x ; (3)064252=-x ; (4)02713=+x .分析:将方程整理转为求立方根或平方根的问题.解答:(1)∵012583=+x ,∴12583-=x , 即81253-=x ,∴38125-=x ,即25-=x ; (2)∵()343143=-x ,∴334314=-x ,即714=-x ,∴2=x ;(3)∵064252=-x ,∴64252=x ,∴6425±=x ,即85±=x ; (4)∵02713=+x ,∴2713-=x ,∴3271-=x ,即31-=x . 说明:求解过程中注意立方根和平方根的区别,最终结果解的个数不同.例3 圆柱形水池的深是1.4m ,要使这个水池能蓄水80吨(每立方米水有1吨),池的底面半径应当是多少米?(精确到0.1米).分析:圆柱的体积h r V ⋅=2π,由于蓄水80吨,每吨水的体积是1立方米,因此水池的体积至少应为80立方米.解:4.1,80,2==⋅=h V h r V π,∴3.4,4.114.3802≈⋅⋅=r r (米)(负值舍去).答:水池底面半径为4.3米.例4 阅读下面语句:①1-的k 3次方(k 是整数)的立方根是1-.②如果一个数的立方根等于它本身,那么这个数或者是1,或者是0.③如果0≠a ,那么a 的立方根的符号与a 的符号相同.④一个正数的算术平方根以及它的立方根都小于原来的数.⑤两个互为相反数的数开立方所得的结果仍然互为相反数.在上面语句中,正确的有( )A .1句B .2句C .3句D .4句分析:当1=k 时,3331)1(-=-k ,而当2=k 时,11)1()1(33633==-=-k ,可见①不正确;1)1(3-=-,这说明一个数的立方根等于它本身时,这个数有可能等于1-,所以②不正确;当0>a 时,3a 是正数,当0<a 时,3a 是负数,所以③是正确的;04.02.0,2.004.0>=,这个例子足以说明一个正数的算术平方根未必小于原来的数,3001.0的情况与此相同;课本中写到:“如果0>a ,那么33a a -=-”,这个关系式对 0<a 时也是正确的,只不过相当于等式两边调换了位置,所以⑤是正确的.解答: B说明: 考查立方根的定义及性质.例5 设827-=x ,则2x ,3x ,32x 分别等于( ) A .89,23,827-- B .89,23,827- C .49,23,827- D .49,23,827-- 分析:64729)827(2=-,∵,64729)827(2= ∴ 827)827(2=-. ∵ 827)23(2-=,∴233-=x . ∵647292=x ,64729)49(3=,∴4932=x . 解答: C说明:考查平方根、立方根的求法.例6 有下列命题:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根和这个数同号,0的立方根是0;④如果一个数的立方根是这个数本身,那么这个数必是1和0.其中错误的是A .①②③B .①②④C .②③④D .①③④分析:一个正数的立方根是一个正数,一个负数的立方根是一个负数;0的立方根是0.立方根等于本身的数有0,1和1-.所以①、②、④都是错的,只有③正确.解答:B说明:立方根性质与平方根性质既有联系又有区别,不能混淆.例7 下列语句正确的是( )A .64的立方根是2B .-3是27的负立方根C .216125的立方根是65± D .2)1(-的立方根是1- 分析:A 中64=8,它的立方根是2,对;B 中27只有一个正的立方根,没有负的立方根,错;C 中正数的立方根应只有一个,错;D 中2)1(-=1,它的立方根是1,而不是1-.解答:A说明:注意立方根意义例8 下列语句对不对?为什么?(1)0.027的立方根是0.3.(2)3a 不可能是负数.(3)如果a 是b 的立方根,那么0≥ab .(4)一个数的平方根与其立方根相同,则这个数是1.分析:立方根的定义是解题的基础,一个数的立方等于a ,那么这个数叫做a 的立方根.因为开立方与立方互为逆运算,我们知道正数有一个正的立方根,负数有一个负的立方根,0的立方根是零.也就是说,一个数的立方根是惟一的,这是与平方根的最主要的区别.从这些出发考虑问题,上述题不难解答.解答:(1)正确.因为027.0)3.0(3=,所以0.027的立方根是0.3.(2)不正确.当a 是负数时,就有一个负的立方根,即3a 就是负数.(3)正确.如果b 是正数,它的立方根a 也是正数;如果b 是负数,它的立方根a 也是负数;如果b 是零,它的立方根是零,所以0≥ab .(4)不正确.一个正数的平方根均有两个,而立方根只有一个,通常不可能相等.而平方根只有一个的数是0,0的立方根也恰是零.因此一个数的平方根与立方根相同,这个数只能是零.说明:立方根与平方根有相似之处,但也有区别,主要是:一个数的立方根是惟一的,而正数的平方根有两个,它们互为相反数,不注意这一点,往往容易出错.例9 一种形状为正方体的玩具名为“魔方”,它是由三层完全相同的小正方体组成的,体积为216立方厘米,求组成它的每个小正方体的棱长.分析:立方体的体积等于棱长的立方,所以这是一个求立方根的问题.解答1:∵21663=,∴62163=,即这种玩具的棱长为6厘米,所以每个小正方体的棱长为236=÷(厘米)解答2:设小正方体的棱长为a 厘米,则玩具的棱长为a 3厘米,由题意得 216)3(3=a ,∴216273=a ,83=a ,2=a (厘米).解答3:设小正方体的棱长为a 厘米.则玩具的棱长为a 3厘米,由题意得216)3(3=a ,∴621633==a ,∴2=a (厘米).。
立方根的习题和答案
一、选择题1.下列说法不正确的是( )A.-1的立方根是-1B.-1的平方是1C.-1的平方根是-1D.1的平方根是±12.下列说法中正确的是( )A.-4没有立方根B.1的立方根是±1C.361的立方根是61D.-5的立方根是35- 3.在下列各式中:327102=34,3001.0=0.1,301.0=0.1,-33)27(-=27,其中正确的个数是( )A.1B.2C.3D.4二、填空题4.-81的立方根是 ,125的立方根是 。
5的立方根是 .67.-3是 的平方根,-3是 的立方根.三、计算题8. 求下列各式中的x.(1)125x 3=8 (2) (-2+x)3=-2169.(1)327-+2)3(--31-(2)33364631125.041027-++---【试题答案】一、选择题1.C 【思路分析】负数没有平方根,所以本题答案是C.2.D 【思路分析】任何数都有立方根,且一个数的立方根只有一个,据此可以排除A,B 两个选项;由于361的算术平方根是61,故C 选项也是错误的.3.C 【思路分析】由于327102=34,3001.0=0.1, -33)27(-=27,故本题答案C.二、填空题 4. -21,5【思路分析】本题直接根据立方根的概念求解.5.三次根号26.54-54125643-=-.7. 9,-27【思路分析】逆用平方根,立方根的概念求解.三、计算题8.(1) 125x 3=8 ,1258x 3=,即x=52;(2)-2+x=-6,所以x=-4.【思路分析】先把方程变成a x =3的形式,然后求a 的立方根即可.9、(1)1 (2)负4分之11。
初二数学上册立方根练习题及答案
初二数学上册立方根练习题及答案一、选择题1. 下列数中,哪个数的立方根是3?A. 8B. 27C. 64D. 125答案:B2. 求出9的立方根是多少?A. 3B. 4C. 6D. 9答案:A3. 若a^3 = 216,则a的值为多少?A. 3B. 6C. 9D. 12答案:B4. 已知x是正整数,且x^3 = 512,则x的值为多少?A. 4B. 6C. 8D. 10答案:C5. 若(-2)^3 = -8,则(-2)的立方根为多少?A. -4B. -2C. 2D. 4答案:B二、填空题1. 若a的立方根为5,则a的值为______。
答案:1252. 若x^3 = 64,则x的值为______。
答案:43. 将27开3次方,结果为______。
答案:34. 若y的立方根为8,则y的值为______。
答案:5125. 将-27开3次方,结果为______。
答案:-3三、计算题1. 将125开3次方。
答案:5解析:125的立方根等于5。
2. 求解方程x^3 = 216。
答案:x = 6解析:将方程两边开3次方,得到x = 6。
3. 求解方程2y^3 = 512。
答案:y = 8解析:将方程两边除以2后开3次方,得到y = 8。
4. 求解方程(-4)^3 = x。
答案:x = -64解析:将方程两边开3次方,得到x = -64。
5. 求解方程a^3 = -27。
答案:a = -3解析:将方程两边开3次方,得到a = -3。
四、解答题1. 请用立方根的概念解释什么是立方根。
答案:立方根是指一个数的立方等于给定数的根,即一个数的立方根是指将该数三次相乘得到给定数的算术运算。
2. 将512开3次方,并解释你的计算过程。
答案:512开3次方等于8。
计算过程如下:先找到一个数的立方等于512,可以得出8^3 = 512。
将512开3次方即为求解8。
以上是初二数学上册立方根练习题及答案,通过以上练习题的训练,相信你对立方根的概念和计算方法有了更深入的理解。
初中阶段立方根口算练习题
初中阶段立方根口算练习题1. 计算下列各数的立方根:(1) 27(2) 125(3) 512(4) 1000(5) 1331解答:(1) 27的立方根为3,因为3 × 3 × 3 = 27。
(2) 125的立方根为5,因为5 × 5 × 5 = 125。
(3) 512的立方根为8,因为8 × 8 × 8 = 512。
(4) 1000的立方根为10,因为10 × 10 × 10 = 1000。
(5) 1331的立方根为11,因为11 × 11 × 11 = 1331。
2. 计算下列各数的立方根,并保留两位小数:(1) 8(2) 27(3) 64(4) 125(5) 216解答:(1) 8的立方根约为2.00,因为2.00 × 2.00 × 2.00 ≈ 8.00。
(2) 27的立方根约为3.00,因为3.00 × 3.00 × 3.00 ≈ 27.00。
(3) 64的立方根约为4.00,因为4.00 × 4.00 × 4.00 ≈ 64.00。
(4) 125的立方根约为5.00,因为5.00 × 5.00 × 5.00 ≈ 125.00。
(5) 216的立方根约为6.00,因为6.00 × 6.00 × 6.00 ≈ 216.00。
3. 请计算下列各题,并列出解题步骤:(1) 4913的立方根是多少?解答:为了计算4913的立方根,我们可以使用近似法,通过试算法来逼近答案。
假设立方根为x,我们可以尝试不同的x值来进行计算。
首先,我们可以猜测x = 10。
计算x的立方值,得到10 × 10 × 10 = 1000,小于4913。
接下来,我们可以猜测x = 11。
计算x的立方值,得到11 × 11 × 11 = 1331,仍然小于4913。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立方根练习题一
一、填空题:
1.1的立方根是________.
2.8
33-________. 3.2是________的立方根. 4.________的立方根是1.0-. 5.立方根是6
5
的数是________ 6.64
27
-
是________的立方根. 7.=-3
)3(________. 8.3
)3(-的立方根是________ 9.5
3
-
是________的立方根. 10.若a 与b 互为相反数,则它们的立方根的和是________. 11.0的立方根是________. 12.36的平方根的绝对值是________. 13. 的立方根是729
14.3
27=_______.15.立方根等于它本身的数是_______. 16.109)
1(-的立方根是______.
17.008.0-的立方根是________. 18.10
3
-
是________的立方根. 19.当x 为________时,
3
3
3
-+x x 有意义; 当x 为________时,
3
8
5+-x x
有意义.
20.6
)2(-的平方根是________,立方根是________. 二、判断题: 1.81-
的立方根是2
1±;( ) 2.5-没有立方根;( ) 3.
2161的立方根是6
1;( )
4.92-
是729
8-的立方根;( ) 5.负数没有平方根和立方根;( ) 6.a 的三次方根是负数,a 必是负数;( ) 7.立方根等于它本身的数只能是0或1;( ) 8.如果x 的立方根是2-,那么8-=x ;( ) 9.5-的立方根是3
5-;( ) 10.8的立方根是2±;( ) 11.216
1
-的立方根是没有意义;( ) 12.271-
的立方根是3
1-;( ) 13.0的立方根是0;( ) 14.
53是125
27±的立方根;( ) 15.3
3-是3-立方根;( )
16.a 为任意数,式子a ,2
a ,3
a 都是非负数.( )
三、选择题:
1.36的平方根是( ).
A .6±
B .6
C .6-
D .不存在 2.一个数的平方根与立方根相等,则这个数是( ).
A .1
B .1±
C .0
D .1- 3.如果b -是a 的立方根,那么下列结论正确的是( ).
A .b -也是a -的立方根
B .b 也是a 的立方根
C .b 也是a -的立方根
D .b ±都是a 的立方根 4.下列语句中,正确的是( ).
A .一个实数的平方根有两个,它们互为相反数
B .一个实数的立方根不是正数就是负数
C .负数没有立方根
D .如果一个数的立方根是这个数本身,那么这个数一定是1-或0或1 5.8的立方根是( ).
A .2
B .2-
C .4
D .4-
6.设n 是大于1的整数,则等式211=--n
n
中的n 必是( ).
A .大于1的偶数
B .大于1的奇数
C .2
D .3 7.下列各式中正确的是( ).
A .416±=
B .3)3(2-=-
C .3
8-2-= D .5)4()3(22-=-+- 8.下列运算正确的是( ).
A .3
3
33--=- B .3
3
33=
-
C .3
3
33-=- D .3
3
33-=-
四、解答题:
1.求下列各数的立方根.
(1)85
15 (2)8
27
- 2.求下列各式的值.
(1)3
8- (2)3
27- (3)3
125.0-- (4)3
3)001.0(--
(5)3
512 (6)3
64
27-
- 3.x 取何值时,下面各式有意义?
(1)x x -+ (2)3
1-x
(3)3
1--x x (4)32
x
4.求下列各式中的x .
(1)27000)101.0(3
-=+x (2)2523
=+x
(3)12142=x (4)05121253
=+x
(5)625164
=x (6)19
-=x
(7)8
71)2(3=
++x
5.化简3
)1)(1(a a a a +-+.
五、计算4
3
3
2
3
81)2
1()4()4()2(--⨯-+-⨯-.
六、已知01134
=+++y x ,其中x ,y 为实数,求3x -1998y -的值.
七、一个比例式的两个外项分别是0.294和0.024,两个内项是相等的数,求这两个内项各是多少?
八、一个长方体木箱子,它的底是正方形,木箱高1.25米,体积2.718立方米.求这个木箱底边的长.(精确到0.01米)
九、一个圆形物体,面积是200平方厘米,半径r 是多少平方厘米?(取3.14,r 精确到0.01
厘米)
十、如果球的半径是r ,则球的体积用公式3
π3
4r V =来计算.当体积500=V 立方厘米,半径r 是多少厘米?(
取3.14,r 精确到0.01厘米)
十一.若3
73-x 和343+y 互为相反数,求3y x +的值。
十二.已知0133223=+-++y c y x ,求32244y xy x --的值。
十三.已知010262
2=+--+b a b a ,求322b a -的值。
十四、设x 为正整数,若1+x 是完全平方数,则它前面的一个完全平方数是( ) A .x
B .12+-x x
C .112++-x x
D .212++-x x
参考答案 一、 1.1 2.2
3- 3.8 4.-0.001 5.
216125
6.4
3-
7.-27 8.-3 9.125
27-
10.0 11.0 12.6 14.3
15.-1,0,+1 16.-1 17.-0.2
18.1000
27
-
19.3>x ,5≤x 且8-≠x 20.±8,4 二、1.×2.×3.√4.√5.×6.√7.×8.√
9.√10.×11.×12.√13.√14.×15.√16.× 三、1.A2.C3.C4.D5.A6.B 7.C 8.D 9.C 四、1.(1)-1 (2)
101 (3)-7 (4) 25 (5)8 (6) 2
3
- (7)0 (8)-0.6 2.(1)-2 (3)-3 (3)0.5 (4) 0.001 (5)8 (6)
6
4
(7)-0.14 (8)
75 (9)-a(10)a (11)34 (12)2
7 3.(1)0=x (2)x 取全体实数(3) 1≥x 且3≠x (4)x 取任何实数 4.(1)-400 (2)23 (3)211± (4)58- (5)25± (6)-1 (7)2
5- 5.a 五、-33 六、27
26
-
七、084.0± 八、1.47米 九、7.98厘米 十、4.92厘米
友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。