三角形中位线定理的几种证明方法及教学中需要说明的地方
三角形中位线的说课稿
《三角形中位线》说课稿大家好,今天我说课的内容是《三角形中位线》,本节课内容选自人教版初中几何第二册第4章第11节,下面我从教材分析、学生学法指导、教学方法和多媒体的选择、教学过程的设计、板书设计、教学反思六个环节进行阐述:【教材分析】1.说教材所处的地位:本节教材是在学生学完了三角形,平行四边形内容之后作为三角形和四边形知识的应用和深化。
三角形中位线定理的推证是以平行四边形的有关定理为依据的,是平行四边形知识的综合应用。
本节内容不是本章的重点和难点,但,是三角形的一个重要性质定理,在证明两直线平行和论证线段倍分关系时常常要用到,也为下一节梯形中位线定理的证明作好充分理论上的准备。
因此,本节课内容对知识起到了承前启后的作用。
2.说教学目标:教学目标包括知识目标、能力目标和情感、态度价值观目标。
作为三角形,四边形知识内容的综合应用和深化,根据学生现有的知识水平和认知特点,本节主要通过学生的动手实验,拼一拼,摆一摆,观察,猜想主动地得出三角形中位线定理,掌握三角形中位线定义和定理,会用定理进行有关的论证和计算解决一些问题。
在定理证明中培养学生运用“转化”思想,引导学生会添加适当的辅助线把未知转化为已知,用已掌握的知识来研究新问题从而提高分析解决问题的能力。
进一步培养和发展学生的创造性思维能力和逻辑推理论证的表达能力,同时体现了知识来源于实践,而又运用于生活。
3.教学重点和难点:重点:依据学生现有的实际能力和认知能力,我把三角形中位线的概念及应用作为本节课的重点。
通过学习使学生掌握三角形中位线定义,掌握定理及其应用。
难点:学生在自主探索、验证三角形中位线定理的过程中有许多困难,因此我把三角形中位线定理的论证作为本节课的教学难点。
在实际教学中,我采取了将一个三角形分成两部分拼成平行四边形将其线转化为已掌握的平行四边形知识来解决。
降低了难度,也提高了学生分析解决问题的能力。
4.本课知识要点:三角形中位线定义:连结三角形两边中点的线段叫三角形的中位线,在教学中提醒学生注意与三角形中线进行比较。
中位线及其应用
中位线及其应用知识定位中位线在初中几何或者竞赛中占据非常大的地位,它的有关知识是今后我们学习综合题目或者三角形综合的重要基础。
中位线的证明性质以及应用,必须熟练掌握。
本节我们通过一些实例的求解,旨在介绍数学竞赛中中位线相关问题的常见题型及其求解方法本讲将通过例题来说明这些方法的运用。
知识梳理1、三角形中位线定义(1)三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。
三角形的中位线与三角形的中线区分:三角形中线是连接一顶点和它的对边中点的线段,而三角形中位线是连接三角形两边中点的线段。
(2)三角形中位线定理:三角形的中位线平行于第三边且等于第三边的一半。
如图,在ABC ∆中,点D 、E 分别为边AB 、AC 的中点,则DE 为ABC ∆的中位线。
几何语言描述:因为D 、E 分别为边AB 、AC 的中点,所以DE//BC,且DE=12BC提示 a :“平行且等于第三边的一半”,具体应用时要根据题目的要求灵活进行选择,并 不一定要把两个结论都写出来。
b :一个三角形有三条中位线。
c :经过三角形一边的中点且与另一边平行的直线,必平分第三边,这是一种重要 的作辅助线的方法。
2、三角形中位线的性质(1)三角形中位线平行于第三边,并且等于第三边的一半。
梯形中位线平行于两底,并且等于两底和的一半。
(2)中位线性质定理的结论,兼有位置和大小关系,可以用它判定平行,计算线段的长度,确定线段的和、差、倍关系。
(3)运用中位线性质的关键是从出现的线段中点,找到三角形或梯形,包括作出辅助线。
(4)中位线性质定理,常与它的逆定理结合起来用。
它的逆定理就是平行线截比例线段定理及推论,①一组平行线在一直线上截得相等线段,在其他直线上截得的线段也相等②经过三角形一边中点而平行于另一边的直线,必平分第三边③经过梯形一腰中点而平行于两底的直线,必平分另一腰补充:有关线段中点的其他定理还有:①直角三角形斜边中线等于斜边的一半②等腰三角形底边中线和底上的高,顶角平分线互相重合③对角线互相平分的四边形是平行四边形④线段中垂线上的点到线段两端的距离相等因此如何发挥中点作用必须全面考虑。
三角形中位线定理的几种证明方法及教学中需要说明的地方
三角形中位线定理的证明及其教学说明一、三角形中位线定理的几种证明方法,则,,使,连结CF法1:如图所示,延长中位线DE至F DFFCBCFD 是平行四边形,BD,则四边形BC有ADFC,所以。
因为1DE,所以.BC 2,有F,则作FC交DE的延长线于法2C因为,DFBC。
为平行四边形,AD,那么BDFC ,则四边形BCFD1.所以DEBC 2,连接CF、DC、AF,则四边形ADCF至法3:如图所示,延长DEF,使BD,那么四边形BCFDCFAD,所以FC为平行四边形,为平行四边形,有1BC.DE,所以BCDF 。
因为2法4:如图所示,过点E作MN∥AB,过点A作AM∥BC,则四边形ABNM为平行四边形,易证,从而点E是MN的中点,易证四边形ADEM和BDEN都CENAEM 1。
DEDE∥BC,即DE=AM=NC=BN为平行四边形,所以,BC2法5:如图所示,过三个顶点分别向中位线作垂线.二、教学说明1、三角形中位线定理的另外一种猜想过程:“二维”转化为“一维”在引导学生探索三角形中位线定理时,由于学生画出中位线后,就不难直观地发现平行关系,难的是发现数量关系,我联想到在此之前认识线段中点时的一道典型例题,挖掘它与原有知识的内在联系,从而作如下探索引导。
⑴如图,A为线段BC(或线段BC的延长线)上的任意一点,D、E分别是AB、AC 的中点,线段DE与BC有什么关系?A BEDC图⑴:⑵如果点A不在直线BC上,图形如何变化?上述结论仍然成立吗?AEDBC图⑵:,上时A的顶点运动到直线BC说明:学生观察(几何画板制作的)课件演示:当△ABC上,这样由“二维”转化为“一维”,学生就不难猜想性质的BC 中位线DE也运动到如果教师直接叫学.两方面,特别是数量关系,而想到去度量、验证和猜想,水到渠成.生去度量角度和长度,是强扭的瓜不甜、教学重点:本课重点是掌握和运用三角形中位线定理。
2第一,要知道中位线定理的作用:可以证明两条直线平行及线段的倍分关系,计算边长或中位线的长。
三角形中位线定理的几种证明方法及教学中需要说明的地方
三角形中位线定理的证明及其讲授说明之袁州冬雪创作以下内容作者为:青岛第四中学杨瀚书教师一、三角形中位线定理的几种证明方法法1:如图所示,延长中位线DE至F,使,保持CF,则,有AD FC,所以FC BD,则四边形BCFD1.是平行四边形,DF BC.因为,所以DE BC2法2:如图所示,过C作交DE的延长线于F,则,有FC AD,那末FC BD,则四边形BCFD为1.平行四边形,DF BC.因为,所以DE BC2法3:如图所示,延长DE至F,使,毗连CF、DC、AF,则四边形ADCF为平行四边形,有AD CF,所以FC BD,那末四边形BCFD为平行四边形,DF BC.因为,所1.以DE BC2法4:如图所示,过点E作MN∥AB,过点A作AM∥BC,则四边形ABNM为平行四边形,易证CEN∆,从而点E是MN≅AEM∆的中点,易证四边形ADEM和BDEN都为平行四边形,所以1.DE=AM=NC=BN,DE∥BC,即DE BC2法5:如图所示,过三个顶点分别向中位线作垂线.二、讲授说明1、三角形中位线定理的别的一种猜测过程:“二维”转化为“一维”在引导学生探索三角形中位线定理时,由于学生画出中位线后,就不难直观地发现平行关系,难的是发现数量关系,我联想到在此之前认识线段中点时的一道典型例题,挖掘它与原有知识的内涵接洽,从而作如下探索引导.⑴如图,A为线段BC(或线段BC的延长线)上的任意一点,D、E分别是AB、AC的中点,线段DE与BC有什么关系?图⑴:⑵如果点A不在直线BC上,图形如何变更?上述结论仍然成立吗?图⑵:说明:学生观察(几何画板制作的)课件演示:当△ABC的顶点A运动到直线BC上时,中位线DE也运动到BC上,这样由“二维”转化为“一维”,学生就不难猜测性质的两方面,特别是数量关系,而想到去度量、验证和猜测,水到渠成.如果教员直接叫学生去度量角度和长度,是强扭的瓜不甜.2、讲授重点:本课重点是掌握和运用三角形中位线定理.第一,要知道中位线定理的作用:可以证明两条直线平行及线段的倍分关系,计算边长或中位线的长.第二,要知道中位线定理的使用形式,如:∵ DE 是△ABC 的中位线 ∴ DE∥BC,BC DE 21 第三,让学生通过部分题目停止训练,进而掌握和运用三角形中位线定理. 题1 如图4.11-7,Rt△ABC,∠BAC=90°,D 、E 分别为AB ,BC 的中点,点F 在CA 延长线上,∠FDA=∠B.(1)求证:AF =DE ;(2)若AC =6,BC =10,求四边形AEDF 的周长.分析 本题是考察知识点较多的综合题,它不单考察应用三角形中位线定理的才能,而且还考察应用直角三角形和平行四边形有关性质的才能.(1)要证AF =DE ,因为它们刚好是四边形的一组对边,这就启发我们设法证明AEDF 是平行四边形.因为DE 是三角形的中位线,所以DE∥AC.又题给条件∠FDA=∠B,而在Rt△ABC 中,因AE 是斜边上的中线,故AE =EB.从而∠EABC=∠B.于是∠EAB=∠FDA.故得到AE∥DF.所以四边形AEDF 为平行四边形.(2)要求四边形AEDF 的周长,关键在于求AE 和DE ,AE =21BC =5,DE =21AC =3.证明:(1)∵D、E 分别为AB 、BC 的中点,∴DE∥AC,即DE∥AF∵Rt△ABC 中,∠BAC=90°,BE =EC∴EA=EB =21BC ,∠EAB=∠B又∵∠FDA=∠B,∴∠EAB=∠FDA∴EA∥DF,AEDF 为平行四边形∴AF=DE(2)∵AC=6,BC =10, ∴DE=21AC =3,AE =21BC =5∴四边形AEDF 的周长=2(AE+DE)=2(3+5)=16题2 如图,在四边形ABCD 中,AB =CD ,E 、F 分别是BC 、AD 的中点,延长BA 和CD 分别与EF 的延长线交于K 、H.求证:∠BKE=∠CHE.分析 本题考察三角形中位线的构造方法及应用、平行线的性质.由中点想到中位线,又要把结论接洽起来,既要使中位线的另外一端点处一抱负的位置,又使需证明的角转移过来,可思索,连BD ,找BD 中点G ,则EG 、FG 分别为△BCD、△DBA 的中位线,于是得到懂得题方法.思索到结论辅助线不要乱作,取中点比作平行线好.证明:连BD 并取BD 的中点G ,连FG 、GE在△DAB 和△BCD 中∵F 是AD 的中点,E 是BC 的中点∴FG∥AB 且FG =21AB ,EG∥D C 且EG =21DC∴∠BKE=∠GFE,∠CHE=∠GEF∵AB=CD ∴FG=EG∴∠GFE=∠GEF ∴∠BKE=∠CHE题3 如图, ABCD 为等腰梯形,AB∥CD,O 为AC 、BD 的交点,P 、R 、Q 分别为AO 、DO 、BC 的中点,∠AOB=60°.求证:△PQR 为等边三角形.分析 本题考察三角形中位线定理、等边三角形断定方法、直角三角形斜边中线定理.操纵条件可知PR =21AD ,可否把PQ 、RQ 与AD(BC)接洽起来成为解题的关键,由于∠AOB =60°,OD =OC ,则△ODC 为等边三角形,再由R 为OD 中点,则∠BRC=90°,QR 就为斜边BC 的中线.证明:连RC ,∵四边形ABCD 为等腰梯形且AB∥DC ∴AD=BC ∠ADC=∠BCD又∵DC 为公共边 ∴△ADC≌△BCD∴∠ACD=∠BDC ∴△ODC 为等腰三角形∵∠DOC=∠AOB=60° ∴△ODC 为等边三角形∵R 为OD 的中点∴∠ORC=90°=∠DRC(等腰三角形底边上的中线也是底边上的高)∵Q 为BC 的中点 ∴RQ=21BC =21AD同理PQ =21BC =21AD在△OAD 中 ∵P、R 分别为AO 、OD 的中点 ∴PR=21AD ∴PR=PQ =RQ故△PRQ 为等边三角形3、讲授难点:本课难点是三角形中位线定理的证明,证明方法的关键在于如何添加辅助线.教员可以在证明思路上停止引导、启发,防止生硬地将辅助线直接作出来让学生承受.例如,教员可以启发学生:要证明一条线段的长等于另外一条线段的长的一半,可将较短的线段延长一倍,或者截取较长的线段的一半.上面的这种辅助线的作法可以概括为“短延长、长截短”,这种辅助线的作法还可以用于证明线段和、差、倍、分等方面.证明线段的和、差、倍、分常常使用的证明战略:1, 长截短:要证明一条线段等于别的两条线段的和与差,可在长线上截取一部分等于另两条线段中的一条,然后再证明另外一部分等于剩下的一条线段的长.(角也亦然) 2, 短延长:要证明一条线段等于别的两条线段的和与差,可先延长较短的一条线段,得到两条线段的和,然后再证明其与长的线段相等.(角也这样)3,加倍法:要证明一条线段等于另外一条线段的2倍或1/2,可加倍延长线段,延长后使之为其2倍,再证明与另外一条线段相等.(角也这样)4,折半法:要证明一条线段等于另外一条线段的2倍或1/2,也可取长线段的中点,再证明其中之一与另外一条线段相等.(角也可用)5,代数运算推理法:这种方法是操纵代数运算证明线段或角的和、差、倍、分.6,相似三角形及比例线段法:操纵相似三角形的性质停止推实际证.题1(短延长):如图所示,在正方形ABCD中,P、Q分别为BC、CD上的点.(1)若∠PAQ=45°,求证:PB+DQ=PQ.(2)若△PCQ的周长等于正方形周长的一半,求证:∠PAQ=45°证明:(1)延长CB至E,使BE=DQ,毗连AE.∵四边形ABCD是正方形∴∠ABE=∠ABC=∠D=90°,AB=AD在△ABE 和△ADQ 中∵AB=AD,∠ABE=∠D ,BE=DQ(2)延长CB 至E ,使BE=DQ ,毗连AE由(1)可知∆∆ABE ADQ ≅题2(长截短):如图,在△ABC 中,∠B=2∠C,∠A 的平分线AD 交BC 于D.求证:AC=AB+BD证明:在AC 上截取OA=AB ,毗连OD ,∵∠3=∠4,AD=AD∴△ABD≌△AOD,∴ BD=DO∴∠B=∠1=∠2+∠C= 2∠C∴∠2=∠C∴ OD=OC=BD∴ AC=OA+OC=AB+BD。
三角形中位线证明6种方法
三角形中位线证明6种方法三角形是几何学中最基本的图形之一,具有许多特性和性质。
三角形中位线是三角形内部一条特殊的线段,连接三角形两边中点的直线称为三角形中位线。
本文将介绍10条关于三角形中位线的证明方法,并对每一种方法进行详细阐述。
1. 三角形中位线长相等证明:对于任意三角形ABC,连接AC的中点E和BC的中点F,连接BE并延长至D,使得AD与CF相交于点G。
则有:CE=EA (连接AC的中点E)BF=FC (连接BC的中点F)EF=EF (共同边)在三角形BEF和CEF中,有EF、BE、FC互相平行,并按比例划分。
根据平行线定理,有BE/EF=BG/GF和FC/EF=CG/GF。
由此可得:BE/FC=BG/CG2BE/2FC=2BG/2CGAB/AC=BG/CG同理可证出,AC/BC=AH/HB和BC/AB=CI/IA。
即中位线长相等。
2. 三角形中位线堆垛证明:对于任意三角形ABC,连接AC的中点E和BC的中点F。
则有:EF∥ABEB=FAEC=FC在三角形AEC和BFC中,有EC=FC,∠EAC=∠FBC,∠CAE=∠CBF。
由此可得:三角形AEC与三角形BFC全等(AAS)AE=BF。
同理可证出BE=CF,因此中位线堆垛。
3. 三角形中位线垂直证明:对于任意三角形ABC,连接AC的中点E和BC的中点F。
则有:EF∥ABEB=FAEC=FC在三角形AEC和BFC中,有EC=FC,∠EAC=∠FBC,∠CAE=∠CBF。
由此可得:三角形AEC与三角形BFC全等(AAS)AE=BF。
连接EF并绘制ED⊥EF和FG⊥EF,分别交于点D和G。
则有:ED=GFEB=FC在三角形EBD和FCG中,有ED=FG,∠EDB=∠FGC,∠EBD=∠FCG。
由此可得:三角形EBD与三角形FCG全等(HL)BD=CG。
同理可证出AD=BG和AC=2DE,BC=2FG。
中位线垂直。
4. 三角形中位线和周长的关系证明:对于任意三角形ABC,连接AC的中点E和BC的中点F。
中位线定理的三种证明方法
中位线定理的三种证明方法
中位线定理是平面几何中的重要定理,它指出三角形中连接一个顶点与对边中
点的线段叫做中位线,三角形的三条中位线交于同一点,这个点叫做三角形的重心。
下面将介绍中位线定理的三种证明方法。
第一种证明方法是向量法。
通过向量的线性组合和中点的定义,可以证明三角
形的三条中位线交于同一点。
我们可以假设三角形的顶点为A、B、C,对应的中
点为D、E、F,通过向量的线性组合可以得到三角形的三条中位线分别为
$\frac{A+B}{2}$、$\frac{B+C}{2}$、$\frac{C+A}{2}$,然后通过向量的运算可以
证明这三条线交于同一点,即三角形的重心。
第二种证明方法是中位线的性质法。
通过中位线的性质可以证明三角形的三条
中位线交于同一点。
中位线的性质包括中位线平行于底边、中位线的长度等于底边的一半等,通过这些性质可以得出三角形的三条中位线交于同一点的结论。
第三种证明方法是面积法。
通过三角形的面积公式和中位线的定义可以证明三
角形的三条中位线交于同一点。
我们可以利用三角形的面积公式S=1/2*底边*高,
将三角形分成三个小三角形,分别计算它们的面积,然后通过中位线的定义可以得出这三条线交于同一点的结论。
综上所述,中位线定理的三种证明方法分别是向量法、中位线的性质法和面积法。
每种方法都有其独特的角度和思路,通过不同的方式可以证明同一个结论,这也展示了数学的丰富性和多样性。
中位线定理在解决三角形相关问题时起着重要的作用,对于理解三角形的性质和性质的应用具有重要的意义。
(完整版)浅谈三角形中位线定理的几种证法
浅谈三角形中位线定理的几种证法康园中学校 张瑜摘要:华师大数学九年级上册第23章中,学生学习了三角形中位线定理,对于三角形中位线定理的证明方法我与学生进行了深入地研究,总结了十种类型的方法,下面将三角形中位线定理的这些证法与大家共同分享。
共有十种不同的类型:动手操作法、相似法、倍长法、平行法、翻折法、作高法、构造法、旋转法、同一法、反证法。
关键词:三角形中位线定理、二十八种不同的证法。
三角形中位线定理:三角形的中位线平行且等于第三边的一半。
如图,已知△ABC 中,D ,E 分别是AB ,AC 两边中点。
求证:DE ‖BC ,DE=21BC 。
一、类型一:动手操作法方法1:度量法华师大初中数学教材的编写是呈螺旋式上升的,七年级和八年级上册重点培养学生的合情推理能力(即学生的动手操作和简单的说理验证),八年级下册和九年级重点培养学生的演绎推理能力(即严格地利用定理进行证明)。
因此运用合情推理,可以采用度量的方法来证明三角形中位线定理。
首先用直尺分别量出DE 、BC 的长,看是否满足DE=21BC ,再用量角器分别量出∠ADE 和∠B 的度数,看是否相等,从而判断是否平行。
二、类型一:相似法方法2:相似法一根据AD=21AB ,AE=21AC ,∠DAE=∠BAC ,从而得到△ADE ∽△ABC 。
于是∠ADE=∠ABC ,DE:BC=AD:AB=1:2。
轻松得到DE ‖BC ,DE=21BC 。
方法3:相似法二过点D 作DF ⊥AC 于F ,过点B 作BG ⊥AC 于G ,则DF//BG ,于是△ADF ∽△ABG ,得到DF=21BG ,AF=FG 。
因为AE=EC ,所以FE=21GC 。
根据DF:BG=FE:GC ,∠DFE=∠BGC=900,得到△DFE ∽△BGC ,从而命题得证。
ABCD E A BC D E FG ADEB C F A DEB CFAD E BC G FADE BC 方法2方法3方法4 方法5方法6三、类型三:倍长法方法4:中位线倍长法一:这是常用的方法,也是北师大教材中使用的方法。
2024年三角形的中位线说课稿
2024年三角形的中位线说课稿2024年三角形的中位线说课稿1(约1568字)一、教学目标:1.理解三角形中位线的概念,掌握它的性质.2.能较熟练地应用三角形中位线性质进行有关的证明和计算.3.经历探索、猜想、证明的过程,进一步发展推理论证的能力.4.能运用综合法证明有关三角形中位线性质的结论.理解在证明过程中所运用的归纳、类比、转化等思想方法.二、重点、难点1.重点:掌握和运用三角形中位线的性质.2.难点:三角形中位线性质的证明(辅助线的添加方法).3.难点的突破方法:(1)本教材三角形中位线的内容是由一道例题从而引出其概念和性质的,新教材与老教材在这个知识的讲解顺序安排上是不同的,它这种安排是要降低难度,但由于学生在前面的学习中,添加辅助线的练习很少,因此无论讲解顺序怎么安排,证明三角形中位线的性质(例1)时,题中辅助线的添加都是一大难点,因此教师一定要重点分析辅助线的作法的思考过程.让学生理解:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可添加辅助线构造平行四边形,利用平行四边形的对边平行且相等来证明结论成立的思路与方法.(2)强调三角形的中位线与中线的区别:中位线:中点与中点的连线。
中线:顶点与对边中点的连线.(3)要把三角形中位线性质的特点、条件、结论及作用交代清楚:特点:在同一个题设下,有两个结论.一个结论表明位置关系,另一个结论表明数量关系。
条件(题设):连接两边中点得到中位线。
结论:有两个,一个表明中位线与第三边的位置关系,另一个表明中位线与第三边的数量关系(在应用时,可根据需要选用其中的结论)。
作用:在已知两边中点的条件下,证明线段的平行关系及线段的倍分关系.(4)可通过题组练习,让学生掌握其性质.三、课堂引入1.平行四边形的性质。
平行四边形的判定。
它们之间有什么联系?2.你能说说平行四边形性质与判定的用途吗?(答:平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等。
三角形中位线定理的几种证明方法及教学中需要说明的地方
三角形中位线定理的证明及其教学说明以下内容作者为:青岛第四中学杨瀚书老师一、 三角形中位线定理的几种证明方法法1: 如图所示,延长中位线DE 至F ,使,连结CF ,则,有ADFC ,所以FCBD ,则四边形BCFD 是平行四边形,DF BC 。
因为 ,所以DEBC 21.法2C 作交DE 的延长线于F ,则,有FCAD ,那么FCBD ,则四边形BCFD 为平行四边形,DFBC 。
因为 ,所以DEBC 21.法3:如图所示,延长DE 至F ,使 ,连接CF 、DC 、AF ,则四边形ADCF 为平行四边形,有ADCF ,所以FCBD ,那么四边形BCFD 为平行四边形,DF BC 。
因为 ,所以DEBC 21.法4:如图所示,过点E 作MN ∥AB ,过点A 作AM ∥BC ,则四边形ABNM 为平行四边形,易证CEN AEM ∆≅∆,从而点E 是MN 的中点,易证四边形ADEM 和BDEN 都为平行四边形,所以DE=AM=NC=BN ,DE ∥BC ,即DEBC 21。
法5:如图所示,过三个顶点分别向中位线作垂线.二、教学说明1、三角形中位线定理的另外一种猜想过程:“二维”转化为“一维”在引导学生探索三角形中位线定理时,由于学生画出中位线后,就不难直观地发现平行关系,难的是发现数量关系,我联想到在此之前认识线段中点时的一道典型例题,挖掘它与原有知识的内在联系,从而作如下探索引导。
⑴如图,A为线段BC(或线段BC的延长线)上的任意一点,D、E分别是AB、AC 的中点,线段DE与BC有什么关系?AB C图⑴:⑵如果点A不在直线BC上,图形如何变化?上述结论仍然成立吗?C图⑵:说明:学生观察(几何画板制作的)课件演示:当△ABC的顶点A运动到直线B C上时,中位线DE也运动到BC上,这样由“二维”转化为“一维”,学生就不难猜想性质的两方面,特别是数量关系,而想到去度量、验证和猜想,水到渠成.如果教师直接叫学生去度量角度和长度,是强扭的瓜不甜.2、教学重点:本课重点是掌握和运用三角形中位线定理。
三角形中位线定理的几种证明方法及教学中需要说明的地方
三角形中位线定理的证明及其教学说明以下内容作者为:青岛第四中学杨瀚书老师一、 三角形中位线定理的几种证明方法法1: 如图所示,延长中位线DE 至F ,使 ,连结CF ,则,有ADFC,所以FC BD ,则四边形BCFD 是平行四边形,DFBC 。
因为,所以DEBC 21.法2:如图所示,过C 作交DE 的延长线于F ,则,有FCAD ,那么FC BD ,则四边形BCFD 为平行四边形,DF BC 。
因为 ,所以DEBC 21.法3:如图所示,延长DE 至F ,使 ,连接CF 、DC 、AF,则四边形ADCF 为平行四边形,有AD CF ,所以FC BD,那么四边形BCFD 为平行四边形,DFBC 。
因为,所以DEBC 21.法4:如图所示,过点E 作MN ∥AB ,过点A 作AM ∥BC,则四边形ABNM 为平行四边形,易证CEN AEM ∆≅∆,从而点E 是MN 的中点,易证四边形ADEM 和BDEN 都为平行四边形,所以DE=AM=NC=BN ,DE ∥BC ,即DEBC 21。
法5:如图所示,过三个顶点分别向中位线作垂线.二、教学说明1、三角形中位线定理的另外一种猜想过程:“二维”转化为“一维”在引导学生探索三角形中位线定理时,由于学生画出中位线后,就不难直观地发现平行关系,难的是发现数量关系,我联想到在此之前认识线段中点时的一道典型例题,挖掘它与原有知识的内在联系,从而作如下探索引导。
⑴如图,A 为线段BC(或线段BC 的延长线)上的任意一点,D 、E 分别是AB 、AC 的中点,线段DE 与BC 有什么关系?ABC图⑴:⑵如果点A 不在直线BC 上,图形如何变化?上述结论仍然成立吗?A 运动到直线BC 上时,中位线DE ",学生就不难.2第一,要知道中位线定理的作用:可以证明两条直线平行及线段的倍分关系,计算边长或中位线的长。
第二,要知道中位线定理的使用形式,如: ∵ DE 是△ABC 的中位线∴ DE ∥BC ,BC DE 21第三,让学生通过部分题目进行训练,进而掌握和运用三角形中位线定理.题1 如图4。
中位线定理证明方法
中位线定理证明方法嘿,朋友们!今天咱就来唠唠中位线定理的证明方法。
啥是中位线定理呢?简单来说,就是三角形中位线平行于第三边,并且等于第三边的一半。
这可太重要啦,就好像是打开几何大门的一把小钥匙呢!咱先来看一种证明方法。
想象一下,有个三角形 ABC,DE 是中位线,那咱就把这个三角形复制一份,翻转过来,和原来的三角形拼在一起。
哇塞,你瞧,这时候 DE 不就变成了一个平行四边形的一条边嘛!根据平行四边形的性质,那它自然就平行于第三边 BC 啦,而且长度不就是 BC 的一半嘛!是不是很神奇呀?再有一种方法,咱可以过点 C 作一条和中位线 DE 平行的直线,然后延长中位线 DE 交这条直线于点 F。
嘿嘿,这时候就会发现一些奇妙的关系呢。
通过一系列的角度相等、边相等的推导,就能得出中位线定理啦。
还有啊,我们可以利用相似三角形来证明呢。
中位线把三角形分成了几个小三角形,这些小三角形和原来的大三角形是相似的哟!通过相似比,就能轻松证明中位线定理啦。
哎呀,这中位线定理的证明方法可真是多种多样,就像生活中的路一样,有好多条可以走呢!每种方法都有它独特的魅力和乐趣。
大家想想,要是没有中位线定理,我们在解决几何问题的时候得多费劲呀!它就像是一个得力的小助手,能帮我们快速找到答案。
所以啊,可得好好掌握中位线定理的证明方法,这可是我们探索几何世界的重要工具呢!以后遇到相关问题,就可以轻松应对啦,难道不是吗?总之呢,中位线定理证明方法虽然有点小复杂,但只要我们用心去理解、去尝试,就一定能搞明白。
就像攻克一座小山,虽然有点累,但登顶之后的那种成就感,那可真是无与伦比呀!加油吧,朋友们,让我们在中位线定理的世界里畅游吧!。
三角形中位线八种证明方法
三角形中位线八种证明方法一、定理:对任意三角形ABC,若∠A≡∠B≡∠C,三条边都相等,则三角形ABC的位线是平行的。
二、证明:1、依据角平分线定理,若在三角形中两个角A、B相等,则AB上的角平分线交于边BC上的点M,于是构成ABM与ACM两个三角形,由于∠A≡∠B≡∠C,得AB等于AC,BM 等于CM,则ABM等于ACM,即ABM // ACM,故三角形ABC的位线是平行的。
2、假设三条边AB、AC、BC相等,则可将三角形ABC移动到某一位置(如半平面),使得三边都分别与某一已知直线平行,即三角形ABC的位线就是平行的。
3、由锐角三角形两边相乘减去两个角的平方的定理知,若ABC是一个锐角三角形,则有AB*AC*BC=2(AC*BC+BC*AB+AB*AC),由此可知,对于等边三角形来说,有AB*BC=(AC*BC+BC*AB+AB*AC),即AB//BC;同理可得,AC//BC,由此证明位线是平行的。
4、由正三角形内角和为180°的边长比例定理可以得,对于正三角形ABC来说,有1336:a:b:c=1:1:1,由此可以得出结论:三边中任意两边之比等于三个顶点之比,故位线平行。
5、由正三角形外接圆半径的理论可得,当三角形ABC的三条边相等时,其外接圆必定是一个圆,因为,三条边相等,外接圆有唯一的半径,这说明,ABC和它的垂心圆O有四个公共点D、E、F、G,则DF // EG // AB // AC // BC,由此可知位线互相平行。
6、依据反三角形定理,若∠A≡∠B≡∠C,那么连接三边上中点之间这三条线互相平行,故位线互相平行。
7、由费马小定理可知,当满足幂函数关系:b²-ac=2a²b-2ab²+a³,则三角形ABC的位线互相平行。
三角形中位线定理的多种证明
2023年5月下半月㊀解法探究㊀㊀㊀㊀三角形中位线定理的多种证明◉青岛市即墨区实验学校㊀孙㊀凯㊀㊀摘要:三角形中位线定理是初中几何重要的结论,为解题提供了线段的位置与长度关系.教材中对该定理的证明耐人寻味 通过辅助线,将三角形转化为平行四边形,再运用平行四边形的性质进行证明.这样的辅助线,与以前的 将四边形转化为三角形 完全不一样,进一步丰富了学生对转化思想更深层次的认识,也完善了对辅助线作法的认知.基于八年级学生的基础,本文中给出了其他几种解法,以培养学生的理性思考能力,提高学生的数学素养.关键词:三角形中位线;多角度解答;辅助线㊀㊀三角形中位线定理是初中数学的一个重要定理,因为只有中点的条件,而要证明两个不同类型的结论,对学生而言,有一定的难度.人教版数学教材八年级下册第48页是通过构造平行四边形,运用平行四边形的判定与性质来进行证明的.除此之外,学生对其他证法知之甚少.其实,三角形中位线定理的证明方法有很多种,现仅基于八年级知识范围补充几种不同的证法,供大家参考.1例题呈现图1已知:如图1,әA B C 中,D ,E 分别是边A B ,A C 的中点.求证:D E ʊB C ,D E =12B C .2多法探究思路一:从面积入手.分析:由三角形中线性质可知,三角形的中线把三角形分成面积相等的两部分,因此易证әB C D 与әB C E 面积相等,则D E ʊB C .那么如何证明D E =12B C 呢?由S әB D E =12S әB E C ,运用三角形的面积公式即可证得.证法一:面积法.图2证明:如图2,过点D 作D F ʅB C 于点F ,过点E 作E G ʅB C 于点G ,连接B E ,C D .ȵA D =B D =12A B ,A E =C E =12A C ,ʑS әB D C =12S әA B C ,S әC E B =12S әA B C .ʑS әB D C =S әC E B ,即12B C D F =12B C E G .ʑD F =E G .又D F ʊE G ,ʑ四边形D F G E 是平行四边形.ʑD E ʊB C .ȵS әD B E =12S әA E B ,S әA E B =S әB E C ,ʑS әD B E =12S әB E C ,即12D E E G =14B C E G .ʑD E =12B C .点评:证法一利用面积相等的两个三角形证得线段平行,又运用三角形面积公式推导出线段的倍分关系,是三角形面积的正逆运用.用三角形面积的性质解题,显得灵动㊁直观,更具创造性.思路二:从等长线段入手,构造平行线.证法二:重合法.分析:本题中已有 中点 条件,要想出现三角形全等,必须出现对应角相等,可过点E 分别作B C ,A B 的平行线,出现一对全等三角形,再运用平行四边形性质证明.图3证明:如图3,过点E 作A B 的平行线交B C 于点F ,过点E 作B C 的平行线交A B 于点G .ȵG E ʊB C ,E F ʊA B ,ʑøA E G =øC ,øA =øF E C .又ȵA E =E C ,ʑәA E G ɸәE C F (A S A ).ʑA G =E F ,G E =C F .由辅助线作法可知四边形B F E G 是平行四边形,ʑA G =E F =G B =12A B .又ȵA D =D B =12A B ,ʑ点G 与点D 重合.ʑD E ʊB C ,C F =D E =B F .ʑD E =12B C .点评:运用好题目的核心条件是解题关键.证法二利用线段中点去证明线段的平行及大小关系,既可用57Copyright ©博看网. All Rights Reserved.解法探究2023年5月下半月㊀㊀㊀全等,又可以用平行四边形的性质或二者兼施,达到目的.证法三:旋转法.分析:一组对边平行且相等的四边形是平行四边形.基于这个判定定理,只需把әA D E 绕点E 旋转180ʎ便可得到C F ʊB D 且C F =B D ,再运用平行四边形性质解答即可.图4证明:如图4,将әA D E 绕点E 顺时针旋转180ʎ到әC F E 的位置,此时әA D E ɸәC F E .ʑC F ʊB D ,且C F =B D .ʑ四边形B D F C 为平行四边形.ʑD F ʊB C ,且D F =B C .ʑD E ʊB C ,且D E =12B C .点评:旋转是重要的图形变换方式之一,根据题目特点,运用旋转的性质构造解题模型,显得明快,富有生机.证法四:平移法.分析:如何利用 点E 是A C 中点 并运用三角形全等㊁平行四边形性质是解题关键.为此,可以过点E 作A B 平行线,过点A 作B C 平行线.图5证明:如图5,过点E 作A B 的平行线交B C 于点F ,过点A 作B C 的平行线交F E 的延长线于点G (即平移线段A B ,D E ).ȵA G ʊB C ,ʑøG =øE F C .又ȵA E =E C ,øA E G =øC E F ,ʑәA E G ɸәC E F (A A S ).ʑE G =E F ,A G =F C .由辅助线作法易知四边形A B F G 是平行四边形,ʑA B =G F .ȵD ,E 分别是A B ,A C 的中点,ʑB D ʊE F 且B D =E F ,E G ʊA D 且E G =A D .ʑ四边形A D E G ,D B F E 都是平行四边形.ʑD E ʊB C ,B F =D E =A G =F C .ʑD E =12B C .点评:证法四是继证法二㊁证法三之后,再一次灵活运用中点,构造全等模型并运用平行四边形性质进行解答.合理运用题目条件,并添置辅助线,构造解题模型,是学生综合运用基础知识㊁基本技能的表现.思路三:从中点入手,建立坐标系.证法五:坐标法.分析:D ,E 分别为A B ,A C 中点,可以建立平面直角坐标系,用中点坐标公式解答.证明:如图6,以B C 所在直线为x 轴,过点A 作B C 的垂线,以该垂线所在直线为y 轴,建立平面直角坐标系.图6设点A ,B ,C 的坐标分别为(0,a ),(b ,0),(c ,0).因为D ,E 分别是A B ,A C 的中点,所以由中点坐标公式,得D(b 2,a 2),E(c 2,a2).易得直线D E 的解析式为y =a2,与x 轴平行,即D E ʊB C .又D E =c -b 2,B C =c -b ,所以D E =12B C .点评:建立适当的平面直角坐标系,用坐标或函数关系式表示问题中的几何元素,用代数方法解决几何问题,是全新的视角,有助于深入了解问题㊁剖析问题,可以拓展学生数学思维.当然,三角形中位线定理的证明方法还有多种,比如,用相似,过点A ,B ,C 分别作直线D E 的垂线,等等.以上只是起抛砖引玉作用,相信大家在教学中还会有更多更好的方法.3类比探究问题1㊀已知:如图1,әA B C 中,D 是边A B 的中点,点E 在边A C 上,D E ʊB C .求证:E 为A C 的中点,D E =12B C .问题2㊀已知:如图1,әA B C 中,D E ʊB C ,D E =12B C .求证:D ,E 分别是边A B ,A C 的中点.以上两个问题,实际上是三角形中位线定理的逆定理,可以参考例题证法进行证明.类似的问题,还有梯形中位线定理,梯形中位线的逆定理,不再赘述.4教学启示教材是根据«义务教育数学课程标准(2022年版)»编写而成的,充分反映了课标的各种目标及要求,是理解数学㊁理解学生㊁理解教学的有力保证,是强有力的资源.课本的例习题为学生的学习活动提供了基本素材,具有普适性,但往往只呈现某一方面,其他很多方面还需要教师带领学生去开发.教师只有理解教材的深刻用意,才能更好地开发教材㊁用好教材.在平时课堂教学中,教师要利用课本中 有意义且不复杂 的问题去帮助学生发现问题的各个方面,让学生体会到 自己是一个发现者㊁研究者㊁探索者 ,这也是 人的心灵深处都有的一种根深蒂固的需要 .让学生带着问题去自由探究,探究问题的多种解法㊁问题变式及应用㊁问题的关联与内在联系,从而感受到数学的思考方法,处理问题的理性思维, ,从而把这些经验迁移应用到以后的学习中去,提升数学素养.Z67Copyright ©博看网. All Rights Reserved.。
课堂因你而精彩——《三角形的中位线》教学设计案例
课堂因你而精彩——《三角形的中位线》教学设计案例38数学教学研究第29卷第4期2010年4月课堂因你而精彩《三角形的中位线》教学设计案例王兴军(甘肃省民勤第五中学733300)l教学目标1.1知识目标1)了解三角形中位线的概念.2)掌握三角形中位线定理的证明和有关应用.1.2能力目标1)经历"探索一发现一猜想一证明"的过程,进一步发展推理论证能力.2)能够用多种方法证明三角形的中位线定理,体会在证明过程中所运用的归纳,类比,转化等数学思想方法.3)能够应用三角形的中位线定理进行有关的论证和计算,逐步提高学生分析问题和解决问题的能力.1.3情感目标通过学生动手操作,观察,实验,推理,猜想,论证等自主探索与合作交流的过程,激发学生的学习兴趣,让学生真正体验知识的发生和发展过程,培养学生的创新意识.2教学重点与难点教学重点:三角形中位线的概念与三角形中位线定理的证明.教学难点:三角形中位线定理的多种证明. 3教学方法与学法指导对于三角形中位线定理的引入采用发现法,在教师的引导下,学生通过探索,猜测等自主探究的方法先获得结论再去证明.在此过程中,注重对证明思路的启发和数学思想方法的渗透,提倡证明方法的多样性,而对于定理的证明过程,则运用多媒体演示.4教学过程(复习平行四边形的性质定理和判定定理,引导学生思考如何更加巧妙地利用平行四边形的知识来解决有关三角形的问题) 4.1一道趣题——课堂因你而和谐问题:你能将任意一个三角形分成4个全等的三角形吗?这4个全等三角形能拼凑成一个平行四边形吗?(板书)(这一问题激发了学生的学习兴趣,学生积极主动地加入到课堂教学中,课堂气氛变得较为和谐,课堂也鲜活起来了)学生想出了这样的方法:顺次连接三角形每两边的中点,看上去就得到了4个全等的三角形.如图1中,将△ADE绕E点沿顺(逆)时针方向旋转180.可得平行四边形ADFE.问题:你有办法验证吗?F图1C4.2一种实验——课堂因你而生动(学生的验证方法较多,其中较为典型的方法如下)生1:(如图1)沿DE,DF,EF将画在纸上的△ABC剪开,看4个三角形能否重合.生2:分别测量4个三角形的三边长度,判断是否可利用"SSS"来判定三角形全等.生3:分别测量4个三角形对应的边及角,判断是否可利用"SAS,ASA或AAS"来判定全等.引导:上述同学都采用了实验法,存在误差,那么如何利用推理论证的方法验证呢?第29卷第4期2010年4月数学教学研究39 4.3一种探索——课堂因你而鲜活师:把连接三角形两边中点的线段叫做三角形的中位线.(板书)问题:三角形的中位线与第三边有怎样的关系呢?在前面图l中你能发现什么结论呢? (学生的思维开始活跃起来,同学之间开始互相讨论,积极发言)学生的结果如下:DE∥BC,DF∥AC,EF∥AB,AE—EC,BF—FC,BD—AD,△ADE△DBF△EFC△DEF,DE:111+BC,DF=寺Ac,EF=寺AB……厶厶厶猜想:三角形的中位线平行于第三边,且等于第三边的一半.(板书)师:如何证明这个猜想的命题呢?生:先将文字问题转化为几何问题然后证明.已知:如图2,DE是△ABC的中位线.求证:DE1//BC,DE=+Bc.厶学生思考后教师启发:要证明两条直线平行,可以曰利用"三线八角"的有关内容A图2C进行转化,而要证明一条线段的长等于另一条线段长度的一半,可采用将较短的线段延长一倍,或者截取较长线段的一半等方法进行转化归纳.(学生积极讨论,得出几种常用方法,大致思路如下)生1:如图3,延长DE到F使EF----DE,连接CF.由△ADE△CFE(SAS),得AD丝FC,从而BD丝FC,所以,四边形DBCF为平行四边形,得DF丝BC,1可得DE丝÷Bc.(板书)图3生2:如图3,过点c作CF//AB,交DE的延长线于点F,得△ADE△CFE (ASA),得平行四边形DBCF,得DF丝BC, DE//1BC.生3:如图3,将AADE绕E点沿顺(逆)时针方向旋转180.,使得点A与点C重合,即AADEC~=△CFE,可得BD丝CF,得平行四边形DBCF,得DF//BC,可得DE丝去BC.生4:如图4,延长DE到F使DE—EF,连接AF,CF,CD,可得口AD—CF,口DBCF,得DF丝BC,1可得DE//÷BC.厶A,,.?F,●r●C生5:如图2,利用图4△ADEco△ABC且相似比为1:2,即万AD一AE一DE一丢,可得DE// BC.师:还有其它不同方法吗?(学生面面相觑,学生6举手发言)4.4一种创新——课堂因你而美丽生6:如图5,过点D作DF//BC交AC于点F,则AADFcoAABC,可得一:一一1.又E是Ac中C2ACB.,…'点,-ⅡJff~侍..AE=1,因此,AE=图5CAF,即E点与F点重合.所以DE//BC,且DE=1BC.(我事先只局限于思考利用平行四边形及三角形相似的性质解决问题,没想到学生的发言如此精彩,为整个课堂添加了不少亮色) 师:很好,好极了!这种证法在数学中叫40数学教学研究第29卷第4期2010年4月做同一法,连老师也没想到.太棒了,大家要向生6学习,用变化的,动态的,创新的观点来看问题,努力去寻找更好更简捷的方法.三角形中位线定理:三角形的中位线平行于第三边且等于第三边的一半.(板书)说明①本定理在同一条件下有两个结论:第1个结论说明中位线与第三边的位置关系,第2个结论说明中位线与第三边的数量关系.②利用三角形中位线定理可以证明两条直线的平行关系和线段之间的倍分关系.4.5一种思考——课堂因你而添彩问题:三角形的中位线与中线有什么区别与联系呢?容易得出如下事实:都是三角形内部与边的中点有关的线段.但中位线平行于第三边,且等于第三边的一半,三角形的一条中位线与第三边上的中线互相平分.(学生交流, 探索,思考,验证)4.6一种照应——课堂因你而完整问题:你能利用三角形中位线定理说明本节课开始提出的趣题的合理性吗?(学生争先恐后回答,课堂气氛活跃)4.7一种应用——课堂因你而升华做一做:任意一个四边形,将其四边的中点依次连接起来,所得新四边形的形状有什么特征?请证明你的结论.(学生积极思考发言,师生共同完成此题目的最常见解法已知:如图6,四边形ABCD,点E,F,G,H分别是四边的中点.求证:四边形EFGH是平行四边形.证明连结AC,因为E,F分别是AB,BC的中点.图6所以EF是△ABC的中位线,EF//AC且EF=1AC.同理可得:GH//AC且GH一÷AC.所以EF丝GH,四边形EFGH为平行四边形.(板书)(其它解法由学生口述完成)4.8一种引申——课堂因你而让人回昧无穷问题:如果将上例中的"任意四边形"改为"平行四边形,矩形,菱形,正方形",结论又会怎么样呢?(学生作为作业完成)4.9一句总结——课堂因你而彰显无穷魅力(学生总结本节内容:三角形的中位线和三角形中位线定理)(另附作业:课本94页习题3.3:1,3,4)5板书设计三角形的中位线1.问题4.做一做2.三角形中位线定义5.练习3.三角形中位线定理证明6.小结6课后反思本节课我以"如何将一个任意三角形分成4个全等的三角形"这一问题为出发点,以平行四边形的性质定理和判定定理为桥梁,探究了三角形中位线的基本性质和应用.在本节课中,学生亲身经历了"探索一发现一猜想一证明"的探究过程,体会了证明的必要性和证明方法的多样性.在此过程中,我注重新旧知识的联系,同时强调转化,类比,归纳等数学思想方法的恰当运用,达到了预期的目的.本节{拦伺—绐了垂固g启示:虽然在平f}拍镌哗中,我也尽力放手让学生们探身和创新的范日j,而本=侥复生饲—却是火立勺,动强i淦超出了抛预'湖道因走进孩门蜘里,听到孩子们心声的课堂因为只有融入了孩子们发自内心的感受和爱,课堂才会更加情彩(收稿日期:2010一Ol-21)。
三角形的中位线与反证法核心考点讲八年级数学下学期考试满分全攻略浙教版解析版
第11讲三角形的中位线与反证法(核心考点讲与练)一.三角形中位线定理(1)三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.(2)几何语言:如图,∵点D、E分别是AB、AC的中点∴DE∥BC,DE=BC.二.反证法(1)对于一个命题,当使用直接证法比较困难时,可以采用间接证法,反证法就是一个间接证法.反证法主要适合的证明类型有:①命题的结论是否定型的.②命题的结论是无限型的.③命题的结论是“至多”或“至少”型的.(2)反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.一.三角形中位线定理(共8小题)1.(2021春•乾县期末)如图,在△ABC中,∠C=90°,AB=13,AC=5,D、E分别是AC、AB 的中点,则DE的长是()A.6.5B.6C.5.5D.【分析】根据勾股定理求出BC,根据三角形中位线定理求出DE.【解答】解:在△ABC中,∠C=90°,AB=13,AC=5,则BC===12,∵D、E分别是AC、AB的中点,∴DE=BC=6,故选:B.【点评】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.2.(2021春•武安市期末)如图,四边形ABCD中,∠A=90°,AB=2,AD=2,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A.3B.2C.4D.2【分析】连接DN、DB,根据勾股定理求出BD,根据三角形中位线定理得到EF=DN,结合图形解答即可.【解答】解:连接DN、DB,在Rt△DAB中,∠A=90°,AB=2,AD=2,∴BD==4,∵点E,F分别为DM,MN的中点,∴EF=DN,由题意得,当点N与点B重合是DN最大,最大值为4,∴EF长度的最大值为2,故选:D.【点评】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线等于第三边的一半是解题的关键.3.(2021春•温州期末)如图,为测量BC两地的距离,小明在池塘外取点A,得到线段AB,AC,并取AB,AC的中点D,E,连结DE.测得DE的长为6米,则B,C两地相距()A.9米B.10米C.11米D.12米【分析】根据三角形中位线定理即可求出BC.【解答】解:∵点D,E分别为AB,AC的中点,∴DE是△ABC的中位线,∴DE=BC,∴BC=2DE=2×6=12(米),故选:D.【点评】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.4.(2021秋•丽水期末)如图①是公园跷跷板的示意图,立柱OC与地面垂直,点C为横板AB的中点.小明和小聪去玩跷跷板,小明最高能将小聪翘到1米高(如图②).(1)求立柱OC的高度;(2)小明想要把小聪最高翘到1.25米高,请你帮他找出一种方法,并解答.【分析】(1)根据三角形中位线定理求出OC;(2)根据AD的长度求出OC的长度,得到答案.【解答】解:(1)由题意得:OC∥AD,∵点C为AB的中点,∴OC为△ABD的中位线,∴OC=AD,∵AD=1米,∴OC=米;(2)要把小聪最高翘到1.25米高,立柱OC的高度要升高为0.625米.当AD=1.25米时,OC=0.625米,所以要把小聪最高翘到1.25米高,立柱OC的高度要升高为0.625米.【点评】本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.5.(2021春•北仑区期末)如图,在四边形ABCD中,AD=BC,点P是对角线BD的中点,点E、F 分别是边CD和AB的中点,若∠PEF=30°,则下列说法错误的是()A.PE=PF B.∠EPF=120°C.AD+BC>2EF D.AB+DC>2DB【分析】根据三角形中位线定理及AD=BC推出PF=PE,可判断A;根据等腰三角形的性质和三角形内角和定理可判断B;根据三角形三边关系可判断C.【解答】解:∵在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,∴FP,PE分别是△CDB与△DAB的中位线,∴PF=BC,PE=AD,∵AD=BC,∴PF=PE,故选项A不合题意;故△EPF是等腰三角形.∵∠PEF=30°,∴∠PEF=∠PFE=30°,∴∠EPF=180°﹣∠PEF﹣∠PFE=180°﹣30°﹣30°=120°,故选项B不符合题意;∵PF=BC,PE=AD,PE+PF>EF,∴BC+AD>EF,∴AD+BC>2EF,故选项C不符合题意;无法证明AB+CD>DB,故选项D符合题意;故选:D.【点评】本题主要考查了三角形中位线定理,三角形三边关系,等腰三角形的性质,三角形内角和定理,根据三角形中位线定理推出PE=PF是解决问题的关键.6.(2021春•鄞州区期末)如图,四边形ABCD中,∠B=90°,AB=8,BC=6,点M是对角线AC 的中点,点N是AD边的中点,连结BM,MN,若BM=3MN,则线段CD的长是()A.B.3C.D.5【分析】首先由勾股定理求得AC的长度,结合直角三角形斜边上中线的性质得到BM=AC,三角形中位线定理得到CD=2MN.【解答】解:如图,在直角△ABC中,∠B=90°,AB=8,BC=6,则由勾股定理知,AC===10.∵点N是AD边的中点,∴BM=AC=5.∵BM=3MN,∴MN=BM=.∵点M是对角线AC的中点,点N是AD边的中点,∴MN是△ACD的中位线.∵CD=2MN=2×=.故选:C.【点评】本题主要考查了三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.7.(2021•梓潼县模拟)如图,已知△ABC中,点M是BC边上的中点,AN平分∠BAC,BN⊥AN 于点N,若AB=8,MN=2,则AC的长为()A.12B.11C.10D.9【分析】延长BN交AC于D,证明△ANB≌△AND,根据全等三角形的性质、三角形中位线定理计算即可.【解答】解:如图,延长BN交AC于D,在△ANB和△AND中,,∴△ANB≌△AND(ASA),∴AD=AB=8,BN=ND,又∵M是△ABC的边BC的中点,∴MN是△BCD的中位线,∴DC=2MN=4,∴AC=AD+CD=8+4=12,故选:A.【点评】本题考查的是三角形中位线定理,关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.8.(2020秋•内江期末)如图,在四边形ABCD中,P是对角线BD的中点,点E、F分别是AB、CD 的中点,AD=BC,∠EPF=140°,则∠EFP的度数是()A.50°B.40°C.30°D.20°【分析】根据三角形中位线定理得到PE=AD,PF=BC,在PE=PF,根据等腰三角形的性质、三角形内角和定理计算即可.【解答】解:∵P是BD的中点,E是AB的中点,∴PE是△ABD的中位线,∴PE=AD,同理,PF=BC,∵AD=BC,∴PE=PF,∴∠EFP=×(180°﹣∠EPF)=×(180°﹣140°)=20°,故选:D.【点评】本题考查的是三角形中位线定理、等腰三角形的性质、三角形内角和定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.二.反证法(共6小题)9.(2021秋•平阳县期中)用反证法证明三角形至少有一个角不大于60°,应假设()A.三个角都小于60°B.三个角都大于60°C.三个角都大于或等于60°D.有两个角大于60°【分析】根据反证法的步骤中,第一步是假设结论不成立,反面成立解答.【解答】解:反证法证明三角形至少有一个角不大于60°,应假设三个角都大于60°,故选:B.【点评】本题考查的是反证法的应用,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.10.(2021春•乐清市期末)用反证法证明命题“如果a∥b,c∥b,那么a∥c”时,应假设()A.a⊥c B.c不平行b C.a不平行b D.a不平行c【分析】反证法证明命题的第一步是假设结论不成立,即结论的反面成立.【解答】解:用反证法证明命题“如果a∥b,b∥c,那么a∥c”时,应假设a不平行于c.故选:D.【点评】本题考查了反证法的知识,反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.11.(2021春•南浔区期末)用反证法证明某个命题的结论“a>0”时,第一步应假设()A.a<0B.a≠0C.a≥0D.a≤0【分析】用反证法证明命题的真假,先假设命题的结论不成立,从这个结论出发,经过推理论证,得出矛盾;由矛盾判定假设不正确,从而肯定命题的结论正确.【解答】解:用反证法证明某个命题的结论“a>0”时,第一步应假设a≤0,故选:D.【点评】考查了反证法,反证法是指“证明某个命题时,先假设它的结论的否定成立,然后从这个假设出发,根据命题的条件和已知的真命题,经过推理,得出与已知事实(条件、公理、定义、定理、法则、公式等)相矛盾的结果.这样,就证明了结论的否定不成立,从而间接地肯定了原命题的结论成立.”12.(2017秋•庆元县校级月考)如图,在△ABC中,AB=AC,P是△ABC内的一点,且∠APB>∠APC,求证:PB<PC(反证法)【分析】运用反证法进行求解:(1)假设结论PB<PC不成立,即PB≥PC成立.(2)从假设出发推出与已知相矛盾.(3)得到假设不成立,则结论成立.【解答】证明:假设PB≥PC.把△ABP绕点A逆时针旋转,使B与C重合,∵PB≥PC,PB=CD,∴CD≥PC,∴∠CPD≥∠CDP,又∵AP=AD,∴∠APD=∠ADP,∴∠APD+∠CPD≥∠ADP+∠CDP,即∠APC≥∠ADC,又∵∠APB=∠ADC,∴∠APC≥∠APB,与∠APB>∠APC矛盾,∴PB≥PC不成立,综上所述,得:PB<PC.【点评】此题主要考查了反证法的应用,解此题关键要懂得反证法的意义及步骤.13.(2015春•萧山区期末)证明:在△ABC中,∠A,∠B,∠C中至少有一个角大于或等于60°.【分析】利用反证法的步骤,首先假设原命题错误,进而得出与三角形内角和定理矛盾,从而证明原命题正确.【解答】证明:假设△ABC中每个内角都小于60°,则∠A+∠B+∠C<180°,这与三角形内角和定理矛盾,故假设错误,即原结论成立,在△ABC中,∠A,∠B,∠C中至少有一个角大于或等于60°.【点评】此题主要考查了反证法,正确把握反证法的证明步骤是解题关键.14.(2013春•滨江区期中)用反证法证明“三角形三个内角中,至少有一个内角小于或等于60°”.已知:∠A,∠B,∠C是△ABC的内角.求证:∠A,∠B,∠C中至少有一个内角小于或等于60°.证明:假设求证的结论不成立,那么三角形中所有角都大于60°∴∠A+∠B+∠C>180°这与三角形的三内角和为180°相矛盾.∴假设不成立∴三角形三内角中至少有一个内角小于或等于60度.【分析】根据反证法证明方法,先假设结论不成立,然后得到与定理矛盾,从而证得原结论成立.【解答】证明:假设求证的结论不成立,那么三角形中所有角都大于60°,∴∠A+∠B+∠C>180°,这与三角形的三内角和为180°相矛盾.∴假设不成立,∴三角形三内角中至少有一个内角小于或等于60度.故答案为:三角形中所有角都大于60°;180°;的三内角和为180°;三角形三内角中至少有一个内角小于或等于60度.【点评】本题结合三角形内角和定理考查反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.题组A 基础过关练一.选择题(共11小题)1.(2021•太谷区校级开学)如图,BD、CE是△ABC的中线,P、Q分别是BD、CE的中点,则PQ:BC等于()A.1:4B.1:5C.1:6D.1:7【分析】连接DE,连接并延长EP交BC于点F,利用DE是△ABC中位线,求出FC=BC,再用PQ是△EFC中位线,PQ=CF,即可求得答案.【解答】解:连接DE,连接并延长EP交BC于点F,∵DE是△ABC中位线,∴DE∥BC,∴DE=BC,AE=BE,AD=CD,∴∠EDB=∠DBF,∵P、Q是BD、CE的中点,∴DP=BP,∵在△DEP与△BFP中,,∴△DEP≌△BFP(ASA),分层提分∴BF=DE=BC,P是EF中点,∴FC=BC,PQ是△EFC中位线,PQ=FC,∴PQ:BC=1:4.故选:A.【点评】此题考查学生对三角形中位线定理的理解与掌握,连接DE,连接并延长EP交BC于点F,求出△DEP≌△BFP,FC=BC,是解答此题的关键.2.(2021春•上城区校级期末)用反证法证明“a>b”时应假设()A.a>b B.a<b C.a=b D.a≤b【分析】反证法的步骤中,第一步是假设结论不成立,反面成立即可.【解答】解:用反证法证明“a>b”时第一步应假设:a≤b.故选:D.【点评】本题结合角的比较考查反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.3.(2021•宁波模拟)如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=3,则BF的长为()A.4B.2C.3D.4【分析】先利用直角三角形斜边中线性质求出AB,再在RT△ABF中,利用30角所对的直角边等于斜边的一半,求出AF即可解决问题.【解答】解:在RT△ABF中,∵∠AFB=90°,AD=DB,DF=3,∴AB=2DF=6,∵AD=DB,AE=EC,∴DE∥BC,∴∠ADE=∠ABF=30°,∴AF=AB=3,∴BF===3.故选:C.【点评】本题考查三角形中位线性质、含30度角的直角三角形性质、直角三角形斜边中线性质、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.4.(2021春•上城区期末)用反证法证明命题:“已知△ABC,AB=AC,求证:∠B<90°.”第一步应先假设()A.∠B≥90°B.∠B>90°C.∠B<90°D.AB≠AC【分析】直接利用反证法的第一步分析得出答案.【解答】解:用反证法证明命题:“已知△ABC,AB=AC,求证:∠B<90°.”第一步应先假设∠B≥90°.故选:A.【点评】此题主要考查了反证法,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.5.(2018春•永嘉县期末)用反证法证明“同一平面内的三条直线a,b,c,若a⊥c,b⊥c,则a ∥b”.时,第一步应先假设()A.a不平行于b B.c不平行于b C.a不垂直于c D.b不垂直于c【分析】根据反证法的第一步是假设结论不成立进而解答即可.【解答】解:原命题“同一平面内的三条直线a,b,c,若a⊥c,b⊥c,则a∥b”,用反证法时应假设结论不成立,即假设a与b不平行(或a与b相交).故选:A.【点评】本题考查的是反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.6.(2021•南岗区校级模拟)如图,四边形ABCD中,∠ADC=90°,AE=BE,BF=CF,连接EF,AD=3,CD=1,则EF的长为()A.B.C.D.【分析】连接AC,根据勾股定理得到AC==,由三角形的中位线的性质定理即可得到结论.【解答】解:连接AC,∵∠ADC=90°,AD=3,CD=1,∴AC==,∵AE=BE,BF=CF,∴EF=AC=,故选:B.【点评】本题考查了勾股定理,三角形中位线定理,正确的作出辅助线是解题的关键.7.(2021春•婺城区校级期末)如图,DE是△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为()A.2.5B.1.5C.4D.5【分析】根据直角三角形斜边上的中线等于斜边的一半可得DF=AB=2.5,再利用三角形中位线定理可得DE=4,进而可得答案.【解答】解:∵D为AB中点,∠AFB=90°,AB=5,∴DF=AB=2.5,∵DE是△ABC的中位线,BC=8,∴DE=4,∴EF=4﹣2.5=1.5,故选:B.【点评】此题主要考查了直角三角形的性质和三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.8.(2020春•鄞州区期中)如图,△ABC中,AB=4,AC=3,AD,AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为()A.1B.C.D.【分析】证明△AGF≌△ACF,根据全等三角形的性质得到AG=AC=3,GF=FC,求出GB,根据三角形中位线定理计算即可.【解答】解:∵AD是∠BAC平分线,∴∠BAD=∠CAD,在△AGF和△ACF中,,∴△AGF≌△ACF(ASA)∴AG=AC=3,GF=FC,∴GB=AB﹣AG=1,∵CF=FG,CE=EB,∴EF是△CGB的中位线,∴EF=GB=,故选:C.【点评】本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.9.(2021春•温州期末)用反证法证明“在△ABC中,若∠A>∠B,则a>b”时,应假设()A.a<b B.a≤b C.a=b D.a≥b【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,据此进行判断即可.【解答】解:用反证法证明,“在△ABC中,∠A、∠B对边是a、b,若∠A>∠B,则a>b”,第一步应假设a≤b,故选:B.【点评】本题考查的是反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.10.(2021春•杭州期末)用反证法证明“四边形中至少有一个角是钝角或直角”,可先假设()A.四边形的四个角都是直角B.四边形的四个角都是锐角C.四边形的四个角都是钝角D.四边形的四个角都是钝角或直角【分析】根据四边形中至少有一个角是钝角或直角的反面是四边形的四个角都是锐角解答即可.【解答】解:用反证法证明“四边形中至少有一个角是钝角或直角”,可先假设四边形的四个角都是锐角,故选:B.【点评】本题考查的是反证法的应用,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.11.(2021春•成都月考)用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应假设直角三角形中()A.两锐角都大于45°B.有一个锐角小于45°C.有一个锐角大于45°D.两锐角都小于45°【分析】根据反证法的步骤中,第一步是假设结论不成立,反面成立解答.【解答】解:反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应假设直角三角形中两锐角都大于45°,故选:A.【点评】本题考查的是反证法的应用,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.二.填空题(共6小题)12.(2021春•永嘉县校级期末)用反证法证明命题“如果a>b,那么”时,假设的内容是<或=.【分析】用反证法证明数学命题“如果a>b,那么>”时,应假设它的否定“<或=”.【解答】解:由于命题“>”的否定为“或”,故用反证法证明命题“如果a>b,那么>”时,应假设<或=,故答案为:<或=.【点评】本题考查用反证法证明数学命题,求一个命题的否定的方法,得到命题“>”的否定为“<或=”,是解题的关键.13.(2021春•饶平县校级期末)如图,△ABC中,三条中位线围成的△DEF的周长是15cm,则△ABC的周长是30cm.【分析】根据三角形的周长公式、三角形中位线定理解答即可.【解答】解:∵△DEF的周长是15,∴DE+DF+EF=15,∵DE、DF、EF分别是△ABC的中位线,∴BC=2DE,AC=2DF,AB=2EF,∴△ABC的周长=BC+AC+AB=2(DE+DF+EF)=30(cm),故答案为:30.【点评】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.14.(2021春•红寺堡区期末)如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24厘米,△OAB的周长是18厘米,则EF=3厘米.【分析】根据平行四边形的性质可知OA=AC,OB=BD,结合AC+BD=24厘米,△OAB的周长是18厘米,求出AB的长,利用三角形中位线定理求出EF的长.【解答】解:∵▱ABCD的对角线AC,BD相交于点O,∴点O是AC、BD的中点,∵AC+BD=24厘米,∴OB+0A=12厘米,∵△OAB的周长是18厘米,∴AB=18﹣12=6厘米,∵▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,∴AB=2EF,∴EF=6÷2=3厘米,故答案为:3.【点评】本题主要考查了三角形中位线定理以及平行四边形的性质的知识,解答本题的关键是求出AB的长,此题难度不大.15.(2020春•衢州期末)如图,为测得B,C两地的距离,小明在池塘外取点A,得到线段AB,AC,并取AB,AC的中点D,E,连结DE,测得DE=15米,则BC=30米.【分析】根据三角形中位线定理计算即可.【解答】解:∵点D,E分别为AB,AC的中点,∴DE是△ABC的中位线,∴BC=2DE=30(米),故答案为:30.【点评】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.16.(2021春•灞桥区校级月考)用反证法证明“如果一个三角形没有两个相等的角,那么这个三角形不是等腰三角形”的第一步这个三角形是等腰三角形.【分析】假设命题的结论不成立,推出矛盾即可.【解答】解:用反证法证明“如果一个三角形没有两个相等的角,那么这个三角形不是等腰三角形”的第一步是假设这个三角形是等腰三角形.故答案为这个三角形是等腰三角形.【点评】本题考查反证法,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.17.(2021•罗湖区校级模拟)如图,△ABC,点D,E在边BC上,∠ABC的平分线垂直AE,垂足为N,∠ACB的平分线垂直AD,垂足为M,若BC=16,MN=3,则△ABC的周长为38.【分析】利用ASA定理证明△BNA≌△BNE,根据全等三角形的性质得到BE=BA,AN=NE,同理得到CD=CA,AM=MD,根据三角形中位线定理求出DE,根据三角形的周长公式计算,得到答案.【解答】解:在△BNA和△BNE中,,∴△BNA≌△BNE(ASA),∴BE=BA,AN=NE,同理,CD=CA,AM=MD,∵AM=MD,AN=NE,MN=3,∴DE=2MN=6,∵BE+CD﹣BC=DE,∴AB+AC=BC+DE=22,∴△ABC的周长=AB+AC+BC=22+16=38,故答案为:38.【点评】本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.三.解答题(共5小题)18.(2012春•杭州期中)在△ABC中,AB=,AC=,BC=1.求证:∠A≠30°.【分析】首先假设结论不成立,即∠A=30°,利用勾股定理逆定理得出∠C=90°,进而得出矛盾,从而得出结论成立,即∠A≠30°.【解答】证明:假设结论不成立,即∠A=30°,∵,∴△ABC是Rt△,且∠C=90°,∵∠A=30°,∴,这与BC=1矛盾,∴假设不成立,∴结论成立,即∠A≠30°.【点评】此题主要考查了反证法的证明,利用反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.19.(2009春•杭州校级期中)用反证法证明:两条直线被第三条直线所截.如果同旁内角不互补,那么这两条直线不平行.已知:如图,直线l1,l2被l3所截,∠1+∠2≠180°.求证:l1与l2不平行.证明:假设l1∥l2,则∠1+∠2=180°(两直线平行,同旁内角互补)这与∠1+∠2≠180°矛盾,故假设不成立.所以l1与l2不平行.【分析】用反证法证明问题,先假设结论不成立,即l1∥l2,根据平行线的性质,可得∠1+∠2=180°,与已知相矛盾,从而证得l1与l2不平行.【解答】证明:假设l1∥l2,则∠1+∠2=180°(两直线平行,同旁内角互补),这与∠1+∠2≠180°矛盾,故假设_不成立.所以结论成立,l1与l2不平行.【点评】反证法证明问题,是常见的证明方法,关键是找出与已知相矛盾的条件.20.(2019春•拱墅区期末)如图,点A,B为定点,定直线l∥AB,P是1上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中不会随点P的移动而变化的是①③④【分析】根据三角形中位线定理判断①;根据P是1上一动点判断②;根据相似三角形的性质判断③;根据三角形中位线定理判断④,结合图形判断⑤.【解答】解:①∵点M,N分别为PA,PB的中点,∴MN=AB,即线段MN的长不会随点P的移动而变化;②PA、PB随点P的移动而变化,∴△PAB的周长随点P的移动而变化;③∵l∥AB,点A,B为定点,∴△PMN的面积为定值,∵点M,N分别为PA,PB的中点,∴MN=AB,MN∥AB,∴△PMN∽△PAB,∴△PMN的面积=×△PMN的面积,则△PMN的面积不会随点P的移动而变化;④∵MN∥AB,∴直线MN,AB之间的距离不会随点P的移动而变化;⑤∠APB的大小随点P的移动而变化;故答案为:①③④.【点评】本题考查的是三角形中位线定理、相似三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.21.(2013秋•江山市校级月考)如图,已知四边形ABCD中,AB=DC,E、F分别为AD与BC的中点,连接EF与BA的延长线相交于N,与CD的延长线相交于M.求证:∠BNF=∠CMF.【分析】连接AC,取AC的中点K,连接EK,FK,则EK、FK分别是△ACD和△ABC的中位线,根据平行线的性质定理即可证明.【解答】证明:连接AC,取AC的中点K,连接EK,FK∵AE=ED,AK=KC∴EK∥DC,.同理FK∥AB,∴.∴∠FEK=∠EFK∵EK∥DC∴∠CMF=∠FEK∵FK∥AB∴∠BNF=∠EFK∴∠BNF=∠CMF【点评】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半,正确作出辅助线是关键.22.(2021春•仙居县期末)证明三角形中位线定理:三角形两边中点的连线平行于第三边且等于第三边的一半.(要求:画出图形,写出已知、求证和证明过程)【分析】根据题意画出图形,写出已知、求证,延长DE到F,使EF=DE,连接FC、DC、AF,证明四边形ADCF是平行四边形,进而得到四边形BDFC是平行四边形,根据平行四边形的在、性质定理证明即可.【解答】解:已知:如图,点D、E分别是△ABC的边AB,AC的中点,连接DE,求证:DE∥BC,DE=BC,证明:延长DE到F,使EF=DE,连接FC、DC、AF,∵AE=EC,DE=EF,∴四边形ADCF是平行四边形,∴CF∥AD,CF=AD,∴CF∥BD,CF=BD,∴四边形BDFC是平行四边形,∴DF∥BC,DF=BC,∵DE=DF,∴DE∥BC,DE=BC.【点评】本题考查的是三角形中位线定理、平行四边形的判定和性质,正确作出辅助性是解题的关键.题组B 能力提升练一.选择题(共6小题)1.(2021•宁波一模)如图,D,E分别是AB,AC上的中点,F是DE上的一点,且∠AFB=90°,若AB=6,BC=8,则EF的长为()A.1B.2C.3D.4【分析】利用三角形中位线定理得到DE=BC.由直角三角形斜边上的中线等于斜边的一半得到DF=AB.所以由图中线段间的和差关系来求线段EF的长度即可.【解答】解:∵DE是△ABC的中位线,BC=8,∴DE=BC=4.∵∠AFB=90°,D是AB的中点,AB=6,∴DF=AB=3,∴EF=DE﹣DF=4﹣3=1.故选:A.【点评】本题考查了三角形的中位线定理的应用,解题的关键是了解三角形的中位线平行于第三边且等于第三边的一半,题目比较好,难度适中.2.(2021•奉化区校级模拟)如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD =6.M是BD的中点,则CM的长为()A.B.2C.D.3【分析】延长BC到E使BE=AD,则四边形ACED是平行四边形,根据三角形的中位线的性质得到CM=DE=AB,根据跟勾股定理得到AB===5,于是得到结论.【解答】解:延长BC到E使BE=AD,则四边形ABED是平行四边形,∵BC=3,AD=6,∴C是BE的中点,∵M是BD的中点,∴CM=DE=AB,∵AC⊥BC,∴AB===5,∴CM=,解法二:延长CM交AD于T.。
三角形中位线证明方法
三角形中位线证明方法
三角形中位线的证明可以从以下几个方面进行:
1.利用向量法证明:可以利用向量表示三角形的中位线并计算其长度和角度,最终证明中位线相等。
2. 利用数学归纳法证明:首先证明在直角三角形中,中位线相等,假设三角形ABC的中位线DE相等,再证明当三角形ABC任意一边增加一小段时,中位线DE也相应增加一小段,从而证明中位线DE在三角形ABC中任意一边上都相等。
3. 利用勾股定理证明:首先利用勾股定理得出三角形中各个角的余弦值,接着利用中位线将三角形划分成两个小三角形,利用余弦定理证明两个小三角形的对应边长和夹角相等,从而证明中位线相等。
4. 利用相似三角形证明:利用中位线将三角形划分成两个小三角形,证明这两个小三角形与原三角形相似,从而证明中位线相等。
以上几种证明方法都可以用于证明三角形中位线相等的结论,根据具体情况可以灵活运用。
小议三角形中位线定理的几种证明方法
小议三角形中位线定理的几种证明方法三角形中位线定理是三角形的一个重要性质定理,对进一步学习三角形有关知识非常有用,尤其是在证明两直线平行和论证线段倍分关系时常常要用到,也为下一节梯形的中位线定理的证明作好充分的理论上的准备。
对这一定理的证明有多种方法,现介绍几种。
之所以要介绍这几种方法,是因为:第一,证明定理是帮助学生掌握知识体系的重要环节;第二,这个定理的证明综合运用了前面已学过的平行线、全等三角形、平行四边形、中心对称等重要知识,又提示了某些辅助线的添置方法;第三,证题时,强化了思维过程的教学,培养了求异思维,有益于开发学生的智力。
同时,启发学生用不同的方法来证明三角形中位线定理,还可以培养学生发散性思维。
下面就介绍三角形中位线定理的几种证明方法:三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半。
已知:如图,△ABC中,点D、E分别是AB、AC的中点求证:⑴DE∥BC⑵DE=BC证明方法1:∵点D、E分别是AB、AC的中点,∴AD=BDAE=CE∴==∵∠DAE=∠BAC∴△ADE~△ABC∴∠ADE=∠ABC ==∴DE∥BCDE=BC[小结]利用相似三角形的判定和性质,有时会收到异想不到的效果。
证明方法2:延长DE至F,使EF=DE,连接CF∵AE=CE,∠AED=∠CEF,DE=EF∴△ADE≌△CEF∴AD=CF,∠ADE=∠CFE,∵AD=BD,∴CF=BD∵∠ADE=∠CFE∴AB∥CF∴CF=BD,CF∥BD∴四边形BCFD是平行四边形,∴DF=BC,DF∥BC∵DE=EF=DF,∴DE=BC,DE∥BC[小结] 用延长相等线段的方法构造全等三角形,利用全等三角形的判定和性质以及平行四边形的判定和性质。
证明方法3:(同第二种方法的图)过点C作CF∥AB,与DE的延长线相交于点F∵CF∥AB,∴∠ADE=∠CFE∵∠AED=∠CEF,AE=CE,∴△ADE≌△CFE(AAS),∴CF=AD∵AD=BD,∴CF=BD,∵CF∥BD,∴四边形BCFD是平行四边形(以下证法与方法2相同)[小结] 作平行线的方法构造全等三角形,利用全等三角形、平行四边形的判定和性质。
三角形中线定理证明
三角形中线定理证明1. 引言三角形是几何学中最基本的图形之一,它具有许多重要的性质和定理。
其中一个重要的定理就是三角形中线定理。
三角形中线定理是指:一个三角形的三条中线所组成的三角形,其面积是原三角形面积的四分之一。
这个定理在解决三角形相关问题时起到了重要的作用,具有广泛的应用。
在本文中,我们将对三角形中线定理进行证明,并通过推导和几何图像来展示其正确性。
2. 证明过程步骤1:绘制一个任意的三角形ABC我们需要绘制一个任意的三角形ABC。
可以使用直尺和量角器来确保绘制出一个精确的三角形。
假设已经绘制出了一个符合要求的三角形ABC。
步骤2:连接AB、AC、BC的中点D、E、F接下来,在已经绘制好的三角形ABC上,我们需要找到AB、AC、BC上对应线段的中点D、E、F,并用直线连接它们。
即连接AD、BE和CF。
步骤3:证明DE || AB根据平行线性质,我们需要证明DE || AB。
为了证明这一点,我们可以使用反证法。
假设DE与AB不平行,即它们会相交于一点G。
根据平行线性质,我们知道DF || AB,并且FG || AC。
根据平行线性质的传递性,我们可以得出DF || AC。
然而,这与三角形中线定理相矛盾。
根据三角形中线定理,我们知道DEF是原三角形ABC的中位三角形,其面积是原三角形面积的四分之一。
但是如果DF || AC,则DEF的面积将为零,与原定理相矛盾。
假设不成立,DE || AB。
步骤4:证明EF || BC 和 DF || AC类似地,我们可以使用类似的方法来证明EF || BC 和 DF || AC。
假设EF与BC不平行,则它们会相交于一点H。
根据平行线性质,我们知道DE || BC,并且DH || AB。
根据平行线性质的传递性,我们可以得出DH || AB。
同样地,假设DF与AC不平行,则它们会相交于一点I。
根据平行线性质,我们知道DE || AC,并且DI || AB。
根据平行线性质的传递性,我们可以得出DI || AB。
中位线定理不同证明方法
中位线定理不同证明方法中位线定理,又称中线定理,是几何中的一个基本定理。
它指出,在一个三角形中,三条中线交于一点,这个交点被称为三角形的质心。
中位线定理的证明有多种方法,下面我将介绍其中的一些方法。
一、初级证明方法在这个证明方法中,我们将使用简单的几何知识来证明中位线定理。
让我们回顾一下中位线的定义。
中位线是连接一个三角形的一个顶点和对边中点的线段。
根据中位线的定义,我们可以得出结论:三条中位线交于一点。
为了方便说明,我们设这个三角形的三个顶点为A、B、C,对边分别为BC、CA和AB。
设M是BC的中点,N是CA的中点,P是AB的中点。
根据中位线的定义,线段AM是连接顶点A和对边BC的中点M的线段。
现在我们来证明中位线AM和BN的交点在CP上。
设交点为D。
根据三角形中位线的性质,AD和BC互相平分。
我们可以得出以下结论:AM = MD 和 BN = ND。
然后我们来看三角形ADM和三角形BND。
根据两个三角形的边长比较,我们可以得出:AD = ND 和 AM = MD。
根据边边边相似的性质,我们可以得出结论:三角形ADM和三角形BND全等。
根据全等三角形的性质,我们可以得出:∠DMA = ∠DNB。
因为∠DMA是三角形ADC的外角,所以∠DMA = ∠ADC + ∠ACD =∠ANB + ∠ACD。
同样的道理,∠DNB = ∠ANB + ∠BCD。
我们可以得出结论:∠ANB + ∠ACD = ∠ANB + ∠BCD。
根据等式两边相等的性质,我们可以得出:∠ACD = ∠BCD。
我们可以得出结论:CD || AB。
根据平行线的性质,我们可以得出:∠BDC = ∠ACB。
因为∠BDC是三角形BDC的内角,所以∠BDC + ∠BCD = 180°。
代入之前的等式,我们可以得出:∠ACB + ∠BCD = 180°。
我们可以得出结论:∠ACB+ ∠BCD = 180°。
根据三角形内角和的性质,我们可以得出:∠ACB + ∠BCA + ∠ABC = 180°。
八年级数学下册《三角形中位线定理》优秀教学案例
(四)总结归纳
1.教师带领学生回顾本节课所学内容,总结三角形中位线的定义、性质及定理。
2.强调三角形中位线定理在几何图形中的应用,让学生明确定理的价值。
3.引导学生反思学习过程中的收获和不足,为下一步的学习制定合理计划。
(五)作业小结
1.布置以下作业:
二、教学目标
(一)知识与技能
1.理解三角形中位线的定义,掌握三角形中位线定理及其证明过程,能够准确运用定理分析解决问题。
2.学会通过实际操作和观察,发现三角形中位线与第三边的关系,提高学生的观察、分析、综合能力。
3.能够运用三角形中位线定理解决实际问题,如计算线段长度、证明线段相等等,提高学生的应用能力。
a.教材课后习题,巩固三角形中位线定理的应用;
b.拓展练习,运用三角形中位线定理解决实际问题;
c.写一篇学习心得,总结自己在学习三角形中位线定理过程中的收获和感悟。
2.提醒学生按时完成作业,养成良好的学习习惯。
3.鼓励学生在课后进行自主学习,探索三角形中位线的其他性质和定理,提高自己的几何素养。
五、案例亮点
2.提问:“同学们,你们知道三角形的中位线吗?它有什么作用呢?”引发学生思考,为新课的学习做好铺垫。
3.介绍本节课的学习目标,让学生明确学习内容,激发学生的学习兴趣。
(二)讲授新知
1.利用多媒体课件,直观演示三角形中位线的定义及性质,让学生对中位线有初步的认识。
2.通过实际操作,让学生在三角形纸片上画出中位线,观察中位线与第三边的关系,引导学生发现三角形中位线定理。
4.培养学生运用几何图形和符号语言表达数学问题的能力,提高数学表达能力。
(二)过程与方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形中位线定理的证明及其教学说明以下内容作者为:青岛第四中学杨瀚书老师一、 三角形中位线定理的几种证明方法法1: 如图所示,延长中位线DE 至F,使 ,连结CF,则 ,有ADFC,所以FCBD,则四边形BCFD 就是平行四边形,DFBC 。
因为 ,所以DEBC 21.法2:如图所示,过C 作交DE 的延长线于F,则,有FCAD,那么FC BD,则四边形BCFD 为平行四边形,DFBC 。
因为,所以DEBC 21.法3:如图所示,延长DE 至F,使 ,连接CF 、DC 、AF,则四边形ADCF 为平行四边形,有ADCF,所以FCBD,那么四边形BCFD 为平行四边形,DF BC 。
因为 ,所以DEBC 21.法4:如图所示,过点E 作MN ∥AB,过点A 作AM ∥BC,则四边形ABNM 为平行四边形,易证CEN AEM ∆≅∆,从而点E 就是MN 的中点,易证四边形ADEM 与BDEN 都为平行四边形,所以DE=AM=NC=BN,DE ∥BC,即DEBC 21。
法5:如图所示,过三个顶点分别向中位线作垂线.二、教学说明1、三角形中位线定理的另外一种猜想过程:“二维”转化为“一维”在引导学生探索三角形中位线定理时,由于学生画出中位线后,就不难直观地发现平行关系,难的就是发现数量关系,我联想到在此之前认识线段中点时的一道典型例题,挖掘它与原有知识的内在联系,从而作如下探索引导。
⑴如图,A为线段BC(或线段BC的延长线)上的任意一点,D、E分别就是AB、AC 的中点,线段DE与BC有什么关系?AB C图⑴:⑵如果点A不在直线BC上,图形如何变化?上述结论仍然成立不?C图⑵:说明:学生观察(几何画板制作的)课件演示:当△ABC的顶点A运动到直线BC上时,中位线DE也运动到BC上,这样由“二维”转化为“一维”,学生就不难猜想性质的两方面,特别就是数量关系,而想到去度量、验证与猜想,水到渠成、如果教师直接叫学生去度量角度与长度,就是强扭的瓜不甜、2、教学重点:本课重点就是掌握与运用三角形中位线定理。
第一,要知道中位线定理的作用:可以证明两条直线平行及线段的倍分关系,计算边长或中位线的长。
第二,要知道中位线定理的使用形式,如:∵ DE 就是△ABC 的中位线∴ DE ∥BC,BC DE 21第三,让学生通过部分题目进行训练,进而掌握与运用三角形中位线定理。
题1 如图4、11-7,Rt△ABC,∠BAC=90°,D、E 分别为AB,BC 的中点,点F 在CA 延长线上,∠FDA=∠B、(1)求证:AF =DE;(2)若AC =6,BC =10,求四边形AEDF 的周长、分析 本题就是考查知识点较多的综合题,它不但考查应用三角形中位线定理的能力,而且还考查应用直角三角形与平行四边形有关性质的能力。
(1)要证AF =DE,因为它们刚好就是四边形的一组对边,这就启发我们设法证明AEDF 就是平行四边形、因为DE 就是三角形的中位线,所以DE∥AC、又题给条件∠FDA=∠B,而在Rt△ABC 中,因AE 就是斜边上的中线,故AE =EB 、从而∠EAB =∠B、于就是∠EAB=∠FDA、故得到AE∥DF、所以四边形AEDF 为平行四边形、ED AC(2)要求四边形AEDF 的周长,关键在于求AE 与DE,AE =21BC =5,DE =21AC=3、证明:(1)∵D、E 分别为AB 、BC 的中点, ∴DE∥AC ,即DE∥AF∵Rt△ABC 中,∠BAC=90°,BE=EC∴EA=EB =21BC,∠EAB=∠B又∵∠FDA=∠B, ∴∠EAB=∠FDA∴EA∥DF,AE DF 为平行四边形 ∴AF=DE(2)∵AC=6,BC =10,∴DE=21AC =3,AE =21BC =5∴四边形AEDF 的周长=2(AE+DE)=2(3+5)=16题2 如图,在四边形ABCD 中,AB =CD,E 、F 分别就是BC 、AD 的中点,延长BA 与CD 分别与EF 的延长线交于K 、H 。
求证:∠BKE=∠CHE、分析 本题考查三角形中位线的构造方法及应用、平行线的性质、由中点想到中位线,又要把结论联系起来,既要使中位线的另一端点处一理想的位置,又使需证明的角转移过来,可考虑,连BD,找BD 中点G,则EG 、FG 分别为△BCD、△DBA 的中位线,于就是得到了解题方法、考虑到结论辅助线不要乱作,取中点比作平行线好、证明:连BD 并取BD 的中点G,连FG 、GE 在△DAB 与△BCD 中∵F 就是AD 的中点,E 就是BC 的中点∴FG∥AB 且FG =21AB,EG∥DC 且EG =21DC∴∠BKE=∠GFE ,∠CHE=∠GEF ∵AB=CD ∴FG=EG∴∠GFE=∠GEF ∴∠BKE=∠CHE题3 如图, ABCD 为等腰梯形,AB∥CD,O 为AC 、BD 的交点,P 、R 、Q 分别为AO 、DO 、BC 的中点,∠A OB =60°。
求证:△PQR 为等边三角形、分析 本题考查三角形中位线定理、等边三角形判定方法、直角三角形斜边中线定理。
利用条件可知PR =21AD,能否把PQ 、RQ 与AD(BC)联系起来成为解题的关键,由于∠AOB=60°,OD=OC,则△ODC 为等边三角形,再由R 为OD 中点,则∠BRC=90°,QR 就为斜边BC 的中线、证明:连RC,∵四边形ABCD 为等腰梯形且AB∥DC ∴AD=BC ∠ADC=∠BCD又∵DC 为公共边 ∴△ADC≌△BCD ∴∠ACD=∠BDC ∴△ODC 为等腰三角形 ∵∠DOC =∠AOB=60° ∴△ODC 为等边三角形 ∵R 为OD 的中点∴∠ORC=90°=∠DRC(等腰三角形底边上的中线也就是底边上的高)∵Q 为BC 的中点 ∴RQ=21BC =21AD 同理PQ =21BC =21AD在△OAD 中 ∵P、R 分别为AO 、OD 的中点∴PR=21AD ∴PR=PQ =RQ故△PRQ 为等边三角形3、教学难点:本课难点就是三角形中位线定理的证明,证明方法的关键在于如何添加辅助线.教师可以在证明思路上进行引导、启发,避免生硬地将辅助线直接作出来让学生接受。
例如,教师可以启发学生:要证明一条线段的长等于另一条线段的长的一半,可将较短的线段延长一倍,或者截取较长的线段的一半。
上面的这种辅助线的作法可以概括为“短延长、长截短”,这种辅助线的作法还可以用于证明线段与、差、倍、分等方面。
证明线段的与、差、倍、分常用的证明策略:1, 长截短:要证明一条线段等于另外两条线段的与与差,可在长线上截取一部分等于另两条线段中的一条,然后再证明另一部分等于剩下的一条线段的长。
(角也亦然)2, 短延长:要证明一条线段等于另外两条线段的与与差,可先延长较短的一条线段,得到两条线段的与,然后再证明其与长的线段相等。
(角也这样)3, 加倍法:要证明一条线段等于另一条线段的2倍或1/2,可加倍延长线段,延长后使之为其2倍,再证明与另一条线段相等。
(角也这样)4, 折半法:要证明一条线段等于另一条线段的2倍或1/2,也可取长线段的中点,再证明其中之一与另一条线段相等。
(角也可用)5, 代数运算推理法:这种方法就是利用代数运算证明线段或角的与、差、倍、分。
6, 相似三角形及比例线段法:利用相似三角形的性质进行推理论证。
题1(短延长):如图所示,在正方形ABCD中,P、Q分别为BC、CD上的点。
(1)若∠PAQ=45°,求证:PB+DQ=PQ。
(2)若△PCQ的周长等于正方形周长的一半,求证:∠PAQ=45°Q证明:(1)延长CB 至E ,使BE=DQ ,连接AE 。
∵四边形ABCD 就是正方形 ∴∠ABE=∠ABC=∠D=90°,AB=AD 在△ABE 与△ADQ 中 ∵AB=AD ,∠ABE=∠D ,BE=DQ∴≅∴=∠=∠∠=∴∠+∠=∴∠+∠=∠=∠=∆∆ABE ADQAE AQ BAE QAD PAQ BAP QAD BAP BAE EAP PAQ ,°°°,即°45454545在和中,,即∆∆∆∆AEP AQP AE AQ EAP PAQ AP AP AEP AQP EP PQEP EB BP DQ BP PQPB DQ PQ =∠=∠=∴≅∴=∴=+=+=+=Q(2)延长CB 至E ,使BE=DQ ,连接AE 由(1)可知∆∆ABE ADQ ≅∴=∠=∠∴∠+∠=∠+∠=∴++=+∴=-+-=+=+====∴≅∴∠=∠=AE AQ BAE QADDAQ BAQ BAE BAQ PCQ PCQC QP BC CDPQ BC PC CD QC BP DQ BP EB EP AEP AQP AE AQ EP PQ AP AP AEP AQPEAP PAQ ,°的周长等于正方形周长的一半在和中,,°9045 ∆∆∆∆∆()()题2(长截短):如图,在△ABC 中,∠B=2∠C,∠A 的平分线AD 交BC 于D 。
求证:AC=AB+BD三角形中位线定理的几种证明方法及教学中需要说明的地方证明:在AC上截取OA=AB,连接OD,∵∠3=∠4,AD=AD∴△ABD≌△AOD,∴BD=DO∴∠B=∠1=∠2+∠C= 2∠C∴∠2=∠C∴OD=OC=BD∴AC=OA+OC=AB+BD。