绝对值2

合集下载

初中数学知识点精讲精析 绝对值 (2)

初中数学知识点精讲精析 绝对值 (2)

2.3 绝对值学习目标1.会借助数轴,理解绝对值和相反数的概念。

2.知道| a|的含义以及互为相反数的两个数在数轴上的位置关系。

3.会求一个数的绝对值和相反数,能用绝对值比较两个负数的大小。

知识详解1.相反数(1)相反数的定义像4和-4,3和-3,2.5和-2.5等这样只有符号不同的两个数,我们称其中一个数是另一个数的相反数,也称这两个数互为相反数,特别地,0的相反数是0。

相反数的理解:①相反数“只有符号不同”,即符号相反,数字相同,不能误理解为“只要符号不同”就行,例如:-1与2符号不同,但不是互为相反数②相反数是成对出现的,不能单独存在.例如,5是-5的相反数,-5也是5的相反数③0的相反数为0是相反数定义的重要组成部分。

(2)相反数的求法求一个数的相反数,只要在这个数的前面添上“-”号,就表示这个数的相反数。

一个有理数a,它的相反数是多少呢?有理数a的相反数是-a.这里a可以表示任意一个数,可以是正数,可以是0,可以是负数,还可以是一个式子.比如:当a=2时,-a=-2,2与-2是互为相反数;当a=-1时,-a=-(-1),因为-1的相反数是1,所以-(-1)=1;当a=m+n时,-a=-(m +n),所以m+n的相反数是-(m+n).(3)相反数的几何意义一对相反数在数轴上对应的点,位于原点的两侧,并且到原点的距离相等。

2.绝对值(1)绝对值的几何定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值。

①绝对值是一个数在数轴上的对应点离开原点的长度,如图中,点-4距离原点4个单位长度,则-4的绝对值就是4②绝对值是一个距离。

(2)绝对值的表示方法一个数a的绝对值记作|a|,读作a的绝对值.如,+4的绝对值记作|+4|,-8的绝对值记作|-8|。

(3)绝对值的代数意义①一个正数的绝对值是它本身;②一个负数的绝对值是它的相反数;③0的绝对值是0。

用式子表示为:|a|=⎩⎪⎨⎪⎧ a ,a>0,0,a =0,-a ,a<0.3.绝对值的性质(1)数轴上表示某个数的点到原点的距离越近,它的绝对值就越小,到原点的距离越远,它的绝对值就越大。

绝对值(2)

绝对值(2)
(2)-3到原点的距离 > -2到原点的距离, 即|-3| > |-2|; -3 < -2 (3)-2到原点的距离 > -1到原点的距离, 即|-2| > |-1|; -2 < -1
3、分析问题2中的结果,你 发现了什么规律? 归纳: 两个负数比较大小,绝对值 大的 反而小 。
自学指导2
请同学们认真阅读课本第13页 的“例”,注意解题的步骤,然后 归纳方法: 异号两数比较大小,要考虑 正负 它们的 ; 同号两数比较大小,要考虑 它们的 绝对值。
自学检测2
课本第13页的“练习”
小结:
大家这节课学到哪些 知识,你能说一说吗?
作业:
1教材P14的6
当堂训练
1. 课本第14页的7,8,9
2、比较下列数的大小 (1)-9.1与-9.099 1 4 (2)-2 3与- 2
5
当堂训练:
3,用“ <”或“ > ”填空。 因为|-10| |-100|, 所以-10 -100 因为|-5/3| |-3/5|, 所以-5/3 -3/5>来自0 ;0>
负数;
> 负数(填>或<)
自学检测1 1、画数轴比较大小:(填>或<) (1)-1 < 2;
(2)0 (3)-4
>
<
-0.5; -2
2、观察数轴,并填空:(填>或<)
-4 -3 -2 -1 0 1 2 3 4
1)-4到原点的距离 > -3到原点的距离, < -3 即|-4| > |-3|; -4
1.2.4 绝对值(2)
学习目标:
会利用数轴、绝对值 比较数的大小

《绝对值》(2)教案 (公开课)2022年

《绝对值》(2)教案 (公开课)2022年

§2.3绝对值〔2〕二、教学目标1、使学生进一步掌握绝对值概念;2、使学生掌握利用绝对值比较两个负数的大小;3、注意培养学生的推时论证能力 三、教学重点和难点负数大小比较 四、教学手段现代课堂教学手段 五、教学方法启发式教学 六、教学过程〔一〕、从学生原有认知结构提出问题1、计算:|+15|;|-31|;|0| 2、计算:|21-31|;|-21-31|.3、比较-(-5)和-|-5|,+(-5)和+|-5|的大小4、哪个数的绝对值等于0?等于31?等于-1? 5、绝对值小于3的数有哪些?绝对值小于3的整数有哪几个? 6、a ,b 所表示的数如以下列图,求|a|,|b|,|a+b|,|b-a| 7、假设|a|+|b-1|=0,求a ,b这一组题从不同角度提出问题,以使学生进一步掌握绝对值概念 解:1、|+15|=15,|-31|=31,|0|=0让学生口答这样做的依据 2、|21-31|=|61|=61|,|-21-31=-〔-21-31〕。

说明:“| |〞有两重作用,即绝对值和括号3、因为-(-5)=5,-|-5|=-5,5>-5, 所以-(-5)>-|-5|。

这里需讲清一个问题,即-(-5)和-|-5|的读法,让学生熟悉,-(-5)读作-5的相反数,-|-5|读作-5绝对值的相反数因为+(-5)=-5,+|-5|=,-5<5, 所以+(-5)<+|-5|4、0的绝对值等于0,±31的绝对值等于31,没有什么数的绝对值等于-1(为什么?)用符号语言表示应为:|0|=0,|+31|=31|,|-31|=31。

这里应再次强调绝对值是数轴上的点与原点的距离,并指出距离是非负量5、绝对值小于3的数是从-3到3中间的所有的有理数,有无数多个;但绝对值小于3的整数只有五个:-2,-1,0,1,2用符号语言表示应为:因为|x|<3,所以-3<x <3如果x 是整数,那么x=-2,-1,0,1,26、由数轴上a 、b 的位置可以知道a <0,b >0,且|a|<|b| 所以|a|=-a ,|b|=b ,|a+b|=a+b ,|b-a|=b-a 7、假设a+b=0,那么a ,b 互为相反数或a ,b 都是0,因为绝对值非负,所以只有|a|=0,|b-1|=0,由绝对值意义得a=0,b-1=0用符号语言表示应为:因为|a|+|b-1|=0,所以a=0,b-1=0, 所以a=0,b=1〔二〕、师生共同探索利用绝对值比较负数大小的法那么 利用数轴我们已经会比较有理数的大小由上面数轴,我们可以知道c <b <a ,其中b ,c 都是负数,它们的绝对值哪个大?显然c >b 引导学生得出结论:两个负数,绝对值大的反而小这样以后在比较负数大小时就不必每次再画数轴了 〔三〕、运用举例 变式练习 例1 比较-421与-|—3|的大小 例2 a >b >0,比较a ,-a ,b ,-b 的大小 例3 比较-32与-43的大小 课堂练习1、比较以下每对数的大小:32与52;|2|与36;-61与112;73-与52-2、比较以下每对数的大小: -107与-103;-21与-31;-51与-201;-21与-32〔四〕、小结先由学生表达比较有理数大小的两种方法——利用数轴比较大小;利用绝对值比较大小,然后教师引导学生得出:比较两个有理数的大小,实际上是由符号与绝对值两方面来确定学习了绝对值以后,就可以不必利用数轴来比较两个有理数的大小了 七、练习设计1、判断以下各式是否正确:(1)|-01|<|-001|; (2)|-31|<41; (3) 32<43-; (4)81>-712、比较以下每对数的大小:(1)-85与-83;(2)-113与-0273;(3)-73与-94;(4)- 65与-1110;(5)- 32与-53;(6)- 97与-1193、写出绝对值大于3而小于8的所有整数4、你能说出符合以下条件的字母表示什么数吗? (1)|a|=a ; (2)|a|=-a ; (3)xx =-1; (4)a >-a ;(5)|a|≥a ; (6)-y >0; (7)-a <0; (8)a+b=05假设|a+1|+|b-a|=0,求a ,b 八、板书设计2.3绝对值〔2〕〔一〕知识回忆 〔三〕例题解析 〔五〕课堂小结例1、例2〔二〕观察发现 〔四〕课堂练习 练习设计九、教学后记在传授知识的同时,一定要重视学科根本思想方法的教学关于这一点,布鲁纳有过精彩的论述他指出,掌握数学思想和方法可以使数学更容易理解和更容易记忆,更重要的是领会数学思想和方法是通向迁移大道的“光明之路〞,如果把数学思想和方法学好了,在数学思想和方法的指导下运用数学方法驾驭数学知识,就能培养学生的数学能力不但使数学学习变得容易,而且会使得别的学科容易学习显然,按照布鲁纳的观点,数学教学就不能就知识论知识,而是要使学生掌握数学最根本的东西,用数学思想和方法统摄具体知识,具体解决问题的方法,逐步形成和开展数学能力为了使学生掌握必要的数学思想和方法,需要在教学中结合内容逐步渗透,而不能脱离内窬形式地传授本课中,我们有意识地突出“分类讨论〞这一数学思想方法,以期使学生对此有一个初步的认识与了解平行四边形的性质总体说明〔1〕本节的主要内容包含平行四边形的性质。

绝对值2教案

绝对值2教案

学科:数学 教学内容:绝对值【基础知识精讲】1.给出一个数,能求出它的绝对值. 2.会利用绝对值比较两个负数的大小.【重点难点解析】 明确绝对值的意义一个数的绝对值就是数轴上表示这个数的点与原点的距离,这就是绝对值的几何意义,即表示数a 的点是P ,则一定是|a|=OP .绝对值的代数定义是:设a 为有理数⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a即一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值为0,注意对于任何有理数a ,都有0||≥a ,在今后的学习中很重要.A .重点、难点提示B .考点指要绝对值是初中数学的一个重要内容,也是中考的必考内容之一。

一个数的绝对值与这个数的关系:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

比较两个负数的大小,可利用绝对值比较,也可以利用数轴比较。

【难题巧解点拨】例1 求下列各数的绝对值: -32,53+,0,-2.1 解:32|32|=-,5353=+,|0|=0,|-2.1|=2.1。

例2 比较下列各组数的大小:(1)-1与0 (2)-1与-2 (3)32-与-2.1 解:(1)因为-1在数轴上的对应点在0在数轴上的对应点的左边,所以-1<0。

(2)因为|-1|=1,|-2|=2,1<2,所以-2<-1。

(3)在为3232=-,|-2.1|=2.1,1.232<,所以321.2-<-。

(两个负数的比较,转化成了它们的绝对值的大小的比较,即两个正数的大小的比较,这就是化归转化的思想)注:比较两个有理数的大小,还可以应用数轴比较,这样较直观。

方便,同学们不妨试一试。

例3 已知a>b>0,试比较-a 与-b 的大小。

解法一:因为a>b>0,所以-a<0,-b<0, 而|-a|=a ,|-b|=b ,又a>b ,所以-a<-b 。

初中数学人教版 绝对值2 人教版

初中数学人教版  绝对值2 人教版
绝对值
情境引入:
指出下列各点与原点的距离是多少?
A
BF
CD
E
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
A
B
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
一个数a的绝对值:
数轴上表示这个数的点与原点之间的距离。
一个数的绝对值应该怎么样去记呢?
一个数a的绝对值用 |a| 表示。
课后思考 已知|x–2|+|y–3|+|z–4|=0,求x+y–z的值。
本节课你掌握了以下知识吗?
绝对值的定义是什么? 绝对值的性质是什么?
作业:
课本P13 3题
11.下列语句正确的个数有(B )
①若a=b,则|a|=|b|; √ ②若a= –b,则|a|=|b|; ③若|a|=|b|,则a=b;
3.判断(对的打“√”,错的打“×”):
(1)一个有理数的绝对值一定是正数 ×( ) (2)-1.4<0,则│-1.4│<0。 ( ×) (3) │-32︱的相反数是32 ( ×)
练习:
1 、 符 号 是 “ +” 号 , 绝 对 值 是 6 的 数
是 6 ;符号是“-”号,绝对值是6的 数是 -6 ;绝对值等于6的数有几个? 2、绝对值是0的数是 0 。
世界上有一种爱很伟大,那就是母爱!世上有一个人最值得我们去回报,那就是母亲。 母亲像什么,母亲像天使一样把一点一滴汗水与祝福慢慢地撒在我们的心里。
母亲是什么,母亲为我们打开成长的大门,母亲是上帝派下来哺育我们的天使。 在人生崎岖坎坷的旅途上,是谁给予你最真诚、最亲切的关爱,是谁对你嘘寒问暖,时刻给予你无私的奉献;是谁不知疲倦地教导着你为人处世的道理;是谁为了你的琐事而烦恼?

人教版初中七年级数学第一单元有理数《绝对值(2)》教案

人教版初中七年级数学第一单元有理数《绝对值(2)》教案

人教版初中七年级数学第一单元有理数1.2.4 第二课时 有理数的大小比较一、教学目标(一)学习目标1.理解并掌握有理数大小的比较的方法;2.会比较有理数的大小,并能正确地使用“>”或“<”号连接; 3.通过对有理数大小比较方法的推理,培养学生的数学推理能力.(二)学习重点运用绝对值的知识比较两个负数的大小;(三)学习难点有理数大小比较的推理.二、教学设计(一)课前设计 1.预习任务(1)在数轴上,右边的数总比左边的数大; (2)正数大于0,负数小于0,正数大于负数; (3)两个负数比较,绝对值大的反而小. 2.预习自测(1)有理数a 在数轴上对应的点如图所示,则a ,a -,-1的大小关系是 ( )A .1-<<-a aB .a a <-<-1C .a a -<-<1D .1-<-<a a【知识点】有理数的大小比较 【数学思想】数形结合【解题过程】解:由数轴可知:a a -<-<1【思路点拨】根据数轴上的点,左边的数总比右边的数小即可求解. 【答案】Ca(2)下列四个数中,最大的数是( ) A .-6 B .-2 C .0 D .21- 【知识点】有理数的大小比较【解题过程】解: 题意可得:02126<-<-<-【思路点拨】根据两个负数比较绝对值大的反而小和0大于负数即可求解. 【答案】 C(3)在5,23,-1,+0.001这四个数中,小于0的数是 ( ) A .5 B .23C .-1D .+0.001【知识点】有理数的大小比较 【解题过程】解:在5,23,-1,+0.001这四个数中,小于0的数是 -1. 【思路点拨】根据0大于负数,正数大于0,正数大于负数即可求解. 【答案】C(4)下列四组有理数的大小比较正确的是( )A .3121->- B .11+->--C .3121< D .3121->-【知识点】有理数的大小比较 【解题过程】解: 因为623131,632121==-==-且6263> 所以3121-<-,故A 错误; 因为11,11-=+--=--,所以11+-=--,故B 错误;又C 错误;故应选D . 【思路点拨】根据有理数大小比较的法则即可求解. 【答案】D .(二)课堂设计1.知识回顾(1)绝对值的定义是什么? (2)绝对值的法则是什么? (3)数轴的三要素是什么?2.问题探究探究一有理数大小的比较法则活动①某一天我国5个城市的最低气温如图所示:(1)比较这5个城市,哪个城市的最低气温最低?是多少?哪个城市的最低气温最高?是多少?(2)你能将这5个城市的最低气温按从低到高的顺序排列吗?(3)请你将这5个数字分别在数轴上表示出来?学生举手抢答.总结:(1)数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数总小于右边的数.师问:对于正数、0和负数这三类数,它们之间有什么大小关系?两个负数之间如何比较大小?学生举手抢答.总结:有理数大小比较的法则:一般地,(1)正数大于0,0大于负数,正数大于负数;(2)两个负数比较,绝对值大的反而小.【设计意图】学生通过生活中的实际问题的大小比较,自然的引出有理数大小的比较方法,体验数学来源于生活的本质,通过小组合作和师生互动,激发学生学习热情的同时,锻炼学生的小组合作能力,分析归纳的能力等.探究二会比较有理数的大小,并能正确地使用“>”或“<”号连接★活动①:会比较有理数的大小,并能正确地使用“>”或“<”号连接例1 画出数轴,在数轴上表示下列各数,并用“<”连接:+5,-3.5,12,-112,4,0【知识点】有理数的大小比较【数学思想】数形结合.【解题过程】解:如图所示:因为在数轴上右边的数大于左边的数,所以-3.5<-112<0<12<4<+5.5 4【思路点拨】画出数轴,在数轴上标出表示各数的点,然后根据右边的数总比左边的数大进行比较.【答案】-3.5<-112<0<12<4<+5.练习:把如图的直线补充成一条数轴,并表示下列各数:0,-(+4),312,-(-2),|-3|,+(-5),并用“<”号连接.【知识点】有理数的大小比较. 【数学思想】数形结合.【解题过程】解:∵-5<-4<0<2<3<312,∴+(-5)<-(+4)<0<-(-2)<|-3|<312,在数轴上表示:【思路点拨】先判断各数的大小,然后确定数轴的三要素即可在数轴上表示各数的位置. 【答案】+(-5)<-(+4)<0<-(-2)<|-3|<312【设计意图】通过练习,理解用数轴比较大小的方法,体会数形结合给解题带来的方便。

绝对值2 (2)

绝对值2 (2)

课前展示:
-5 -5 -4
-3
-2
-1
0
1
2
3
绝对值:在数轴上一个数所对应的点与 1、一个数的绝对值是2,则这个数为 原点之间的距离。 _____ 注意:任何有理数的绝对值都不是负数。 2、 求下列各数的绝对值: 口答:(每人5分) -7.8 , -21, + , 0, 1、一个数的绝对值为36,则这个数 以下同学到旁边黑板展示: 为—— 王小艺、石润蕾、宋雪娜 2、若︱m︱=3,则m=———— 注意:(1)标明小组(2)字要写的大一些(3)尽量靠
3
因为- 5在–1左边,所以 - 5﹤ - 1 ; -2.7 -5 -4 -3 -2 -1
5 6
0
1
2
3
5 5 因为- 2.7在 - 6 的左边,所以- 2.7﹤ - 6
-4
-3
-2
-1
0
1
2
3
4
绝对值小于3的正整数有——
解题思路:
1、先在数轴上找到绝对值等于3的点所对应的数, 即到原点的距离为3的点。
上写
正数的绝对值是它本身;
求下列各数的绝对值:
负数的绝对值是它的相反数; . -21, + , 0, -7.8
解:
0的绝对值是0.
︱0︱=0 ;
︱-21︱=21 ;
︱ + 4 ︱= 4
9
9

任何一个有理数的绝对值都是正数或0
口答: (1)一个数的绝对值是它本身,那么这个数 想一想: 正数或0 一定是__________. 一个数的绝对值与这个数有什么关系 (2)一个数的绝对值是它的相反数,那么这 ? 负数或0 个数一定是__________.

最新版初中数学教案《绝对值2 2》精品教案(2022年创作)

最新版初中数学教案《绝对值2 2》精品教案(2022年创作)

2.3 绝对值【教学目标】➢知识目标:(1)理解绝对值的概念及表示法。

(2)理解数的绝对值的几何意义。

➢能力目标:(1)掌握求一个数的绝对值及有关的简单计算,(2)掌握绝对值等于某一正数的有理数的求法,探索绝对值的简单应用。

➢情感目标:让学生经历绝对值的产生过程,体会数形结合思想。

【教学重点、难点】➢重点:绝对值的概念和求一个数的绝对值。

➢难点:绝对值的几何意义。

【教学手段】多媒体(power point)教学与板书相结合。

【教学过程】一、新课引入我们已经知道有理数在日常生活中应用广泛,与生产实践联系紧密,用正、负数可以来表示相反意义的量,而数轴使我们直观的感受到有理数中正、负数的区别和数在数轴上相应的位置。

乘城市中的出租车去逛商店是我们经常经历的事,其中的数量关系与我们所学的有理数、数轴有密切联系。

例如有2位同学在书店购置书籍后回家,一位同学乘上甲出租车向东行驶10 Km 到达A 处,另一位同学乘上乙出租车向西行驶10 Km 到达B 处。

二、合作学习把全班同学分4---5组分组讨论完成下面的三个问题1:描述 请大家用数轴来表示这一过程(记向东行驶的里程数为正)2:思考 两位同学付费额度是否一样?为什么?3:结论 付费额度与行驶方向有没有关系?然后请各组代表总结发言:(鼓励学生积极参与,并给予高度的评价) 这两位同学由于乘车离开书店的距离一样,所以付费额度也是一样的,与行驶方向无关。

说明在数轴上的A(+10)、B(-10)两点到原点(书店)的距离是一样的,都是10。

同样数轴上+5和-5两点到原点的距离也是一样的。

我们把一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。

(注意是离开原点的距离)如数轴上表示-5的点到原点的距离是5,所以-5的绝对值是5,记作55=- ;+5的绝对值也是5,记作55=+ 。

其实际意义是:数轴上+5这个点到原点的距离为5。

(强调绝对值符号的书写格式)三、课内练习1、求以下各数的绝对值: -1.658 0 -10 +10 同时说出它们的几何意义。

奥数-绝对值-2

奥数-绝对值-2
补充题1已知m、n为整数,且 ,那么 的值为多少?
解:2或3或5或6
补充题2已知 ,如果 , ,那么y的最大值是多少?
解:当x=96时,y取最大值211
补充题3已知 ,且 ,那么 _______
解:
初中数学竞赛真题选讲
——绝对值
绝对值的题型主要包括绝对值方程,绝对值不等式,最值,几何意义等几类。
例题部分
例4解方程
解:零点分段法,x=7/3
C)解不等式
例5解下列不等式1、
2、
解:1,x<-1或x>9;2,x>2或x<-3
例6解不等式
解:零点分段法,x〉17/13
例7解不等式
解:不等式的解集为任意数
D)最值问题
例8已知 ,求 的最大值与最小值
解:当 时,取最大值为5;当 时,取最小值为-3
例9已知 ,求 的最大值与最小值
11.(同步,P114)(1997,希望杯)有理数a和b满足 ,则()
A B C D
12.(同步,P120)(第10届,希望杯)已知 ,那么 的最大值等于()
A 1 B5 C8 D 3
13.(同步,P127)(1999,武汉市)若 ,则方程 的解集是________.
14.(同步,P133)(1997,希望杯)有理数a和b满足 ,则()
18.(同步,P209)(2001,北京市初二决赛)在6张纸片的正面分别写上整数1,2,3,4,5,6,打乱次序后,将纸片翻过来,在它们的反面也随意写上1~6这六个整数,然后计算每张纸片正面与反面所写数字之差的绝对值,得出6个数,请你证明:所得的六个数中至少有两个是相同的。
练习部分
19.(同步,P77)(南京市竞赛题)讨论关于x的方程 的解的情况

苏教版初一数学绝对值专题2 绝对值的分类讨论

苏教版初一数学绝对值专题2 绝对值的分类讨论

绝对值的分类讨论【知识概要】我们都知道:一个正数的绝对值等于它本身;一个负数的绝对值等于它的相反数;零的绝对值是零.即:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a 或者精简为 ⎩⎨⎧≤-≥=)0()0(a a a a a 这两个列表是对“绝对值”这一概念的代数化概括,在绝对值的计算和化简方面发挥的作用极大.同时,这一概括也包含了初中数学的一个重要思想——分类讨论.下面我们就来看看“分类讨论”思想是如何渗透到与绝对值有关的题目中的,又是如何去解决这一类题目的.【例题讲解】【例1】<考点:化简>(1)如果a ,b 均为非零有理数,则bb a a +可取的值有 个,是 ; (2)如果a ,b ,c 均为非零有理数,那么cc b b a a ++可取的值有 个,是 ; (3)如果有理数0≠n a (n 为非负整数),那么201220122011201122111......a a a a a a a a y ++++=可取的值有 个,是 ;(4)如果有理数0≠n a (n 为非负整数),那么201320132012201222112......a a a a a a a a y ++++=可取的值有 个,是 . 归纳:当相加的代数式有n 个时,它可取的值有)1(+n 个.当n 为奇数时,可取的值是21+n 对相反数;当n 为偶数时,可取的值是0和2n 对相反数. 【例2】<考点:化简取值>a ,b ,c 均为整数,且120132012=-+-a c ba ,试求ac c b b a -+-+-的值.【例3】<考点:零点分段法>(1)化简325-++x x ; (2)化简321++-+-x x x .【例4】<考点:零点分段法结合最值问题>已知14162+--++=x x x y ,求y 的最大值.【例5】<考点:多个绝对值符号化简>解方程:7122=++-x x .【例6】<考点:多重绝对值符号化简>求方程312=+-x x 的不同的解的个数.【例7】<考点:带字母的多重绝对值符号化简> 关于x 的方程a x =--12有三个整数解,求a 的值.【随堂练习】1、若0ab >,求a b ab a b ab++的值.2、三个有理数a ,b ,c 的积为负数,和为正数,且caca bc bc ab ab c c b b a a x +++++=,则代数式321ax bx cx +++的值为多少?3、若a ,b ,c 都是整数,且19919=-+-a c ba ,则a c cb b a -+-+-的值是多少?4、(1)化简1213-++x x ; (2)化简6311---++x x x .5、非零整数m 、n 满足05=-+n m ,那么所有整数组()n m ,共有多少组?分别是哪些?6、求413=+-x x 的解.。

2.4(2)绝对值第2课时

2.4(2)绝对值第2课时
2.4
绝对值 绝对值的应用
题型1、绝对值的概念的理解
判断: (1)一个数的绝对值是 2 ,则这数是2 。 ±2 (2)|5|=|-5|。 (3)|-0.3|=|0.3|。 (4)|3|>0。 (5)|-1.4|>0。 非负数 (6)有理数的绝对值一定是正数。 (7)若a=b,则|a|=|b|。 a=±b (8)若|a|=|b|,则a=b。 非正数 (9)若|a|=-a,则a必为负数。 (10)互为相反数的两个数的绝对值相等。
m的绝对值是5,试求|a+b|+
1 2 (2 5m m )的值. cd
课堂小结
1、数轴上表示数a的点与原点的距离叫做数a 的绝对值。 2、(1)如果a>0,那么|a|=a (2)如果a<0,那么|a|=-a
(3)如果a=0,那么|a|=0
3、 a 0 4、几个非负数的和为0,那么这几个数分别为 0
(6)如果|a|=8,|b|=2,且|a-b|=b-a,则 |a+b|(1)、若│x-2│+ │y-3│=0,则 x· y= ____ 6
2 (2)、若│x-6│+ │y-3│=0,则x/y= ____ ab (3)、若│a-4│+ │b-2│=0,求 的 ab 值。 1/4 (4)、若│m-2│与│n-10│互为相反数, 12 求m+n的值。 结论:若几个非负数的和为0,则这 几个数分别等于0.
所以这天汽车耗油共计34.8升
题型一:利用绝对值的意义化简绝对值
例1、有理数a、b、c顺次在数轴上的 位置如图所示,化简: -|a|+|a+b|-|0|-|c-b|.
拓展与提高
练习:《超越训练》19页14题
1 1 1 1 1 1 1 2.计算: - 1 + - +......+ + 2 3 2 99 98 100 99

初二七年级数学上册1.2.4 绝对值(2)ppt课件

初二七年级数学上册1.2.4 绝对值(2)ppt课件
第1章 有理数
1.2 有理数
第4课时 绝对值(2)
武汉专版·七年级上册
1.(2017·江岸区期末)如图,a与b的大小关系是( A ) A.a<b B.a>b C.a=b D.b=2a
2.(2017·重庆)在-1,0,1,2这四个数中,最大的数是( D ) A.0 B.-1 C.1 D.2
3.(2017·浙江)比较-3,1,-2的大小,下列判断正确的是( A ) A.-3<-2<1 B.-2<-3<1 C.1<-2<-3 D.1<-3<-2
10.下列叙述正确的是( D ) A.若|a|=|b|,则a=b B.若|a|>|b|,则a>b C.若a<b,则|a|<|b| D.若|a|=|b|,则a=b或a=-b
11.绝对值不大于4且不小于π的整数有_-__4_,.4
12.化简|π-4|+|3-π|=__1__.
13.数a和b的绝对值分别为2和5,且在数轴上表示a的点在表示b的点左侧,则b的值为__5__.
【解析】(1)-12 ℃<-9 ℃<-6 ℃<-2 ℃<5 ℃<16 ℃. (2)在数轴上表示略,青岛的平均气温比大连高7 ℃.
9.已知有理数a,b在数轴上表示的点如图所示,比较a,b,-a,-b的大小正确的是( C ) A.-a<-b<a<b B.-b<a<-a<b C.a<-b<b<-a D.a<b<-b<-a
16.(1)比较下列各式的大小(用“<”或“>”或“=”连接). ①|-2|+|3|__>__|-2+3|; ②|-2|+|-3|__=__|-2-3|; ③|-2|+|0|__=__|-2+0|; (2)通过以上的特殊例子,请你分析、补充、归纳,当a,b为有理数时,|a|+|b|与|a+b|的大小关 系; (3)根据上述结论,求当|x|+2 018=|x-2 018|时,x的取值范围.

绝对值2

绝对值2

1.2.4绝对值(2课时)教学目标:1、理解两点间的距离概念及其几何意义,通过从数形两个方面理解距离的意义,进一步了解数形结合的思想方法.2、会求两点间的距离,知道距离和一点,会求另一点.3、掌握两点间的距离公式.4、通过对两点间距离公式的探索,,培养学生浓厚的学习兴趣,提高学生学数学的好奇心和求知欲.教学重点与难点:重点:两点间的距离.难点:应用距离公式解决问题。

.教学方法:通过创设情境,以问题为载体给学生提供探索的空间,引导学生积极探索. 教学环节的设计与展开,以问题解决为中心,使教学过程成为在教师指导下的一种自主探索的学习活动过程,在探索中形成自己的观点.教学设计:一、引入新课问题1:数轴上到原点距离为3的数有几个?分别是什么?2.数轴上到-2点距离为3的数有几个?分别是什么?思考:两点,两点间的距离该建立一种怎样的关系呢?二.探究新知:自主学习:阅读下面材料并回答问题:点A,B在数轴上分别表示实数a,b,A,B两点间的距离表示为AB,(1)当A,B两点中有一点在原点时,不妨设点A在===-如图1,AB OB b a b(2)当AB两点都不在原点时,如图2,点A,B都在原点的右边,=-=-=-=-A B O B O A b a b a a b(3)当AB 都在原点的左边时,如图3,()AB OB OA b a b a a b =-=-=---=-(4)当AB 在原点的两边,如图4AB OB OA b a b a a b =+=+=-+=-综上,数轴上A,B 两点之间的距离:AB a b =-请回答:①数轴上表示2和5的两点之间的距离是_________.数轴上表示-2和-5的两点之间的距离是_________.数轴上表示1和-3的两点之间的距离是_________.②数轴上表示x 和-1的两点A,B 之间的距离是__________. 如果2,AB =那么x 为_________. ③当代数式12____.取最小值时,相应的的取值范围是x x x ++-(2)12+x-3+.....+x-1997的最小值时.x x -+-小结归纳:12312222,,....,........1n +121设是数轴上依次排列的点表示的有理数.当为偶数时,若则x-a 的值最小. 当n 为奇数时,若x=a ,则x-a 的值最小.n n n n a a a an n a x a x a x a x a x a +≤≤+-++-+-++-三:巩固新知1.21 2 (1)1 2....(1)求解方程:x+1x x x x =+=≥-+=≤-1,1.设y=x-1则下面四个结论正确的是____.A. y 没有最小值B.只有一个x 使y 取最小最值.C.有无限个x (不止一个)使y 取最小值D.有无穷多个x 使y 取最小值.x ++232. x+1的最小值是___.x x +-+-233. x+1+....+x-6+x-2000的最小值是___.x x +-+-()4.15,,,,,工作流水线上顺次排列个工作台一只工具箱应该放在何处,才能使工作台上操作机器的人取工具所走的路程最短?(2)如果工作台由5个改为6个,那么工具箱应如何放置能使6个操作机器的人取工具所走的路程最短?(3)当流水线上有n 个工作台时,怎样放置工具箱最适宜?思考:如何建立数学模型?A B C D E四.能力拓展:1.如图所示,若a 的绝对值是b 的绝对值的3倍,则数轴的原点在_____点或_____点(填“A,BC,D ”)(huangP25) 2.,50,非零整数满足所有这样的整数组(m,n)共有_____组.m n m n +-=____3 如果a,b,c 是非零有理数,且a+b+c=0,a 那么的所有可能值为abc abcb c abc +++ A.0 B.1或-1 C.2或-2 D.0或-22.,50,非零整数满足所有这样的整数组(m,n)共有_____.A.0B.1或-1C.2或-2D.0或-2m n m n +-=五.汇总绝对值的易错点:1.一个数的绝对值等于其本身,则这个数一定是正数。

2022人教版数学《绝对值2》配套教案(精选)

2022人教版数学《绝对值2》配套教案(精选)

1.2.4 绝对值第1课时绝对值【教学目标】(一)知识技能1.使学生掌握有理数的绝对值概念及表示方法。

2.使学生熟练掌握有理数绝对值的求法和有关计算问题。

(二)过程方法1.在绝对值概念形成的过程中,渗透数形结合等思想方法,并注意培养学生的概括能力。

2.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念。

3.给出一个数,能求它的绝对值。

(三)情感态度从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性。

教学重点给出一个数会求它的绝对值。

教学难点绝对值的几何意义,代数定义的导出;负数的绝对值是它的相反数。

【情景引入】问题:两辆汽车,第一辆沿公路向东行驶了5千米,第二辆向西行驶了4千米.为了表示行驶的方向(规定向东为正)和所在位置,分别记作+5千米和-4千米.这样,利用有理数就可以明确表示每辆汽车在公路上的位置了.我们知道,出租汽车是计程收费的,这时我们只需要考虑汽车行驶的距离,不需要考虑方向.当不考虑方向时,两辆汽车行驶的距离就可以记为5千米和4千米(在图上标出距离).这里的5叫做+5的绝对值,4叫做-4的绝对值.【教学过程】1.绝对值的定义:我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值)。

记作|a|。

例如,在数轴上表示数―6与表示数6的点与原点的距离都是6,所以―6和6的绝对值都是6,记作|―6|=|6|=6。

同样可知|―4|=4,|+1.7|=1.7。

2.试一试:你能从中发现什么规律? 由绝对值的意义,我们可以知道:1= ,|+8.2|= ;(2)|0|= ;(1)|+2|= ,5(3)|―3|= ,|―0.2|= ,|―8.2|= 。

概括:通过对具体数的绝对值的讨论,并注意观察在原点右边的点表示的数(正数)的绝对值有什么特点?在原点左边的点表示的数(负数)的绝对值又有什么特点?由学生分类讨论,归纳出数a的绝对值的一般规律:(1)一个正数的绝对值是它本身;(2)0的绝对值是0;(3)一个负数的绝对值是它的相反数。

(教案)2.第二讲绝对值

(教案)2.第二讲绝对值
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与绝对值相关的实际问题,如数轴上两点间的距离。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。如在数轴上移动点,观察其绝对值的变化。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
此外,在总结回顾环节,我尝试让学生用自己的话来总结绝对值的概念和性质,以便了解他们对知识点的掌握程度。从学生的回答来看,大部分学生对绝对值的理解较为深刻,但仍有个别学生存在误区。针对这个问题,我计划在课后进行个别辅导,帮助他们巩固知识点。
最后,我认为在本节课中,教学难点和重点的把握还有待提高。在今后的教学中,我将更加关注学生的需求,及时调整教学策略,使他们在掌握绝对值知识的同时,提高解决问题的能力。
解决方法:通过数轴上点的对称性,以及具体数值的运算,引导学生推导出绝对值的性质。
(3)绝对值在数轴上的应用:在解决数轴上两点间距离的问题时,学生可能难以将绝对值与实际应用结合起来。
解决方法:通过示例和练习,让学生将绝对值与数轴上的实际距离联系起来,提高解题能力。
(4)绝对值运算的顺序:在涉及多层绝对值时,如||a||,学生可能不清楚运算顺序。
5.练习绝对值相关的运算Hale Waihona Puke 提高解题技巧。二、核心素养目标
《数学》七年级上册第三章第一节:绝对值。
1.培养学生的数感和符号意识,理解绝对值在数学表达和问题解决中的重要作用。
2.提升学生运用数学语言进行描述、分析和解决问题的能力,特别是在绝对值相关情境中。
3.培养学生的逻辑推理能力,通过绝对值的性质探究,形成严密的数学思维。
1.讨论主题:学生将围绕“绝对值在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2.4 绝对值(2)
总课时7 三维目标
一、知识与技能
掌握有理数的大小比较的两种方法──利用数轴和绝对值.
二、过程与方法
经历利用绝对值以及利用数轴比较有理数的大小,进一步体会“数形结合”的数学方法,培养学生分析、归纳的能力.
三、情感态度与价值观
会把所学知识运用于解决实际问题,体会数学知识的应用价值.
教学重、难点与关键
1.重点:会利用绝对值比较有理数的大小.
2.难点:两个负数的大小比较.
3.关键:正确理解绝对值的概念.
一、教学过程
1、复习提问,引入新课
用“>”、“<”号填空.
1.5.7______6.3; 2.2
7
_____
3
8
; 3.0.03_______0;
4.│-3│_______│2│; 5.│-2
3
│_______│-
3
2
│.
二、新授
引入负数后,如何比较两个有理数的大小呢?让我们从熟悉的温度来比较,大家观察课本第12页中“未来一周天气预报”.
1.课本图1.2-6中共有14个温度,其中最低的是多少?最高的是多少?
2.请你将这14个温度按从低到高的顺序排列.
课本图1.2-6中的14个温度按从低到高排列为:
-4℃,-3℃,-2℃,-1℃,0℃,1℃,2℃,3℃,4℃,5℃,6℃,7℃,8℃,9℃.按照这个顺序排列的温度,在温度计上所对应的点是从下到上的,按照这个顺序把这些数表示在数轴上,表示它们的各点的顺序是从左到右的,如课本图1.2-•7,这就是说在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数,
因此,我们可以利用数轴比较有理数的大小.
例如在数轴上表示-6的点在表示-5的点的左边,所以-6<-5.
同样-5<-4,-31
2
<-3,-2<0,-1<1,…
从数轴上可知:
表示正数的点都在原点的右边;表示负数的点都在原点左边.
因此有正数大小0,0大于负数,正数大于负数.
两个正数的大小比较小学已学过,不画数轴你会比较两个负数的大小吗?
探索:
我们知道,在数轴上越靠左边的点所表示的数越小,而这个点与原点的距离越大,即这个点所表示的数的绝对值越大,因此,我们还可以利用绝对值比较两个负数的大小.即两个负数,绝对值大的反而小.
例如:│-2│=2,│-5│=5,即│-2│<│-5│,因此-2>-5.
同样│-1│<│-3│,所以-1>-3.
例1:比较下列各对数的大小:
(1)-(-1)和-(+2);(2)-8
21
和-
3
7
;(3)-(-0.3)和│-
1
3
│.
解:(1)先化简,-(-1)=1,-(+2)=-2,
正数大于负数,1>-2.即 -(-1)>-(+2).
(2)这是两个负数比较大小,要比较它们的绝对值,绝对值大的反而小.
│-8
21
│=
8
21
,│-
3
7
│=
3
7
=
9
21

因为8
21
<
9
21
,即│-
8
21
│<│-
3
7
│,
所以-8
21
>-
3
7

(3)先化简,-(-0.3)=0.3,│-1
3
│=
1
3
=
.
0.3, 0.3<0.3,即-(-0.3)<│-
1
3
│.
初学时,要求学生按以上步骤进行,能化简的要先化简,•然后按照有理数的大小比较法则:异号两数比较大小,要考虑它们的正负,根据“正数大于负数”,•同号两数比较大小,要考虑它们的绝对值,特别是两个负数大小比较,先各自求出它们的绝对值,然后依法则:两个负数,绝对值大的反而小,比较绝对值大小后,即可得出结论.
例2:已知a>0,b<0且│b│>│a│,比较a,-a,b,-b的大小.
解:方法一,可通过数轴来比较大小,先在数轴上找出a,-a,b,-b•的大致位置,再
比较.
由a>0,b<0可知表示a 的点在原点的右边,表示b 的点在原点的左边;由│b │>•│a │,可知表示b 的点离开原点的距离更远,即它应在表示a 的点的左边,•然后再根据两个互为相反数在数轴上所表示的点在原点两边,且与原点距离相等即可得到下图. -b -a a 0b
根据数轴上,较左边的点所表示的数较小,可得:
b<-a<a<-b .
三、课堂练习
1.课本第14页练习.
2.补充练习: (1)比较大小,并用“<”连结.
①-34,-712
,-56;②-(-10),-│-10│,9,-│+18│,0. (2)有理数a ,b 在数轴上的表示如下图,用“>”或“<”号填空. 1
-10b
①a_____b ; ②│a │_____│b │; ③-a_____-b ; ④
1a
_____1b . 四、全课小结(提问式)
比较有理数的大小有哪几种方法? 有两种方法,方法一:利用数轴,把这些数用数轴上的点表示出来,然后根据“数轴上较左边的点所表示的数比较右边的点所表示的数小”来比较.
方法二:利用比较法则:“正数大于零,负数小于零,两个负数比较绝对值大的反而小”来进行.
在比较有理数的大小前,要先化简,从而知道哪些是正数,哪些是负数.
五、作业布置
1.课本第15页习题1.2第5、6、8题.
教后反思。

相关文档
最新文档