2017年上海中学自主招生数学试题
(完整)自主招生数学试题及答案,推荐文档

2017年自主招生数学试题(分值: 100分 时间:90分钟)一、选择题(本大题共6小题,每小题5分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1、若对于任意实数,关于的方程都有实数根,则实数的a x 0222=+--b a ax x b 取值范围是( )A ≤0B ≤C ≤D ≤-1b b 21-b 81-b 2、如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE∥AC,已知S △BDE ∶S △CDE =1∶3,则S △DOE ∶S △AOC 的值为( )A .1∶3B .1∶4C .1∶9D .1∶163、某校吴老师组织九(1)班同学开展数学活动,带领同学们测量学校附近一电线杆的高(如图所示)。
已知电线杆直立于地面上,某天在太阳光的照射下,电线杆的影子(折线BCD)恰好落在水平地面和斜坡上,在D 处测得电线杆顶端A 的仰角为300,在C 处测得电线杆顶端A 得仰角为450,斜坡与地面成600角,CD=4m ,则电线杆的高(AB)是( )A .mB .mC .mD .12m )344(+)434(-)326(+4、如图,矩形ABCD 中,AB=8,AD=3.点E 从D 向C 以每秒1个单位的速度运动,以AE 为一边在AE 的右下方作正方形AEFG .同时垂直于CD 的直线MN 也从C 向D 以每秒2个单位的速度运动,当经过( )秒时,直线MN 和正方形AEFG 开始有公共点。
A .53 B .12 C .43 D .23(第2题图) (第3题图) (第4题图)5、如图,在反比例函数的图象上有一动点A ,连接AO 并延长交图象的另一支于xy 2-=点B ,在第一象限内有一点C ,满足AC=BC ,当点A 运动时,点C 始终在函数的图xky =象上运动,若tan∠CAB=2,则k 的值为( )A. 2B. 4C. 6D. 86、如图,O 是等边三角形ABC 内一点,且OA=3,OB=4,OC=5.将线段OB 绕点B 逆时针旋转600得到线段O′B,则下列结论:①△AO′B 可以由△COB 绕点B 逆时针旋转600得到;②∠AOB=1500;③6AOBO'S =+四边形6AOB AOCS S +=△△是( )A.②③④B.①②④C.①④D.①②③O'OCB A(第5题图) (第6题图)二、填空题(本大题共6小题,每小题5分,共30分)7、已知方程组,且,则的取值范围是 。
2017年上海中学自主招生数学试题

2017年上海中学自主招生试卷一、填空题1.计算111++...+1+22+32012+2013=_____________.2.设x,y,z为整数且满足|x-y|2012+|y-z|2013=1,则代数式|x-y|3+|y-z|3+|z-x|3的值为_____________.3.若有理数a,b满足21334a b-=+,则a+b=_____________.4.如图,ABC中,AC=3,BC=4,AB=5,线段DE⊥AB,且△BDE的面积是△ABC 面积的三分之一,那么线段BD长为_____________.CED BA5.二次函数y=ax2+bx+c的图像与x个交点M、N,顶点为R,若△MNR恰好是等边三角形,则b2-4ac=_____________.6.如图为25个小正方形组成的5×5棋盘,其中含有符号“#”的各种正方形共有______个.#7.平面上有n个点,其中任意三点都是直角三角形的顶点,则n的最大值为____________.8.若方程(x2-1)(x2-4)=k有四个非零实根,且它们在数轴上对应的四个点等距排列,则实数k=____________.9.一个老人有n匹马,他把马全部分给两个儿子,大儿子得x匹,小儿子得y匹,(x>y ≥1),并且满足x是n+1的约数,y也是n+1的约数,则正整数n共有_____种可能的取值?10.已知a>0,且不等式1<ax<2恰有三个正数解,则当不等式2<ax<3含有最多的整数解时,正数a的取值范围为_____________.二、解答题11.设方程x 2-x -1=0的两个根为a ,b ,求满足f (a )=b ,f (b )=a ,f (1)=1的二次函数f (x ). 12.已知1+2+3+…+n =(1)2n n +,这里n 为任意正整数,请你利用恒等式(n +1)3=n 3+2n 2+3n +1,推导出12+22+32+…+n 2的计算公式.13.解方程组2222221()2()3()x y z y z x z x y ⎧=+-⎪=+-⎨⎪=+-⎩14.已知△ABC ,CA =5,AB =6,BC =7,△A 'B 'C '中,∠A '=∠A ,∠B '=∠B ,但△A 'B 'C '的大小和位置不定,当A '到BC 的距离为3,B '到AC 的距离为1(如图),问:C '到AB 的距离是否定值?若是,求出此定值;若不是,说明理由.B CAC'A'B'。
2017年上海市中考数学真题(含答案)

2017年上海市中考数学真题一、选择题(本大题共6小题,每小题4分,共24分) 1.下列实数中,无理数是( ) A .0B2. C .﹣2 D 27.2.下列方程中,没有实数根的是( )A .x 2﹣2x=0B .x 2﹣2x ﹣1=0C .x 2﹣2x+1=0D .x 2﹣2x+2=03.如果一次函数y=kx+b (k 、b 是常数,k≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( ) A .k >0,且b >0 B .k <0,且b >0 C .k >0,且b <0 D .k <0,且b <0 4.数据2、5、6、0、6、1、8的中位数和众数分别是( ) A .0和6B .0和8C .5和6D .5和85.下列图形中,既是轴对称又是中心对称图形的是( ) A .菱形 B .等边三角形C .平行四边形D .等腰梯形6.已知平行四边形ABCD ,AC 、BD 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A .∠BAC=∠DCAB .∠BAC=∠DAC C .∠BAC=∠ABD D .∠BAC=∠ADB二、填空题(本大题共12小题,每小题4分,共48分) 7.计算:2a ﹒a 2= .82620x x >⎧⎨->⎩.不等式组 的解集是 .923x -.方程=1的解是 . 10.如果反比例函数kxy=(k 是常数,k≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y 的值随x 的值增大而 .(填“增大”或“减小”)11.某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是 微克/立方米.12.不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是 .13.已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是 .14.某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是 万元.15.如图,已知AB ∥CD ,CD=2AB ,AD 、BC 相交于点E AE a =,设 BE b =CD ,,那么向量 a 用向量 、b 表示为 .16.一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA 与边FE 叠合,顶点B 、C 、D 在一条直线上).将三角尺DEF 绕着点F 按顺时针方向旋转n°后(0<n <180 ),如果EF ∥AB ,那么n 的值是 .17.如图,已知Rt △ABC ,∠C=90°,AC=3,BC=4.分别以点A 、B 为圆心画圆.如果点C 在⊙A 内,点B 在⊙A 外,且⊙B 与⊙A 内切,那么⊙B 的半径长r 的取值范围是 .18.我们规定:一个正n 边形(n 为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n 边形的“特征值”,记为λn ,那么λ6= .三、解答题(本大题共7小题,共78分)1918.计算:+2( ﹣1)2129﹣ +12()﹣1.20231133x x x -=--.解方程:.21.如图,一座钢结构桥梁的框架是△ABC ,水平横梁BC 长18米,中柱AD 高6米,其中D 是BC 的中点,且AD ⊥BC .(1)求sinB 的值;(2)现需要加装支架DE 、EF ,其中点E 在AB 上,BE=2AE ,且EF ⊥BC ,垂足为点F ,求支架DE 的长.22.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y (元)与绿化面积x (平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y 与x 的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.23.已知:如图,四边形ABCD 中,AD ∥BC ,AD=CD ,E 是对角线BD 上一点,且EA=EC . (1)求证:四边形ABCD 是菱形;(2)如果BE=BC ,且∠CBE :∠BCE=2:3,求证:四边形ABCD 是正方形.24.已知在平面直角坐标系xOy 中(如图),已知抛物线y=﹣x 2+bx+c 经过点A (2,2),对称轴是直线x=1,顶点为B .(1)求这条抛物线的表达式和点B 的坐标;(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的代数式表示∠AMB的余切值;(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛物线上一点P平移后的对应点为点Q,如果OP=OQ,求点Q的坐标.25.如图,已知⊙O的半径长为1,AB、AC是⊙O的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC.(1)求证:△OAD∽△ABD;(2)当△OCD是直角三角形时,求B、C两点的距离;(3)记△AOB、△AOD、△COD 的面积分别为S1、S2、S3,如果S2是S1和S3的比例中项,求OD的长.参考答案一、选择题(本大题共6小题,每小题4分,共24分)1.【答案】B 【解析】试题分析:0,﹣227,是无理数,故选B.考点:无理数的定.2.【答案】D【解析】考点:根的判别式3.【答案】B【解析】试题分析:∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,∴k<0,b>0,故选B.考点:一次函数的性质和图象4.【答案】C【解析】试题分析:将2、5、6、0、6、1、8按照从小到大排列是:0,1,2,5,6,6,8,位于中间位置的数为5,故中位数为5,数据6出现了2次,最多,故这组数据的众数是6,中位数是5,故选C.考点:1.众数;2.中位数.5.【答案】A考点:中心对称图形与轴对称图形. 6.【答案】C【解析】试题分析:A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选C.考点:1.矩形的判定;2.平行四边形的性质;3.菱形的判定.二、填空题(本大题共12小题,每小题4分,共48分)7.【答案】2a3【解析】试题分析:2a﹒a2=2a3.考点:单项式的乘法.8.【答案】x>3考点:解一元一次不等式组.9.【答案】x=2【解析】,两边平方得,2x﹣3=1,解得,x=2;经检验,x=2是方程的根;故答案为x=2.考点:解无理方程.10.【答案】减小【解析】试题分析:∵反比例函数kxy=(k是常数,k≠0)的图象经过点(2,3),∴k=2×3=6>0,∴这个函数图象所在的每个象限内,y 的值随x 的值增大而减小. 考点:反比例函数的性质.11.【答案】40.5 考点:有理数的混合运算. 12310.【答案】 【解析】试题分析:∵在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,3235++∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是:310= 考点:概率公式. 13.【答案】y=2x 2﹣1 【解析】试题分析:由题意设该抛武线的解析式为y=ax 2﹣1, 又∵二次函数的图象开口向上, ∴a >0,∴这个二次函数的解析式可以是y=2x 2﹣1, 故答案为:y=2x 2﹣1. 考点:待定系数法求函数解析式 14. 【答案】120 考点:扇形统计图 15.2b a +【答案】 【解析】试题分析:∵AB ∥CD 12AB AE CD ED ==,∴∴ED=2AE , AE a =2ED a =CD ∵,∴,∴CE ED +2b a += =.考点:1.平面向量;2.平行线的性质16. 【答案】45 【解析】试题分析:①如图1中,EF ∥AB 时,∠ACE=∠A=45°,∴旋转角n=45时,EF ∥AB . ②如图2中,EF ∥AB 时,∠ACE+∠A=180°,∴∠ACE=135°∴旋转角n=360°﹣135°=225°, ∵0<n°<180,∴此种情形不合题意, 故答案为45考点:1.旋转变换;2.平行线的性质 17.【答案】8<r <10 【解析】试题分析:如图1,当C 在⊙A 上,⊙B 与⊙A 内切时, ⊙A 的半径为:AC=AD=4,⊙B 的半径为:r=AB+AD=5+3=8;考点:1.圆与圆的位置关系;2.点与圆的位置关系;3.勾股定理. 1832.【答案】 【解析】试题分析:如图,正六边形ABCDEF 中,对角线BE 、CF 交于点O ,连接EC .易知BE 是正六边形最长的对角线,EC 的正六边形的最短的对角线, ∵△OBC 是等边三角形,∴∠OBC=∠OCB=∠BOC=60°,∵OE=OC ,∴∠OEC=∠OCE ,∵∠BOC=∠OEC+∠OCE ,∴∠OEC=∠OCE=30°,∴∠BCE=90°, ∴△BEC EC BE 是直角三角形,∴32=cos30°=, ∴λ63=. 考点: 1.正多边形与圆;2.等边三角形的性质;3.锐角三角函数三、解答题(本大题共7小题,共78分) 192.【答案】+2 【解析】试题分析:根据负整数指数幂和分数指数幂的意义计算. 试题解析:原式2=3+2﹣22+1﹣23+2=+2.考点:二次根式的混合运算 20.【答案】x=﹣1 【解析】∴原方程的解为x=﹣1. 考点:解分式方程21.【答案】(1)21313sinB=;(2)DE =5. 【解析】考点:1.解直角三角形的应用;2.平行线分线段成比例定理.22.【答案】(1)y=5x+400;(2)选择乙公司的服务,每月的绿化养护费用较少.【解析】∴选择乙公司的服务,每月的绿化养护费用较少.考点:一次函数的应用.23.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)首先证得△ADE≌△CDE,由全等三角形的性质可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行线的判定定理可得四边形ABCD为平行四边形,由AD=CD可得四边形ABCD是菱形;(2)由BE=BC可得△BEC为等腰三角形,可得∠BCE=∠BEC,利用三角形的内角和定理可得∠14CBE=180×=45°,易得∠ABE=45°,可得∠ABC=90°,由正方形的判定定理可得四边形ABCD是正方形.考点:1.正方形的判定与性质;2.菱形的判定及性质.24.【答案】(1)抛物线的解析式为y=﹣x2+2x+2.顶点B坐标为(1,3).(2)cot∠AMB=m﹣2.(3)点Q262+32262-32的坐标为(,﹣)或(,﹣).【解析】∴抛物线的解析式为y=﹣x 2+2x+2.配方得:y=﹣(x ﹣1)2+3.∴抛物线的顶点坐标为(1,3).(2)如图所示:过点A 作AC ⊥BM ,垂足为C ,则AC=1,C (1,2).∵M (1,m ),C (1,2),∴MC=m ﹣2.∴cot ∠CMACAMB==m ﹣2. (3)∵抛物线的顶点坐标为(1,3),平移后抛物线的顶点坐标在x 轴上, ∴抛物线向下平移了3个单位.∴平移后抛物线的解析式为y=﹣x 2+2x ﹣1,PQ=3. ∵OP=OQ ,∴点O 在PQ 的垂直平分线上. 又∵QP ∥y 轴,∴点Q 与点P 关于x 轴对称. ∴点Q 32的纵坐标为﹣. 将y=32﹣代入y=﹣x 2+2x ﹣1得:﹣x 2+2x ﹣1=32﹣,解得:26+x= 或26-x=.∴点Q 26+3226-32的坐标为(,﹣)或(,﹣).考点:二次函数的综合应用. 25.【答案】(1)证明见解析;(2)3BC= .(3)5-12OD=. 【解析】试题解析:(1)如图1中,在△AOB 和△AOC OA OA AB AC OB OC =⎧⎪=⎨⎪=⎩中, ,∴△AOB ≌△AOC ,∴∠C=∠B ,(3)如图3中,作OH ⊥AC 于H ,设OD=x .∵△DAO ∽△DBAAD OD OA DB AD AB ==,∴,11AD x x AD AB==+∴,∴()1x x +AD= , ()1x x +AB=,∵S 2是S 1和S 3的比例中项,∴S 22=S 1S 3, ∵S 212=ADOH ,S 1=S △OAC 12=AC ﹒OH ,S 312=CD ﹒OH 12,∴(AD ﹒OH )212=AC ﹒OH 12﹒CD ﹒OH , ∴AD 2=ACCD ,考点:1.圆综合题;2.全等三角形的判定和性质;3.相似三角形的判定和性质;4.比例中项.。
2017年上海市中考数学试卷及参考答案

2017年上海市中考一、选择题(本大题共6题,每题4分,满分24分) 1、下列实数中,无理数是( )A 、0B 、2、C 2-D 、722、下列方程中,没有实数根的是( )A 、022=-x xB 、0122=--x xC 、0122=+-x xD 、0222=+-x x3、如果一次函数b kx y +=(k 、b 是常数,0≠k )的图像经过第一、二、四象限,那么k 、b 应满足的条件是( )A 、0>k 且0>bB 、0<k 且0>bC 、0>k 且0<bD 、0<k 且0<b4、数据2、5、6、0、6、1、8的中位数和众数分别是( )A 、0和6B 、0和8C 、5和6D 、5和85、下列图形中,既是轴对称图形又是中心对称图形的是( )A 、菱形B 、等边三角形C 、平行四边形D 、等腰梯形6、已知平行四边形ABCD ,AC 、BD 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A 、DCA BAC ∠=∠B 、DAC BAC ∠=∠ C 、ABD BAC ∠=∠ D 、ADB BAC ∠=∠二、填空题(本大题共12题,每题4分,满分48分) 7、计算:=⋅22a a8、不等式组⎩⎨⎧>->0262x x 的解集是9、方程132=-x 的根是10、如果反比例函数xky =(k 是常数,0≠k )的图像经过点)3,2(,那么这个函数图像所在的每个象限内,y 的值随x 的值增大而 (填“增大”或“减小”)11、某市前年5.2PM 的年均浓度为50微克/立方米,去年比前年下降了%10,如果今年5.2PM 的年均浓度比去年也下降了%10,那么今年5.2PM 的年均浓度是 微克/立方米12、不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一个球恰好为红球的概率是13、已知一个二次函数的图像开口向上,顶点坐标为)1,0(-,那么这个二次函数的解析式可以是 (只需写一个)14、某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是 万元第14题 第15题15、如图,已知CD AB ∥,AB CD 2=,AD 、BC 相交于点E 。
2017上海中学考试数学精彩试题

实用文档2017年上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题4分,共24分)1.下列实数中,无理数是().2 D.B C.﹣A.0.B故选:)2.下列方程中,没有实数根的是(22222x+2=0x﹣C.xD﹣2x+1=0 A.x.﹣2x=0 xB.﹣﹣2x1=0.故选D)的图象经过第一、二、四象限,是常数,k≠0、3.如果一次函数y=kx+b(kb)应满足的条件是(k那么、b0>B.k<0,且b0 C.k>0,且,且0b<<0 D.k<b0 0A.k>,且b>.故选B)、8 的中位数和众数分别是(、、4.数据2、5、60、618和.和8 C5和6 D.50和A.06 B..故选C).下列图形中,既是轴对称又是中心对称图形的是(5.等腰梯形.平行四边形D.等边三角形B CA.菱形.A故选是它的两条对角线,那么下列条件中,能判断BD、.已知平行四边形6ABCD,AC)这个平行四边形为矩形的是(ADB.∠BAC=∠DCA ∠D.∠BAC=B.∠∠DAC CBAC=∠ABD BAC=A.∠.C故选:分)412二、填空题(本大题共小题,每小题分,共4832.72a2aa= .计算:.x的解集是.不等式组8 >3.9.方程=1的解是x=2实用文档),那么在这3k≠0)的图象经过点(2,10.如果反比例函数y=(k是常数,.(填“增大”的值随x的值增大而减小个函数图象所在的每个象限内,y或“减小”),如50微克/立方米,去年比前年下降了10%11.某市前年PM2.5的年均浓度为的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是果今年PM2.5立方米.40.5 微克/解:依题意有【解答】2)﹣110%50×(20.9=50×0.81×=50立方米)./=40.5(微克个白球,它们除颜色外其它都相个红球、512.不透明的布袋里有2个黄球、3.同,那么从布袋中任意摸出一球恰好为红球的概率是),那么这个二0,﹣1 13.已知一个二次函数的图象开口向上,顶点坐标为(2﹣1 次函数的解析式可以是.,y=2x14.某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是120 万元.【解答】解:第一季度的总产值是72÷(1﹣45%﹣25%)=360(万元),则该企业第一季度月产值的平均值是×360=120(万元).故答案是:120.15.如图,已知AB∥CD,CD=2AB,AD、BC相交于点E,设=,=,那么.、向量用向量表示为+2实用文档即可解决问题.,只要求出=+【分析】根据,∥CD解:∵【解答】AB,=∴=,∴ED=2AE,∵=,=2∴.+2=+=∴解题的关键是熟练掌握三角【点评】本题考查平面向量、平行线的性质等知识,形法则求向量,属于基础题.叠合,顶与边FE重合,边.一副三角尺按如图的位置摆放(顶点16C 与F CA0C 点B、、D在一条直线上)°后(F将三角尺DEF绕着点按顺时针方向旋转n..的值是,那么∥<n180 ),如果EFABn 45 <分两种情形讨论,分别画出图形求解即可.【分析】°,1【解答】解:①如图中,A=45ACE=ABEF∥时,∠∠.时,n=45∴旋转角∥ABEF实用文档②如图2中,EF∥AB时,∠ACE+∠A=180°,∴∠ACE=135°∴旋转角n=360°﹣135°=225°,∵0<n°<180,∴此种情形不合题意,故答案为45解题的关键是学会用分类讨平行线的性质等知识,【点评】本题考查旋转变换、论的思想思考问题,属于中考常考题型.如B为圆心画圆..,BC=4分别以点A、ABC17.如图,已知Rt△,∠C=90°,AC=3的取值rA内切,那么⊙B的半径长BC果点在⊙A内,点B在⊙A外,且⊙与⊙.10 <r<范围是8上,再根据图A在⊙CA上和当B在⊙先计算两个分界处【分析】r的值:即当的取值.r形确定内切时,A与⊙在⊙解:如图【解答】1,当CA上,⊙B,⊙A的半径为:AC=AD=4;的半径为:⊙Br=AB+AD=5+3=8实用文档内切时,A在⊙A上,⊙B与⊙如图2,当B,AB=AD=5⊙A的半径为:;r=2AB=10⊙B的半径为:.<r<10∴⊙B的半径长r的取值范围是:8.r<108故答案为:<明确两【点评】本题考查了圆与圆的位置关系和点与圆的位置关系和勾股定理,A上时,半径为3,所以当⊙圆内切时,两圆的圆心连线过切点,注意当C在⊙A5A半径小于在⊙A上时,半径为5,所以当⊙内;当半径大于3时,C在⊙AB 外.A时,B在⊙)的最短对角线与最长对角线长nn为整数,≥418.我们规定:一个正n边形(.=,那么λ度的比值叫做这个正n边形的“特征值”,记为λ6n【分析】如图,正六边形ABCDEF中,对角线BE、CF交于点O,连接EC.易知BE是正六边形最长的对角线,EC的正六边形的最短的对角线,只要证明△BEC是直角三角形即可解决问题.【解答】解:如图,正六边形ABCDEF中,对角线BE、CF交于点O,连接EC.易知BE是正六边形最长的对角线,EC的正六边形的最短的对角线,∵△OBC是等边三角形,实用文档∴∠OBC=∠OCB=∠BOC=60°,∵OE=OC,∴∠OEC=∠OCE,∵∠BOC=∠OEC+∠OCE,∴∠OEC=∠OCE=30°,∴∠BCE=90°,∴△BEC是直角三角形,,°=∴=cos30=∴λ,6故答案为.本题考查正多边形与圆、等边三角形的性质、锐角三角函数等知识,解【点评】题的关键是理解题意,学会添加常用辅助线,构造特殊三角形解决问题.分)787小题,共三、解答题(本大题共12﹣.)+﹣19.计算:+(1)(﹣9根据负整数指数幂和分数指数幂的意义计算.【分析】3+2﹣【解答】解:原式=3+22+1﹣.=+2然先把二次根式化为最简二次根式,【点评】本题考查了二次根式的混合运算:如能结合后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍..=120.解方程:﹣)把分式方程转化为整式方程即可解决问题.3x【分析】两边乘x(﹣2,﹣3x﹣)得到(解:两边乘【解答】xx﹣33x=x2,3=0﹣2x﹣x∴,﹣∴(x3=0))(x+1,x=3∴1或﹣实用文档经检验x=3是原方程的增根,∴原方程的解为x=﹣1.【点评】本题考查解分式方程,解题的关键是熟练掌握解分式方程的步骤,注意解分式方程必须检验.21.如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD 高6米,其中D是BC的中点,且AD⊥BC.(1)求sinB的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.计算即可;sinB=利用勾股定理求出AB,再根据(1)在Rt△ABD中,【分析】即可利用勾股定理EF、DF=,(2)由EF∥ADBE=2AE,可得==,求出解决问题;,中,∵Rt△ABDBD=DC=9,AD=6)在【解答】解:(1,=3=∴AB=.=∴sinB==,,BE=2AEEF(2)∵∥AD,===∴,=∴=,,∴EF=4BF=6,∴DF=3.△Rt在DEF=DE=中,=5实用文档解题本题考查解直角三角形的应用,平行线分线段成比例定理等知识,【点评】的关键是灵活运用所学知识解决问题,属于中考常考题型..甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.22(平方米)是一次函数关系,x甲公司方案:每月的养护费用y(元)与绿化面积如图所示.元;绿化面5500 乙公司方案:绿化面积不超过1000平方米时,每月收取费用4元的基础上,超过部分每平方米收取平方米时,每月在收取5500积超过1000元.的函数解析式:(不要求写出定义域);与yx(1)求如图所示的选择哪家公平方米,试通过计算说明:2)如果某学校目前的绿化面积是1200(司的服务,每月的绿化养护费用较少.)利用待定系数法即可解决问题;(【分析】1平方米时,求出两家的费用即可判断;2)绿化面积是1200(,,则有【解答】解:(1)设y=kx+b,解得.∴y=5x+400元,乙公司的费用为)绿化面积是(21200平方米时,甲公司的费用为6400元,×5500+4200=63006400∵6300<实用文档∴选择乙公司的服务,每月的绿化养护费用较少.【点评】本题主要考查一次函数的应用.此题属于图象信息识别和方案选择问题.正确识图是解好题目的关键.23.已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.,∠CDECDE,由全等三角形的性质可得∠ADE=【分析】(1)首先证得△ADE ≌△,利用AD=BC,可得BC=CD,易得∠CBD,易得∠CDB=∠CBD∥由ADBC 可得∠ADE=ABCD可得四边形为平行四边形,由AD=CDABCD平行线的判定定理可得四边形是菱形;,利用三角形的内角BECBCE=∠BE=BC可得△BEC为等腰三角形,可得∠2()由°,由正方形ABC=90=45°,易得∠ABE=45°,可得∠和定理可得∠CBE=180×是正方形.ABCD的判定定理可得四边形中,ADE与△CDE证明:(【解答】1)在△,,CDE∴△ADE≌△,∴∠ADE=∠CDE,AD∥BC∵,CBD∴∠ADE=∠,CDE=∠CBD∴∠,∴BC=CD实用文档∵AD=CD,∴BC=AD,∴四边形ABCD为平行四边形,∵AD=CD,∴四边形ABCD是菱形;(2)∵BE=BC∴∠BCE=∠BEC,∵∠CBE:∠BCE=2:3,°,=45∴∠CBE=180×是菱形,ABCD∵四边形°,ABE=45∴∠°,ABC=90∴∠是正方形.ABCD∴四边形熟练掌握定理是解答本题主要考查了正方形与菱形的判定及性质定理,【点评】此题的关键.2A+bx+c﹣x经过点y=24.已知在平面直角坐标系xOy中(如图),已知抛物线.B),对称轴是直线x=1,顶点为2(,2的坐标;B1)求这条抛物线的表达式和点(mAM,用含M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结2()点的余切值;AMB的代数式表示∠轴上.原抛物线在xC(3)将该抛物线向上或向下平移,使得新抛物线的顶点的坐标.Q,求点,如果平移后的对应点为点上一点PQOP=OQ实用文档的坐标代入A)依据抛物线的对称轴方程可求得b的值,然后将点【分析】(12的值;c+2x+cy=﹣x可求得,最后利用锐角2MC=m﹣C,从而可得到AC=1,BM(2)过点A作AC⊥,垂足为三角函数的定义求解即可;,然轴上可求得平移的方向和距离,故此xQP=3(3)由平移后抛物线的顶点在的纵坐标,将对称,可求得点Q和P关于x后由点QO=PO,QP∥y轴可得到点Q的坐标.的值,则可得到点QQ的纵坐标代入平移后的解析式可求得对应的x点,)∵抛物线的对称轴为x=1【解答】解:(1.,解得b=2∴x=﹣=1,即=12.+2x+c∴y=﹣x.c=2,2)代入得:﹣4+4+c=2,解得:将A(22.+2x+2﹣xy=∴抛物线的解析式为2.)+3y=配方得:﹣(x﹣1).,3∴抛物线的顶点坐标为(1).1,2,,垂足为作AAC⊥BMC,则AC=1C()如图所示:过点(2),1Cm1M∵(,),(,2实用文档∴MC=m﹣2..﹣2∠AMB==m∴cot轴上,x31,),平移后抛物线的顶点坐标在(3)∵抛物线的顶点坐标为(个单位.3∴抛物线向下平移了2.PQ=3﹣1∴平移后抛物线的解析式为y=﹣x,+2x,OP=OQ∵的垂直平分线上.PQ∴点O在轴,y又∵QP∥轴对称.xP关于∴点Q与点.Q的纵坐标为﹣∴点22.x=x+2x﹣1=﹣,解得:x=x将y=﹣代入y=﹣或+2x﹣1得:﹣).的坐标为(∴点Q,﹣)或(,﹣解答本题主要应用了待定系数本题主要考查的是二次函数的综合应用,【点评】线段垂直二次函数的平移规律、法求二次函数的解析式、锐角三角函数的定义、的纵坐标是解题的Q轴对称,平分线的性质,发现点Q与点P关于x从而得到点关键.的延,AB、BO的两条弦,且AB=AC,AC是⊙O125.如图,已知⊙O的半径长为.、OCAC于点D,联结OA长线交;)求证:△1OAD∽△ABD(两点的距离;C、)当△(2OCD是直角三角形时,求B的比和是S,如果、S、的面积分别为、△、△)记△(3AOBAODCOD SSSS323112的长.例中项,求OD实用文档【分析】(1)由△AOB≌△AOC,推出∠C=∠B,由OA=OC,推出∠OAC=∠C=∠B,由∠ADO=∠ADB,即可证明△OAD∽△ABD;(2)如图2中,当△OCD是直角三角形时,可以证明△ABC是等边三角形即可解决问题;(3)如图3中,作OH⊥AC于H,设OD=x.想办法用x表示AD、AB、CD,再证2=ACCD,列出方程即可解决问题;明AD【解答】(1)证明:如图1中,中,和△AOBAOC在△,,AOC∴△AOB≌△,B∴∠C=∠,∵OA=OC,∠ADBC=∠B,∵∠ADO=∠∴∠OAC=.ABD∴△OAD∽△中,2)如图2(,AC,OA=OC⊥∵BD,∴AD=DC实用文档∴BA=BC=AC,∴△ABC是等边三角形,在Rt△OAD中,∵OA=1,∠OAD=30°,,∴OD=OA=,=∴AD=.BC=AC=2AD=∴.OD=xH,设于(3)如图3中,作OH⊥AC,∽△DBA∵△DAO,=∴=,∴==,,AD=∴AB=的比例中项,∵S和S是S3122,SS=S∴321,=CDOHS=S=∵SADOH,=SACOH,31OAC△22,)∴(ADOHCDOH=ACOH2,AD∴=ACCD,AD=CD=ACAC=AB∵.﹣﹣2),﹣)∴(=(2,1=0﹣+x整理得x,解得x=或实用文档是分式方程的根,且符合题意,经检验:x=.∴OD=相似三角形的判定和性本题考查圆综合题、全等三角形的判定和性质、【点评】学会利用参数解题的关键是灵活运用所学知识解决问题,质、比例中项等知识,解决问题,属于中考压轴题.。
上海中考自招试卷(数学)及答案要点(pdf版)

高中自主招生练习卷数学试卷考生注意:1.本试卷共18题.2.试卷满分150分,考试时间100分钟.3.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.4.除第一大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、填空题(41分,第1~5题每题3分,第6~7题每题8分,第8题10分)1.32++-=x x y 的最小值是.2.不等式0232≥++bx x 的解是全体实数,则b 的取值范围是.3.如图,梯形ABCD 中,DC ∥AB ,DC =3cm ,AB =6cm ,且MN ∥PQ ∥AB ,DM =MP =PA ,则MN =cm ,PQ =cm.4.已知关于x 的不等式122++mx mx >0的解是一切实数,则m 的取值范围为___________.5.已知关于x 的方程111112-=--+-x mx x x 有两个不相等的实数根,则m 的取值范围是.6.若多项式b x x -+1732分解因式的结果中有一个因式为4+x ,则b 的值为.7.若y x ,为正实数,且4=+y x ,则4122+++y x 的最小值为.8.对任意A 中任取两个元素x ,y ,定义运算x*y =ax+by+cxy ,其中a ,b ,c 是常数,等式右边的运算是通常的加法和乘法运算.已知1*2=3,2*3=4,并且集合A 中存在一个非零常数m ,使得对任意x ,都有x*m =x ,则称m 是集合A 的“钉子”.集合A ={x|0≤x ≤4}的“钉子”为.二、简答题(共109分)9.(8分)已知实数a ,b 满足122=b a +,0>ab ,求2211a b b a -+-的值.10.(8分)已知集合A ={0,1},B ={a 2,2a },其中a ∈R ,我们把集合{x |x =D C MP N Q ABx 1+x 2,x 1∈A ,x 2∈B },记作A ×B ,若集合A ×B 中的最大元素是2a +1,求a 的取值范围.11.(8分)设f x ax bx ()=+2,且112214≤-≤≤≤f f ()(),,求f ()-2的取值范围。
2017年上海市中考数学试卷-含答案详解

2017年上海市中考数学试卷一、选择题(本大题共6小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1. 下列实数中,无理数是( )A. 0B. √2C. −2D. 272. 下列方程中,没有实数根的是( )A. x2−2x=0B. x2−2x−1=0C. x2−2x+1=0D. x2−2x+2=03. 如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是( )A. k>0,且b>0B. k<0,且b>0C. k>0,且b<0D. k<0,且b<04. 数据2、5、6、0、6、1、8的中位数和众数分别是( )A. 0和6B. 0和8C. 5和6D. 5和85. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. 菱形B. 等边三角形C. 平行四边形D. 等腰梯形6. 已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A. ∠BAC=∠DCAB. ∠BAC=∠DACC. ∠BAC=∠ABDD. ∠BAC=∠ADB二、填空题(本大题共12小题,共48.0分)7. 计算:2a⋅a2=______.8. 不等式组{2x>6x−2>0的解集是______.9. 方程√2x−3=1的解是______.10. 如果反比例函数y=k(k是常数,k≠0)的图象经过点(2,3),那么在这个函数图象所在x的每个象限内,y的值随x值的增大而________.(填“增大”或“减小”).11. 某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是______ 微克/立方米.12. 不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是______.13. 已知一个二次函数的图象开口向上,顶点坐标为(0,−1 ),那么这个二次函数的解析式可以是______ .(只需写一个)14. 某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是________万元.15. 如图,已知AB//CD ,CD =2AB ,AD 、BC 相交于点E ,设AE ⃗⃗⃗⃗⃗ =a ⃗ ,CE ⃗⃗⃗⃗⃗ =b ⃗ ,那么向量CD ⃗⃗⃗⃗⃗ 用向量a ⃗ 、b ⃗ 表示为______ .16. 一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA 与边FE 叠合,顶点B 、C 、D 在一条直线上).将三角尺DEF 绕着点F 按顺时针方向旋转n°后(0<n <180 ),如果EF//AB ,那么n 的值是______.17. 如图,已知Rt △ABC ,∠C =90°,AC =3,BC =4.分别以点A 、B 为圆心画圆.如果点C 在⊙A 内,点B 在⊙A 外,且⊙B 与⊙A 内切,那么⊙B 的半径长r 的取值范围是 .18. 我们规定:一个正n 边形(n 为整数,n ≥4)的最短对角线与最长对角线长度的比值叫做这个正n 边形的“特征值”,记为λn ,那么λ6=______.三、计算题(本大题共1小题,共10.0分)19. 计算:√18+(√2−1)2−√9+(12)−1.四、解答题(本大题共6小题,共68.0分。
(完整word版)2017年上海中考数学试卷(含答案),推荐文档

2•下列方程中,没有实数根的是(b 应满足的条件是 6. 已知平行四边形 ABCD, AC 、BD 是它的两条对角线,那么下列条件中,能判断这个平行四 边形为矩形的是( A. BAC DCA C. BAC ABD 、填空题 2 7.计算:2aga2x 8.不等式组 X 6的解集是 2 09. 方程 2x 3 1的根是 ____________k10. 如果反比例函数 y — (k 是常数,k 0)的图像经过点(2,3),那么在这个函数图像x所在的每个象限内,y 的值着x 的值增大而 _______________ .(填“增大”或“减小”)11. 某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了 10%,如果今年PM2.5 的年均浓度比去年也下降 10%,那么今年PM2.5的年均浓度将是 __________ 微克/立方米.12. 不透明的布袋里有 2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布 袋中任意摸出一个球恰好为红球的概率是 _____________13. 已知一个二次函数的图像开口向上,顶点坐标为( 0,— 1),那么这个二次函数的解析式 一、选择题(本大题共 1.下列实数中,无理数是( B 「2 ; A.O ; 2017年上海中考数学试卷6题,每题4分,满分24分) ) C.— 2; 2 D.—; 7 2 A.x 2x 0 ; 2 B. X 2x 2 C. x 2x 1 0 2 D. X 2x 3.如果一次函数y kx (k 、b 是常数, k 0 )的图像经过第一、二、四象限,那么 k 、 A.k 0,且 b B. 0,且 b 0C. k 0,且bD. k 0,且b 0 4. 数据2、5、 A.0 和 6; 5. 下列图形中, A.菱形 6、 6、 1、 8的中位数和众数分别是( B.0 和 8 ; C.5 和 6 ; 既是轴对称又是中心对称图形的是( B.等边三角形 C.平行四边形 ) D.5 和 8 ) D.等腰梯形 B. BAC DAC D. BAC ADB可以是__________________ .(只需写一个)14. 某企业今年第一季度各月份产值占这个季度总产值的百分比如图1所示,又知二月份产值是 72万元,那么该 企业第一季度月产值的平均数是 ______________________________ 万元.15. 如图 2,已知 AB//CD , CD = 2AB , AD 、BC 相交于点 E.uuu r iuu r uuu r r设AE a , CE b ,那么向量CD 用向量ab 表示为16. 一副三角尺按图3的位置摆放(顶点 C 与F 重合,边CA 与边FE 叠合,顶点B 、C 、D 在一条直线上)•将三角尺DEF 绕着点F 按顺时针方向旋转 n 后(0 n 180),如果EF//AB , 那么n 的值是 ______________________ .17. 如图4,已知Rt ABC , C 90 , AC = 3, BC = 4•分别以点A 、B 为圆心画圆,如果点 C 在e A 内,点 B 在e A 夕卜,且e B 与e A 内切,那么 e B 的半径长 r 的取值范围 是 .18. 我们规定:一个正n 边形(n 为整数,n 4)最短对角线与最长对角线长度的比值叫做这个正n 边形的“特征值”,记为n ,那么6 = ________________ .三、解答题丄 11 19. (本题满分10分)计算:.18 C 、2 1)2 92 - 221. (本题满分10分,第(1)小题4分,第(2)小题6分)如图5, —座钢结构桥梁的框架是ABC ,水平横梁BC 长18米,中柱AD 高6米,其中D是BC 的中点,且AD BC .(1 )求sin B 的值;(2)再需要加装支架 DE 、EF,其中点E 在AB 上, BE = 2AE,且EF BC ,垂足为点F 求 支架DE 的20.(本题满分10分)解方程: 3 x 2 3xA图4长.22. (本题满分10分,每小题各5分)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案甲公司方案:每月的养护费用y (元)与绿化面积x (平方米)是一次函数关系,如图6所示•乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元•(1)求图6所示的y与x的函数解析式;(不要求写出定义域)(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少•23. (本题满分12分,第(1)小题7分,第(2)小题5分)已知:如图7,四边形ABCD中,AD//BC, AD= CD, E是对角线BD上一点,且EA= EC.(1)求证:四边形ABCD是菱形;(2)如果BE= BC,且CBE : BCE 2:3,求证:四边形ABCD是正方形.图7224. 已知在平面直角坐标系xOy中(如图8),已知抛物线y x bx c上有一点A (2, 2),对称轴为X 1,顶点为B.(1 )求这条抛物线的解析式和顶点B的坐标;(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的代数式表示AMB的余切值;(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上,原抛物线上有一点P 平移后的对应点Q,若OP= OQ,求点Q坐标.25. 如图9,已知e O的半径长为1, AB AC是e O的两条弦,且AB= AC, BO的延长线交边AC 于点D,联结OA、OC.(1)证明:ABD s OAD ;(2)若COD是直角三角形,求 B C两点的距离;(3)记AOB、AOD、COD的面积分别为S,、S2、S,,如果S2是S,和S3的比例中项,求OD的长.图9 备用图2017年上海中考数学试卷答案—选择颗;1答案;B (无理数为、2)Z答案:D (没有宝救根的是x3-2x+2^0)占答簾:B(满足条件为T O r b>0 }4答案:C〈中位数为5介数为6)5答案:A (既是轴对称又是中心对称的图像是菱形)6 答案;C(^AC = ^AB£) }二填空题:了答案为:卅8答案为:x>39答案为:Z10答案为!减小11答案为;40512苔案为:113答案为'洌如:(答実不唯一”可有多种写法)14答案为;8015答案为:苗祐出答案为,45〔答案写4盯是错误的,题目问的是2 17答案为:S<r <10 18答案为:旦2三解答题19答案为:2亠忑20答案为:x = -1 (主童X=3要舍去)21答案为:(1〉如“辔;(2)DE=522答案为,(1),= %+400:(2)乙公司服务费用更少23答案略(证明较为简单)24答案为:(1〉拋物线解析式为:八-八2“2;顶点坐标为(13); (Z>余切值为:m-2; <3)尿乎肩).Q(畔肩)25答案为:(1〉证明略,(2)心密⑻込导EC = ®2。
(含参考答案)2017年上海市中考数学试卷

2017年上海市中考数学试卷一、选择题(本大题共6小题,每小题4分,共24分)1. (4分)下列实数中,无理数是()A. 0B. 「C. - 2D.72. (4分)下列方程中,没有实数根的是()A. x2-2x=0B. x2- 2x- 1=0C. x2- 2x+仁0D. x2- 2x+2=03. (4分)如果一次函数y=kx+b (k、b是常数,心0)的图象经过第一、二、四象限,那么k、b应满足的条件是()A. k>0,且b>0B. k v0,且b>0C. k>0,且b v0D. k v0,且b v04. (4分)数据2、5、6、0、6、1、8的中位数和众数分别是()A. 0 和6B. 0 和8C. 5 和6D. 5 和85. (4分)下列图形中,既是轴对称又是中心对称图形的是()A.菱形B.等边三角形C.平行四边形D.等腰梯形6. (4分)已知平行四边形ABCD AC BD是它的两条对角线,那么下列条件中, 能判断这个平行四边形为矩形的是()A.Z BAC K DCAB.Z BACK DACC.Z BAC K ABDD.Z BAC=Z ADB二、填空题(本大题共12小题,每小题4分,共48分)7. _________________________ (4分)计算:2a?a2= .8. ____________________________________ (4分)不等式组(2"辽的解集是__________________________________________ .9. _______________________________ (4分)方程-一:'=1的解是.10. (4分)如果反比例函数y丄(k是常数,心0)的图象经过点(2, 3),那I么在这个函数图象所在的每个象限内,y的值随x的值增大而 _________ (填增大”或减小”)11. (4分)某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是______ 微克/立方米.12. (4分)不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是_________ .13. _____________________________ (4分)已知一个二次函数的图象开口向上,顶点坐标为(0,- 1 ),那么这个二次函数的解析式可以是.(只需写一个)14. (4分)某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是万元.15. (4分)如图,已知AB// CD, CD=2AB AD BC相交于点E,设爲扁,爲互,16. (4分)一副三角尺按如图的位置摆放(顶点C与F重合,边CA与边FE叠合,顶点B、C D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n° 后(0v n v 180 ),如果EF/ AB,那么n的值是___________ .17. (4分)如图,已知Rt A ABC, / C=90°, AC=3, BC=4分别以点A、B为圆心画圆.如果点C在。
上海中学自招数学真题(含答案)

上海中学自主招生试题1、因式分解:326114x x x -++=.【答案】()()()13421x x x --+.【解析】容易发现1x =是方程3261140x x x -++=的解,因此原式可以提出因式(1)x -,得到2(1)(654)x x x ---,对2(654)x x --用十字相乘可以得到原式等于(1)(34)(21)x x x --+.2、设0a b >>,224a b ab +=,则a ba b+=- .【解析】由条件可得2()6a b ab +=,2()2a b ab -=.因此22()63()2a b aba b ab+==-.由于0a b +>,0a b ->,所以a ba b+=-3、若210x x +-=,则3223x x ++=.【答案】4.【解析】对多项式用带余除法可得32223(1)(1)4x x x x x ++=+-++,而由条件2(1)(1)0x x x +-+=,因此原式的值等于4.4、已知()()()24b c a b c a -=--,且0a ≠,则b ca+=_________. 【答案】2.【解析】令a b m -=,c a n -=,则c b m n -=+, 代入()()()24b c a b c a -=--中得()24m n mn +=, ()20m n ∴-=,m n ∴=,即a b c a -=-,即2a b c =+,2b ca+∴=.5、一个袋子里装有两个红球和一个白球(仅颜色不同),第一次从中取出一个球,记下颜色后放回,摇匀,第二次从中取出一个球,则两次都是红球的概率是 .【答案】49.【解析】第一次取出红球的概率为23,且无论第一次取出什么球,第二次取出红球的概率仍为23,因此两次都是红球的概率是224339⨯=.6、直线:l y =与x 、y 轴交于点A 、B ,AOB ∆关于直线AB 对称得到ACB ∆,则点C 的坐标是.【答案】32⎛ ⎝⎭.【解析】根据函数解析式可以算出A 、B 的坐标分别为(1,0)A,B .由于ACB 是AOB 关于直线AB 对称得到的,所以AC AO =,BC BO =.设(,)C m n,则可列方程组2222(1)1(3m n m n ⎧-+=⎪⎨+=⎪⎩,解得32m n ⎧=⎪⎪⎨⎪=⎪⎩O重合,舍去.因此3(2C .7、一张矩形纸片ABCD ,9AD =,12AB =,将纸片折叠,使A 、C 两点重合,折痕长是. 【答案】454. 【解析】由题意知折痕是线段AC 的中垂线,设它与AB ,CD 分别交于,M N .设MB x =,则由MC MA =可列方程2229(12)x x +=-,解得218x =.同理有218DN =.作ME CD ⊥,垂足为E ,则四边形MECB 是矩形,因此9ME BC ==,218CE BM ==.可知274NE CD DN CE =--=.而454MN ===.因此折痕长为454.8、任给一个正整数n ,如果n 是偶数,就将它减半——得到2n,如果n 是奇数,则将它乘以3加1——得到31n +,不断重复这样的运算,如果对正整数n (视为首项)按照上述规则实施变换后(有些书可能多次出现)的第8项为1,则n 的所有可能取值为________. 【答案】128,21,20,3,16,2.【解析】设某一项为k ,则它的前一项应该为2k 或者13k -. 其中13k -必为奇数,即()4mod 6k ≡, 按照上述方法从1开始反向操作7次即可.9、正六边形ABCDED 的面积是6平方厘米,联结AC 、CE 、EA 、BD 、DF 、FB ,求阴影部分小正六边形的面积为.【答案】22cm .【解析】右图中,阴影部分是正六边形,且与正六边形ABCDEF的相似比为1:3.因为ABCDEF 的面积是26cm ,所以阴影部分的面积为2632()cm ÷=.10、已知()()21244y x m x m =+-+-与2y mx =在x 取任意实数时,1y ,2y 至少有一个是正数,m 的取值范围是________. 【答案】4m <.【解析】取0x =,则14y m =-,20y =,40m ∴->,4m <, 此时函数1y 的对称轴404mx -=-<, 则对任意0x ≥总有10y >,只需考虑0x <; 若04m ≤<,此时20y ≤, 则对任意0x <,有10y >,()()24840m m ∴∆=---<,解得04m ≤<;若0m <,此时20y >对0x <恒成立; 综上,4m <.11、已知a ,b ,c 是互不相等的实数,x 是任意实数,化简:()()()()()()()()()222x a x b x c a b a c c b a b c a c b ---++=------________.【答案】1.【解析】令()()()()()()()()()()2222x a x b x c f x mx nx k a b a c c b a b c a c b ---=++=++------, ()()()1f a f b f c ∴===,即222111ma na k mb nb k mc nc k ⎧++=⎪++=⎨⎪++=⎩,01m n k ==⎧∴⎨=⎩ ,即()1f x ≡.12、已知实数a ,b 满足221a ab b ++=,22t ab a b =--,则t 的取值范围是________.【答案】133t -≤≤-.【解析】方法一:考虑基本不等式222a b ab +≥. 则2212a b ab ab +=-≥,则113ab -≤≤, 又2221t ab a b ab =--=-,133t ∴-≤≤-,其中1a =,1b =-时,3t =-成立;a b ==时,13t =-成立. 方法二:逆用韦达定理. 12t ab +=,()2302t a b ++=≥,3t ∴≥-,a b +=,故a ,b 是方程2102t x ++=的两个根, 314022t t ++∴∆=-⨯≥,解得13t ≤-,133t ∴-≤≤-.13、(1)求边长为1的正五边形对角线长;(2)求sin18︒.【答案】(1(2. 【解析】(1)设正五边形ABCDE ,联结,AC BE ,且设它们交于点M .可以计算得到36ABM ABC ∠=∠=︒,因此ABM ACB ,可得2AB AM AC =⋅.同时,72BMC CBM ∠=∠=︒,所以BC MC =.若正五边形边长为1,则1AB BC CM ===,设AC x =,则由2AB AM AC =⋅可列方程21(1)x x =-,解得x去). (2)根据诱导公式,sin18cos72︒=︒.在(1)的五边形中,BM AM AC CM ==-=.作CH BM ⊥,垂足为H ,则等腰三角形BMC 中12BH HM BM ===72CBM ∠=︒,所以sin18cos72BH BC ︒=︒==.14、(1)()32f x x ax bx c =+++,()()()01233f f f <-=-=-≤,求c 的取值范围;(2)()432f x x ax bx cx d =++++,()110f =,()220f =,()330f =,求()()106f f +-.【答案】(1)69c <≤ ;(2)8104.【解析】(1)()()()01233f f f <-=-=-≤,()0f x k ∴-=有三个实根1,2,3x =---,()()()()123f x k x x x ∴-=+++,展开得6c k =+,69c ∴<≤;(2)方程()100f x x -=有三个实根1,2,3x =,记第4个根为x p =,则()()()()()10123f x x x p x x x -=----,()()()()()12310f x x p x x x x ∴=----+,()()()()()()()106109871006789608104f f p p ∴+-=-⨯⨯⨯++--⨯-⨯-⨯--=.15、我们学过直线与圆的位置关系,根据材料完成问题(1)(2)类似给出背景知识:平面:0Ax By Cz D α+++=; 球:()()()2222x a y b z c R -+-+-=;点(),,a b c 到平面:0Ax By Cz D α+++=的距离公式:d =;球心到平面的距离为d ,当d R <时,球与平面相交,当d R =时,球与平面相切,当d R >时,球与平面相离;问题(1):若实数m 、n 、k 满足1m n k ++=,求222m n k ++的最小值; 问题(2)()12x y z =++. 【答案】(1)13;(2)123x y z =⎧⎪=⎨⎪=⎩.【解析】(1)条件可转化为点(,,)m n k 在平面10x y z ++-=上,而222m n k ++的最小值即该点到原点距离平方的最小值.这个距离最小为原点到平面10x y z ++-=的距离,而原点到平面的距离可由材料公式计算得到:3d ==,因此222m n k ++的最小值为213d =,等号在13m n k ===时取到.(2)移项后配方可以得到2221111)1)1)0222-+-+=,因此必有101010-==-=,于是解得123xyz=⎧⎪=⎨⎪=⎩.。
2017年上海市数学中考真题(含答案)

2017年上海市数学中考真题(含答案)2017年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷共25题;2.试卷满分150分,考试时间100分钟3.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;4.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列实数中,无理数是()A.0;B.;C.2 ;D.272.下列方程中,没有实数根的是6.已知平行四边形ABCD ,AC 、BD 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A .BAC DCA ∠=∠;B .BAC DAC ∠=∠; C .BAC ABD∠=∠;D .BAC ADB ∠=∠.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】 7.计算:22a a ⋅=____▲____.8.不等式组2620x x >⎧⎨->⎩的解集是▲. 91=的根是____▲____.10.如果反比例函数k y x =(k 是常数,0k ≠)的图像经过点()2,3,那么在这个函数图像所在的每个象限内,y 的值随x 的值增大而___▲___.(填“增大”或“减小”)11.某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%.如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是___▲___微克/立方米.12.不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一个球恰好为红球的概率是___▲___.13.已知一个二次函数的图像开口向上,顶点坐标为()0,1-,那么这个二次函数的解析式可以是___▲___.(只需写一个)14.某企业今年第一季度各月份产值占这个季度总产值的百分比如图1所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是___▲___万元.15.如图2,已知AB∥CD,2CD AB=,AD、BC相交于点E.设AE a=,=,那么向量CD用向量a、b表示为___▲___.CE b图1 图2 图3 图4 16.一副三角尺按图3的位置摆放(顶点C与F重合,边CA与边FE叠合,顶点B 、C 、D 在一条直线上).将三角尺DEF 绕着点F 按顺时针方向旋转n 后(0180n <<),如果//EF AB ,那么n 的值是___▲___. 17.如图4,已知RtABC ,90C ∠=︒,3AC =,4BC =.分别以点A 、B 为圆心画圆,如果点C 在A内,点B 在A外,且B与A内切,那么B的半径长r 的取值范围是___▲___.18.我们规定:一个正n 边形(n 为整数,4n ≥)的最短对角线与最长对角线长度的比值叫做这个正n 边形的“特征值”,记为nλ,那么6λ=___▲__.三、解答题:(本大题共7题,满分78分)19.(本题满分10分) )11221192-⎛⎫+-+ ⎪⎝⎭20.(本题满分10分)解方程:231133x x x -=--21.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图5,一座钢结构桥梁的框架是ABC ,水平横梁BC 长18米,中柱AD 高6米,其中D 是BC 的中点,且AD BC ⊥. (1)求sin B 的值;(2)现需要加装支架DE 、EF ,其中点E 在AB 上2BE AE =,且EF BC ⊥,垂足为点F .求支架DE 的长.22.(本题满分10分,每小题满分各5分)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图6所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求图6所示的y与x的函数解析式;(不要求写出定义域)(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分)已知:如图7,四边形ABCD中,//=,E是对角线BDAD BC,AD CD上一点,且EA EC=.(1)求证:四边形ABCD是菱形;(2)如果BE BC∠∠=,求证:四边形ABCD是正方形.=,且:2:3CBE BCE24.(本题满分12分,每小题满分各4分)已知在平面直角坐标系xOy中(如图8),已知抛物线2=-++经y x bx c过点()x=,顶点为B.2,2A,对称轴是直线1(1)求这条抛物线的表达式和点B的坐标;(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的代数式表示AMB∠的余切值;(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛物线上一点P平移后的对应点为点Q,如果OP OQ=,求点Q的坐标.25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)如图9,已知O的半径长为1,AB、AC是O的两条弦,且AB AC,BO的延长线交AC于点D,联结OA、OC.(1)求证:OAD ABD;(2)当OCD是直角三角形时,求B、C两点的距离;(3)记AOB、AOD、COD的面积分别为S、2S、3S,如果2S是1S和1S的比例中项,求OD的长.32017年上海市初中毕业统一学业考试数学试卷参考答案一、选择题:(本大题共6题,每题4分,满分24分)1、B;考察方向:基础概念。
(完整版)2017年上海市中考数学试卷(含解析版)

﹣ =1.
21.(10 分)如图,一座钢结构桥梁的框架是△ABC,水平横梁 BC 长 18 米,中 柱 AD 高 6 米,其中 D 是 BC 的中点,且 AD⊥BC. (1)求 sinB 的值; (2)现需要加装支架 DE、EF,其中点 E 在 AB 上,BE=2AE,且 EF⊥BC,垂足为 点 F,求支架 DE 的长.
18.(4 分)我们规定:一个正 n 边形(n 为整数,n≥4)的最短对角线与最长 对角线长度的比值叫做这个正 n 边形的“特征值”,记为 λn,那么 λ6= . 三、解答题(本大题共 7 小题,共 78 分)
19.(10 分)计算: +( ﹣1)2﹣9 +( )﹣1.
20.(10 分)解方程:
8.(4 分)不等式组
的解集是 .
9.(4 分)方程
=1 的解是 .
10.(4 分)如果反比例函数 y= (k 是常数,k≠0)的图象经过点(2,3),那
么在这个函数图象所在的每个象限内,y 的值随 x 的值增大而
.(填
“增大”或“减小”)
11.(4 分)某市前年 PM2.5 的年均浓度为 50 微克/立方米,去年比前年下降了
第 8 页(共 26 页)
hing at a time and All things in their being are good for somethin
【分析】根据轴对称图形和中心对称图形对各选项分析判断即可得解. 【解答】解:A、菱形既是轴对称又是中心对称图形,故本选项正确; B、等边三角形是轴对称,不是中心对称图形,故本选项错误; C、平行四边形不是轴对称,是中心对称图形,故本选项错误; D、等腰梯形是轴对称,不是中心对称图形,故本选项错误. 故选 A. 【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是 寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋 转 180 度后两部分重合. 6.(4 分)已知平行四边形 ABCD,AC、BD 是它的两条对角线,那么下列条件中, 能判断这个平行四边形为矩形的是( ) A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 【分析】由矩形和菱形的判定方法即可得出答案. 【解答】解:A、∠BAC=∠DCA,不能判断四边形 ABCD 是矩形; B、∠BAC=∠DAC,能判定四边形 ABCD 是菱形;不能判断四边形 ABCD 是矩形; C、∠BAC=∠ABD,能得出对角线相等,能判断四边形 ABCD 是矩形; D、∠BAC=∠ADB,不能判断四边形 ABCD 是矩形; 故选:C. 【点评】本题考查了矩形的判定、平行四边形的性质、菱形的判定;熟练掌握 矩形的判定是解决问题的关键. 二、填空题(本大题共 12 小题,每小题 4 分,共 48 分) 7.(4 分)计算:2a•a2= 2a3 . 【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的指数 分别相加,其余字母连同他的指数不变,作为积的因式,计算即可. 【解答】解:2a•a2=2×1a•a2=2a3. 故答案为:2a3. 【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.
2017年上海市数学中考真题[含答案]
![2017年上海市数学中考真题[含答案]](https://img.taocdn.com/s3/m/851d871a767f5acfa1c7cd65.png)
2017年上海市初中毕业统一学业考试数学试卷考生注意: 1.本试卷共25题;2.试卷满分150分,考试时间100分钟3.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效; 4.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1.下列实数中,无理数是( )A .0;B ;C .2-;D .272.下列方程中,没有实数根的是( )A .2 20x x -=;B .2210x x --=;C .2210x x -+=;D .2220x x -+=.3.如果一次函数y kx b =+(k 、b 是常数,0k ≠)的图像经过第一、二、四象限,那么k 、b 应满足的条件是( )A .0k >,且0b >;B .0k <,且0b >;C .0k >,且0b <;D .0k <,且0b <. 4.数据2、5、6、0、6、1、8的中位数和众数分别是( )A .0和6;B .0和8;C .5和6;D .5和8. 5.下列图形中,既是轴对称又是中心对称图形的是( )A .菱形;B .等边三角形;C .平行四边形;D .等腰梯形.6.已知平行四边形ABCD ,AC 、BD 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A .BAC DCA ∠=∠;B .BAC DAC ∠=∠;C .BAC ABD ∠=∠;D .BAC ADB ∠=∠.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:22a a ⋅=____▲____. 8.不等式组2620x x >⎧⎨->⎩的解集是▲.91=的根是____▲____.10.如果反比例函数ky x=(k 是常数,0k ≠)的图像经过点()2,3,那么在这个函数图像所在的每个象限内,y 的值随x 的值增大而___▲___.(填“增大”或“减小”)11.某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%.如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是___▲___微克/立方米.12.不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一个球恰好为红球的概率是___▲___.13.已知一个二次函数的图像开口向上,顶点坐标为()0,1-,那么这个二次函数的解析式可以是___▲___.(只需写一个)14.某企业今年第一季度各月份产值占这个季度总产值的百分比如图1所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是___▲___万元.15.如图2,已知AB ∥CD ,2CD AB =,AD 、BC 相交于点E .设AE a =uu u r r ,CE b =uur r ,那么向量CD uuu r 用向量a r 、b r表示为___▲___.图1图2图3图416.一副三角尺按图3的位置摆放(顶点C 与F 重合,边CA 与边FE 叠合,顶点B 、C 、D 在一条直线上).将三角尺DEF 绕着点F 按顺时针方向旋转n o后(0180n <<),如果//EF AB ,那么n 的值是___▲___.17.如图4,已知Rt ABC V ,90C ∠=︒,3AC =,4BC =.分别以点A 、B 为圆心画圆,如果点C 在A e 内,点B 在A e 外,且B e 与A e 内切,那么B e 的半径长r 的取值范围是___▲___.18.我们规定:一个正n 边形(n 为整数,4n ≥)的最短对角线与最长对角线长度的比值叫做这个正n 边形的“特征值”,记为n λ,那么6λ=___▲__.三、解答题:(本大题共7题,满分78分)19.(本题满分10分))11221192-⎛⎫-+ ⎪⎝⎭20.(本题满分10分)解方程:231133x x x-=--21.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图5,一座钢结构桥梁的框架是ABCV,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD BC⊥.(1)求sin B的值;(2)现需要加装支架DE、EF,其中点E在AB上2BE AE=,且EF BC⊥,垂足为点F.求支架DE的长.22.(本题满分10分,每小题满分各5分)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y (元)与绿化面积x (平方米)是一次函数关系,如图6所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元. (1)求图6所示的y 与x 的函数解析式;(不要求写出定义域)(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分)已知:如图7,四边形ABCD 中,//AD BC ,AD CD =,E 是对角线BD 上一点,且EA EC =. (1)求证:四边形ABCD 是菱形;(2)如果BE BC =,且:2:3CBE BCE ∠∠=,求证:四边形ABCD 是正方形.24.(本题满分12分,每小题满分各4分)已知在平面直角坐标系xOy 中(如图8),已知抛物线2y x bx c =-++经过点()2,2A ,对称轴是直线1x =,顶点为B .(1)求这条抛物线的表达式和点B 的坐标;(2)点M 在对称轴上,且位于顶点上方,设它的纵坐标为m ,联结AM ,用含m 的代数式表示AMB ∠的余切值; (3)将该抛物线向上或向下平移,使得新抛物线的顶点C 在x 轴上.原抛物线上一点P 平移后的对应点为点Q ,如果OP OQ =,求点Q 的坐标.25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)如图9,已知O e 的半径长为1,AB 、AC 是O e 的两条弦,且AB AC ,BO 的延长线交AC 于点D ,联结OA 、OC . (1)求证:OAD ABD V :V ;(2)当OCD V 是直角三角形时,求B 、C 两点的距离;(3)记AOB V 、AOD V 、COD V 的面积分别为1S 、2S 、3S ,如果2S 是1S 和3S 的比例中项,求OD 的长.2017年上海市初中毕业统一学业考试数学试卷参考答案一、选择题:(本大题共6题,每题4分,满分24分)1、B ;考察方向:基础概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年上海中学自主招生试卷
一、填空题
1.计算
111
++...+
1+22+32012+2013
=_____________.
2.设x,y,z为整数且满足|x-y|2012+|y-z|2013=1,则代数式|x-y|3+|y-z|3+|z-x|3的值为_____________.
3.若有理数a,b满足2133
4a b
-=+,则a+b=_____________.
4.如图,ABC中,AC=3,BC=4,AB=5,线段DE⊥AB,且△BDE的面积是△ABC 面积的三分之一,那么线段BD长为_____________.
C
E
D B
A
5.二次函数y=ax2+bx+c的图像与x个交点M、N,顶点为R,若△MNR恰好是等边三角形,则b2-4ac=_____________.
6.如图为25个小正方形组成的5×5棋盘,其中含有符号“#”的各种正方形共有______个.
#
7.平面上有n个点,其中任意三点都是直角三角形的顶点,则n的最大值为____________.
8.若方程(x2-1)(x2-4)=k有四个非零实根,且它们在数轴上对应的四个点等距排列,则实数k=____________.
9.一个老人有n匹马,他把马全部分给两个儿子,大儿子得x匹,小儿子得y匹,(x>y ≥1),并且满足x是n+1的约数,y也是n+1的约数,则正整数n共有_____种可能的取值?
10.已知a>0,且不等式1<ax<2恰有三个正数解,则当不等式2<ax<3含有最多的整数解时,正数a的取值范围为_____________.
二、解答题
11.设方程x 2-x -1=0的两个根为a ,b ,求满足f (a )=b ,f (b )=a ,f (1)=1的二次函数f (x ). 12.已知1+2+3+…+n =(1)2
n n +,这里n 为任意正整数,请你利用恒等式(n +1)3=n 3
+2n 2+3n +1,推导出12+22+32+…+n 2的计算公式.
13.解方程组22
22221()2()3()x y z y z x z x y ⎧=+-⎪=+-⎨⎪=+-⎩
14.已知△ABC ,CA =5,AB =6,BC =7,△A 'B 'C '中,∠A '=∠A ,∠B '=∠B ,但△A 'B 'C '的大小和位置不定,当A '到BC 的距离为3,B '到AC 的距离为1(如图),问:C '到AB 的距离是否定值?若是,求出此定值;若不是,说明理由.
B C
A
C'A'
B'。